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Summary

The goal of Model Checking is to verify that a given program matches its spec-
ification without error. This task is difficult and frequently undecidable. Due
to increasingly sophisticated algorithms and processing power, model checking
has had many successes in industry.

Further to model checking, we may wish to produce a correct program from
a specification, rather than evaluating a program that has already been con-
structed. This is the synthesis problem. As would be expected, this problem is
more difficult than model checking and has remained a largely academic sub-
ject. However, as advances in model checking have produced practically viable
results, it may be possible for further advances in synthesis to have industrial
success.

These two problems form the basis of our research. In particular, we focus on
the model checking and synthesis problems using Linear Temporal Logic as our
specification language. We are also interested in particular types of automata,
which are closely related to LTL.

In this document we describe the two problems in detail, and several ap-
proaches to them. We also describe our own research into model checking al-
gorithms and automata simplification. We propose further research along these
lines.

Document Structure

In chapter 1 we give an overview of the model checking problem. We discuss
the fundamental concepts: representing programs formally as Kripke structures,
program specification languages and automata. In particular we focus on Linear
Temporal Logic.

In the next chapter we describe several model checking algorithms, includ-
ing symbolic methods to combat the state-explosion problem. We detail two
recent methods for efficient model checking: an “on the fly” method introduced
by Merz, Hammer and Knapp [47] and a SAT-based speed up algorithm by
McMillan [43]. We then discuss our own work which aims to exploit the com-
plementary properties of these two approaches to produce a new, more efficient,
model checking algorithm. We describe our encoding of model checking as a
SAT-problem and discuss the implementation, which is still a work in progress.



In chapter 3 we expand the scope of the document to the synthesis problem.
This chapter is a version of a survey paper produced during the Hilary term,
2005. It describes the differing notions of program synthesis alongside recent
attempts to use games as a unifying framework. We finish the chapter with an
overview of some of the open problems in synthesis.

Chapter 4 discusses automata simplification. Because automata play an im-
portant role in both model checking and synthesis, they can have a large effect
on the efficiency of an algorithm. There are three main stages for minimisa-
tion: simplifying LTL formulae, producing smaller automata, and minimising
an existing automata. We survey several techniques at each stage.

The main thrust of the chapter is quotienting with respect to simulation.
Simulation is when one automata is able to mimic the actions of another. A
quotient automata is produced by merging automata states that simulate each
other. When the automata is alternating, Fritz and Wilke define minimax and
semi-elective quotienting for two different types of simulation: direct and de-
layed [15].

We finish the chapter by discussing our initial work into simulation for Lin-
ear Weak Alternating Automata with a co-Biichi acceptance condition. We
show that the analogue of Fritz and Wilke’s results also hold for LWAA. Fi-
nally we discuss further ideas for research. In particular, we aim to exploit
the structure of Linear Weak Alternating Automata to produce more efficient
quotients and simulation algorithms. We would also like to relate this work to
an alternate definition of LWAA that is frequently used in practice. A further
avenue of research utilises the notion of strategy composition — used to prove
the transitivity of simulation relations — to provide a categorical interpretation
of alternating automata, which may be generalised to two-player games. This
may provide a connection between two different strands of research into games:
verification and semantics.

Finally, chapter 5 surveys LTL fragments. The study of LTL fragments
aims to understand why LTL model checking works in practice despite it high
upper bound complexity. We describe an automata characterisation of a class
of LTL fragments that limits the nesting depth of LTL’s temporal operators.
We then describe Partially Ordered Deterministic Biichi automata, which are
used by Alur and La Torre to prove the complexity bounds for synthesis with
LTL fragments [73].

We also describe an NP-complete fragment of LTL studied by Muscholl and
Walukiewicz [6]. We propose further research into this logic. In particular, we
may seek an automata characterisation of the fragment and study its complexity
when used for program synthesis.

Proposed Research Directions

There are several avenues of potential research following from this dissertation.
These can be broken down into three main categories: model checking algo-
rithms, automata simulation relations and the study of LTL fragments.



In joint work with William Blum and Luke Ong, we are currently imple-
menting a new model checking algorithm. This algorithm is a combination of
two complimentary algorithms published recently by Merz et al and McMillan.
We intend to complete this implementation in the near future. If successful,
this implementation may lead to a conference paper and provide a framework
in which to test further optimisation work. For example, we may wish to test
the effectiveness of automata minimisation using simulation quotienting.

The second direction of research is automata simulation. In [15] Fritz and
Wilke introduce simulation quotienting for alternating automata with a Biichi
acceptance condition. We have shown that these results still hold for Linear
Weak Alternating Automata with a co-Biichi acceptance condition. We aim to
exploit the structure of an LWAA to produce quotients tailored towards them.
We hope to produce more efficient algorithms for calculating the simulation
relations and minimising the automata. For example, we hope that quotienting
by fair simulation — which cannot be applied to alternating automata in general
— may be possible for LWAA.

Furthermore, transitivity of the simulation relations is shown via a notion of
strategy composition in a simulation game. This notion of composition suggests
a categorical interpretation of simulation. This may be generalised to strategies
in two-player games, which can be thought of as alternating automata with
appropriate winning conditions. Such an interpretation may enable us to bridge
the gap between games for verification and game semantics, in which categories
and strategy composition play a fundamental role.

Finally we aim to study LTL fragments. In particular an NP-complete frag-
ment of LTL introduced by Muscholl and Walukiewicz. This fragment gains sig-
nificant complexity improvements by augmenting the tomorrow operator with
the next character of input. We intend to study the complexity of the logic for
synthesis and model checking of paths. We will also seek an automata char-
acterisation of the logic. Hopefully this will give a greater understanding of
why the restriction on the tomorrow operator leads an exponential reduction in
complexity.
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Chapter 1

Model Checking

We begin by giving a description of the Model Checking problem. The first
section of this chapter describes and motivates the problem in more detail.
We then introduce a formal model of computer programs — namely Kripke
Structures — and go on to describe the different languages we can use for
reasoning about them.

Finally we overview some of the basic tools that are used to provide model
checking algorithms. In particular we introduce several specification languages
and automata over infinite words, including alternating automata.

1.1 The Model Checking Problem

An important property of any program is its correctness. Errors in a system can
easily go undetected. Once deployed, the costs of bugs can be enormous. One
basic method for checking correctness is straightforward testing: a user tries to
break the system by inputting as many test cases as is feasible. However, to test
every set of input conditions is almost impossible — especially in the concurrent
case, where a degree of nondeterminism is present. Testing, therefore, cannot
guarantee correctness. Furthermore, it can sometimes be difficult to determine
precisely where a program goes wrong.

It would be ideal then if we were able to prove that a system is error free,
or identify errors before they identify themselves. This is the goal of the Model
Checking problem.

In general, this problem is undecidable. That is, for any program and any
specification, we cannot automatically determine whether the specification is
met. The halting problem is a classic example of undecidability. However,
we can restrict the range of expressible properties via the method we use to
represent the system and its specification. Once restricted, the problem often
becomes decidable, although the complexities are high.

Despite the high complexity, efficient algorithms and implementations have
been developed and Model Checking enjoys a number of successes in indus-



try [78].

1.2 Modelling Programs

To be able to reason about programs we require a formal representation of
the system. There are a number of formalisms in the literature, ranging from
the theoretical (lambda calculus, pi-calculus, CSP, etc.) to the more practi-
cally motivated (Promela, SMV). In this section we introduce the model most
commonly associated with model checking: Kripke Structures. Although many
model checkers take a more practical language as input, the internal workings of
the system and the accompanying literature often use Kripke structures. There-
fore, they are the right formalism for discussing model checking algorithms.

Definition 1.2.1 A Kripke Structure S over a finite set of atomic propositions
AP is a tuple (Q,R,1,T). Q is a (possibly infinite) set of states, and R C Q@ x Q
is a transition relation. | : Q — 24F labels each state of Q with the set of atomic
propositions that are true at that state. Finally I C Q) is a set of initial states
(usually a singleton) of S. S is a finite Kripke Structure when Q is finite. R is
total iff Vg € Q3¢' € Q.qRq'. That is, every state has a successor.

Together Q and R form a directed graph. The program starts in an initial
state. At each program step a transition is taken to a next state. This gives us
the notion of a path and a run.

Definition 1.2.2 Given a Kripke Structure S = (Q,R,1,Z) a sequence qo, q1,q2, - - -
of states q; € Q such that ¢;Rq;+1 is a path through S. If the sequence is mazi-
mal, it is a fullpath. A fullpath is o run when qo € .

An equivalent, definition of a Kripke Structure uses a finite alphabet X
rather than a set of atomic propositions. In this alternative definition it is the
transition relation that is labelled rather than the states. Conceptually the
program will perform an action a € ¥ to move from one state to another.

To translate from AP to ¥ we simply set 24¥ as our alphabet and move
the labelling of a state to the transition relation. In the opposite direction, we
encode X using a number of atomic propositions and move the labelling to the
states. If a state is reachable by both an ¢ € ¥ and a b € X action (a # b),
then we divide it into two states — one if it is reached by an a, the other if it
is reached by a b.

Consequently a sequence of states (and therefore a path or a run) can equiv-
alently be represented as a word over the alphabet .

For the the remainder of this dissertation, we will assume that R is total (we
can easily augment a transition relation that is not total by adding a “dead”
state) and consequently that all runs are infinite.

10



1.3 Specification Languages

We can reason about a Kripke Structure using several different languages. Two
important areas of study are Linear Time and Branching Time languages. In the
linear time paradigm we assume that each time step has one possible future,
whereas in the branching time philosophy, many different futures may occur.
We begin by introducing the logics and end with a discussion of their various
advantages.

1.3.1 Linear Time
w-Regular Languages

We observed in the last section that a program run may be considered to be
a word over the alphabet ¥. Therefore, an important tool for discussing the
expressivity of linear time logics are w-Regular Languages. We can express
almost all important properties of a system using these languages.

Definition 1.3.1 The syntaz of w-Regular expressions is,

a = ¢€e|lalaUa|gal|a®|a’

where € denotes the empty word, a the single character a, U the union of two lan-
guages, ; the composition and * and w (respectively) finite and infinite repetition
of a language.

An important subclass of w-regular languages is the star-free languages. This
is the subclass without * or w, but complementation (&) is allowed. The star-free
languages are those that can be defined using first-order logic over strings [77].

Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli in 1977 [8]. It is inter-
preted over a linear time structure, where proposition valuations 7 : N — 24F
are parameterised by a natural number denoting the timestep. What may be
true initially might not be true at a timestep greater than zero.

The logic is built from a set of atomic propositions AP, the boolean con-
nectives and two binary temporal operators () (tomorrow) and U (until). The
meaning of () is straightforward given the semantics given below. Until is more
subtle. The formula ¢U1) asserts that ¢ holds at all timesteps from now until
holds, and, moreover, that ¢ will eventually hold. We interpret U non-strictly,
and allow % to hold immediately, meaning that ¢ may never need to be satisfied.

Definition 1.3.2 For a set of atomic propositions AP and an LTL formula ¢,
given a valuation m : N — 24P and timestep i € N, we interpret ¢ as follows
(p € AP):

11



miEp < pen(i)

miENY <= miE¢andmiEy

T, = ¢ = notmilE¢

i = Q¢ = mitlE¢

mi = ¢Uy <  thereis j > i such that m,j = and for alli <k < j

we have m, k |= ¢

The literature makes use of three important abbreviations when discussing
LTL. Namely ¢V, F¢ and G¢. ¢V is defined as the dual of ¢pU1, that is
—(mgU—). F¢ (future ¢) asserts that ¢ holds at some point in the future,
and is encoded TU ¢, where T is truth. Because of the non-strict interpretation
of U, F¢ is satisfied if ¢ holds immediately. G¢ (globally ¢) is the dual of F'
(—=F-¢) and asserts that ¢ is true from this timestep on.

LTL can express all star-free w-regular languages, and therefore all first order
properties of strings [88].

Linear Time pu-Calculus

Wolper first observed that LTL cannot express all w-regular properties [69].
It has been shown that LTL can express only the star-free properties [88]. It
was also shown that LTL is not adequate for modular verification because it
cannot express the required assumptions about the environment [61]. That is,
we cannot break large programs into modules and verify them independently.

In response to these observations, Baniegbal and Barringer proposed the
use of fix-point operators [13], yielding the Linear Time p-Calculus (uTL). pTL
extends LTL with least (1) and greatest () fix-point operators. This requires
the introduction of a set of fix-point variables V and an environment p : V — 2V
interpreting these variables when they are not bound by a fix-point operator
(0X.¢(X) where o € {u,v}). psimply identifies the set of timesteps in which a
variable can be considered true. A puTL formula is closed if all fix-point variables
appearing in the formula are bound by a fix-point operator.

To aid in the definition of the semantics of uTL we introduce the notation
[#]; to denote the set of all timesteps at which ¢ holds.

Definition 1.3.3 For a set of atomic propositions AP, a disjoint set of fix-
point variables V and a pTL formula ¢, given a valuation = : N — 247 and

environment p : V — 2V, we interpret ¢ as follows (in addition to the semantics
of LTL)(X € V):

[X17 = p(X)
[nX.0]; = N{M C NI} xa © M}
[vX.8]5 = U{M CNIM C[¢]5x n}

where p[X + M] behaves like p in all cases except p(X) is M.

The theory of fix-point operators is not a simple one. Intuitively we think of
the least fix-point p as a finite loop, whereas the greatest fix-point v corresponds

12



to infinite loops. That is, we can “recurse” through a fix-point variable bound by
ponly a finite number of times, whereas we can recurse through a variable bound
by v an infinite number of times. The least and greatest fix-points are used to
encode the w-regular language operators * and w respectively. Consequently
uTL can express all w-regular properties.

For example, suppose we have one atomic proposition p. Let 1 denote a
timestep where p holds and 0 denote a timestep where p does not hold. If we
bound the variable X with g and require that p holds globally or that we have
the sequence 110 followed by X, we would be expressing the language (110)*(1)%.
This is because we can either settle in Gp now ((1)¢), or take the second route
which requires (110) and then loops through X back to where X is bound. Since
X is bound by p, we can only take this second route a finite number of times.
Eventually, we must choose Gp. If instead we had bound X with v and removed
Gp from the disjunction, we would require an infinite repetition of 110, that is,
(110)~.

Kripke Structures and Linear Specifications

To make sense of the model checking and synthesis problems we need to define
what it means for a program to satisfy a specification.

Definition 1.3.4 Given a Kripke Structure S and an LTL or uTL specification
¢ (and environment p), S satisfies ¢ iff for all runs qo,q1,q2,--- of S, we have
7,0 [=(,) ¢ where 7 is the valuation (i) = l(g;) for all i.

1.3.2 Branching Time Logics

In a linear paradigm, we assume that each moment of time has a unique suc-
cessor. An alternative model of time assumes many different possible futures.
To reason in this model we use branching time logics.

Computational Tree Logic

Computational Tree Logic was introduced in 1981 by Emerson and Clarke [28].
It is interpreted over computation trees, rather than linear sequences. Intu-
itively, a Kripke Structure S can be unwound to form a tree structure, where
the initial state is the root. The children of each node are derived from the
successors of the corresponding state in S.

Definition 1.3.5 Given a set of atomic propositions AP, the syntaz of CTL is
as follows (p € AP),

¢ = ploAY |- | E(@UY) | A@UY) [ EQ ¢ | AO¢

Intuitively, the semantics of a CTL assertion is similar to LTL. The temporal
connectives are augmented with existential and universal quantifiers, E and A.
The existential quantifier requires that the assertion holds on some path from
the current node in the tree. Dually, the universal quantifier requires that it
holds on all paths leading from the current node.

13



Computational Tree Logic*

CTL is a fragment of CTL*. CTL* is an extension of LTL with quantification
over runs.

Definition 1.3.6 Given a set of atomic propositions AP, the syntaz of CTL is
as follows (p € AP),

¢ =ploAy| ¢ |Ep| Uy | O¢
Universal quantification A¢ is defined as an abbreviation for ~E—¢.

The semantics of CTL* is defined in terms of runs of a computation tree T'.

A run r of T is a sequence sg, 81, S2, - . - of nodes of T, such that s;y; is a child
of s; for all i. We write r[0,...,4] to denote the first s + 1 nodes in the sequence
T

Definition 1.3.7 Given a set of atomic assertions AP a CTL* assertion ¢, a
computation tree T, and run r of T, and a position i of r, we interpret ¢ as
follows (in addition to the semantics of LTL):

T,riiEE¢ <= T,r',ikE¢ for somer' inT such that
r[0,...,i] =r'[0,...,14]

1.3.3 Linear vs. Branching Time

The model checking problem for both CTL* and LTL is PSPACE-complete,
CTL, however, is P-complete. The respective synthesis problems are 2EXPTIME-
complete for CTL* and LTL, and EXPTIME-complete for CTL (when we are
synthesising a non-distributed system) [57]. It should be noted that CTL and
LTL are expressively incomparable, but are both fragments of CTL*.

In practice, CTL has been widely successful, forming the primary specifica-
tion language of tools such as SPIN [31] and SMV. This is not surprising given
the complexities above. However, authors such as Vardi and Schnoebelen have
argued the case for LTL [51, 68]. This recent interest has been accompanied by
advances in LTL model checking algorithms (discussed in chapter 2) and the
addition of LTL specifications to the tools mentioned above.

There are several arguments offered for linear time over the branching time.
Firstly, branching time is somewhat unintuitive. (For example, AXAF¢ #
AFAX ¢ [51].) Consequently, the branching aspect of the language is rarely used
in practice. This leads Vardi to state that, in practice, CTL is less expressive
than LTL. Furthermore, Schnoebelen argues that the size of the program makes
the most important contribution to the practical complexity of model checking,
and hence the difference between LTL and CTL is negligible.

A further criticism of branching time is that it does not admit compositional
reasoning. In concurrent systems we can reduce the state-space explosion by
considering program modules individually and conclude (subject to certain side
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conditions) that the complete system is correct. CTL is not adequate for this
technique, and so tools such as SMV have adopted the linear time paradigm.

Because of the reasons outlined above we will focus our attention on the
linear model of time, and in particular LTL.

1.4 Automata

We need to be able to reason automatically about linear temporal logics. Au-
tomata theory has provided several important tools to aid us in this task. In
this section we describe two important classes of automata and discuss their
relationship with LTL. (For a detailed description of the automata-theoretic
approach to LTL, see Vardi’s survey paper [50].)

1.4.1 Biichi Automata

Automata can be used to define languages over a given alphabet . We observed
in section 1.2 that a program run can be considered a word. In particular we
are interested in infinite runs of programs, and hence infinite words. Biichi
automata can be used to calculate whether a given word is in our language.
That is, whether a program run meets our specification.

Definition 1.4.1 A Biichi automaton A is a tuple (X, S,5°,6,F). ¥ is a finite,
non-empty, alphabet. S is a finite set of states, where S° C S is the set of initial
states. 6 : S x ¥ — 25 is a transition relation. F C S is a set of final states.

To determine whether a Biichi automaton accepts a word w we proceed as
follows. The automaton starts at an initial state. It reads the characters of w
one by one (from left to right). At each character we take a transition allowed
by the transition relation given the current state and character. We accept the
word if we meet a state in F' an infinite number of times.

More formally, given a word w = ag, a1, a2, - - . we define a run of the automa-
ton on w as a sequence of states sg, 81, 82, ... where sg € S® and s;11 € 0(s;,a;)
for all 4. If §(q,a) is a singleton for all ¢ and a then the automaton is determin-
istic — for any given word there is only one possible run. If we have a choice of
next states then the automaton is non-deterministic, and for any given word a
number of runs may exist.

In order to define acceptance we define the limit of a run r as lim(r) =
{s | s = s; for infinitely many i}. A word is accepted if there is a run r of the
automaton over the given word such that lim(r) N F # . That is, a run exists
where a final state occurs infinitely often.

The language of an automaton A is written £(A) and is defined as the set
of all words accepted by the automaton.

Proposition 1.4.1 [52] Given an LTL formula ¢, once can build o Biichi au-
tomaton Ay = (%,8,8°,6,F), where & = 247 and |S| is 20U9D, such that
L(Ag) is exactly the set of computations satisfying the formula ¢.
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It is this relationship with automata that produces the basic LTL model
checking algorithm discussed in chapter 2. Given a Kripke Structure S and a
specification ¢, we construct an automaton to check £(S) N L(A-4) = 0. That
is, there are no runs of S that satisfy ¢, violating the specification. Therefore,
model checking can be reduced to a test for language emptiness for a Biichi
automaton. This check can be done in linear time [24, 25].

Because we check non-emptiness of £(S) N L(A-4), we refer to an accepting
run as a counter-example to the correctness of S.

1.4.2 Generalised Biichi Automata

An important variation on Biichi automata are generalised Biichi automata.
Generalised Biichi automata usually form an intermediate stage in the trans-
lation from LTL to Biichi automata. That is, we translate the LTL formula
into a generalised Biichi automaton and then translate the result into Biichi
automaton.

Definition 1.4.2 A Biichi automaton A is a tuple (%, S, 5°,6,F). X is a finite,
non-empty, alphabet. S is a finite set of states, where S° C S is the set of initial
states. 6 : S x & — 29 is a transition relation. F C 2° is a set of fair sets
FCS.

The winning condition, rather than being a set of final states, is a set of fair
sets. A fair set is a set of states. A run is accepting iff for all fair sets F', there
is a state ¢ € F such that ¢ appears infinitely often. That is, we have to meet
each of the fair sets infinitely often.

A Biichi automaton can be encoded as generalised Biichi automaton by
setting F = {F}. The translation in the opposite direction is more involved.
In essence we order the fair sets. A counter is maintained which is incremented
when we meet the next fair set in the order. Initially we must meet the first
fair set in the order. Once the counter reaches the number of fair sets, the
next transition always resets it. The set of final states in the equivalent Biichi
automaton is the set of all states where the counter is equal to the number of
fair sets.

1.4.3 Alternating Automata

Alternating automata have been studied by Brzozowski and Leiss [37] and
Chandra, Kozen and Stockmeyer [5]. As we noted earlier, a Biichi automa-
ton may be non-deterministic. That is, at a given state we can choose (non-
deterministically) which transition to take. The automaton will accept if any of
these transitions results in an accepting path. That is, there exists a transition
leading to an accepting path. Alternating automata go a step further, allow-
ing universal as well as existential quantification. Two different, but equivalent,
definitions of alternating automata have been introduced in the literature [37, 5].
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Definition 1.4.3 [5] An alternating Biichi automaton A is a tuple (£,S,S5°,6, E,U, F).
Y is a finite, non-empty, alphabet. S is a finite set of states, where S° C S is

the set of initial states. § : S x ¥ — 2% is a transition relation. F C S is a set

of final states. {E, U} is a partition of S into existential and universal states.

Informally, a word is accepted by an alternating automaton if, from the
current state, either all transitions lead to an accepting run (if we are in a
universal state), or there is a transition which leads to an accepting run (if we
are in an existential state). A more formal definition of acceptance is given in
section 4.4.1.

Definition 1.4.4 [37] An alternating Biichi automaton (ABA) A is a tuple
(AP,S,S°,6,F). AP is a set of atomic propositions. S is a finite set of states,
where S° C S is the set of initial states. & : S — B(S U AP) is a transition
relation, where B(S U AP) is the set of all boolean formulae over the atomic
propositions in SU AP and states in S only occur positively. FF C S is a set of
final states.

In this model of automata we introduce alternation via the transition re-
lation. At each point in a run of the automaton we evaluate the transition
formula for the current state. The value of the atomic propositions is given by
the character of input that is being read. We are looking for models of d(q)
(where ¢ is the current state). If we can find a model such that an accepting
run can be found for all states in the model, then the automaton accepts. For
example, if §(q) = (g1 Agz2) V (g3 A q4) we accept if accepting runs can be found
from states ¢; and g2, or if accepting runs can be found from states g3 and g4.
Acceptance for this variant of alternating automata is treated more formally in
section 2.4.1.

It is known that alternating automata are no more expressive than non-
deterministic automata, but exponentially more succinct. In fact, there is a
linear translation from LTL to alternating automaton. However, this does not
improve the complexity of LTL satisfiability because the complexity of testing
for language emptiness is exponential for an alternating automaton, as opposed
to linear for a non-deterministic automaton.

Before we state the relationship with LTL more formally, we introduce two
subclasses of alternating automata.

Weak Alternating Automata

Definition 1.4.5 [19] A Weak Alternating Biichi Automaton (WABA) is an
ABA A= (%,8,8°,6,F) where S can be partitioned into components Cy, ..., C,
such that,

- forallq€ S,i,5 € {0,...,n},a € X: ifq € C; and ¢ € C; and 6(¢,a) =
fG....d,...) for some f, then j <.

-forall0<i<n:C; CForC;NF ={.
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That is, a WABA is an ABA whose states can be partitioned into a hierarchy.
At each state a transition can either stay within the current level, or move to a
lower partition. Eventually, then, every run must “get stuck” in a partition. If
this partition is accepting, then the automaton accepts.

Linear Weak Alternating Automata

Linear Weak Alternating Automata (LWAA) are a further sub-class of Weak Al-
ternating Automata. Intuitively, an LWAA is an ABA where the only cycles are
self-loops. LWAA may also be refered to as Very Weak Alternating Automata.

Definition 1.4.6 [79] A Linear Weak Alternating Biichi Automaton (LWAA)
is an ABA A= (%,5,8°,6,F) such that the relation <, is a partial order. We
judge ¢' <, q iff g =* ¢, that is ¢' is reachable from q.
Alternating Automata and Linear Time Logics

We present the following equivalences between alternating automata and linear
time logics.

Proposition 1.4.2 [49]
- For every ¢ € pTL there is a WABA Ay with L(Ay) = L(¢).
- For every WABA A there is a ¢pa € uTL with L(¢a) = L(A).

Similarly, for LTL:

Proposition 1.4.3

- For every ¢ € LTL there is an LWAA Ay with L(Ag) = L(¢) [19].
- For every LWAA A there is a g5 € LTL with L(¢pa) = L(A) [16, 32].

1.5 Summary

In this chapter we have described the basic model checking problem. We have
discussed formalisms of both programs and specifications for non-terminating
systems. In particular, we have argued for the study of Linear Temporal Logic.
We have also discussed some of the tools for approaching LTL model checking.
These include automata and their relationship with LTL and pTL.

In the next chapter we discuss model checking of LTL in more detail, ex-
plaining some algorithms that have been proposed in the literature. We also
describe our own work on efficient LTL model checking and discuss further re-
search directions in this field.
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Chapter 2

Model Checking Algorithms

In this chapter we present several LTL model checking algorithms. We begin
with the basic algorithm from which the more sophisticated procedures are de-
rived. We discuss several problems that an efficient model checker must contend
with. We then describe the symbolic approach to model checking using BDDs
and a SAT-based methods that put a bound on the length of possible counter
examples.

We go on to survey two particular model checking algorithms introduced
by Hammer, Knapp and Merz [47] and McMillan [43]. We finish by describing
on-going joint work with William Blum that combines these two algorithms in
the search for greater efficiency.

2.1 The Basic Model Checking Algorithm

Proposition 1.4.1 states that every LTL assertion ¢ has an equivalent Biichi
automaton Ay with a number of states that is exponential in the size of ¢.
Given a Kripke Structure S and an LTL assertion ¢, model checking S reduces
to the following problem: L£(S)N L(A-4) # @. That is, if a run of S is also a
run of A, then it is a run that violates the specification ¢. If such a run exists,
then S contains an error.

To check £(S) N L(A-g) # 0 we construct a Biichi automaton that is the
product S x Ay of S and A-4. Since L£(S x A-4) = L(S) N L(A-4) the model
checking problem becomes an emptiness test for S x A4 — that is, can we find
an accepting run of S x A_;.

Definition 2.1.1 Given an alphabet X, an edge-labelled Kripke Structure K =
(9, (=4)aex,T) and a Biichi automaton A = (%, S5,8°,68, F), we define the prod-
uct automaton K x A= (2,9 x S,I x S°,§,Q x F) where (¢',s) € 8((q, s),a)
iff ¢ =4 ¢ and s € §(s,a) for q,q' € Q,s,8' €S and a € X.

In effect, the product construction runs the Kripke Structure and Biichi
automaton in parallel. The runs of the automaton are restricted by the runs of
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the Kripke structure. Acceptance occurs if the automaton is still able to find
an accepting run under these restrictions.

Non-emptiness of a Biichi automaton is decidable in linear time [24, 25]. In
particular, the problem is reducible to graph reachability. Any accepting run
can be characterised as follows: sg € S° =, s € F —, s — .... That is, a state
s in F is reachable from an initial state sg, and moreover, s is reachable from
itself. We can think of an accepting run as a lasso — a path that loops at the
end.

To determine non-emptiness, we deconstruct the graph into nontrivial strongly
connected components (a set of vertices such that all vertices are reachable from
each other) using a linear time depth-first search (DFS) based algorithm [86].
We then look for a nontrivial SCC that contains a state in F' that is reachable
from an initial state. This just requires an application of the linear DFS algo-
rithm also given in [86]. Therefore, non-emptiness of a Biichi automaton can be
solved using several applications of reachability.

2.2 Model Checking as Reachability

In the last section we discussed the role of reachability analysis in determining
non-emptiness of a Biichi automaton. In this section we discuss work by Biere,
Artho and Schupan which reduces non-emptiness to reachability directly [3].

A Biichi automaton is non-empty if it contains a lasso with a final state in
the loop. There is exactly one state in the lasso where the loop starts (and
ends). To encode the presence of a loop as a reachability problem we increase
the state space of the automaton so that (conceptually) each state carries a
state variable. This state variable is initially null. Non-deterministically the
automaton guesses when the start of the loop has been reached, and stores that
state in the state variable. We know when we have reached the end of the
loop by comparing the current state with the value of its state variable. If they
match, we have completed the lasso.

For this lasso to be accepting, we require a final state to appear in the loop.
To ensure that this property holds we add another variable to the states of the
automaton. This variable is false if we are yet to start the loop, or we have
started the loop but have not seen a final state. When we see a final state, the
variable is set to true.

Thus, non-emptiness is reduced to reachability of a state s whose state vari-
able is s and whose final variable is true. That is, the end of a lasso with a final
state in the loop.

Definition 2.2.1 Given a Biichi automaton A = (%, 5,5°,0, F) we define the
automaton AR over finite words where Ap = (X, Sr, S°x{L}x{false},dr, Fr).
We define S = S x (SU{L}) x {true, false}, Fr = {(s,s,true) | s € S}.
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Finally 0g is defined as follows (s,l € S, f € {true, false}):

0(a,s) x {s, L} x {false} ifl=1 ands¢ F

) b(a,s) x {s,L} x {true} ifl=1 andseF

Or(a, (5, 1) =\ 5(a,s) x {1} x {f} if 141 and s ¢ F
d(a, s) x {l} x {true} ifl#1l andseF

Ap accepts iff a state in Fg is reachable from an initial state. Furthermore, Ag
has an accepting run iff A has an accepting run. It is easy to see that the size
of Ag is quadratic in the size of A.

2.3 The State-Explosion Problem

The primary difficulty in LTL model checking is the state-explosion problem.
The translation from LTL to Biichi automata is exponential. As specifications
become more complex, the number of states in the automaton grows very large
and can quickly become unmanageable. In the next sections we discuss two
general methods that have had success in industry for tackling this problem.
Both of these methods rely on a symbolic representation of automata. We
begin by describing how an automaton can be represented symbolically.

2.3.1 Representing Automata Symbolically
The Stateset and Alphabet

Given an LTL formula of size n, its corresponding Biichi automata may contain
0(2™) states. We can identify these states by numbering them. Given a binary
representation of numbers, we will require log(m) boolean variables to represent
m states. That is, we will require O(n) boolean variables to represent the states
of our Biichi automata.

Similarly, the alphabet X of our automata can be represented by a (disjoint)
set of boolean variables.

We will write § to denote the assignment to the state variables representing
the state s € S. Similarly & for the character a € X.

The Transition Relation

To represent the transitions of our automata we introduce a transition formula
R. The boolean variables of this formula are from the set {z | € var(S)} U
{#' | z € var(S)}U{a | a € var(X)}, where var(S) and var(X) are the boolean
variables used to represent the stateset and alphabet of the automata. R(a, 3, §')
is constructed to hold only in case the state s’ is reachable by an a transition
from s.

Suppose we have a four state automata with 00 —, 01 and 10 —, 11. Let
the variables {z,y} represent a state, and the variable [ represent an a when
true. The automaton’s transition relation is as follows,

R =Izyz'y’ + lzyz'y
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Figure 2.1: A BDD representing the formula A A B

We can obviously minimise this formula.

Initial and Final States

We can represent the set of initial states using a similar encoding to that of the
transition relation. That is I(3) is true iff s is an initial state. Similarly for

2.3.2 Model Checking with BDDs

Binary Decision Diagrams (BDDs) were introduced by Bryant in 1986 [74]. A
BDD is a directed acyclic graph. Each node of the graph corresponds to a vari-
able or a valuation. There are at most two nodes corresponding to valuations: 0
and 1. These are leaf nodes. A node that corresponds to a variable has two arcs
— one if the variable is valued true, the other if it is valued false. A boolean
formula represented as a BDD is evaluated by traversing the graph until a leaf
node is reached. This gives a valuation of 0 or 1 — false or true respectively.

Figure 2.1 shows a BDD for the formula AB with the variable ordering
A > B. If a variable evaluates to true, the opaque arrow is followed. Otherwise,
the dotted arrow is followed.

In the worst case a BDD is exponential in size, although in practice they are
often more reasonable.

A variable ordering specifies the order in which variables appear in the DAG.
A variable higher in the ordering will appear towards the root of the DAG.
Equivalent boolean formulae are always represented using a canonical BDD de-
pendent on the variable ordering. In this sense BDDs are minimal representa-
tions of formulae, but this depends on the ordering. Finding the best ordering
for a particular formula is NP-complete [14] and many algorithms have been
proposed to tackle the problem (see [29], for example).

BDDs have been used in symbolic model checking since the late 80s [82,
56] and were used circa 1990 to improve practical limits on the number of
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manageable states from 10® to 102 [38]. They have since become standard in
industry.

BDDs are used in the reachability analysis required for LTL model checking.
To compute the set of reachable states we begin with a BDD representing I and
a BDD representing R. We compute the set of reachable states by expanding
I by an application of R. That is, we combine I and R to form the BDD
representing all states reachable initially or after one step. Then we combine
the result with R again to form the set of all states reachable within 2 steps,
and so on. Eventually we reach a fix-point. If the intersection of this fix-point
and F' has satisfying assignments, then there are states in F' reachable from an
initial state.

2.3.3 Bounded Model Checking

A complementary approach to symbolic model checking was introduced by
Biere, Cimatti, Clarke and Zhu in 1999 [2]. This approach takes advantage
of the successes in SAT solving that allow large boolean formulae to be evalu-
ated in increasingly viable times.

Bounded Model Checking (BMC) uses boolean formulae to encode n step
runs of a Kripke Structure. We can then add constraints to this formula that
are satisfied iff a run violating the specification is permitted. There are several
encodings of the BMC problem, we present some of them below.

Although BMC is complete, we need to check paths that are exponential in
length [27]. This length represents the longest simple path between two states,
and is referred to as the completeness threshold. In industry BMC is generally
used to find bugs, rather than prove correctness. Most bugs in a program usually
occur within a relatively small number of steps. Speed-up algorithms have been
proposed that more readily permit complete BMC. One such technique (for
reachability analysis) is discussed in section 2.5.

The Original Encoding

The original encoding introduced by Biere et al takes the following form:

[MIx A (-9l

where [M] encodes k steps of the Kripke Structure and [-¢] encodes violation
of ¢.

If s; denotes the variables representing the state at timestep 4, we write I(sg)
to assert that the first state is initial and T'(s;, s;11) to assert a transition from
$; t0 s;+1. Runs of length k of a Kripke Structure are encoded as follows:

k—1

[M]i :=I(s0) A J\ T(si,5i41)
i=0

The encoding of [~¢] is more involved and we defer the reader to the work
of Biere et al for the full details [2]. The translation proceeds by considering two
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cases — when the path contains a loop and when it does not. The final formula
is a disjunction of these two cases expressing that, either we are considering
a loop, and the loop encoding of —¢ holds, or we are not, and the non-loop
encoding of —¢ holds.

For example, we present the encoding of [¢pU+] in the non-loop case. The
superscript i denotes the timestep where the formula must hold. Initially we
consider [-¢]9.

k -t
[sUol; = \/ (Mi A /\[[¢]12>
J=1 n=1t
that is, at some j > i 1 holds, and at all steps in between ¢ holds. In the loop
case we extend the formula to reflect the looping of time.

The Semantic Encoding

The semantic encoding presented by Clarke et al [27] is based on the work of
Vardi and Wolper. Rather than encoding —¢ directly, we encode runs of A4 xS.
We encode accepting lassos of the resulting automaton as follows:

k—1 k—1 k
I(so) A \ T(sirsi01) A\ | (s =) A\ F(s;)
i=0 =0 Jj=t

The final conjunct asserts that there is a loop in the run, and it contains a final
state.

The encoding presented above is quadratic in k. However, a linear transla-
tion can be achieved by sharing the fairness constraints (For example, F'(si) is
repeated k times). Clarke et al argue that this encoding is more efficient than
the original encoding and present results that show it requires fewer variables
and shorter formulae.

2.4 Truly “on the Fly” LTL Model Checking

A new algorithm for LTL model checking has been introduced by Hammer,
Knapp and Merz [47]. Traditional on-the-fly model checking constructs the
product automaton S x A_4 as the algorithm proceeds. This means that we do
not have to maintain S x A4 in memory, expanding the scope of practically
solvable LTL model checking problems. Hammer et al take this one step further
— they avoid constructing the Biichi automaton by building an LWAA and
constructing the product of an LWAA run and the Kripke Structure on the
fly. This means that we do not have to store the exponentially sized Biichi
automaton. It is for this reason that they call it Truly “on the Fly” LTL model
checking.
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2.4.1 Run DAGs

The alternating automata used by Hammer et al are described in definition 1.4.4.
That is, the transition relation associates a boolean formula with each state.

Alternating automata permit universal branching. Therefore, a run of an
alternating automaton can be considered a tree structure. At each universal
branch the run of the automaton splits into several paths. Consequently we
can imagine that there are several automata running in parallel, one for each
of the separate paths. A more economic encoding recognises that two of these
automata may be in the same state, and thus, one of them is redundant. In
this way, trees become directed acyclic graphs rather than trees. Each level in
the DAG can be considered a configuration {qo, ..., ¢, } where g; is the current
state of the ith automata, for i € 1..n.

Definition 2.4.1 Given an alternating automaton A = (AP, S, S°,8, Acc), where

Acc is any acceptance condition, and the sequence o = sg, S1,82,... of assign-
ments to AP, a run DAG of A over o is a sequence A = eg,€e1,e€s,... of edges
e; € S x S. Configurations cg,c1,¢2,... of A are defined cg = {qo} for some

qo € S° and c; 1 = e;(c;), where e;(c;) is the image of ¢; C S undere; C S x S.
Furthermore, we require that for all i, dom(e;) C ¢; and for all g € c;, s;Ue;i(q;)
is a model of §(q).

A path is a sequence ™ = pg, p1, P2, - .. of locations p; € S such that py € S°
and (pi,pi + 1) € e; for all i. A run DAG is accepting iff © € Acc holds for all
infinite paths in A.

2.4.2 Co-Biichi LWAA

The particular automata used by Hammer et al are LWAA with a co-Biichi
acceptance condition. That is, rather than specifying which states must occur
infinitely often, we specify which states must only occur finitely often.

Definition 2.4.2 A co-Biichi LWAA is a tuple A = (AP, S, s°,5, F) where AP
is a set of atomic propositions, S is a set of states and F C S, s € S is the
initial state and 6 : S — B(APUS) is a transition relation. Locations in S can
only appear positively in §(q), ¢ € S. The automaton also satisfies the following
condition: the relation <, is a partial order. We judge ¢' <, q iff ¢ =* ¢, that
is ¢' is reachable from q.

Furthermore, Acc = {po,p1,... € S | p; € F for only finitely many i}

In section 1.4.3 we stated that every LTL formula has an equivalent LWAA
with a Biichi acceptance condition. Because of the structure of an LWAA we
can see that the two types of acceptance condition are easily interchangeable.
Due to their structure, every run of an LWAA will reach a sink state. A Biichi
acceptance condition ensures that the sink state (which is the only state that
occurs infinitely often) is in the set of final states. Conversely, a co-Biichi
acceptance condition requires that the sink state is not a final state. Therefor,
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the two acceptance conditions can be exchanged by complementing the set of
final states.

Hammer et al make use of a co-Biichi rather than Biichi winning condition
because it simplifies the conditions under which an LWAA is non-empty (see
section 2.4.5). All infinite run DAGs are lassos. If a state does not occur in at
least one configuration in the loop, then it follows that this state does not occur
infinitely often on any path of the LWAA. However, if a state in F' appears in
every state of the loop, this does not imply that all paths contain an infinitely
recurring state in F', nor does it imply that there is a path whose sink state is
in F.

2.4.3 LTL to LWAA

The translation from LTL to co-Biichi LWAA is very simple. We begin with an
LTL assertion ¢ in positive normal form. That is, negations are only applied
to propositions. Any formula can be translated into positive normal form by
“pushing in” the negations using De Morgan laws and ¢V 1y — the dual of ¢pU1p.

The states S of our automaton are the sub-formulae of ¢. The number
of states is therefore linear in the size of ¢. We write g, to denote the state
associated with the sub-formula . The initial state is gg.

The transition relation is defined as follows (a is a literal):

6((141) = a
6(‘]11;/\)() = 6((110) A 5(‘1)()
56(((1¢ng = 0(gy) V 0(ay)
40y = Qy
d(gyux) = d(ax) V (6(gy) N qyuy)
(ayvy) = d(g) A (6(ay) V qyuy)

Finally, we define F' := {gyuy | ¥Ux is a sub-formula of ¢}.

The transition relation for gy, makes use of the recursive unfolding of the
semantics of the until operator. We require that v holds at every timestep from
now until x holds. Therefore, at each timestep we can either choose to satisfy
X, or we can defer for a time step, as long as we can show that 1 holds. By
defining F' as the set of states corresponding to until formulae, we ensure that
deference can only happen a finite number of times. That is, x eventually holds.
The correctness of the translation has been proved by Muller et al [19].

It is easy to see that the defined automaton is an TWAA.

2.4.4 Simple LWAA

Hammer et al identify a further subset of alternating automata called Simple
LWAA.

Definition 2.4.3 An LWAA A = (AP, S, s0,0, F) is simple if for all g € F, all
q €8, all valuations s C AP, and all X,Y C S not containing q, we have that
if sUX U{q} Ed(¢") and sUY |=6d(q), then sUX UY = d(¢).
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An LWAA is simple if, given a valuation s, whenever a transition from ¢'
goes (universally) to the states in X U {¢q}, and, under the same valuation we
can move from g to the states in Y, then we can avoid ¢ entirely by moving
from ¢' to the states in X UY.

We can ensure that the translation of a formula ¢ to an LWAA always
produces a simple LWAA by rewriting any sub-formulae of the form Q(¥Ux)

to (OY)U(Ox)-

Proposition 2.4.1 For any LTL formula ¢ that does not contain any sub-
formula Q(9Ux), the automaton Ay is simple.

This can be seen intuitively. In all cases except (), states inherit transitions
from their sub-formulae. Therefore, by restricting the use of O (¥ Ux) we prevent
a state gyuy (€ F') from having any transitions that are not matched by any
state with a transition to gyuy-

2.4.5 Acceptance of a Simple LWAA

The definition of simple LWAA is quite technical. However, it allows us to
characterise acceptance without reference to the edges of a configuration DAG.
This means that we only need to consider sequences of configurations.

Proposition 2.4.2 Given a simple LWAA A = (AP, S,s0,0,F), L(A) # 0 iff
there exists a finite run DAG A = eg, e1,. .., e, with configurations cg,¢1, . . ., Cnt1
over a finite sequence of valuations sg, S1,-- -, S, and some k < n such that,

1. ¢, = cpy1, and
2. for every q € F, one has q ¢ ¢; for some k < j < n.

This can be seen to characterise acceptance as follows. Because A is an
LWAA, a state g can only occur infinitely often in a run if it is a terminal state
with a self-loop. That is, the run finally settles in the state g. Condition 1
ensures that we have a lasso. Condition 2 asserts that in the loop of the lasso,
there is no ¢ € F' that occurs in every configuration. This means that no state
in ¢ € F can occur infinitely often on a path. If ¢ were to occur infinitely often,
then it would occur uninterrupted. Because ¢ ¢ ¢; for some j, it must be the
case that it is interrupted, and so it cannot occur infinitely often.

2.4.6 Model Checking with Simple LWA A

The model checking algorithm implemented by Hammer et al is an adaptation
of Tarjan’s algorithm for finding strongly connected components of a graph [75].
The algorithm operates on pairs (s, C') where s is a state of the Kripke Structure
and C is a configuration. A depth first search is performed, which produces a
tree spanning all reachable states from the initial (s,C'). Tarjan shows that if
two states are in an SCC, then their nearest common ancestor in the spanning
tree is in the same SCC [75]. The algorithm takes advantage of this result to
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expand SCCs inductively. At the same time, Hammer et al maintain a labelling
stating which states of F' are missing from at least one configuration in the SCC.
If at any point in the algorithm an SCC is found to be labelled with F, then
the automaton accepts.

Inevitably, determining non-emptiness of the product of an LWAA and a
Kripke Structure is more expensive than determining non-emptiness of the
product of a Biichi automaton and a Kripke Structure. This is because the
non-emptiness checking with LWAA requires us to (conceptually) construct the
Biichi automaton on-the-fly. Fortunately, we save time in the automata con-
struction phase by producing an LWAA rather than a Biichi automaton.

Hammer et al have implemented their approach as part of the SPIN model
checker [31]. They compare their implementation with SPIN and conclude that,
for large LTL formulae, the increase in efficiency gained by avoiding the full
Biichi automaton construction more than compensates for the extra time re-
quired to determine non-emptiness.

2.5 Interpolation and SAT-based Model Check-
ing

In this section we discuss a speed-up algorithm introduced by McMillan for SAT-
based model checking [43]. The method uses results from SAT-based BMC
to produce an over approximation of the reachable states of a system. This
over approximation is fed back into the algorithm until a fix-point is reached.
This fix-point is an over-approximation of all reachable states in the system.
Therefore, if the fix-point does not intersect with a bad state, then no bad states
are reachable. If a bad state is reached, then the analysis becomes more fine-
grained by increasing the bound on the original BMC problem. This process
is iterated until an error is found without over-approximation, or the bound
reaches the completeness threshold (section 2.3.3).

2.5.1 Interpolation and Over-approximation

For SAT-based model checking we assume that formulae are given in conjunctive
normal form. That is, each formula is a set of clauses, where each clause is a set
of literals (atomic propositions or their negations). A clause holds for a given
model if at least one of its literals does. For a set of clauses to be satisfied, each
of its clauses must hold.

Suppose we are given two sets of clauses, (4, B). If AU B is unsatisfiable,
we can produce a proof of unsatisfiability. From this proof we are able to derive
an interpolant P. P has the properties,

- A implies P,
- P A B is unsatisfiable, and

- P only refers to the common variables of A and B.
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Suppose we have a set of clauses,
{I(S~0), T(8~0, S~1), T(S~1a S~2)7 (R T(sk~—17 3~k)7 F(s~k)}

that represent an unsatisfiable BMC problem — that is, no error has been
found. We observe that the common variables of the sets of clauses A =
{I(50),T($0,51)} and B = {T'($1,$2),-..,T(sk_1,Sk), F(Sk)} are those vari-
ables that represent the states reachable after one transition. Because it is im-
plied by the initial condition and the first transition, the interpolant P of (A, B)
is an over-approximation of the states reachable in one step. By replacing the
initial condition with the over-approximation of states reachable in one step or
fewer, and iterating the procedure, we can produce an over-approximation of
the reachable states of the system.

2.5.2 Interpolation Algorithm

The interpolant P of the clauses (A, B) can be derived from a proof of the
unsatisfiability of AU B.

A proof of unsatisfiability is an inverted (unbalanced) binary tree of clauses,
with falsity at the unique leaf (FALSE). Each node corresponds to a clause that
is the resolvent of its two predecessors. Two clauses have a resolvent Cy V Csy iff
they are of the form vV C; and —v V C3 and Cy V Cs is not tautological. The
pivot variable of the resolution is v.

Because sub-trees may be shared, a proof is a DAG, rather than a tree.

Definition 2.5.1 A proof of unsatisfiability I1 for a set of clauses C is a directed
acyclic graph (Vi1, En), where Vi1 is a set of clauses such that,

- for every vertex ¢ € Vi, either

— c€ C and c is a root, or

— ¢ has exactly two predecessors, c¢1 and cs, such that c is the resolvent
of c1 and ¢y, and

- the empty clause (falsity) is the unique leaf.

We say that a variable is local to A if it occurs in A but not B. Conversely,
a variable is global if it is shared by A and B. For a clause ¢, let g(c) be the
disjunction of global literals in ¢. The interpolant of (A, B) given the proof II
is defined below.

Definition 2.5.2 Let (A, B) be a pair of clause sets, and II be a proof of un-
satisfiability with unique leaf FALSE. For all ¢ € Vi1 we define p(c) such that,

- If ¢ is a root, then

— if c € A then p(c) = g(c),
— else p(c) is the constant TRUE.
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- else, let c1,co be the predecessors of ¢ and v be their pivot variable,
— if v is local to A then p(c) = p(c1) V p(ca),
— else, p(c) = p(c1) A p(ca).
p(FALSE) is an interpolant of (A, B).

To extract an interpolant of (A, B) from a proof of unsatisfiability we essen-
tially collect all clauses that are used to disprove A U B and throw away the
literals that refer to variables local to A. We perform any resolutions with a
local pivot variable as the removal of local variables will make this resolution
impossible at a later stage.

2.5.3 Model Checking with Interpolants

For the purposes of this section, the model checking problem can be phrased as
follows. We define an automaton M = (I, T, F) where I,T and F' are boolean
formulae denoting the initial conditions, the transition relation and the final
conditions. The model checking problem is to return TRUE iff a state in F' is
reachable via the transition relation T from 1.
We define,
PREF(M) = I(SN()) A T(S~0, 8~1)

and

SUFFk(M) = /\ T(S]',S,q_l) A \/ F(§z)
1<i<k 1<i<k

The procedure FINITERUN constitutes the core of the algorithm. It takes an au-
tomaton and a bound as input and constructs the sets PREF(M) and SUFF* (M)
in CNF. A SAT-check is made; if it returns true and we have performed no over-
approximations then we have found an accepting run. Otherwise we have found
an accepting run that may be spurious, so the procedure aborts and we try
again with a larger k. If the SAT-solver returns unsatisfiable, the interpolant
is generated. If this interpolant is a fix-point, then we know that there are no
accepting runs. If it is not, we expand the set of initial (reachable) states with
the states in the interpolant and repeat the procedure.
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procedure FINITERUN(M = (I, T, F), k > 0)
if I A F is satisfiable, return TRUE
let R=1
while true
let M' = (R, T, F)
let A=CNF(PREF(M))
let B = CNF(Surr*(M))
Run SAT on A U B. If satisfiable, then
if R = I return TRUE else abort
else (if A U B unsatisfiable)
let P be an interpolant of (A, B)
let R = P(5/5o)
if R' implies R return FALSE
let R=RVR

The remainder of the algorithm proceeds as follows: choose some bound k&
and call FINITERUN(M, k). If the result is TRUE or FALSE then this is the final
result. If FINITERUN aborts, then increase k and iterate.

The completeness threshhold guarantees that eventually FINITERUN will
return either TRUE or FALSE. This is because, at the completeness threshhold
the SAT checker will either return “satisfiable” in the case of an accepting
run, or “unsatisfiable” if there is no accepting run of length k. Since k is the
completeness threshhold, it follows that there are no accepting runs of any
number of steps. Therefore, FINITERUN iterates, the result of SAT always
being “unsatisfiable” until a fixpoint is reached. It then returns FALSE.We must
always reach a fixpoint since there are only a finite number of states, and we
always expand R.

In practice, McMillan observes a significant advantage of this interpolation
method over several other algorithms. However, he also observes that when
a property is false (has a counter-example), interpolation can have its disad-
vantages. This is because a negative result is final; however, in the case of
an accepting run, we must ensure that the result is not spurious by a more
fine-grained analysis.

2.6 Combining the Approaches

We now present joint work with William Blum and Luke Ong. In section 2.4
we discussed the on the fly model checking algorithm of Hammer et al. This
algorithm avoided direct construction of a Biichi automaton by considering run
DAGs of an LWAA. They showed that, for large formulae, a BDD based im-
plementation outperformed SPIN. In this section we seek to discover whether
similar improvements can be seen when run DAGs are applied to SAT-based
model checking.

Hammer et al claim limited success with a SAT-based approach utilising
run DAGs [84]. In the case when an accepting run exists, their SAT-based
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approach found the run very quickly. However, when a run does not exist, the
completeness threshhold is too high to obtain a negative result.

McMillan’s speed-up method described in section 2.5 shows the opposite
pattern: a negative result can be obtained quickly, but a positive result takes
more time.

These two methods appear to be complementary. In the positive case, run
DAGs may be small enough to ensure quick termination of McMillan’s algo-
rithm; and in the negative case, McMillan’s algorithm may prevent the need to
check up to the completeness threshhold. We therefore propose to use McMil-
lan’s speed-up algorithm with run DAGs as its input.

2.6.1 Encoding LWAA as Boolean Formulae

McMillan’s method solves the reachability problem, rather than the full model
checking problem. Therefore, we use a version of the method described in
section 2.2 to reduce model checking to reachability.

Let A= (AP, S, qq,9, F).

Encoding Configurations

A configuration c is a subset of S. We can encode a configuration symbolically
using a boolean variable ¢; for each state of S. We say ¢; is true iff state g; is in
the configuration. Since the size of the LWAA is linear in the size of the original
formula ¢, we only need a linear number of variables.

Encoding g
The initial condition I is simply,
I=qgA-qg AN...\Nq,

where n = |S| — 1.

Encoding Transitions

0(q) is a propositional formula over the variables APUS. To represent the next
configuration ¢’ (after the transition) we prime the variables g; — that is ¢;. We
define §(q)’" as §(q) with all state variables primed.

We then define,

T := (g0 = 6(q0)") A--- A (gn — 6(gn)")

That is, if state ¢ is in the current configuration, then the next configuration
must contain states prescribed by d(¢q). Note that state variables never occur
negatively in d(g), and so the next configuration could contain all states. Ham-
mer et al observe that adding arbitrary states to a configuration will not allow
additional accepting runs — in fact, acceptance will become more difficult [47].
Therefore, the possibility of adding addition states to a configuration does not
have an adverse effect on the existence of accepting runs.
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Encoding Acceptance

Defining F' is more involved. We begin by recalling the acceptance condition
for configuration DAGs.

Proposition 2.6.1 Given a simple LWAA A = (AP, S,s0,0,F), L(A) # 0 iff
there exists a finite run DAG A = eg, e1,. .., e, with configurations cg,c1, . . ., Cnt1
over a finite sequence of valuations sg, S1,- - -, 8, and some k < n such that,

1. ¢ = cpt1, and
2. for every q € F, one has q ¢ ¢; for some k < j <n.

We need to encode the existence of a loop such that every final state does
not appear in at least one configuration within the loop.

We introduce a set of variables ¢; to represent the configuration at which the
loop starts (cg). We also introduce the variable [ which is false if the loop has
not begun, and true if we are in the loop. Further variables f; are also required
— one for each state in F' — that indicate that a “g-free” configuration has
been seen since starting the loop.

At each transition, the current configuration can “nominate” itself as the
loop state, by setting ¢} accordingly. If it does so, it must also set all f]'- to false,
since it has restarted the loop. If the state does not nominate itself it just copies
the values of ¢; across to ¢} as well as copying the value of f; for all j, changing
any to true if the corresponding state is not in the current configuration.

We then have,

(g0 = 6(g0) ) A - .- A (gn = 6(gn)")
ri= [ (AN = @A)
v ((l = AN = G AN(iV—g = f]’-))
The first line of T remains unchanged from the original definition. The
second line describes the case when the current configuration nominates itself as
the loop state. The third line describes the case when the current configuration

doesn’t change the loop state, but sets f; for any states that it does not contain.
Finally we define F,

F=IAN@ < @A\
i J
That is, we’ve reached a loop and the required g-free states have been seen.

Encoding With Fewer Variables

The encoding given above has two variables for each state at each transition. We
can do better by non-deterministically choosing the loop state at the beginning
and storing it in the variables {do,...,dn}. Note that there is only one set of
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these variables, not one set per transition. Then we set [ as true iff we have
started the loop. The variable is initially false and can only be switched to
true if it is not already true and the current state is the state indicated by
{dos- - +»dn}-

We then have,

(a0 = 8(q0)') A+ A (@ = 3(an)")
ri= [ (FAUANG = @) AN 1)
V(= ANV = 1)
And we define F,

F=IANg <= @A\
i J

That is, we’ve started the loop, we've re-reached the loop state and the
required g-free states have been seen.
And finally, we redefine I,

IT:==INANgA-qA... gy

Most SAT solvers use resolution-based proof strategies that require CNF
input. In appendix A we give an encoding of these formulae in CNF.

2.7 Implementing the Combined Approach

The combined approach detailed above is currently being implemented with
William Blum. The work is still very much “in progress” and so we only give a
brief overview of the work so far.

2.7.1 Implementation Language

The system is being implemented in OCaml. This is because a functional
paradigm aids significantly in the processing of syntactic structures. OCaml
also provides a good range of imperative features which will be essential for
the efficient implementation of the core algorithms. When OCaml’s optimising
compiler is used, its performance is comparable with C [90, 53]. It has also been
argued that OCaml is only comparable to C when written imperatively [91].
However, the core of the model checking algorithm is the FINITERUN proce-
dure, which shall be coded imperatively.

2.7.2 Specification Language

We will use NuSMV’s specification language as our input. This is because SMV
is widely used and a good range of benchmarks are available. This will help
us compare our implementation with others. Furthermore, we are able to use
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a modified version of NuSMV’s parser files to generate the input parser for our
tool.

The full SMV syntax allows concurrent program modules. However, our
input will only consist of (sequential) Kripke Structures. This is because the
“flattening” of a concurrent model into a Kripke Structure (required for model
checking) is the subject of much research and several algorithms have been
developed. In particular, Partial Order Reduction [22]. Instead, we use NuSMV
as a state-of-the-art flattening tool so that all of our input will be sequential.

Promela — the input language used by SPIN — was also a candidate input
language. However, SPIN does not provide flattening facilities. This means
that to produce a competitive implementation, we would need to implement an
efficient flattening tool ourselves. This both makes the implementation more
difficult and limits the extent to which we can compare our algorithm with
others: differences in performance may lie in the effectiveness of the flattening
algorithms, rather than the core algorithm.

2.7.3 SAT Solvers

We have chosen MiniSat [54] as our SAT solver. MiniSat has performed excep-
tionally well in recent SAT solving competitions [92], and, moreover, provides
a good Application-Program Interface (API) with proof-logging functionality.
This is advantageous for two reasons. Firstly the API means that we do not
have to communicate with the solver via the filesystem. Secondly, the proof-
logging functionality allows easy construction/extraction of the refutation DAGs
required to calculate interpolants.

zChaff [93] is also a competitive SAT-solver with proof logging facilities.
However, we choose MiniSat rather than zChaff because zChaff communicates
using the file system. This is obviously slower than direct communication
through an API. Additionally, the proof-logging provided by zChaff requires
the interpretation of a minimised representation of the refutation DAG.

2.7.4 Current Implementation

Currently our implementation takes an LTL formula as input, constructs an
LWAA equivalent to the formula and creates its symbolic representation in CNF.
Tt is then possible to send a bounded model checking problem to the SAT solver
and print the answer on screen. It is also possible to produce a diagram of the
constructed LWA A. Finally, we have implemented the extraction of interpolants
from MiniSat and McMillan’s reachability algorithm. Consequently we have a
complete satisfiability checker for LTL formulae.

To complete our implementation we need to handle Kripke Structures. Addi-
tionally, in order for our implementation to be efficient, we will need to optimise
the LWAA. We discuss automaton optimisation techniques in the next chapter.

The program flow is given in figure 2.2. Unimplemented modules are shown
in grey.
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Figure 2.2: The program flow for our model checking tool
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Processing of LTL formulae is done using the parser generator Yacc, and a
modified version of the parser files distributed with NuSMV. The LTL formulae
are translated into LWAA using the algorithm described in section 2.4.3. We
store LWAA as a record, containing an array of boolean formulae indexed by
integers corresponding to states. These formulae represent the transitions of the
automata.

To produce LWAA diagrams the transition formulae are translated into Dis-
junctive Normal Form. A Line-type definition file (.dot) file is then produced.
Transitions between states are drawn as hyper-edges. That is, each disjunct has
an edge leaving the source state, which splits into several branches representing
the conjuncts.

An LWAA is translated into CNF using the encoding described in sec-
tion 2.6.1 and the CNF representation given in appendix A. This translation
initially creates a “template” CNF representation, containing I,7 and F. We
then produce bounded model checking problems by expanding 7" to the appro-
priate length. In this way, existing BMC problems can be extended further.
This means that we do not have to recreate the full BMC problem each time
the bound £ is increased.

To perform BMC on the encoded LWAA, we create a MiniSat proof object
and add the CNF clauses to it using the API. Then, using the API, we check
whether the clauses are satisfiable — indicating that the LWAA is non-empty.

To extract the interpolants from unsatisfiable BMC instances we create a
proof logger object which is attached to the solver. This object collects in-
formation on the proof DAG which is then used to construct the interpolant.
Because we need to maintain information on which clauses are in the set A
and the set B we modified MiniSat to carry a flag with its clauses. We chose
to modify MiniSat because all clauses that are added to the solver object are
converted to a normal form and simplified. Hence, it is difficult to relate the
clauses added to the solver with the clauses used in the proof DAG. By modi-
fying MiniSat we were able to avoid maintaining sets of clauses which must be
searched to determine which set a clause belongs to.

2.8 Summary

We have discussed several LTL model checking algorithms and the problems they
are designed to overcome. In particular, we discussed the basic model check-
ing algorithm and the state-explosion problem. We then showed how model
checking can be reduced to reachability and described the symbolic approach to
managing large state-spaces. We gave two of the most popular and complemen-
tary symbolic model checking paradigms; namely Binary Decision Diagrams and
Bounded Model Checking. We then discussed two state of the art model check-
ing algorithms and finished with a presentation of our own work which aims to
overcome the shortcomings of the two algorithms through a hybrid approach.
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Chapter 3

Program Synthesis and
Games

Critics of model checking argue that we can do more than prove a program
correct. If a system has been specified precisely, then we should be able to gen-
erate the program automatically — avoiding the costs of separately developing
a possibly incorrect system. This is the Synthesis Problem.

Predictably, synthesis is more difficult than model checking and the com-
plexities are such that it remains a largely academic undertaking. However,
research continues, with some success, into producing practically viable synthe-
sis algorithms [4]. Research also continues on a more theoretical level.

In this chapter we present a survey of synthesis techniques and paradigms.
In particular we describe the synthesis of distributed reactive systems and the
use of multiplayer games as a unifying methodology. We present some open
problems in the area and look briefly at further models such as knowledge-based
or timed systems.

3.1 Program Synthesis

Given a specification, program synthesis is the automatic construction of a de-
sign that is guaranteed to be correct. The synthesis problem has as many vari-
ants as there are system paradigms. One such distinction lies between open and
closed systems. Classical synthesis has concentrated on closed systems, where
both program and user work together to find the required output. In contrast,
an open system assumes a hostile environment. A correct design is one where
the program is able to handle a user who may throw a spanner in the works.
That is, for all possible inputs, the program is able to produce a correct output.

In the open setting the notion of a two-player game arises naturally. The two
players being the environment (V) and the system (3); the environment wins if
the specification is violated and the system wins otherwise. A correct design
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can be considered to be a winning strategy for the system. In other words, no
matter how the environment acts, the system will not violate the specification.

Reactive systems constitute a further variation of program synthesis. In this
model systems are intended to run forever, reacting to user input. For example,
a web-server is designed to serve user requests (whatever they may be) and to
do so indefinitely.

Finally, reactive systems are frequently distributed — that is, a number of
modules working together against a single environment. The notion of a game
extends to an analogous multiplayer setting.

3.2 Synthesis and Control
3.2.1 Church’s Problem

In 1963 Church published a summary of then recent work concerning mathe-
matics and finite automata [17]. In this paper he described automata, restricted
recursive arithmetic and regular languages. He then presented three problems
connecting automata and languages: the simplification problem, the decision
problem and the synthesis problem.

The decision problem is known as the model checking problem today: given
a specification and a proposed solution, determine whether the solution implies
the specification. The synthesis problem, which is the focus of this survey,
requires that, given a specification, if it is possible to construct an automaton
satisfying the specification, that automaton is to be constructed; otherwise a
negative answer should be returned. The simplification problem is to find the
“simplest” equivalent specification for a given notion of simplicity.

Church summarises several results concerning the synthesis and decision
problems that use different fragments of restricted recursive arithmetic or reg-
ular properties as their specification language. Church identifies several open
problems, the last of which is known as “Church’s Solvability Problem” and is
described succinctly in [58].

Given an S18S relation R C (27)“ x (29)%, where I and O are sets of input
and output signals respectively, find a function f : (2/)* — (2°)“ such that for
all z € (21)¥ we have R(z, f(z)). If such a function does not exist, a negative
result must be returned.

In 1969, Biichi and Landweber presented the first solution to this problem
in the finite-state case [40]. They also link the problem to mathematical games,
crediting McNaughton for the initial observation. In the game paradigm the
environment (responsible for the inputs) plays against the system (responsible
for outputs). The required f is then a winning strategy for the system. Although
the notion of games is secondary to their result, Biichi and Landweber note that
the game paradigm in this context adds “appealing flavours” to both automata
theory and game theory.

However, Biichi and Landweber’s solution to Church’s Solvability problem is
not straightforward and has a high computational complexity. In 1972, Hossley
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and Rackoff [76] and Rabin [81] provided new solutions to the problem using
tree automata. A winning strategy is a tree whose branches correspond to the
different possible inputs and prescribed outputs; therefore, an automaton can
be constructed that accepts all trees whose paths (“computations”) satisfy the
specification. The synthesis problem is then reduced to finding a witness to the
non-emptiness of the constructed tree automata.

3.2.2 Reactive Systems

In the early 1980s authors such as Clark and Emerson [28] and Manna and
Wolper [89] considered the synthesis problem in a distributed setting. The
delay in the consideration of this problem is, in part, attributable to the search
for an appropriate specification language [9].

Early methods of synthesis in a concurrent setting extracted the program
from a proof that a solution could be derived [89, 28]. That is, it is possible for
the modules to work together to produce the correct answer. Such an approach
does not consider the effect of a hostile environment and, as such, applies to
closed rather than open systems.

In 1985 Pnueli and Harel [21] proposed the reactive/transformational di-
chotomy: whereas transformational systems work towards a final solution, re-
active systems are designed to run forever, reacting to environment input. For
example, web servers, operating systems and microwave ovens are all reactive
systems. These systems are therefore open and Pnueli and Harel used a “black-
cactus” analogy — with many inputs and outputs — as opposed to the more
traditional “black-box”.

Because many concurrent programs fall into the reactive category, the work
of Pnueli and Hoel helped establish temporal logic as the principle specification
language for both concurrent and reactive systems [9)].

In 1989 Pnueli and Rosner [9] provided a solution to the synthesis problem for
single processor reactive systems with specifications given in Linear Temporal
Logic. In their setting a linear specification ¢(z,y) — where z refers to the input
and y to the output at each time step — is augmented to form the branching
time formula (Vz)(Jy) A¢(z,y), where “A” means “on all paths”. Their solution
reduces the problem to a non-emptiness test for tree automata that accepts
infinite strategy trees. The procedure is doubly exponential in the size of the
specification.

The problem they consider is closely related to Church’s Solvability problem.
However, their solution is more general than the solutions provided by Biichi et
al and Rabin in the sense that they allow infinite state solutions rather than
only finite state solutions.

3.2.3 Implementations

Because of its high complexity, the method of Pnueli and Rosner has performed
poorly in practice. Recently, Harding, Ryan and Schobbens have presented a

40



out in

— C, [« C. C; C. |« Cs [—

A
A

Figure 3.1: A five processor pipeline.

new algorithm that avoids determinising Biichi automata [4]. Although incom-
plete and still 2EXPTIME-complete, an implementation of their algorithm has
shown promising results.

There have also been attempts to find synthesis problems with lower com-
plexities. In [73], Alur and La Torre give complexity results for various fragments
of LTL. In the case of LTL with only conjunction and diamond, complexity be-
comes PSPACE-complete.

3.2.4 Distributed Systems

Pnueli and Rosner have extended their work in [9] to a synchronous distributed
setting [11]. In this setting the synthesis problem is to find finite state programs
fi,..., frx for the architecture built from processes C1,...,Cy and their inter-
connection scheme. The joint (synchronous) behaviour of the system must then
satisfy the linear temporal logic specification ¢.

Their first result — derived from the work on multiple person alternation
by Peterson and Reif [33] — is that in this distributed model the synthesis
problem is undecidable. The proofis given by a reduction of the halting problem.
However, in the case of hierarchical architectures such as a strict pipeline (as
shown in Figure 3.2.4 for the five processor case) the problem is shown to be
decidable in non-elementary time.

Pnueli and Rosner present two different methods for distributed synthesis.
The first method involves the synthesis of each processor in turn. The algorithm
is recursive and constructs a tree automaton that accepts a strategy for the tail of
a pipeline iff there exists a strategy for the head. The second method constructs
a single processor strategy which is then decomposed into a distributed strategy.
This method uses similar techniques to the first. The decomposition result can
be extended to all acyclic architectures, however, it is not complete in the sense
that a distributed strategy may exist where a decomposition does not.

3.2.5 Incomplete Information

Until 1997, research into program synthesis had only considered the case of
complete information. This is when the program sees all inputs. In the case of
incomplete information the environment may execute “hidden moves” and our
strategy must operate independently.

Kupferman and Vardi addressed this problem for sequential systems and
showed that for LTL, CTL and CTL* specifications incomplete information did

41



not make the problem harder — that is, the sequential synthesis problems remain
2EXPTIME, EXPTIME and 2EXPTIME-complete respectively [57].

In the case of LTL the problem of incomplete information can be solved by
non-deterministically guessing the hidden moves. However, in the branching
case we require that nodes of the tree whose input paths co-coincide (i.e. when
hidden events are removed from the history) prescribe the same moves. This
is a non-regular consistency property, and cannot be evaluated directly using
automata-theoretic methods. Kupferman and Vardi in effect sidestep this prob-
lem by constructing an automaton that accepts all strategies that, when padded
with the possible hidden moves, satisfy the specification.

Kupferman and Vardi extended these techniques in 2001 to solve the syn-
thesis problem in a distributed setting for a CTL* specification, with or without
complete information, and with or without communication delay, in a one or
two way communication paradigm and in a pipeline or ring architecture [59].
The problems are shown to be of non-elementary complexity.

3.2.6 The Control of Discrete Event Systems

A closely related problem to program synthesis is the control of discrete event
systems. This problem was introduced by Ramadge and Wodham at the end of
the eighties [70]. The control problem consists of a plant and a specification.

A plant is an automaton that describes all possible sequential behaviours of
the system. Behaviours are a sequence of events, some of which are uncontrol-
lable or unobservable. Uncontrollable and unobservable events may correspond
to external input and hidden moves of the environment respectively. For exam-
ple, in a microwave system, button presses may be uncontrollable events and
cooking may be controllable. An example of an unobservable event may be a
user placing a metallic object into the oven.

The specification is given as a set of admissible behaviours of the system.
For example, we may not allow a cook event to occur whilst the microwave door
is open. Additionally, we may require that it is always possible to reset the
microwave to its initial state.

The controller synthesis problem is then to construct a controller, if one
exists, that restricts the plant such that all of its restricted behaviours are
admissible. Such a system is called a supervised system. A controller is a map
from sequences of observable events to sets of allowed events. Intuitively, the
controller presents a selection of possible next moves for any given history of
events that can be observed. Uncontrollable events can never be restricted.

3.2.7 Control and Synthesis

In 2000, Kupferman, Madhusudan, Thiagajaran and Vardi presented a reduction
of the program synthesis problem to the control problem [60]. This reduction
is simply a case of constructing a universal plant which describes all possible
sequences of inputs, outputs and hidden events. Inputs are uncontrollable and
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hidden events are unobservable. A controller for the plant corresponds to a
program strategy for the synthesis problem.

In their paper, Kupferman et al consider a more general synthesis prob-
lem, where the environment may enable or disable its moves. These are called
reactive environments. The solution is by reduction to the control problem,
which is solved using automata-theoretic methods. The problem for reactive
environments is shown to be SEXPTIME-complete for CTL* specifications and
2EXPTIME-complete for CTL specification. This means that reactive envi-
ronments lead to an exponential blow-up over the EXPTIME-complete and
2EXPTIME-complete results for maximal (non-reactive) environments.

Many results from program synthesis can be applied to the control problem.
However, whilst distributed synthesis is decidable for hierarchical structures,
the result only carries through for pipeline architectures. Madhusudan and
Thiagajaran argue that the global nature of the specifications is unreasonably
expressive [66]. Instead they consider local specifications and show that the
controller synthesis problem is decidable iff the architecture is a clean (or doubly-
flanked) pipeline, or a sub-architecture of a clean pipeline. A clean pipeline is
similar to a pipeline except that the environment may provide input to both
extremal nodes.

3.2.8 Asynchronous Systems

So far we have only discussed distributed synchronous settings. The asyn-
chronous setting was first considered by Pnueli and Rosner [10]. However, they
only considered global plants with asynchronous environments and their deci-
sion procedure was of non-elementary complexity. Madhusudan and Thiagara-
jan revisited this problem in 2002 using local plants with local environments
who communicate via handshakes [67].

To obtain decidability results Madhusudan and Thiagarajan impose three
restrictions on the problem. Firstly, the specification must be robust. That
is, independent events may occur in any order without affecting satisfaction.
Secondly the program strategy can only keep track of the time, rather than the
complete history. Finally, at each time step the strategy may only recommend
events that involve communication between the same set of processes.

It should be noted that Madhusudan and Thiagarajan impose very few re-
strictions on the architecture of the system. The model they consider requires
deterministic plants and single readers and writers [66]. The authors, how-
ever, conjecture that such restrictions can be removed, and, indeed, when non-
deterministic plants are allowed, a finite memory may be encoded.

The decision procedure provided runs in doubly exponential time, improv-
ing the non-elementary results of Pnueli and Rosner. The algorithm involves
creating an automaton that feeds all possible linearisations of program traces
into another; this second automaton checks the traces against the specification.
Program strategies are those accepted by the resulting automaton.
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3.3 Games and Synthesis

In Section 3.2 we gave an overview of the history of program synthesis. The
techniques that have been used traditionally vary depending upon the exact
nature of the problem being solved. However, in almost all cases automata-
theoretic techniques are used. Recent work on synthesis has used game models.
In this section we introduce the notion of mathematical games and explain some
of the applications they have in program synthesis.

We begin by presenting some of the basic concepts of games and how they
relate to program synthesis. We then describe recent attempts to unify the
many variants of the synthesis problem using games.

3.3.1 Two Player Games

A game is played between a number of players. In this section we consider two-
player games as a metaphor for sequential systems. A program is a strategy for
the system in a game played against the environment. A correct program is a
winning strategy.

A game consists of a game graph — which describes the possible moves
in the game — and a winning condition. A two-player game graph is a tuple
G = (V,Vu,V1,7), where V is a finite or countable set of vertices partitioned
into two sets, Vo and V4. v: V — 2V assigns to each vertex a set of successors.
At each vertex in V; for i € {0,1} player i can move. 7 describes the vertices
that player i can move to. A play of a game graph is a sequence of vertices
V9,1, V2 - .. such that for all j, vj11 € y(vj).

A strategy for player ¢ from a vertex w is a total function f mapping a
sequence starting at v and ending in V; to V. That is, at each vertex where
player ¢ can move, f tells him which move to make. If f depends only on the

last vertex of a play, it is a memoryless strategy. A play vg,...,v, is played
according to a strategy f if, whenever v; € V; for j € {0,...,n — 1}, then
f(U(), PN ,U]') = Uj+1.

We consider asymmetric games between a protagonist and an antagonist. A
game (G, W) consists of a game graph G and a winning condition W. A protag-
onist’s strategy f is winning from a vertex w iff all plays from u played according
to f satisfy the winning condition. That is, no matter how the antagonist plays,
the protagonist will always win.

Definition 3.3.1 A LTL game is a pair (G, $) where G is a game graph with
a labelling p : V. = 24F and ¢ is an LTL formulae over the atomic propositions
in AP. A strategy f is winning strategy from u if ¢ is satisfied on all plays from
u corresponding to f.

Definition 3.3.2 A Biichi game is a pair (G, F) where G is a game graph and
F CV is a set of final vertices. The protagonist has a winning strategy f from
u if on every play according f contains a vertex in F that occurs infinitely often.
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The synthesis problem can be considered in terms of games. We can view
a reactive system as playing a game against its environment. Input from the
environment constitutes a move by the antagonist. The system has to respond
to the environment’s moves in such a way that the specification is never violated.
In this sense, a program is a strategy for the protagonist. Moreover, a winning
strategy is a correct program — the environment will never be able to find a
bug.

A game graph in an LTL game is labelled, and analogies with Kripke Struc-
tures are easily seen. In the synthesis problem we can set the game graph to
allow all possible moves. The strategy restricts these possibilities to form a
coherent program. Recalling the correspondence between LTL and Biichi au-
tomata, a Biichi can be seen as a graph resulting from the a Kripke Structure
and an automaton being run in parallel with the final set F' being derived from
automaton’s set of final states.

Synthesis, therefore, requires us to find a winning strategy for the protag-
onist in the game (G,W). In the case of Biichi games, a memoryless winning
strategy can be found in quadratic time. LTL games do not always have mem-
oryless winning strategies, and the complexity of finding a winning strategy is
2EXPTIME-complete [9].

The link between two player games and program synthesis was first observed
by McNaughton and reported by Biichi and Landweber as an aside to their
solution to Church’s problem [40]. However, this link was not significantly
developed in a sequential setting. In the distributed case, however, there has
been more interest in the link between games and synthesis.

3.3.2 Multiplayer Games

In a distributed setting two player games may not provide a suitable model. A
more general notion of games has many players rather than just two.

Alternating multi-player games were introduced by Peterson and Reif [33]. In
a multiplayer game the players are divided into two teams, 3 and V. They show
that, in general, deciding whether a team has a winning strategy is undecidable.
However, they also show that in the case that the game is hierarchical — that is,
all resources available to player i are available to player 4 — 1 — the problem is
non-elementary decidable.

Intuitively, we can interpret 3 as a representation of the system, who has
to find a way to win. V represents the environment who is trying to defeat the
system. The synthesised program must give a correct response for all behaviours
of the environment.

This work by Peterson and Reif formed the basis of the initial work by
Pnueli and Rosner on distributed synthesis [11]. They showed that for non-
hierarchical architectures, the synthesis problem is undecidable, and that the
problem is non-elementary decidable for hierarchical architectures. However,
the notion of games was not used directly.
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3.3.3 Games and Control

In 2002, Arnold, Vincent and Walukiewicz presented a solution to the dis-
tributed control problem with partial observation [1]. Their solution involves
transforming the specification into a p-calculus formula whose models are ex-
actly those controllers that satisfy the problem. However, the standard u-
calculus is not expressive enough to formulate the property that the controller
cannot take into account unobservable events. To overcome this problem the
p-calculus is extended with a loop proposition (O,) that holds at state ¢ iff
there is a transition from ¢ to g labelled with an a.

The decision procedure for the modal-loop p-calculus is given via a trans-
lation to “loop automata” whose semantics is given in terms of a two player
game. It is then shown that an automaton has a model only in case that there
is a winning strategy for player 0.

The control problem considered by Walukiewicz et al consists of a plant,
an automaton giving the global specification and an automaton giving the lo-
cal specification for each processor. A solution for each processor is found by
constructing a controller that satisfies its local specification and satisfies the
global specification when “quotiented” by the local specifications for the other
processors, any processors that have already been created and the behaviour of
the plant. In order to obtain decidability, only one local specification is allowed
to use the loop proposition.

3.4 Unification Using Games

In section 3.2 we discussed several synthesis problems and their various solutions.
This work has shown that synthesis is a hard and frequently undecidable task.
However, because these techniques and proofs are specific to the precise nature
of the problem being considered, it is difficult to see what makes synthesis so
difficult and draw general conclusions. This was the motivation behind recent
work (2003) by Mohalik and Walukiewicz who proposed a game framework for
the formalisation of distributed synthesis [85].

We will begin by summarising the main synthesis problems. We will then
introduce the games framework of Mohalik and Walukiewicz and describe how
to solve the synthesis problem in this setting. Finally we will give an overview
of how this framework can encode the various synthesis problems.

3.4.1 A Summary of Distributed Synthesis Problems

The four synthesis problems considered by Mohalik and Walukiewicz are as
follows:

¢ Pipeline Synthesis — A pipeline is a sequence of processes Ci,...,Cp,

each communicating with their neighbour in a single direction. The en-
vironment provides input to one end of the pipeline, and output occurs
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at the other. Execution is synchronous and proceeds in communication
rounds.

A pipeline controller is a tuple (f1,..., fn) where f; controls process C;.
The synthesis problem is, given a specification, determine (f1,. .., f,) such
that the behaviour of the pipeline meets the specification.

Local Specifications — The synthesis problem with local specifications
is similar to the pipeline problem. However, a specification is given for
each individual process instead of a single specification for the system as a
whole. As a result we are able to consider doubly flanked pipelines. That
is, pipelines whose external processes both take input from the environ-
ment.

Communicating Machines — In the communicating machines paradigm
we fix a set of n processes, each with an alphabet of environment and
controllable actions. We assume that no two processes share the same
environment actions, but that they may share controllable ones. These
common actions provide a method of synchronisation between processes.
Each process alternates between taking environment input and producing
controllable output.

To make the problem decidable only trace closed specification are con-
sidered. That is, independent actions may occur in any order without
changing the satisfaction of the specification. We also require that pro-
grams only take the clock time into account when choosing their next
output, and that at each time step all next actions that the program may
perform are shared by the same set of processes.

The synthesis problem is then to find a controller for each process such
that all possible execution paths satisfy the given specification.

Discrete Event Systems — In the control problem for discrete event
systems we are given a plant over a set of actions X.. A plant is a deter-
ministic finite state automaton that identifies every possible sequence of
actions that a process may perform. Plants have controllable and unob-
servable actions. A controller can use the execution history to determine
which controllable actions to restrict at a given stage, however, the con-
troller cannot take unobservable actions into account.

The distributed control problem is, given a plant P and languages M, N C
3*, find controllers C4, ..., ), such that,

MCLPxCix...xCp)CN

3.4.2 A Games Model

Mohalik and Walukiewicz introduce the following notion of distributed games.
A distributed game is constructed from a number of local games (P, E,T') with-
out a winning condition, where P is the set of player positions, E the set of
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environment positions, and T the set of game moves. It is assumed that player
turns alternate. The distributed game has a global winning condition.

For local games G; = (O;, E;,T;) for ¢ = 1,...,n, a distributed game is
G =(P,E,T,Acc C (EU P)¥), where:

1. E=E1X...XE2
2. P=(PLUE}) x ... x (P,UE,) \ E

3. From a player’s position we have (z1,...,z,) = (z},...,2),) € T iff z; —
z; € T; for all z; € P; and z; = ) for all z; € E;.

4. From an environment position, if we have (z1,...,z,) = (z},...,z,) € T,
then for every z;, either z; = z} or z; = z} € T;.

5. Acc is any winning condition.

There are several points to notice about distributed games. The first is that
the environment does not need to move all positions during its turns, however,
a player must always move immediately. In this way, environment moves may
be blocked by global restrictions. Because of this we are able to assume that
the environment may move to any player’s position in the local games, putting
any restrictions on moves into the definition of the global game.

A solution to the synthesis problem in this setting is a distributed strategy.
A distributed strategy is a tuple of local strategies, one for each local subgame.
In this sense the players do not work together against the environment, and any
communication between them must go through the environment. As a result it
is possible that a global strategy may exist where a distributed one does not.

3.4.3 Solving Distributed Games

Two tools are provided by Mohalik and Walukiewicz that enable us to determine
a winning strategy for a distributed game. These are DIVIDE and GLUE. The
essence of the decision procedure is that we DIVIDE and GLUE the game until
we are left with a two player parity game. Decidability follows from results on
two-player games.

The DIVIDE operation is predicated on players 0 and n being able to deter-
mine the global state of the game from their local view — this property is called
i-deterministic, for player ¢. If this is the case, then, for the game G built from
Go, - --,Gn, we can build an equivalent game G. This game has one less player
and is built by combining Gy and G,, to form G’ and then constructing G from
G',G1,...,Gn_1. The function flat is defined to translate between positions of
the two games; that is flat((zo, Zn), Z1,-- -, Tn—1) = (To, L1, , Tn—1,Tn). We
then have the following theorem.

Theorem 3.4.1 Let G be a 0-deterministic and n-deterministic distributed game
of n+1 players. For every positionn of G: there is a distributed winning strategy
from n iff there is one from flat=1(n) in G.
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The GLUE operation is used to determinise the game for a particular player.
The operation is analogous to the standard subset construction method for de-
terminising automata. Mohalik and Walukiewicz identify two sets of conditions
— I-gluable and II-gluable — under which the GLUE operation is possible; we
omit the details. As shown by the following theorem, gluing a game results in

an equivalent game, G = GLUE(G).

Theorem 3.4.2 Let G be a I-gluable or II-gluable game. There is a distributed
winning strategy from a position n in G iff there is a distributed winning strategy
from the position 7 in G.

We are then able to GLUE a game — to ensure determinism for players 0 and
n — before applying DIVIDE, provided all preconditions are met along the way.
This process can be repeated until we are left with a two-player game. Then we
can apply known techniques to solve the game.

Theorem 3.4.3 ([18, 26, 12]) Every (two-player) game with reqular winning
conditions is determined, i.e., every vertex is winning for the player or for the
environment. In a parity game a player has a memoryless winning strategy
from each of his winning vertices. Similarly for the environment. It is decidable
to check if a given vertex of a finite game with a regular winning condition is
winning for the player.

3.4.4 Encoding Distributed Synthesis Problems

We now describe briefly how several synthesis problems can be encoded in this
game setting.

e Pipeline Synthesis — we assume that the specification is given as

an automaton over an alphabet that is the disjoint union of alphabets
Aq,...,A,. A, and Aj represent the environment inputs and outputs re-
spectively, and A; is used for communication between processes C;+1 and
C;.
The game is constructed as follows. There are n + 1 players; the first
controls the automaton — making any non-deterministic choices — while
the others represent the n processes. The environment provides the input
A, and “passes on” output from one process to its neighbour and the
automaton player. The winning condition is simply a translation of the
automaton acceptance condition.

e Local Specifications — The encoding for a doubly-flanked pipeline with
local specifications is very similar to the encoding of the pipeline synthesis
problem. To account for the local specifications we do not have an au-
tomaton player. Instead, given the regular languages L1, ..., L, we define
our acceptance condition to be that the projection of player i’s inputs and
outputs is in L;.
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Additionally, we need to define player one so that the extra input is taken
into account. Furthermore, to meet the conditions for gluability we encode
the deterministic parity automaton that accepts L; into player one’s game.
The winning condition for player one is that the automaton’s acceptance
condition has been met.

¢ Communicating Machines — A similar technique is used to encode
Madhusudan and Thiagajaran’s communicating machines model. In this
model each process is given as a plant that needs to be controlled. Play-
ers one to n are defined to represent these plants, with the appropriate
restrictions for decidability as discussed in section 3.4.1.

Player zero encodes the parity automaton representing the trace closed
specification. Because, in this encoding, the environment may decide to
block certain processes forever, the automaton maintains a component
specifying which processes are active. It can then simply ignore the inac-
tive processes.

The environment then decides which actions should be executed, to which
the active processes must respond. The winning condition is given by the
acceptance condition of the specification automata.

¢ Discrete Event Systems — unfortunately Mohalik and Walukiewicz
were unable to provide an adequate encoding of Ramadge and Wodham’s
discrete events systems in their games framework. However, they do pro-
vide a presentation of the problem as a game. The details are omitted.

3.5 Team Games

In 2004, Gastin, Lerman and Zeitoun [64] introduced a notion of games for
asynchronous systems. This model provides a solution to the distributed control
problem that subsumes much of the previous work on program synthesis. In
particular, the authors cite [59, 66, 67, 85] and [11]. At the end of the paper it
is shown how the work of Mohalik and Walukiewicz — described in section 3.4
— can be encoded in their model.

We begin by describing the notion of games put forward by Gastin et al,
and then describe how the work of Mohalik and Walukiewicz is subsumed by
the approach.

3.5.1 Distributed Systems

Rather than representing each process as a player of a distributed game, Gastin
et al view a distributed system as a single asynchronous model, where actions
are players divided into two teams: the actions of the system and the actions
of the environment. An architecture has a finite set of actions (X) and a finite
set of processes (P). Each action has a read and write domain (R and W) that
specify its set of read and write processes.
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Previous work that the team games subsume has shown that the ability to
observe properties of particular linearisations of process actions often leads to
undecidability. Hence, Gastin et al allow only trace recognisable specifications.
That is, a dependency relation between actions is given, and independent ac-
tions may occur in any order without affecting satisfaction. This results in the
following restrictions on architectures,

Va € %, 0 # W(a) C R(a)
Ya,b € X, R@)NW({) =0 < RO)NW(a) =0

A distributed game over an architecture is defined via a disjoint set of states
for each process and a transition relation per action. Each relation describes a
transition from a product of reader process states to a product of writer process
states for the action. A global state is a product of a local state for each process.

An action moves play from one global state to another iff the move preserves
the local states of all processes not in the write domain of the action, and the
transition relation for the action admits the product of local reader states to
the product of local writer states.

A play is then a sequence of global states and action labelled transitions
between them. The (trace equivalent) winning condition is defined as a set of
words over tuples. Each tuple contains the action played and the projection of
writer states for that action after the move had taken place.

For program strategies, Gastin et al use a slightly different notion of mem-
ory than other models. Instead of a history of local states, processes are able
to remember information collected from other processes throughout the play.
However, it can also be shown that, for all games G there exists an equivalent
game G* which has memoryless winning strategies.

Proposition 3.5.1 Let G be a distributed game and let p be a distributed mem-
ory on G. One can construct a distributed games G* such that there exists a
u-WDS (Winning Distributed Strategy) for G iff there exists a WMDS (Win-
ning Memoryless Distributed Strategy) in G*. Moreover, if G is finite and u is
realised by a finite asynchronous automaton, then G* is finite.

Decidability is obtained via a translation into a “global” two-player game
G. In this game player 0 mimics a distributed strategy and player 1 “tests” the
strategy. At each stage, player 1 can ask player 0 to play a particular action. In
this way, all possible linearisations of plays may be investigated. Player 0 can
either play the desired action, or refuse. To ensure that player 0 is following a
distributed strategy, player 1 can reset the game. In the continuing play, player
0 must act in a manner that is consistent with the previous plays. Additionally,
player 1 must act fairly; that is, he may only reset a finite number of times,
and he must request that player 0 performs each action an infinite number of
times — this ensures that player 0 has the opportunity to act out any strategy.
Player 0 wins if the trace induced by the actions he played meet the winning
condition of the original game.
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Theorem 3.5.1 The following conditions are equivalent for a distributed game

G:
1. There exists a WMDS for team 0 in the distributed game G.
2. There exists a WMS for player 0 in the global game G.

3. There exists a WS for player O in the global game G.

The global game G can be transformed into a parity game. Known methods
can be used from then on.

3.5.2 Encoding Mohalik and Walukiewicz

Gastin et al provide a somewhat elegant encoding of the Mohalik and Walukiewicz’s
distributed games. The idea is to associate an action ¢ with each player i of a
Walukiewicz game. The players form one team, whilst the environment forms
a team on its own. The set of processes in the team game matches the set of
processes in the Walukiewicz game, similarly for the local states of each process.
The reader and writer processes of an action 4 is simply {i} and the transition
relation for each process is encoded verbatim. The reader and writer sets for
the environment are the set of all players and its transitions are all transitions
in the Walukiewicz game that move from an environment to a player position.

The main difference between the two notions of games is the memory. Team
games allow the memory to contain all information gathered from all processes
throughout the history. Walukiewicz games, however, only allow the observation
of local states. Consequently, the notion of memory for the corresponding team
game needs to be restricted to a local view. With this restriction it follows
that a Walukiewicz game is equivalent to its team game encoding. Given a
Walukiewicz game G and its equivalent team game G, we have the following
result.

Theorem 3.5.2 The players have a WS in G iff team 0 has a local WDS in G.

The absence of a satisfactory encoding of the distributed control problem was
a shortcoming of the work of Mohalik and Walukiewicz. Gastin et al state briefly
at the end of their paper that the control problem [67] has a straightforward
translation into team games. This is because transitions are local (in the case
of the environment) or the product of local transitions.

3.6 Open Problems

The aim of the Walukiewicz et al in presenting a unifying approach to Dis-
tributed Synthesis is to identify classes of architecture-specification pairs for
which the synthesis problem is decidable. The two mathematical tools, DIVIDE
and GLUE, are enough to solve the problems considered. However, further tools
may be required for different architecture-specification pairs. Additionally, the
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current decidability results are specific to particular problems; we may use the
framework to identify more general decidability results.

Presently, the Team Games approach of Gastin et al has been shown to be
decidable for trace recognisable winning conditions and undecidable for rational
winning conditions. Classical winning conditions, such as Biichi, liveness and
parity conditions have not been studied in general [63]; however, recent work by
Gastin et al has shown that for series-parallel systems, controlled reachability
conditions are decidable. These include reachability and safety conditions as
well as recognisable ones [63].

Additionally, the proof of decidability given by Gastin et al does not present
a clear method of strategy construction. Therefore, a more direct method of
constructing program strategies for a specification is an open problem.

Finally, Gastin et al identify the distributed synthesis problem for non-co-
graph alphabets. Broadly speaking, in a co-graph alphabet, if an action a is
dependent on an action b, then b is also dependent on a (the formal definition
is more subtle). The problems considered in the team paradigm so far have all
used a co-graph model of traces.

In addition to these problems, the work by Alur and La Torre into LTL
fragments [73] may be extended to a distributed setting. This work is described
in more detail in chapter 5

3.7 Different Models

The synthesis problem has many different flavours. In this section we will briefly
discuss the synthesis of timed systems, probabilistic systems and knowledge
based systems.

3.7.1 Timed Systems

The controller synthesis problem for a given plant can be augmented with a
notion of time. This can be achieved by presenting the plant using the timed
automata of Alur and Dill [71, 72]. We can then reduce the synthesis problem,
in the sequential setting, to a timed game between two players. We then search
for a winning strategy for the controller.

Even in the sequential setting, many problems are undecidable. (See [62]
for an introduction to the techniques and decidability results). Decidability
can be obtained by imposing restrictions on the specification or by limiting the
resources (such as the number of clocks) available to the controller. However,
there is very little work available that studies the synthesis of timed systems in
a distributed setting.

3.7.2 Probabilistic Systems

In [36] Walukiewicz observes that some distributed communication problems
are well-known to only have probabilistic solutions; therefore we may wish to
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study randomised strategies in a distributed setting.

Recent work by Luca de Alfaro et al [45, 44] considers this problem in a
two player setting. In this model, we extend the usual two player game with
probabilistic transitions and probabilistic strategies — that is, the next state or
move is given by a probability distribution.

3.7.3 Knowledge-Based Specifications

In 1998, van der Meyden and Vardi argued that temporal logics are not enough
to specify certain program properties [23]. In particular they identify properties
reflecting that a program may not have complete information about its envi-
ronment. They give the following example, “send an acknowledgement as soon
as you know that the message has been received”. Consequently they study
specifications given in a linear temporal logic with epistemic operators.

Automata-based techniques are used to show that the synthesis problem in
this setting the single agent case is solvable. In the multi-agent case the prob-
lem is decidable in broadcast environments or when the specification is restricted
to positive knowledge. Settings including asynchronous observation, branching
time or conservative approximations have not been studied [87]. Additionally,
there is currently no game interpretation of the knowledge-based synthesis prob-
lem.

3.8 Summary

In this chapter we surveyed the synthesis problem, particularly in a distributed
reactive setting. We described several variants of the problem for different
systems and notions of synthesis. We then described recent work by Mohalik
and Walukiewicz [85] and Gastin et al [64] which attempts to generalise the
problem and its solutions through the use of multiplayer games. We finished
with a discussion of some of the open problems in synthesis and an overview of
further synthesis paradigms.
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Chapter 4

Automata Simplification

In chapter 2 we described several model checking algorithms. Automata are
fundamental to these algorithms, and naturally contribute significantly to their
complexity. Consequently, optimizing the generated automata can greatly affect
the efficiency of a model checking tool.

Similarly, in chapter 3 we discussed the synthesis problem. Automata again
played a vital role: a program specification is represented by its equivalent
automaton when formulating a synthesis game.

To produce efficient automata, we need a method for determining whether
one automata is more “optimal” than another. The most common heuristic used
in the literature is the number of states. An automaton with fewer states will
require less memory and should be easier to check for non-emptiness. Another
notion, introduced in [80], is the degree of non-determinism. The more non-
deterministic an automaton is, the more difficult it will be to check all possible
runs.

We begin by surveying some simple techniques for simplification. We then
discuss a notion of “simulation” — when one state can in some sense “mimic”
another. We finish with some of our own work and suggestions for future re-
search on simulation, particularly with respect to LWAA.

4.1 Minimizing LTL Formulae

One simple heuristic for producing smaller automata is to start with a smaller
LTL formula. Therefore, most model checkers will attempt to minimize the
given specification. This is done by the repeated application of a number of
rewrite rules, surveyed in appendix B.

In [20], the LTL syntax used when applying the rewrite rules does not allow
abbreviations (F, G, etc.). This means, for example, that a rewrite rule for F'¢
will also apply to a formula of the form TU¢. Consequently, there is a potential
increase the number of situations where a rewrite rule may apply.
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Reducing non-determinism in [80] is also done at the LTL level. These
rewrite rules are described in appendix B.

4.2 Constructing Smaller Automata

There are two ways of obtaining a smaller automaton from a (minimized) LTL
formula. The first is by optimising the construction algorithm, the second is
to work post-hoc, minimizing a given automaton. In this section we overview
several methods used in the literature to produce smaller Biichi automata from
an LTL formula.

Two elementary simplification techniques are described in [35]. The first is
to assign an order (lexicographic, say) to the top-level subformulae @1, ¢a, ...
of a formula constructed with a commutative binary connective (For example,
¢1 A ¢a A ...). This means we can avoid translating equivalent subformulae of
a formula. Although this does not reduce the size of the automata in the worst
case, it means that we can avoid repeating possibly expensive minimisation steps
on equivalent sub-automata. Secondly we can simplify transition guards — in
the case of LWAA or a Biichi automaton over a set of atomic propositions — by
applying propositional rewrite rules.

In [30] LTL formulae are translated into Biichi automata using a tableaux
method. In this method elementary subformulae (constants, atomic proposi-
tions, X¢) denote the states of the automaton, and an elementary cover is a
disjunction of elementary subformulae equivalent to the initial formula. There
are infinitely many elementary covers, each resulting in different automata.

The authors propose an optimisation method that poses the selection of
the elementary cover (and therefore the number of states) as an Integer Linear
Programming problem, and approximates the solution. Because the size of
the automata is only a heuristic, the cost of calculating an exact solution may
outweigh the benefits of a smaller automaton.

In [20] an extra stage is added to the translation process. Instead of trans-
lating directly to Biichi automata, they translate to an intermediate automaton
— a Transition Based Generalised Biichi automaton — and then to a Biichi au-
tomaton. A transition based automaton operates over the alphabet (¢, a,q') —
the transitions of an automaton. It is claimed that in a TGBA more states tend
to be merged during simplification than in a Biichi automaton.

In [46], Daniele, Giunchiglia and Vardi attempt to produce small automata
by detecting redundancies and contradictions as soon as possible during cover
generation. It also manages its data structures to aid detection of redundancies
that occur when the conjuncts of a conjunction appear in the cover, but the
conjunction itself does not. An improved version of this algorithm is suggested
in [20].
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4.3 Reducing Automata

Once an automaton has been constructed we can analyse its structure and
attempt simplification. There are several techniques available, we discuss some
of them here. It should be noted that, in some cases, these techniques may be
applied during the construction phase.

Several reduction methods are given in [41]. Firstly, if there are no accepting
runs leading from a state, then we may remove the state from the automaton.
To calculate which states can be removed we compute the strongly connected
componants of the automaton and then compute the set of states that cannot
reach an SCC that contains an accepting state.

Secondly, if an automaton has an SCC such that there are no exiting transi-
tions, all transitions have the same label, and the the SCC contains an accepting
state, then the componant can be replaced by a single accepting state with a
reflexive transition.

In [30] several more reduction methods utilising SCCs are presented. Sev-
eral techniques rely on simulation and will be discussed here. The remaining
reduction methods are as follows:

e A state ¢ can be removed from a fair set if it does not appear in any
Strongly Connected Componants.

e For an SCC ~, and the fair sets F and F’ restricted to only the states in
~v (F7 and F'), if F* C F'" then we can remove F'"? from F'.

e For a fair set F', if we have p € F such that all cycles through p meet
another state also in F', then we can remove p from F'.

e Finally, if a Generalised Biichi Automaton is weak, we can replace the set
of fair sets with the set of all states in a fair SCC. (A fair SCC is an SCC
that contains a state in a fair set.)

Further simplification techniques are described in [65]. The most basic is
that inaccessible states can be removed. We can also remove a transition if it
is “implied” by another transition from the same state. One transition implies
another if they go to the same state and — assuming the transitions are labelled
by propositional formulae — the labelling on the first implies the labelling on the
second. Finally, we can merge equivalent states. That is, states with matching
transition relations that occur in exactly the same fair sets.

In [35] a number of optimisations are given that are predicated by L£(¢1) C
L(¢2). For example, if we have transitions ¢; and ¢» from a given state such
that the conditions on ¢; imply those on ¢35 and the accepted language from the
next states of ¢ is a subset of the accepted language from the next states of ta,
then we can remove t;.

In general, checking language containment is expensive. Some simple cases of
language containment are given in [35] as well as some optimisation techniques.
However, as we will see in the following sections, simulation implies language
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containment and is easily checkable (polynomial time). Therefore, implifications
based on language containment may prove complimentary to simulation-based
reductions.

4.4 Simulation

The notion of simulation is widespread in computing. Intuitively, a system
simulates another if it can mimic every move it makes. In the case of automata,
simulation is easy to check and implies language containment. If an automaton
contains two states qi,¢q2, and the automaton starting from ¢; simulates the
automaton starting from ¢,, and vice versa, then the language accepted from
these two states is equivalent and the states can be merged. This provides a
useful method for reducing large state spaces — an important task in automata-
based verification.

Simulation for Biichi automata has been studied in [42]. This work has been
extended by Fritz and Wilke to alternating Biichi automata [15]. Since the al-
ternating case is more relevent to our work, and to avoid repetition, we will forgo
a description of simulation for Biichi automata and concentrate on alternating
automata instead. A Biichi automata can be thought of as an alternating Biichi
automata constructed entirely from existential states.

4.4.1 Alternating Biichi Automata

Fritz and Wilke use the partition-based definition of alternating automata.

Definition 4.4.1 [5] An alternating Biichi automaton A is a tuple (2, S, so,0, E,U, F).
Y is a finite, non-empty, alphabet. S is a finite set of states, where sy is the
initial state. 6 : S x ¥ — 25 is a transition relation. F C S is a set of final
states. {E,U} is a partition of S into existential and universal states.

For an alternating Biichi automaton A and an input word w € X%, accep-
tance is defined via the game G(A,w) = (P, Py, P1, pr, Z, W), where,

e P=Sxw,PL=UXw,P,=Fxw,

* pr = (s1,0),

o Z={((s,0),(s";i+ 1)) | 8" € 6(s,w(i))}, and
o W = (P*(F xw))~.

We refer to player 1 as Automaton and player 0 as Pathfinder. w is accepted
by the automaton A iff Automaton has a winning strategy in G(A,w). That is,
from an existential state, it must be possible to choose a transition that leads to
an accepting path (where a state in F' occurs infinitely often). Conversly, from
a universal state, it must be the case that an accepting path can be constructed
no matter which transition is taken. For ¢ € S we write A(q) to denote the
automaton that is a copy of A, with ¢ as its initial state.
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4.4.2 Simulation Games

Simulation is defined in terms of games. The three main types of simulation —
direct, delayed and fair — operate over the same game graph, which we present
below.

Given automata A° = (%, 89, s7,6° E°, U°, F°) and A! = (%, 81, 57,81, EY, UL, F1),
the simulation game G(A°%, A!) is played between two players: the Spoiler and
the Duplicator. Between them, Spoiler and Duplicator run the two automata
in parallel. Spoiler’s task is to push the automata into a situation where A°
cannot be matched by A!. In the non-alternating case Spoiler moves A° and
Duplicator has to match him in A'. In the alternating case, the presence of
universal states necessitates a more subtle definition.

Consider A°. From an existential state, the language accepted is the union
of all transitions — the automaton can take any path. If Duplicator were to
choose the next state, he would be able to cherry-pick the transition that he
knows can be mimicked in A;. Conversely Spoiler can choose a transition that
may lead to a situation that can’t be mimicked, should one exist. Since we
want to make sure £(A%) C L(A?!) in all cases (no matter how the situation
proceeds), we allow Spoiler to choose the transition.

From a universal state in A° the situation is reversed. The language accepted
is the intersection of all transitions — the automaton must take all paths. It
follows that if any of the transitions leads to a run that can be mimicked, then
the intersection of all transitions must also lead to a run that can be mimicked.
Therefore, we let the Duplicator choose the next move.

Similar intuition can be applied in A'. At an existential state, Duplicator
chooses the next move since the automaton can take any transition to mimick
A%, From a universal state Spoiler chooses the next move since the automaton
must take all transitions.

During each round Spoiler always moves first. This is because Spoiler repre-
sents the main restrictions that must be satisfied, whilst Duplicator is free, once
all restrictions are satisfied, to make the best move possible.

G(A°, A') is played in an possibly infinite number of rounds. At the begin-
ning of each round we are at a state (p, q), where p € S° and ¢ € S*. The round
proceeds as follows:

1. Spoiler chooses a letter a € X.
2. o If (p,q) € E° x E', then Spoiler chooses a transition p' € 6°(p,a).
Duplicator then chooses a transition ¢' € 6*(q,a).

o If (p,q) € U® x U?, then Spoiler chooses a transition ¢' € §'(q,a).
Duplicator then chooses a transition p’ € §°(p, a).

o If (p,q) € E° x U, then Spoiler chooses a transition p' € 6°(p,a)
and a transition ¢' € 6'(g,a).

o If (p,q) € U° x E', then Duplicator chooses a transition p' € 6°(p,a)
and a transition ¢' € 6'(q,a).

3. The next round begins with the pair (p', ¢').
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At the beginning of each round Spoiler chooses the input a € X. This is
because automata operate over an input word, and we require that A; can
simulate Ay for all inputs. Therefore, Spoiler is able to pick an input that
refutes simulation, should one exist.

If, at any point, a player is unable to make a move, he loses the game. In
the case of an infinite game the winning condition is determined by the type
of simulation we are interested in. There are three types of simulation: direct,
delayed and fair. Over an infinite play (po,qo), (P1,41), - .. we have,

Definition 4.4.2 (Direct Simulation (di)) Duplicator wins if for every i with
p; € F°, we have q; € F'.

Definition 4.4.3 (Delayed Simulation (de)) Duplicator wins if for every i
with p; € F°, there is j > i such that q; € F*.

Definition 4.4.4 (Direct Simulation (f)) Duplicator wins if there are in-
finitely many j with q¢; € F' whenever there are infinitely many i with p; € F°.

We say that A; z-simulates Ay, for « € {di, de, f} if Duplicator has a winning
strategy in the game G(A°, A') with the appropriate winning condition. We
write Ag <, A1 to denote that A; z-simulates Ag.

Proposition 4.4.1 For x € {di,de, f}, the relation <, is reflexive and transi-
tive (a preorder). Furthermore, the following relationship holds,

<diC<g4eC<y

Transitivity is shown via strategy composition. Suppose Ag < 4; and A; <
As. That is, Duplicator has a winning strategy o1 in G(Ag, A1) and a winning
strategy oo in G(A1, As). We can define the strategy o = o1 < o2 such that o
is a winning strategy in G(Ag, A2) and hence Ag <, A,.

Intuitively, the strategy o is obtained by Duplicator playing mock games
on G(Ap, A1) and G(A1,As). He uses oy and o2 to determine any moves he
has to make in the respective mock games, and determines the Spoiler puppets’
moves in either game from Spoiler’s moves in G(Ay, Az), or from the moves of
A; played in G(Ag, A1) or G(A1, As) (as appropriate). Whenever Duplicator
has to move in G(Ap, A2) he looks at the mock games to see how play should
proceed.

Finally, we state that simulation implies language containment.

Proposition 4.4.2 Let z € {di,de, f} and A° and A' be alternating Biichi
automata. If A° <, Al, then L(A®) C L(AL).

It is easy to see that A! must not get stuck over any word that A° does
not get stuck over. Also, for all three simulation relations it can be seen that,
if a final state occurs infinitely often in A°, then a final state must also occur
infinitely often in A'. That is, A' must accept all words accepted by A°.
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4.4.3 Quotienting Modulo Simulation

We define the equivalence relation =, where p =, ¢ (that is A(p) =, A(q) for
automaton A and p, ¢ are states of A) iff p <, ¢ and ¢ <, p. Since <, implies
language containment we have £(p) = £(q). In this sense, p and ¢ are the same.
[p]=, denotes the set of all states =;-equivalent to p. We introduce the notion
of quotienting, which merges all simulation equivalent states.

The basic structure of a quotient automata is as follows.

Definition 4.4.5 Given an alternating Biichi automaton A = (%, S, 80,9, E, U, F),
the quotient A/ =, has the form,

(E,S/ Ew7[80]5¢7617E17U17F/ Ew)

where M/ =,={[ql=, | ¢ € M} for all M C S and [q]l=, ={¢' € S | ¢ =2 ¢'}.
The following minimal constraints must also hold:

1. If [q)=, € &' ([p]=,,a), then there exists p' =, p and q' =, q such that
q € 4(p,a).

2. If [ql=. CE, then [q]=, € E', and

3. If [q]=., C U, then [g]=, € U'.

Notice that this is not a complete definition. In the case that [¢]=, is a
mixed set — containing both universal and existential states — then it is not
clear whether the state is universal or existential. In the case of non-alternating
Biichi automata this problem does not arise because all states are existential.

For direct and delayed simulation the definition is completed by introducing
notions of z-maximal and z-minimal a-successors of a state ¢q. In the case of
fair simulation, we cannot define a quotient which preserves the language of the
automaton. This follows from the same result shown for Biichi automata in [42].

We begin by describing z-minimal and z-maximal a-successors of a state q.
We then describe the complete definition of a quotient for direct and delayed
simulation.

4.4.4 Minimal and Maximal Successors

Given an automaton A, a state q of A and character a, an z-maximal a-successor
of ¢ is a state ¢' € d(g, a) such that for every state ¢" € §(¢,a) with ¢' <, ¢", we
have ¢" <, ¢'. That is, ¢’ is simulation equivalent to any successor state that
can simulate it.

Conversely ¢' is an z-minimal a-successor of ¢ just in case for all ¢" € d(q, a)
with ¢"” <, we have ¢’ <, ¢"”. That is, ¢' is simulated by every successor state
that it can simulate.

We define the sets minZ(q) and max2(q),

min®(q) :={q¢' € §(q,a) | ¢' is an z—minimal a—successor of ¢}
maz®(q) := {¢' € 6(q,a) | ¢' is an z—maximal a—successor of ¢}
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4.4.5 Direct Simulation and Minimax Quotienting

In the case of direct simulation we define the minimax quotient,

Definition 4.4.6 An xz-minimazx quotient of an alternating Biichi automaton
A is a quotient whose transition relation is,

0 = {([pl=.,a[d=.) |a€ X, p€ E,qg € mazZ(p)} U
{(pl=.,a,[d)=,) | a € ,p € U,q € ming(p)}

A mized class can be either universal or existential.

That is, we choose maximal successors from an existential state and minimal
successors from a universal state. This follows the intuition that, from an exis-
tential state, it is the least restrictive paths that dominate acceptance, whereas,
from a universal state, it is the most restrictive paths that give acceptance.

The following result justifies the assertion that a mixed class can be existen-
tial or universal.

Proposition 4.4.3 For a mized class M € Q] =, and a € %,

{ld=. | pe MNE A q € mazi(p))}
={lg=. | 3p(pe MNU A q€mini(p))}

and these sets are singletons.

That is, all maximal successors of an existential state in M are simulation
equivalent to each other, and, furthermore, they are simulation equivalent to all
minimal successors of a universal state in M. M, therefore, has one successor:
it does not matter if it is universal or existential.

From the definition of direct simulation we have that, if p <4; ¢ and p € F,
then q € F, and so, if p =4; ¢ then p € F iff ¢ € F. Tt is therefore easy to see
that for ¢ € S, [g]l=,, N F # 0 iff [q]=,, C F. It follows that,

Proposition 4.4.4 Let A be an alternating Biichi automaton and B™ any di-
minimax quotient of A.

1. For all p,q € S such that p <q; q, A(q) di-simulates B™([p]=,;) and
B™([q)=,;) di-simulates A(p).

2. A=4; B™ and L(A) = L(B™).

4.4.6 Delayed Simulation and Semi-elective Quotienting

For delayed simulation, minimax quotienting does not work. Consider the fol-
lowing automata A, where diamond boxes represent existential states, and dou-
ble boxes represent states in F'.
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Notice that 1 <4e 0 but not 0 <4, 1, therefore mazd¢(0) = {0} and so, in the
minimax quotient automata B, there is no a-transition from 0 to 1. Conse-
quently, it is not the case that B(1) <4, B(0).

Definition 4.4.7 A x-semi-elective quotient A3 of an alternating Biichi au-
tomaton A is a quotient whose transition relation is,

6 = {(pl=.,alq=.) a€Z,pe E} U
{(Pl=.,a,[ql=.) | a € Z,p € U,q € ming(p)}

A mized class is defined to be existential.

That is, all mixed classes are declared existential and inherit all transitions
from their existential members. Because the maximal successor of the existen-
tial states is equivalent to the minimal successor of the universal states, it does
not affect acceptance — in the case of direct simulation — if we also inherit
the non-maximal successors from the existential states. Inheriting all existen-
tial successors does, however, circumvent the problem highlighted in the above
example. That is, existential states no longer lose transitions which rendered
delayed simulation impossible in the quotient.

Proposition 4.4.5 For every alternating Biichi automata A, the automata A
and A%, de-simulate each other. In particular L(A) = L(A3,).

4.4.7 Simulation Algorithms

In this section we give a brief overview of the algorithms used to determine
A(p) <z B(q) for some automata A, B and states p, q.

A polynomial time algorithm for determining simulation is given in [42] for
Biichi automata and modified slightly in [15] for alternating Biichi automata.
The core of the algorithm uses A(p) <, B(q) iff Duplicator has a winning strat-
egy in the game G, (A(p), B(p)). The problem of deciding whether Duplicator
has a winning strategy is reduced to finding winning strategies in parity games.

Definition 4.4.8 A parity game graph is a tuple G = (Vo, Vi, E,p) where Vg
are the vertices where player 0 can move and Vi a disjoint set of vertices where
player 1 moves. When V. = Vo UVy, E CV x V are the edges of the graph.
p:V = {0,....,d — 1} is a mapping assigning a parity to each verter. A
player wins the game if his opposition gets stuck or the lowest infinitely occuring
priority in the play is even (for player 0 to win), or odd (for player 1 to win).
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In the case of fair simulation, G(A(p), B(q)) has a Biichi winning condition.
We can assign priorities to the vertices of G(A(p), B(q)) as follows: p(p,q) =0
ifge Fp; p(p,q) =1if pe Fy and q ¢ Fp; and p(p, q) = 2 otherwise.

It is easy to see that player 0 will win in this game iff B hits an infinite
number of final states whenever A does. This gives us fair simulation.

For delayed simulation G(A(p), B(g)) does not have a Biichi winning condi-
tion. We can modify the game by adding a flag b. This flag is set to 1 if we
have encountered a final state in A and we are still waiting to encounter one
in B. Otherwise it is 0. It is then the case that Duplicator wins if b is 0 an
infinite number of times. This is a Biichi winning condition and reduction to
parity games proceeds as above.

Jurdzinski’s algorithm [48] is used to solve the parity games, yielding a com-
plexity O(n®m) where n is the number of states and m the number of transitions.

Direct simulation is easier to solve. We reduce to a parity game as described,
but, we simplify the problem by taking advantage of the straightforward winning
condition. If play encounters a state (p,q) where p € F4 and ¢ ¢ Fpg, then
Duplicator loses. Therefore, we remove all transitions that allow Duplicator to
move to a losing state, and all transitions allowing Spoiler to move from states
where p ¢ F4 and q € Fp. The set of states from which Duplicator can win can
now be computed using AND/OR graph accessibility, decidable in linear time.
This gives a time complexity of O(nm).

In case the alternating Biichi automaton is weak, these complexities can be
improved further. Because of the partitioning of a weak alternating automata,
any SCC is either accepting or rejecting. Therefore, in the game graph of
G(A, A) where A is a weak alternating automata, all positions (p, q) of an SCC
have SCCs Cp and Cj in A such that p is in C}p and g is in C;. Therefore, it is
easy to determine for all SCCs from which no other SCC is reachable whether
that SCC is winning for Duplicator. For example, if C;, C F and C; C F,
Duplicator wins.

The full set of winning positions can be calculated inductively by ordering
the SCCs of G(A4, A) topologically. SCCs that cannot reach another form the
base cases. In the inductive case, computing the winning states for Duplicator
is AND/OR reachability of a winning SCC.

There are a linear number of SCCs, computable in linear time. AND/OR
reachability is also linear time. Therefore, in the weak case, computing the
simulation relations <g;, <ge, <5 is O(nm).

4.5 Simulation and LWAA

In this section we present our ongoing work into simulation and automata re-
duction. In chapter 2 we detail work into new LTL model checking algorithms.
The first stage in this algorithm is a translation of LTL to LWAA. The remain-
der of the model checking algorithm is exponential in the size of the LWAA.
Therefore, reducing the size of this automaton can lead to significant gains in
efficiency.
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In this chapter we have discussed several methods for state-space reduction.
In particular, we have focussed on simulation. Simulation is complementary
to the other reduction algorithms, and has proved successful in experimental
results. Direct simulation achieved significant state-space reductions in [30] and
in [42] it is shown that delayed simulation can gain greater reductions than
direct simulation.

The work of Fritze and Wilke applies simulation to alternating automata.
They also show that, in the case of weak alternating automata, the complexity
of computing the simulation relations can be reduced to linear time.

In this section we begin to investigate the applicability of simulation to
LWAA with a co-Biichi acceptance condition.

We begin by redefining direct, delayed and fair simulation to reflect the co-
Biichi acceptance condition. We then discuss possibilties for further research.

4.5.1 Co-Biichi Acceptance Conditions

We define the game G(A, B), for LWAA A and B, as given in section 4.4.2.
To define direct, delayed and fair simulation, we define the winning conditions,
over the play (po, qo), (p1,41), - - . as follows:

Definition 4.5.1 (Direct simulation (di))
Vip; ¢ Fa=q; ¢ Fi
Definition 4.5.2 (Delayed simulation (de))
Vipi ¢ Fa = 3j >i.q; ¢ Fp
Definition 4.5.3 (Fair simulation (f))
(FioVi > io.pi & Fa) = (3joVi > jo.a; ¢ Fis)

In appendix C.2 we prove the following relationship: <q4;C<gq.C<y.

Because all runs of an LWAA must end with a single repeating state, we
considered an alternative definition of delayed simulation. In this definition we
require that if automaton A reaches a repeating state not in F4, then there
must be a later point where automaton B reaches a repeating state not in Fg.
We prove in appendix C.6 that this definition of delayed simulation is equivalent
to fair simulation.

4.5.2 Further Results

Also, in appendix C we prove the following results:

Corollary 4.5.1 For x € {di,de, f}, <, is a pre-order.

Property 4.5.1 Let © € {di,de, f} and A° and Al be alternating Biichi au-
tomata. If A° <, Al, then L(A®) C L(AY).
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That is, the simulation relation is both transitive and reflexive. Furthermore,
simulation implies language containment. The proofs for these properties can
be found in appendix C.4 and C.5 respectively.

Finally, we show that we can quotient LWA A. The proofs for these properties
can be found in appendices C.10 and C.12.

Theorem 4.5.1 Let A be an alternating Biichi automaton and B™ any di-
minimaz quotient of A, A =4; B™ and L(A) = L(B™).

Theorem 4.5.2 For every LWAA A with a co-Biichi acceptance condition, the
automata A and Aj, de-simulate each other. In particular, L(A) = L(AZ,).

4.5.3 Further Research

Although the minimax and semi-elective quotients are adequate it may be possi-
ble to exploit the linear structure of an LWAA to define more efficient quotients.
Also, since a reasonable alternative definition of delayed simulation is equivalent
to fair simulation, it is worth investigating whether LWA A admit fair quotients,
which may prove more fruitful than delayed simulation in state-space reduction.
Finally, we need to redesign the simulation relation calculation algorithms to
represent the new co-Biichi acceptance conditions.

A further avenue of research is to relate the work to the second definition
of LWAA, where transitions are determined by boolean formulae. This second
definition is often more convenient in a practical setting. Hence it is desirable
for an implementation of the simulation algorithms to use this representation,
rather than the partioned presentation.

We may also study simulation for weak alternating automata. Fritz and
Wilke exploit the structure of a weak alternating automata to reduce the com-
plexity of the simulation algorithms. It may also be possible to redefine the
notion of a quotient to produce smaller equivalent automata when the original
automata is weak.

Finally, the notion of strategy composition suggests a categorical interpreta-
tion of automata and simulation. This may provide us with a better understand-
ing of the simulation relation and may also provide a link between two of the
main interpretations of games in computing: verification and semantics. This
is because we can view two-player verification/synthesis games as alternating
automata, with an existential and universal player.

4.6 Summary

In this chapter we reviewed several techniques for automata minimization. These
included LTL rewrite rules, algorithms for producing smaller automata and al-
gorithms for reducing a pre-constructed automata. We described state-space
reduciton via simulation quotients in detail. Finally, we discussed our own ini-
tial work into simulation-based reduction in the particular case of LWAA with
a co-Biichi acceptance condition.

66



Chapter 5

LTL Fragments

In the previous chapters we introduced the LTL model checking and synthesis
problems. We discussed several algorithms aimed at solving the model checking
problem efficiently. We also discussed automata simplification techniques that
can be used in conjunction with these algorithms.

Despite its PSPACE-complexity, LTL model checking has proven feasible in
practice. Part of this success can be attributed to the efficiency of the imple-
mented algorithms. However, part of this success stems from the way LTL is
used. The high complexity bound is a worst-case scenario. It can be argued
that, in practice, we do not require particularly complex LTL specifications.

The desire for a more rigorous understanding of this situation has motivated
the study of LTL fragments. In this chapter we overview the different fragments
studied in the literature and the complexities of the model checking and syn-
thesis problems. We then discuss a recent NP-complete fragment introduced
by Muscholl and Walukiewicz [6]. Finally we discuss possibilities for further
research.

5.1 Fragments, Satisfiability and Synthesis

LTL fragments have been well-studied in the literature [7, 79, 83, 73, 6]. In this
section we discuss the main definitions of LTL fragments, and their complexities
for model checking and synthesis. We then discuss some of the automata that
characterise these fragments.

5.1.1 LTL Fragments

There are several main techniques for restricting LTL formulae to produce frag-
ments. The simplest is the removal of certain temporal operators. We may, for
example, disallow the until operator U. We may choose to compensate for this
restriction by allowing the use of F'.
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The second technique places restrictions on the temporal nesting depth of a
formula. That is, the longest chain of temporal operators that occur within the
scope of each other. For example, the formula ()¢ has a temporal depth of one,
whilst the formula Q(Q¢ V Ov) has a temporal depth of two. In practice, we
rarely require a temporal depth of greater than two or three.

A third technique for defining LTL fragments is to limit the number of atomic
propositions.

Because there are many ways in which to define a fragment, there are several
different notations used in the literature.

Definition 5.1.1 ([83]) Lk(Hi,...) denotes the fragment of LTL with at most
n atomic propositions, a temporal height of at most k and only the temporal
operators Hy,.... n and k may be omitted, or set to w when there are no
restrictions on the number of atomic propositions or temporal mesting depth
respectively. Negations are allowed; thus L(F) is equivalent to L(QG).

Definition 5.1.2 ([79]) £(U™,Q", F¥) denotes the fragments of LTL allow-
ing a depth of m nested until operators, n nested tomorrow operators and k
nested F' operators. We may omit an operator if m,n or k is set to 0 — that
is, the operator cannot be used. For example, L(F"') allows only F operators
without nesting.

Definition 5.1.3 ([73]) LT L (op1,...,0py) is the fragment of LTL built only
from atomic propositions and the boolean connectives and temporal operators in
op1,--.,0pn. LTL(0p1,...,0p,) denotes the fragment of LTL constructed from
boolean combinations of the formulae in LT Ly (op1,...,0p,). For example, the
syntaz of LTL(QO,A) is (p € AP),

p=plony| O¢

whilst the fragment LT L(Q, A) has the following grammar (x € LTL4+ (O, N)):
¢ = x|"d| oA | PV

For the sake of brevity, we do not include a full list of complexities. We
summarise some of the results below.

Fragment Model Checking Synthesis

LY (F) NP-complete [7] —

LE+L(F) NL-complete —

LL(U) PSPACE-complete [7] —

LEYT) NL-complete —

L“(Q) NP-complete —

Le(F, Q) PSPACE-complete —
LTL(F,N) NP-complete PSPACE-complete
LTL(F,O,A,V) PSPACE-complete EXPSPACE-complete
LTL(F,G) NP-complete 2EXPTIME-complete [39]
LTL PSPACE-complete 2EXPTIME-complete
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5.1.2 Automata

As we have seen, LTL and automata are closely related. For example, the linear
time p-calculus can be characterised by weak alternating automata, and LTL
can be characterised by LWAA. Tt is therefore natural to study the relationship
between automata and fragments of LTL. In this section we discuss two different
notions of automata used in the literature. The first restricts LWAA just as we
restrict the nesting depth of temporal operators in LTL. The second, partially
ordered deterministic Biichi automata, are instrumental in proving some of the
complexity bounds given above.

Automata Characterisation of LTL Fragments

Pelanek and Strejéek have given an automata characterisation of the LTL frag-
ments £(U™, O, F¥) [79]. Naturally, this characterisation is quite subtle, and
will require the introduction of several automata properties. In this section we
use the definition of LWAA where boolean formulae define the transitions. A
transition p —4 Sy, where a € ¥ and S, C S, is a transition from p on the input
character a, which moves to the configuration S,. Succ(p) denotes the set of
successors of p.

Definition 5.1.4 (O-Free) Let p —, Sp be a transition of an automaton A.
A set X C S, \ {p} is said to be O-free for p —4 Sy if,

1. For each q € X there is S; C S such that ¢ —, S’;.

2. Let Y C X and for each ¢ € Y let S; C S be a set satisfying q — S;
and q ¢ S;. Then there ezists a set S" C (Sp \'Y) U U ey S; satisfying
p—, S".

The conditions for ()-freeness are similar to the conditions for a simple
LWAA. All states in the set Y can in some sense be avoided. There are a-
transitions from p to the states in Y, but there is also an a-transition to the
set S”, which is disjoint from Y, but may contain some of the a-successors of
Y. This is “()-free” because a transition — or tomorrow step — can be avoided
when moving to S”.

Next, we introduce the notion of F- and G-type states. Intuitively, these
states correspond to sub-formulae of the form F'¢ and G¢.

Definition 5.1.5 (F-type, G-type) A state p is F-type if there is a transition
p —o {p} for all a € . A state p is G-type if every transition of the form
p —o S satisfiesp € S.

The loop-height (Ih(p)) of a state p counts the maximum number of loops
along any path of the automaton. The ()-height (Oh(p)) counts the number of
O operators that would be required to represent any path of the automata.
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Definition 5.1.6 (Ih(p), OQh(p)) The loop-height and O-height of a state p are
defined inductively,

Ip(p) = { max{lh(q) | ¢ € Succ(p) \ {p}}+1 if p € Succ(p)
PP =\ maz{in(q) | q € Suce(p) \ {p}} otherwise

Oh(p) = maz,—s,s{minx is O—tree for pas{need O (p —q,X)}}

where the mazimum over the empty set is 0 and,

need O (p —a, X) = maz({Oh(q) | ¢ € X}U{Oh(g) +1| ¢ € S\ X,q# p})

Finally, we define the U-height of an automaton. This is similar to the loop-
height of an automaton. Since all loops correspond to U, F or G formulae, the
U-height is the number of loops on any path of the automata which do not meet
the criteria for F- or G-type states.

Definition 5.1.7 (Uh(p)) The U-height Uh(p) of a state p is defined as,

maxz{Uh(q) | ¢ € Succ(p) \ {p}} +1 if p € Succ(p) and
Uh(p) = p is neither F— or G—type.
maz{Uh(q) | ¢ € Succ(p) \ {p}} otherwise

We are now able to characterise automata in terms of their loop-height,
(O-height and U-height.

Definition 5.1.8 Let m,n,k € N U {w}, LWAA(m,n,k) is the set {L(A) |
is an automaton with initial state so and Uh(sg) < m, Oh(se) < n and lh(sg)
m+k }.

A
<

We require that lh(sg) < m+k since loops correspond to U, F or G operators.
Therefore, the loop-height will need to be constrained by the number of U
operators that can be nested, plus the number of F' operators than can be
nested. Finally, we state the main result of this section:

Proposition 5.1.1 Form,n,k € NU{w}, LWAA(m,n,k) = L{U™,Q", FF).

Partially Ordered Deterministic Biichi Automata

Alur and La Torre provide an in-depth analysis of the complexities of the model
checking and synthesis problems for several fragments of LTL [73]. This work
uses Partially Ordered Deterministic Biichi Automata (PODB). A PODB is a
deterministic Biichi automata whose transition graph contains no cycles except
for self-loops.

An important property of a PODB is its longest distance. That is, the
longest distance from a start node to a sink node. Additionally, PODBs are
closed under the boolean operations: AN B, AU B and B.
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Proposition 5.1.2 Fori = 1,2, let A; be PODBs of size n; and longest dis-
tance d;. There exists a PODB Ay N Ay (resp. Ay U As) accepting the language
L(A1) N L(A2) (resp. L(A1) N L(A2)), whose size is O(ny - na) and longest
distance is not greater than dy + ds. Moreover, for i = 1,2, there exists PODB

A; of size n; and longest distance d; accepting ¢ \ L(A4;).

In section 3.3.1 we described Biichi games and their relationship with the
synthesis problem. Alur and La Torre prove the following result:

Proposition 5.1.3 Given a Biichi game G with n vertices and longest distance
d, the game can be solved in space O(d - log n).

This result is used to calculate the complexity of the synthesis problem for
several fragments of LTL. For example, every formulae of LT L(F, A) is equiv-
alent to a PODB with an exponential number of vertices and linear longest
distance. This yields a polynomial space algorithm for the LT L(F, A) synthesis
problem. In fact, synthesis for LT L(F, A) is PSPACE-complete.

5.2 An NP-Complete Fragment of LTL

An NP-complete fragment of LTL, recently introduced by Muscholl and Walukiewicz [6]
has the following syntax (b € X),

¢ =t [ Ovd|Fo|Go| 1 Ab2| 1V

This fragment of LTL is very similar to the fragment L(F,()). However,
whilst L(F, () is PSPACE-complete, subLTL is only NP-complete. This im-
provement in complexity is due to the definition of the tomorrow operator.
subLTL uses a restricted form of tomorrow ()¢ that requires b € ¥ to be the
next character of input.

The proof that subLT L lies in NP is complicated and will not be reproduced
here. Instead we refer the reader to the work of Muscholl and Walukiewicz [6].
However, we can see the result intuitively since L(F, () can be encoded in LTL
by replacing sub-formulae of the form ()¢ with the disjunction,

\ Ovs

bex

This translation causes an exponential blow up in the size of ¢, bridging the
gap between NP-complete and PSPACE-complete complexities.

5.3 Future Work

The exponential improvement in complexity between (¢ and Oy suggests fur-
ther avenues for research. We propose to investigate this logic at the automata
level. An automata characterisation of this logic may help explain how the full

71



tomorrow operator contributes to complexity, and why the restriction causes
such a significant improvement. Also, the precise complexity of subLT L is un-
known. An automata characterisation may provide more precise complexity
bounds.

Furthermore, we may investigate whether the complexity improvements carry
through to the synthesis problem. It is likely that the work of Alur and La Torre
will provide a suitable framework within which this problem may be approached.

Finally, the path model checking problem applies model checking to individ-
ual runs of a program. This is useful for pinpointing bugs in an error trace. The
path model checking problem is significantly easier than full model checking.
For example, LTL model checking over a path can be done in linear time [55].
We may study the complexity of LTL fragments over a path. In particular, the
NC hierarchy may be suitable for this purpose.

5.4 Summary

In this chapter we gave an overview of some of the fragments of LTL that have
been studied in the literature. We presented several complexity results and de-
scribed the kinds of automata which can be used to study the fragments. We
then described a recently proposed fragment of LTL, subLTL. This fragment
is NP-complete due to an interesting restriction in the tomorrow operator. Fi-
nally we discussed possibilities for future work in subLT L, such as an automata
characterisation and the complexity of subLT L for program synthesis.
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Appendix A

Encoding LWAA in CNF

We present an encoding of LWAA in CNF. We assume that (q) is given in
CNF. If 6(q) is not given in CNF we can use the standard linear translation of
a boolean formulae into CNF [34].

In the following, all variables with a bar (A) are fresh variables introduced
during the translation.

Hene, = I
[Tlene = Ailai = 6(a)]onr
(FAUAAG = @) AN D)V
((l = AN (fiV g = f;")) ONF
[Flenk = IANgG <= dilenr AN; T
[¢i = 0(gi)]lene = (=i VCI)A ... A (=g V Ch)

where
0q;) =CiA...ANCy

F1 VFg)/\
Py = -lAU AN (6 <= @) A Aj(—'f})]

I ) I CNF
[ %l/\l ANi(gi = Qi)/\/\j(_‘fj))v = LAY AN (g = @i)/\/\j(_‘ffl')jﬁl]cwp
(= U)ANFi Vg = f:')) CNF Po= (1 <= U)AN;(fiV—ay <= f]{)]CNF
(= U)AN(F5 Ve = fJI')Z>ﬁ2:|CNF

ﬁ1:>_‘l]CNF'/\
[F = —UAU AN (6 = ~.)/\/\.(ﬁf'.)] = Ej’ll]cm/\
1 i\qi qi iy il onE A; [P1 = (i <= q,)]

A [Pr= -]

CNF

CNF
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[FLAV AN = @) AN =P

[Fg =1 = U)AN i Vg <= f})]

[0 = YAN Vg = )= P

CNF

CNF

= [L — (-l = 1)

(1v =1 v V@) v V() VP A
AfQ = (o = W),

[ﬁg = (I < l’)]CNF A

A [Pa= (ivma = 1],

(ZVV]-(F]‘)V?Q)/\

]CNF

A [F]- = (fj Vg = ﬁfj)]CNF

Finally, we present some general translations over the literals, A, B,C and P.

[A < B]CNF
[A <~ (B <~ C)]CNF

[A = (B = C)]CNF
[P <= (AVB < QO)lcnrF

[P= (AVB < O)lenr
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[A = (B = C)]CNF A

[A = (C = B)]C’NF N

[—|A = (—|B = C)]CNF A
[—|A = (C = _‘B)]CNF

—|A \Y _LB \% C

[P:> (AVB <~ C)]CNF N
[—|P:> (AVB < ﬁC)]CNF
(=PV-AVC)A
(=PV-BVC)A
(wPv-CVAVB)



Appendix B

LTL Rewrite Rules

B.1 Pure Universality and Pure Eventuality For-
mulae

In [41], the following rewrite rules are identified:

L (eUy) A (YUY) = (9 A7)UY

2. (gUy) V (¢U6) = gU(¢ V )

3. O(gUyY) =9

4. If 1) is a pure eventuality formula, then ($U4)) = 1) and Gih = 1)
5. If 1) is a pure universality formula, then (¢V4)) = 1 and Ot = o)

A pure eventuality formula is:

1. Any formula of the form < ¢

2. If ¢; and ¢, are pure eventuality, then so are ¢1 A ¢, @1 V @2, p1U¢ho,
O¢1, 1V and X ¢y

A pure universality formula is:

1. Any formula of the form O¢

2. If ¢; and ¢, are pure universality, then so are ¢; A ¢o, ¢1 V o, ¢1U 9,
O¢1, 1V 2 and X ¢,
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B.2 Rewrite Rules for LTL Formulae

In [30] a collection of LTL rewrite rules are given, along with some simple cases
of ¢ <1 (that is, ¢ imples 7).

p<Yy=>(dAY) =9 GF¢V GFy=GF(p V1))
P W= (pAY)=F FX¢=XF¢

(XU (XY) = X(dAY) ¢ <= ¢U(Ur) =9Ur
(6RY) A (¢Rr) = ¢R(Yp Ar) GGF¢ = GFé

(¢Rr)V (YRr) = (¢ V))Rr FGF¢ =GF¢

(X)) A (X9) = X(dNAY) XGF¢=GF¢

XT=T F(¢ AGFY) = (Fé) A (GFY)

QUF =F G(¢V GFyY) = (Go) V (GFy)

¢ <= (pUy) =9 X(pNGFyp) = (X¢) A (GFY)

) < ¢ = (pU%) = (TU) (¢V GFY) = (X9) Vv (GFy)

Simple cases of ¢ < 1:

p< o X <= x < (9U%)

¢p<T (P<X)AN W <x)= (oUy) < x
<YV <X)= (@A) <x (<x)A W <s)= (dUy) < (xUs)
(<x)VW<x)=(pAY) <X

B.3 Propositional Rewrite Rules

Several LTL rewrite rules are given in [20]. Most of these rules have been pre-
sented above, so we only present the propositional rewrite rules here.

PApP=Dp
pANT =p
pANF=F
pA—-p=F
pPVp=p
pVT =T
pVF=p
pV-p=T
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Appendix C

Simulation Games for
LWAA with a co-Buchi
Acceptance Condition

Closely following the work of Fritz and Wilke [15] we formally define simulation
games for LWAA with a co-Biichi acceptance condition. We show that the three
types of simulation are strict subsets of each other, and that an alternative
definition of delayed simulation is equivalent to fair simulation. We then define
strategy composition, and show transitivity of the simulation relation for direct,
delayed and fair simulation. We also show that simulation implies language
containment, and the correctness of minimax and semi-elective quotienting for
direct and delayed simulation.

The main differences between this chapter and Fritz and Wilke are in the
proofs of Lemma C.2.1, Lemma C.4.2, Property C.5.1 and the failure of naive
quotienting for direct simulation. We also describe an alternative definition of
delayed simulation and show that it is equivalent to fair simulation.

C.1 Simulation Games

Given LWAA A° = (Q°, %, p;, A°, B0, U% F%) and A! = (Q', 3, qr, AL, EY, UL, F1)
we define the simulation game,

Gw(AOaAl) = (PaPO;Pla(pIaQI)azaww)

where P is a set of game positions, Py and P; form a disjoint partition of P into
player 0 (Spoiler) and player 1 (Duplicator) positions, (pr,qr) is the starting
position, Z is the transition relation and W? the winning condition.
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C.1.1 Game Positions

Play proceeds in rounds. At the start of a round the game is at a position (p, q).
Spoiler chooses a letter a € X. Then, depending on certain conditions, Spoiler
or Duplicator will make a move in each automata.
The act of Spoiler choosing a € ¥ moves play to state of the form (p, ¢, a, S, b, S', ).
That is, the round started at (p, q), Spoiler chose a and now player S € {s,d}
must move automata A% b € {0,1}. Player S’s move will be followed by player
S' € {s,d} making a responding move in auomaton A" b’ € {0,1}.
Player S makes a move to a state of the form (p, ¢, a,S’, b') from which player
S’ makes the remaining move, completing the round.
States are therefore defined by the sets,

R=Q°x Q'

Us; =Q° x Q' x ¥ x {s} x {0,1} x {s,d} x {0,1}
Us=Q°x Q! x X x {d} x {0,1} x {s,d} x {0,1}

Ve=Q%°x Q' x ¥ x {s} x {0,1}
Va=Q%x Q' x X x {d} x {0,1}
where,
P=RUU,UU;UV, UV,
Py =RUU;UV;
P=U,UVy

C.1.2 Game Moves

The protocol for each round is as follows: at the beginning of each round we
are at a state (p, q), where p € S° and q € S'. The round proceeds as follows:

1. Spoiler chooses a letter a € X.
2. o If (p,q) € E° x E', then Spoiler chooses a transition p' € 6°(p,a).
Duplicator then chooses a transition ¢' € 6'(q, a).

o If (p,q) € U° x U, then Spoiler chooses a transition ¢’ € §'(q,a).
Duplicator then chooses a transition p’ € §°(p, a).

o If (p,q) € E° x U, then Spoiler chooses a transition p' € 6°(p,a)
and a transition ¢' € 6%(q,a).

o If (p,q) € U® x E*, then Duplicator chooses a transition p' € 6°(p, a)
and a transition ¢’ € 6'(g,a).

3. The next round begins with the pair (p', ¢').
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More formally, we define Z C P x P containing all moves of the form,

((pvq)a(paqvaasaoada]-)) fOI‘pEEO,QEEl.GEZ
(@7‘1):(}7747‘17570:3;1)) fOI‘pEEO,QEUl.GEE
(@7Q)7(paq’aada0)d)1)) fOI'pGUO,(]EEl.CLGE
((pal.I)J(I)JQaaasal:dJO)) fOI'pGUO,QEUl.CLGE

((p,g,0,2,0,y,1),(0',q,a,y,1)) for (p,a,p') € A%, z,y € {s,d}
((p,g,a,5,1,d,0),(p, ¢, a,d,0)) for (¢,a,q') € A

((p,q,a,d,0), (p',q)) for (p,a,p’) € A°
((p,q,a,2,1),(p,q")) for (¢,a,¢') € Al
C.1.3 Simulation

We say A! z-simulates A° for z € {di,de, f} when Duplicator has a winning
strategy in the game G®(A%, A'). We write A% <, A' to denote A' z-simulates
A% We also write G®(p, q) instead of G®(A(p), A(q)) for some LWAA A. The
winning conditions for a simulation game are described below.

C.1.4 Protoplays

A play of a simulation game is a sequence T = tot3tht;t9t] ... with t; € R,
t? € U;UU, and t} € V,UV,. A play is completely determined by the sequence
tot1 ... and a word w € ¥ (chosen by Spoiler). Similarly, for a partial play.
We define ((p;, gi)i<n,w) where n € wU {w}, w € " ! and for all i + 1 < n,
(pi,w(i),pi+1) € A® and (gi,w(i),qi+1) € Al. Such a structure is called a
protoplay. Protoplays can be mapped to their corresponding play in G*(A°, A')
by the partial mapping,

£ : R™ x ¥ — set of G¥(A°, A') plays

C.1.5 Winning Conditions

We define the winning conditions for direct, delayed and fair simulation over
protoplays ((pi, ¢i)i<w, w)-

Direct Simulation (di)

Vipi ¢ F* = q; ¢ F'

Delayed Simulation (de)

Fair (f)
(FioVi > ig.pi ¢ F°) = (FjoVj > jo-q; ¢ F")
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C.2 Simulation Hierarchy
In this section we prove the following lemma:

Lemma C.2.1
<ai C <ge C <y

Proof. We prove four cases separately:

o Ay <4i A1 = Ap <g4e A;i: suppose Ay <g4; A;. Then, in all protoplays
((pi, @i)i<w,w) we have the following property:

Vipi ¢ F* = q; ¢ F!
Taking j = 4 as our witness, we observe the following property also holds:
Vip; ¢ FO =3 >i.q; ¢ F*
That is, Ag <g4e A1.

o <gzi#<ge: consider the following automata, where 2 is a final state.

There are no choices to be made in either automata, hence all plays are
of the form, (1,2),(1,3),(1,3),.... Since 1 ¢ F° and 2 € F! it is not the
case that A% <4; A'. However, because Vj > 1.¢; = 3 and 3 ¢ F' we have
Ao <de A1. That is, <g;#<ge-

AO, Ala

o Ay <g4e A1 = Ao <y A;: suppose Ay <g; Ai. Then, in all protoplays
((pi, ¢i)i<w,w) we have the following property:

Vi.p; ¢ F* = 3j >i.q; ¢ F'
We show that this strategy also has the following property,
(Jio¥i > io-p; ¢ F°) = (3joVj > jo-g; ¢ F)

That is, Ao <y Ay

Assume (JigVi > ig.p; ¢ FO), then, from the condition for delayed simu-

lation we have,
Vi>ig3j >igi ¢ F' (%)
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Since A; is an LWAA, there exists jo such that for all j' > jo, ¢;» = gj,.
That is, we have a sink state gj, .

Suppose gj, € F*, then for i > jo, there is no j > i such that ¢; ¢ F'.
This contradicts (*). Consequently, it must be the case that g;, ¢ F'.
Therefore,
(FjoVi > jo.q; ¢ F")
That iS, AO Sf Al.
o <4e#< f: consider the following automata.

AO: A17

o—(©Y

Since there are no choices, all plays are as follows: (1,3)(2,3)(2,3)....
Since it is not the case that (JigVi > io.pi ¢ F°), the fair simulation
winning condition is satisfied vacuously. That is Ag <; A;. However,
po ¢ FO, but there is no j < 0 such that ¢; ¢ F'. Therefore, it is not the
case that Ag <ge 4;.

Therefore, <4; C <4 C <y, as required. O

C.3 Strategy Composition

We define strategy composition exactly as Fristz and Wilke. Given LWAA A9,
Al and A2, states k € Q% p € Q1,9 € Q? and strategies gg, 01 for the games
G*(k,p) and G*(p,q) respectively, we define the joint strategy o = ¢ > 01
inductively. We simultaneously define the intermediate p-sequence. Intuitively,
any combination of the plays (k;, p;); and (p;, ¢;); must agree on the p;.

The definition is constructed around the following property,

Property C.3.1 If ((kj,qj)j<n+t1,w) is a partial (oo > o1)-conform protoplay

and (p;) j<nt1 is the intermediate p-sequence for this protoplay, then ((kj,p;)j<nt1,w)
is a partial og-conform G®(k, p)-protoplay and ((pj, ¢;) j<n+t1, W) is a partial oq-
conform G®(p, q)-protoplay

We now define strategy composition inductively. For the initial position —
G?*(k, q)-protoplay ((k,q),€) — the intermediate p-sequence is p. Since no moves
have been made, we have a (oo < o1)-conform protoplay.
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Inductively, assume we have the (g > o1 )-conform protoplay T = ((ki, ¢i)i<n+1, W)
and intermediate p-sequence (p;)i<ny1 satisfying property C.3.1. Let T' =

((kiapi)i<n+15 ’11)) and T" = ((pla qi)i<n+1; 'IU)
(00 ™ 01) and pp41 for the next round of play are defined depending on the
modes of k,,p, and ¢,.

e Case EEE. Assume Spoiler chooses G*(k, q)-positions t = (kn,qn,a,s,0,d,1)
and tL = (knt1,qn,a,d,1) and,

0o (S(TI)(kﬂd qn,a,s, 07 d7 1)(kn+17 gn, a, d7 1)) = (kn+17pn+1)
go (S(T”)(pna qn,a,s, 07 da 1) (pn+17 qdn,a, d7 0)) = (pn+17 qn+1)
We define,
oo >4 01 (E(T)tty) = (knt1,qni1)
and (p;)i<n+1 as the intermediate p-sequence for the partial protoplay

((ki, gi)i<n+t1,wa). (This pattern for the intermediate p-sequence follows
throughout, and shall be ommitted from the remainer of the definition.)

e Case EUE. Assume Spoiler chooses t° = (k,,qy,a,s,0,d,1) and t} =
(kn+17 qn,a, da 1)7 and

o1 (E(T”)(pna qn; , da 07 d; 1)) = (pn+17 qn,Q, d; 1)
o1 (E(T”)(pna dn,a, da 07 da 1)(pn+17 qn,a, d: 1)) = (pn+1; qn+1)
We define,
0o X 01 (E(T)t%t;) = (kn+t1,n+1)

e Case UEU. Assume the next positions are t% = (kn,qn,a,s,1,d,0) and
t, = (kn,qn+1,0,d,0), and

UO(E(TI)(knapna a, d; 1; da 0)) = (kn+13pna a, da 1)
oo (S(TI)(knapna a,d,1,d, 0) (kn—i-l;pna a,d, 1)) = (kn—i-lapn—i-l)
We define,
0o X0y (E(T)t%t}m) = (kn+17(In+1)

e Case UUU. Assume the next positions are t% = (kn,qn,a,5,1,d,0) and
t, = (kn,dnt1,0,d,0) and

01 (g(T”)(pna dn,a, S, ]-5 d; 0) (pn: qn+17 a, da 0)) = (pn—i—la q
go (g(T”)(knapna a,s, 17 d) 0) (knapn-i—la a, d; 0)) = (kn-l—lapn-{—l)
We define,
o > 01 (E(T)tnty) = (knt1,dnt1)

e Case UEE. Assume Spoiler chooses the position t° = (kn,gn,a,d,0,d,1)
and

0o (E(TI)(knapna a, d; 0, da 1)) = (kn-i-lapn: a, d; )
0o (5(TI)(kn7pn7 a, da 07 d7 1)(kn+17pn7 a, d7 1)) = (kn—i-l;pn—i-l)
01 (5(T”)@n7 qn, a, s, 07 d7 )@n-i-h qn,a, d7 1)) = (Pn+1> Qn-i—l)
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We define,
0o M o1 (g(T)ton) = (kn—i—l; qn, Q, da 1)
0o M 01 (g(T)t(r)L(kn-i-l’ an,a, d’ 1)) = (kn-i-la qn+1)

e Case UUE. Assume Spoiler chooses t% = (kn,qn,a,d,0,d,1) and

01 (S(T”)(pﬂdqn:a: d707d7 1)) = (pn + 17qn7a7 d7 1)
01 (E(T”)(Pm qn,Q, da 0; da 1)(Pn+1: qn, Q, d: 1)) = (pn+1; qn+1)
o0(E(T")(kn,Dn,a,s,1,d,0)(kn, Pnt1,a,d,0)) = (knt1, Pnt1)

We define

oo ™ o1 (E(T)
o9 M0 (g(T)

t%) = (kn+1; qn,a, da 1)

ton(kn—l—la n,a,d, 1)) = (kn-i—l; qn—i-l)

e Case EEU. Duplicator cannot move in this case. For the purposes of the in-
termediate p-sequence, we assume Spoiler makes the following moves, t0 =
(kn,qn,a,s,0,8,1) and tL = (kpt1,qn,a,s,1) and t, + 1 = (knt1,qni1),
with,

UO(g(TI)(knapna a,s,0,d, 1)(kn+1;pna a,d, ]-)) = (kn+17pn+1)

e Case EUU. Duplicator cannot move in this case. For the purposes of the in-
termediate p-sequence, we assume Spoiler makes the following moves, t2 =
(kna qn,a, S, 07 S, 1) and t%, = (kn—i-l; qn,a, S, 1) and tn +1= (kn+1, qn+1)7
with,

o1 (S(Tl)(knapn: a, s, 1a da 0)(pn; dn+1,Q, d; 0)) = (pn+1; qn+1)

C.4 Transitivity

In this section we follow the proof of Fritz and Wilke to show that <, is a
pre-order. (Reflexivity is obvious.)

First we need the following lemma:

Lemma C.4.1 Let A°, A! be alternating Biichi automata and let p,q be states
of A and A', respectively, such that p <, q. Let a € X.

1. If (p,q) € E° x E', for every p' € A%(p,a) there is q' € A'(q,a) such that
P <z4q.

2. If (p,q) € E° x UY, for all p' € A%(p,a) and for all ¢ € A'(q,a) we have
P <s4q.

3. If (p,q) € U° x E*, there exists p' € A%(p,a) and ¢' € A'(q,a) such that
P <sq.
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4. If (p,q) € U° x U2, for every q¢' € Al(q,a) there is p' € A°(p,a) such that
p<.q.
Proof. We prove each of the cases individually.

1. Assume (p,q) € E° x E'. Since p <, q, Duplicator has a winning strategy
o in G®(p, q). For all transitions p' € A%(p,a) Spoiler chooses, we have a
play To = (p,9)(p,q,0,s,0,d,1)(p',q,a,d,1). Let o(Tp) = (p',¢'). Since
o is winning, ¢'(T) = o(ToT) must be winning from (p',q') for some
q' € A'(q,a). That is, Duplicator has a winning strategy in G*(p, ¢') and
thus p' <; ¢'.

2. Assume (p,q) € E® xU. Duplicator has a winning strategy o in G*(p, q).
From (p, q) Spoiler chooses both transitions p’ € A%(p,a) and ¢’ € A'(q,a).
Let To be the play from (p,q) to (p',¢'). Because o is winning from
(p,q), o'(T) = 0(ToT) must be winning from (p',¢'). That is, Duplicator
has a winning strategy in G*(p’,¢') for all transitions p' € A%(p,a) and
q' € A'(qg,a) and thus p' <, ¢'.

3. Assume (p,q) € U° x E'. Duplicator has a winning strategy o in G*(p, q).
From (p,q) Duplicator chooses both transitions p' € A%(p,a) and ¢' €
Al(q,a). Let Ty be the play from (p,q) to (p',q'). Because o is win-
ning from (p,q), ¢'(T) = o(ToT) must be winning from (p',q'). That
is, Duplicator has a winning strategy in G*(p',q') for some transitions
p' € A%p,a) and ¢’ € Al(q,a) and thus p' <, ¢'.

4. Assume (p,q) € U° x U!. Since p <, q, Duplicator has a winning strategy
o in G®(p,q). For all transitions ¢' € Al(q,a) Spoiler chooses, we have a
play Ty = (pa q) (p7 q,a,s, 17 da 0)(p7 qla a, d7 0) Let U(TO) = (pl7 ql) Since
o is winning, ¢'(T) = o(ToT) must be winning from (p',q') for some
p' € A%p,a). That is, Duplicator has a winning strategy in G®(p', ¢') and
thus p’ <, ¢'.

Thus, in all cases Lemma C.4.1 holds. |

We now need to show that the composition of winning strategies is a winning
strategy.

Lemma C.4.2 Let k € Q°, p € Q' and q € Q? such that k <, p and p <, q.
Let o9 be a Duplicator strategy for G*(k,p) and o1 be a winning Duplicator
strategy for G*(p,q). If oo and o1 are winning, then og > o1 is winning in
G®(k,q). That is, k <, q.

Proof. Assume o and o; are winning strategies, and let T' = ((k;, ¢i)i<w, W)
be an arbitrary (o < o1)-conform play with intermediate p-sequence (p;)i<.-
The plays T' = ((k;, pi)i<w,w) and T" = ((p;, G;)i<w,w) are og- and o1-conform
plays respectively. We require that T is a win for Duplicator. There are three
cases:
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Direct Simulation T is g¢-conform and, since ¢ is winning for Duplicator,
for all i with k; ¢ F° we have p; ¢ F'. Since T" is oq-conform and a
win for Duplicator, p; ¢ F! implies ¢; ¢ F?. Therefore, T is a win for
Duplicator.

Delayed Simulation Since T’ is a win for Duplicator, we have for all i such
that k; ¢ FO there is jo > i with p;, ¢ F'. Similarly, since 7" is a win
for Duplicator, we have j; > jo such that g;, ¢ F2. Hence, for all i with
k; ¢ F° we have j; > i such that ¢;, ¢ F?. That is, T is winning for
Duplicator.

Fair Simulation Assume there are not infinitely many ¢ such that k; € FO.
Since T" is winning for Duplicator, this implies that there are only finitely
many j with p; € F', and, since T" is also winning for Duplicator, it
follows that there are only finitely many j’ with k;; € F2. Consequently,
T is a win for Duplicator.

Hence, og < 0 is winning in G®(k, q) as required. m|

A Duplicator strategy o is <, -respecting if p <, ¢ holds at every reachable
position in the game G®(po, go) whenever Duplicator follows o. It is easy to see
that all Duplicator winning strategies are <,-respecting. We prove that a joint
strategy is <,-respecting if its componant strategies are. The proof is exactly
as in the work of Fritz and Wilke (here, the missing cases are elaborated).

Lemma C.4.3 If o¢g and o, are <;-respecting strategies, then oo X< oy is a
<g-respecting strategy.

Proof. The proof is by induction.

In the base case, let 7 be a Spoiler strategy for G®(k,q), and let T =
((tj)j<w,w) be the (1,00 > o1)-conform protoplay. We have k <, p <, ¢
and, by Lemma C.4.2, k <, q.

Now, let i € w and T; = ((¢;);<i,w[0..i — 1]) be the prefix of T of length
i+ 1. Let t; = (ki,¢;) and let (p;)j<; be the intermediate p-sequence of T;.
Assume k; <; p; <; q¢;- We show that ki1 <z pi+1 <z ¢gi+1 holds for the next
(Q°x Q*)-position t;y; = (kit1,qi+1) of T and the next state of the intermediate
p-sequence. There are four cases:

- Assume (k;,q;) € U° x U%. Let t? := 7(E(T)) = (ki,qi,a,s,1,d,0) and
ty :=1(E(T)t?) = (ki, qiv1,0,d,0). Let o9 <01 (E(T3)10t}) = (Kig1, Giv1),
and p;y1 be the next state of the intermediate p-sequence.

If p; € E', the definition of og > oy implies ki1 <; piy1, since E(T")
is og-conform (both k;y1 and p;y1 are chosen according to og). Also,
pit1 <e Giy1 by Lemma C.4.1, since p; <, ¢; and (p;,q;) € E' x U
Hence kiy1 <z Qiy1-

If p; € U, the definition of og < o also implies ki1 1 <, giy1, since
E(T") is o1-conform (p;y1 is chosen according to o1, hence p;11 <z ¢it1)-
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Because &£ (Tz' +1) is oo-conform (that is, ki;1 is chosen according to oy),
we have ki1 <; piy1 <z Qiy1.

- Assume (k;,q;) € E° x U2 Let t9 := 7(&(T;)) = (ki, gi,a,s,0,s,1) and

tz1 = T(g(T,)t?) = (ki+1,q,-, a,s, ].) and tz'+1 = T(E(Tl)t?t}) = (kz’+1, qi+1).
Let p;+1 be the next state of the intermediate p-sequence.
If p; € E' then Spoiler chooses k;y1 and ¢;41 and p;y; is chosen ac-
cording to gg. Since p; <, ¢;, we have that p;11 <, ¢i+1 follows from
Lemma C.4.1. ki1 <; piy1 follows because E(T") is o¢-conform (p;41 is
chosen according to g¢). We therefore have k11 <, pir1 <s Giv1-

If p; € U then Spoiler chooses k;;1 and g;;1 and p;y1 is chosen according
to a1. E(T") is o¢ conform because Duplicator has no choice from an EU
position. Therefore k;11 <z piv1- E(T") is o1-conform because p; 11 was
chosen according to o;. Hence p;11 < ¢;41 and thus k;y1 <g pir1 < @i

- Assume (k;,q;) € U® x E'. Let t? := 7((T;)) = (ki, qi,a,d,0,d,1), t] :=
gg X 01(5(Ti)t9) = (kiy1,4i,0,d,1) and t;;; = og > Ul(g(Ti)t?t}) =
(Kix1,qi+1). Let p;y1 be the next state of the intermediate p-sequence.

If p; € E' then k;;1 and p; ;1 are chosen according to oo and ¢;1 is chosen
according to o1. Therefore £(T") is og-conform and so ki1 <z pi+1. Since
gi+1 is chosen according to o1, we have that £(T") is o1-conform and so
Pit+1 Z¢ Gi+1- Thus kip1 <y pit1 <o Git1-

If p; € U! then p,y1 and gn41 are chosen according to o1 and kni1
is chosen according to og. Hence T' is gg-conform and ki11 <, Pit1-
Similarly 7" is o1-conform and p;+1 <z ¢i+1. Thus kiy1 <g pit1 <z Qit1-

- Assume (k;,q;) € E° x E%. Let t? := 7(£(T})) = (ki,qi,a,8,0,d,1) and
ty == 1(E(T)1)) = (kiy1,,a,d,1). Let og 0 01 (E(T)t9t}) = (Kig1, giv),
and p;+1 be the next state of the intermediate p-sequence.

If p; € E' then Spoiler chooses kiy1, p;y1 is chosen according to oo and
gi+1 according to o1. Therefore £(T") and £(T") are op- and o1-confrom
respectively, and hence ki1 <g pit1 <z ¢it1-

If p; € U! then Spoiler chooses kiy1. p;r1 and g;;1 are chosen according
t0 01. kit1 <z pit1 follows from k; <, p; and Lemma C.4.1. Since 7" is
o1-conform, we also have p; 1 <, q;+1- We have k;1 <; pir1 <z ¢it1 S
required.

Since ki1 <z pi+1 <z qi+1 we have k; 1 <, g;+1 by application of Lemma C.4.2.
Hence ¢ > 07 is <;-respecting. m|

Corollary C.4.1 For z € {di,de, f}, <, is a pre-order.
We can therefore define the equivalence relation =,:

P=rq < p<gsqand q<;p
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C.5 Language Containment

We now show that simulation implies language containment. We begin by pre-
senting a definition of acceptance for an LWAA with a co-Biichi acceptance
condition.

Definition C.5.1 An LWAA with a co-Biichi acceptance condition is a tuple
A= (%,8S,s0,0, E,U,F). ¥ is a finite, non-empty, alphabet. S is a finite set
of states, where sq is the initial state. 0 : S x ¥ — 25 is a transition relation.
F C S is a set of final states. {E, U} is a partition of S into ezistential and
universal states.

For an LWAA A and an input word w € ¥¥, acceptance is defined via the
game G(A,U)) = (P7 P07P17p17 Z: W)7 Where:

e P=Sxw,P=Uxw,P=Fxuw,

* pr = (s1,0),

o« Z={((s,0), (i +1)) | 8’ € 6(s,w(i))}, and
o W =P*(P\(F xw))“.

We refer to player 1 as Automaton and player 0 as Pathfinder. w is accepted
by the automaton A iff Automaton has a winning strategy in G(A,w). Over
a game graph, a state in F' must occur only finitely often on all paths leading
from a universal state, and on some path leading from an existential state. For
g € S we write A(q) to denote the automaton that is a copy of A, with ¢ as its
initial state.

Property C.5.1 Let z € {di,de, f} and A° and A' be alternating Biichi au-
tomata. If A° <, Al, then L(A®) C L(AY).

Proof. Assume o is a winning strategy for Duplicator in G*(A°, A'), w € L(A)
and ¢’ is a winning strategy for Automaton in G(A°, w). We need to show that
Automaton has a winning strategy ¢ in the game G* (A, w).

To define " we need to map G®(A°, A')-protoplays to prefixes of G(A°, w)-
and G(A', w)-plays. For T = ((ps, ¢i)i<n, w[0..n — 1]), we define,

pr’(T) = (po,0) ... (pn,n)
pri(T) = (¢0,0) - .. (gn,n)

Given a partial o-conform protoplay T' = ((pi, ¢i)i<n+1,w[0..n]) such that
pro(T) is o'-conform and ¢, € E*, we define,

JII((qOJ 0) te (qnan)) = (qn+17 n+ 1)

We now need to show that o'

winning.

is well-defined, a strategy for Automaton, and
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1. To show ¢ is well-defined we need to prove that, for every partial o-

conform play T' = ((po,qo) - - - (Pn,aqn), w[0..n — 1]) with (po,0)...(pp,n)
o'-conform, we have that for all ¢ € Q!, there is at most one p € Q°
such that ((po,qo) - - - (Pn,@n) (P, @), w[0..n]) is a partial o-conform proto-
play, and (po,0) . .. (Pn,n)(p,n+1) is o'-conform. Observe that, if p,, € E°
then o' determines p. If p, € U! then p is determined by o.

Assume, ¢ is not well-defined. That is, there are two protoplays T =

((p07 qO) T (pna Qn)(py q)7 ’LU[OTL]) andT = ((pO; q0) T (ﬁn: qn)(ﬁ: d): ’UJ[O’I'L])
with ¢ # ¢, ¢, € E' and pr®(T) and pr°(T") are o'-conform. Since py = po
and the next p is determined by o or o', we have p; = p; for i < n. Since
gn € E', o determines both ¢ and ¢, and so ¢ = §. This is a contradiction;
o' is well-defined.

2. For ¢” to be a strategy for Automaton its domain must contain all ¢"'-
conform plays 7' = (qo,0) . .. (gn,n) with g, € E'. The proof is by induc-
tion. The base case occurs when ¢; € U! for all i < n. In this case o does
not restrict any of the g; for i < n (Spoiler chooses g;;; in G*(A°, A1), so
T is in the domain of o".

Now, suppose there is a maximal i < n such that ¢; € E*. By induction
we know that (go,0) ... (¢;,%) is in the domain of ¢”. By a simlar argument
used in the base case, we know that o does not restrict g; for ¢ < j < n.
Hence, T is in the domain of ¢”.

3. We now show that ¢ is winning for Automaton. Given a ¢''-conform play
V. We know, by construction of ¢”, that there is a o-conform protoplay
T = ((po,q0)(p1,q1) - - . ,w) such that pr(T) is ¢'-conform and pr'(T) =
V. o' is winning and so there is a ip such that for all i« > iy we have
pi ¢ FO. o is winning. In the case of direct simulation it follows that for
all i > i we have ¢; ¢ F'. Thus, V is a win for Automaton. In the case of
fair simulation it follows from the winning condition that there is jo > ig
with ¢; ¢ F* for all j > jo. Hence, V is a win for Automaton. In the case
of delayed simulation, we need to exploit the structure of an TWAA.

All paths sgs1s2 ... of an LWAA have kg such that for all & > ko, sx = Sg,-
This is because LWAA are finite structures with no cycles except for self-
loops (all infinite paths of a finite automaton are ultimately periodic, hence
LWAA must settle in one state (assuming a total transition relation)).
Assume V is not winning. That is, for sink state gx,, we have g, € F.
Take 4’ such that i’ > iy and i’ > ko. We know that p; ¢ F°. Therefore,
by the winning condition for delayed simulation, there exists j' > i’ with
g ¢ F'. But, since for all k > ko, & = g, and g, € F*, it must be
the case that g € F'. This is a contradiction. V must be winning for
Automaton.

o' is therefore a winning strategy for Automaton in G(A',w), and sow € L(A?).
Finally, £(A%) C £(A'), as required. |
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C.6 An Alternative Delayed Simulation

We also considered an alternative definition of delayed simulation, which took
into account the structure of an LWAA.

Delayed Simulation* (de*)
If there exists 4o such that Vi > ig.p; ¢ F°, then Jj¢ > igVj > Jo-q; ¢ Ft!

That is, if Ag reaches a sink state that is accepting, A; must eventually reach a
sink state that is accepting. The intuition behind this definition is that accept-
ing states (not in F') that are not sink states in a run do not contribute to the
acceptance of the run, hence they can be ignored.

However, it can be shown that this definition of delayed simulation is equiv-
alent to fair simulation.

Proposition C.6.1 Given LWAA Ay and A1, we have,
Ag <ger A1 = A <5 A

Proof. In the only-if direction, assume Ag <ge+ Aj, that is, over all protoplays
((pi, @i)i<w,w), we have that if there exists 7o such that Vi > ig.p; ¢ F°, then
Jjo > ioVj > jo.q; & F'. To show Ag <; A; we suppose Vi > ig.p; ¢ FO and
show 35'Vj > j'.q; ¢ F'. This is immediate: we take j' = jo.

In the if direction, assume Ay <7 A;. That is, over all protoplays ((pi, ¢i)i<w, W),
we have JigVi > ig.p; ¢ FO = JjoVj > jo.q; ¢ F*. To show Ay <ger A1 we as-
sume there exists ig such that Vi > ig.p; ¢ F° and show 35’ > ioVj > j'.q; ¢ F.
Let j' = max(io, jo). Since j' > i and for all j > j' we have j > jo and there-
fore g; ¢ F', we have Ag <; A;. O

Definition C.6.1 Given an equivalence relation = on the state space of an
LWAA, we define quotients of A to be automata of the following form,
A/ == (Q/ 5727 [qI]EaAI7EI7UI7F/ E)

where M/ =={[¢l= | g€ M} for M CQ and [q]l=={d' € Q | ¢ =¢'}.
Furthermore,

1. If ([pl=,a,[g]l=) € A', then there exists p' = p and ¢ = q such that
(pl7a5 ql) E A’

2. if [ql= C E, then [g]= € E', and

3. if[g]l= CU, then [g]= € U".
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C.7 Naive Quotienting

A naive quotient is defined as follows,

Definition C.7.1 Given an equivalence relation = on the state space of an
LWAA, we define quotients of A to be automata of the following form,

Al == (Q/) =3, a)=,AE U ,F/ =)
where M/ = ={[ql= | g€ M} for M CQ and [q)=={qd' €Q | ¢=q'}.
Furthermore,

1. ([pl=,a,lq]=) € A’ iff there exists p' = p and ¢' = q such that (p',a,q') €
A

2. if [qJ= C E, then [g]= € E', and
3. if [q]= CU, then[g]= € U'.

Naive quotients run into problems when an equivalence class contains both
existential and universal states. Consider the following automaton A:

Observe L(A) = bab(a U b)“. Also observe that t1 =4 t2 and 1 =4; 2. The
result A’ of a naive quotient by the direct simulation equivalence relation is as

follows:
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State {1,2} has been declared neither existential nor universal. We consider
both interpretations and conclude that neither results in a satisfactory quotient.
That is £(A) # L(A").

Suppose {1,2} is universal. Then, from state {1,2} we require an ‘a’ as
input. Since {1,2} is universal, Pathfinder can choose f as the next state.
Since f € F and f is a sink node, it follows that £(A') = 0.

If, however, we declare {1,2} to be existential, then from {1,2} Automaton
can choose state {t1,2}, therefore £(A') = ba(a U b)*.

C.8 Minimal and Maximal Successors

Given an automaton A, a state q of A and character a, an z-maximal a-successor
of ¢ is a state ¢' € §(q, a) such that for every state ¢" € §(q,a) with ¢’ <, ¢", we
have ¢" <, ¢'. That is, ¢’ is simulation equivalent to any successor state that
can simulate it.

Conversely ¢’ is an z-minimal a-successor of ¢ just in case for all ¢"” € §(q, a)
with ¢"” <, we have ¢’ <, ¢"”. That is, ¢' is simulated by every successor state
that it can simulate.

We define the sets min®(q) and maz?®(q),

minZ(q) :={q¢' € 6(¢,a) | ¢' is an z—minimal a—successor of ¢}
maz®(q) := {¢' € §(q,a) | ¢' is an z—maximal a—successor of ¢}

Corollary C.8.1 Letp € Q°, q € Q' be states of LWAA A° and A' such that
p=zq. Leta € X.

1. If (p,q) € E° x E' and p' € maz®(p), then there is a ¢' € maz®(q) such
that p' =, ¢'.

2. If (p,q) € U° x U! and p' € min®(p), then there is a ¢' € min®(q) such
that p' =, ¢'.

3. If (p,q) € E°xU?, then all z-mazimal a-successors of p and all z-minimal
a-successors of q are x-equivalent.

Furthermore, gy =, q1 for all go,q1 € minZ(q) U maz®(p).
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Proof.

1. Let (p,q) € E° x E' and p' € maz?(p). By Lemma C.4.1 and p <, g,
we have a ¢' € A(g, a) such that p' <, ¢’. Suppose we have ¢" € A(q,a)
with ¢’ <, ¢". By Lemma C.4.1 and ¢q <, p, there is p” € A(p,a) such
that ¢" <; p’. Since p' <; ¢ <, ¢" <, p" we have p' <, p” and
since p' € maz®(p) we have p"” <, p'. It then follows that p' <, ¢’ <,
q" <, p" <, p <z ¢'. Consequently, ¢’ is an z-maximal a-successor of q.
Furthermore, p’' = ¢'.

2. Let (p,q) € U x U and p' € minZ(p). By Lemma C.4.1 and q <, p, we
have a ¢' € A(q,a) such that ¢’ <, p'. Suppose we have ¢" € A(q,a) with
q" <z ¢'. By Lemma C.4.1 and p <, ¢, there is p"” € A(p,a) such that
p" <z ¢". Since p” <, ¢" <y ¢’ wehave p” <, ¢' <, p'. That is p’ <} and
since p' € minZ(p) we have p' < p"” < ¢'. Hence p' =, ¢'. Furthermore,
since ¢’ <, p' < p" <, ¢" we have ¢ € minZ(q).

3. Let (p,q) € E® xU', p' € maz®(p) and ¢' € minZ(q). We require p' = ¢'.

By Lemma C.4.1 and p <, ¢ we have p’' <, ¢'.
In the opposite direction, by Lemma C.4.1 and ¢ <, p we have that there
are p"" € A(p,a) and ¢" € A(q,a) with ¢" <, p"”. By Lemma C.4.1 and
p < g we know that p' <, ¢" and p" <, ¢'. Since p' € maz®(p) we have
p" <, p', and since ¢ € minZ(q), ¢' <, ¢". Hence ¢' <, ¢" <, p" <p'.
Consequently p' = ¢'.

do =z q1 for all o, q1 € minZ(q)UmazZ(p) follows from the transitivity of =,. O

C.9 Minimax Strategies

Remark C.9.1 Given an LWAA A =(Q,%,q1,A,E,U, F), and the relations
<aiC Q X Q and =4 we have,

1. Forallp,qe Q, ifp<giqandp ¢ F, thenq ¢ F.

2. Forallp,q€Q, ifp=a;q, thenp ¢ F iffq¢ F.

If ((psi, gi), w) is a protoplay in an z-game that is o-conform for some winning
Duplicator stratgy o, then p; <, ¢; holds for all ¢ > 0. For direct simulation,
the converse is also true.

Lemma C.9.1 Let pg <g qo- A <gi-respecting strategy for Duplicator in
G%(py,qo) is a winning strategy.

Proof. Let py <4; qo, and let o be a di-respecting Duplicator strategy in
G%(po.qo). Let T = ((pi,@i)icw,w) we a o-conform G%(pg, qo)-protoplay. By
assumption we have p; <4; g; for all ¢ > 0. Therefore, from Remark C.9.1 we
have ¢; ¢ F whenever p; ¢ F. Hence T is a win for Duplicator and o is a
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winning strategy. O

Hence, the di-respecting strategies are exactly the winning strategies for
Duplicator .

Definition C.9.1 A minimax strategy o is a strategy such that for every o-
conform protoplay T = ((ps, ¢i)i<w,w) it is the case that,

1. If (pi,q;) € U° x Q*, then piy1 € minz(i)(pi), and
2. If (pi,qi) € E° x Q*, then qiy1 € maz,; (¢:)-

Lemma C.9.2 Let pg <4i qo- Then, there exists a <,-respecting minimax
strategy for Duplicator in G®(po,qo)-

Proof. Defined inductively using Lemma C.4.1. |

C.10 Direct Simulation and Minimax Quotient-
ing
In the case of direct simulation we define the minimax quotient,

Definition C.10.1 An xz-minimax quotient of an alternating Biichi automaton
A is a quotient whose transition relation is,

6 = {(lpl=.,alq=)|acX,pe E,qemar;(p)} U
{(Pl=.,a[9l=.) | a € Z,p € U,q € ming(p)}

A mized class can be either universal or existential.

The following result justifies the assertion that a mixed class can be existen-
tial or universal.

Remark C.10.1 For a mized class M € Q/ =, and a € X,

{ld=. | e MNE A q € mazi(p))}
={lg=. | 3p(pe MNU A q€mini(p))}

and these sets are singletons.

Proof. First we prove the two sets are equal. Take [¢'], € {[¢g]=. | Ip(p €
MnNE A g €mazZ(p))} and the associated p. Also, take p' € M NU (there is
at least one, since M is a mixed class). Since p = p' and (p,p') € ExU, it follows
from Corollary C.8.1 that for ¢" € min,(p') we have ¢' = ¢", thatis [¢']. = [¢"].-
Since W.Lo.g. we assume a total transition relation, min,(p') cannot be non-
empty (easy proof). Hence [¢']; € {[¢]=. | I € M NU A ¢q € min®(p))}.
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Conversely, take [¢']; € {[g]=. | Iplp € M NU A g € min%(p))} and the
associated p. Take p' € M N E. Since p = p' and (p',p) € E x U we have
by Corollary C.8.1 that for ¢ € maz,(p') it is the case that ¢' = ¢”. That is

[¢']z = [¢""]z, therefore [¢']; € {[¢]=, | (P € M NE A q € mazZ(p))}.
Finally, we show these sets are singletons. Since the two sets are equivalent,
it is sufficient to show {[g]=, | Ip(p € M NE A ¢q € maz®(p))} is a singleton.
Take any [g],, [¢']: € {[g]=, | 3p(p € MNE A g € maz(p))}. We show ¢ =, ¢,
hence [g]; = [¢']z- We have that there exists p. € M N E with ¢ € maz,(pe).
Since it is also the case that [¢s, [¢']. € {[¢]=. | Ip(p € MU A q € ming(p))},
there exists p, € M NU and mip € mma(pu) with ¢’ =, ¢,,,;,- Observe that
it is also the case that p, =, pu since both states are in M. Hence, since
(pe,p,,) € E x U and q€ maxa(pe) and g . € min,(p,), it follows by Corol-
lary C.8.1 that ¢ =, qu = ¢'. Hence [g], = [¢']+, as required. m|

Remark C.10.2 For a mized class M € Q] =, for every q € Q, [qlaiNF # 0
iff [qlai € F.

Proof. From Remark C.9.1. O

Theorem C.10.1 Let A be an alternating Biichi automaton and B™ any di-
minimax quotient of A.

1. For all p,q € S such that p <a q, A(q) di-simulates B™([p]=,,) and
B™([q]=,,) di-simulates A(p).

2. A and B™ di-simulate each other. That is, A =4; B™.
3. A =di B™ and ﬁ(A) = [,(Bm)

Proof. Because all mixed classes are deterministic, it is enough to consider B™
where mixed classes are declared existential. Furthermore, since the second and
third properties follow from the first, we only prove property one.

To show A(qo) di-simulates B™([polai) we define a winning strategy o of
Duplicator for G%([po)ai,q)- By Lemma C.9.2, for all (q,q') with ¢ <4 ¢,
there exists a <g4;-respecting minimax strategy og,, for Duplicator.

Let T be the prefix of a G%([po]ai, qo)-play whose last position ¢ is in Py (a
Duplicator move) and whose last (Qq4; X @Q)-position ([plai,q) satisfies p <4; q.
There are three cases:

1. The suffix of the partial protoplay T is of the form,
([plai> 9)([Plai g, @, 5,0,d, 1) ([p'ai» ¢, a, d, 1)

that is, p,q € E.

There are p € [plq; and p’' € [p']a; such that (p,a,p’) € A. We define
o(T) = ([p'lai, ') where,

ql = p’!‘z(a'ﬁ,q((ﬁ, Q)(ﬁa q,a,s, 07 d7 1)(13’5 q,a, da 1)))
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Since 0,4 is minimax, and ¢ € E, we have ¢' € maz,(q). Furthermore,
since p' =4; p' and since o 4 is <g-respecting, we have p' =4 p' <4 ¢'.

2. The suffix of the partial protoplay T is of the form,

([P]di; Q)([P]du q;a, d7 0, da 1)
that is, (p,q) € U x E.
We define U(T) = ([pl]di7q7a7d7 1) and U(U(T)) = ([pl]diaql) Where7

pl = pr (U;D,q((pa Q)(pa q,a,d,0,d, 1)))
ql =pr2 (Up,q (Up,q((pa Q) (P: q,a, d7 07 d7 1)))

Since 0,4 is minimax, and p € U, we have ¢' € ming(q). Furthermore,
since 0, 4 is <g;-respecting, we have p’ <4; ¢'.

3. The suffix of the partial protoplay T is of the form,

([p]diaq)([p]diaqaaasa lada 0)([p]diaqlaaa da 0)
that is, (p,q) € U x U. We define o(T') = ([p'],¢’) where,

pl =Dpri (Up,q((pa q) (pa q,a,s, ]-; da 0) (pa qla a, da 0)))
By choice of 0,4, we have p' € ming(p) and p' <4 ¢'.

Since ¢ has the property that for any o-conform play, every position ([p;]a:, ¢;) €
Qa; X Q contains p; <4; ;- Consequently, it cannot be the case that ([p;]a:, ) €
(Qai\ Fai) X F, since, by Remark C.10.2, this would imply (pi,¢;) € (Q\F)x F,
contradicting p; <4; ¢;- Hence, o is winning for Duplicator in G%([po]ai, qo)-
The converse direction is symmetrical. m|

Since the above proof does not use the the set of transitions is minimal,
we may allow more transitions. However, we may only allow extra transitions
if mixed classes are declared existential, and, from a universal state, no non-
minimal transitions are considered for mised classes.

Corollary C.10.1 Let A = (Q,0,q1,A,E,U,F) be an LWAA. Let By =
(Q/ =as, %, [ar]ai, A, E'"\U', F| =4) be a direct quotient of A, such that,

1. Am C A,
2. If [qlai N E # 0, then[qla; € E',

3. For every q, € [qlgi N U with [qle; N E # 0, we have the property that, if
([gu])ais a,[q']ai) € A’, then there are § € [qu]ai N E, §' € [q']a; such that
(4,a,4") € A

Then A =di Bdi-
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C.11 Delayed Simulation and Minimax Quoti-
enting

Minimax quotienting does not work for delayed simulation. Consider the fol-
lowing LWAA A:

For z € {de, f}, we have 0 >, 1 but not 0 =, 1. That is, maz,(0) = {0}.
Consequently, there is no transition from [0]4e to [1]4e in any minimax quotient
of A. That is, the language of any minimax quotient of A is empty.

C.12 Delayed Simulation and Semi-elective Quo-
tienting
A semi-elective quotient is defined as follows:

Definition C.12.1 Given LWAA A, we define the semi-elective quotient A3 of
A as the quotient whose transition relation is given by,

Az ={(Plz>a;[q]2) | (p,a,9) € A,p € E}
u {([p]z,a, [q]r) | a€l, [p] ClU,qe mina(p)}

Corollary C.12.1 For every LWAA A, A =4; Aj;.

Proof. Follows immediately from Corollary C.10.1. a

C.12.1 A Simulates A},

We require several lemmas before we can prove A simulates A}, .

Definition C.12.2 Given a simulation game G(Ko,po) where Kq is a state of
the quotient automaton A3,

KoCgepo <= Tko € Ko.ko <ge Do

Corollary C.12.2 For all Ko € Q/ =q4e and for all pg € Q such that Ko Cge
Do, there is a minimax strategy o of Duplicator for G(Kq,po) such that, for all
Spoiler strategies T for G(Ko,po), the (1,0)-conform protoplay ((Ki,pi)icw,w)
satisfies K; Cge p; for all i < w.
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Proof. Let Ko € Q4e,p0 € @ and T; be a prefix of a G(Ko, po)-play such that
the last position of T; is a P; position. There are three cases:

1. (Ki;pz')(Kz';pi; a,s,0,d, 1)(K¢+1,pi, a,d, 1) is a suffix of T'. That is, K; €
E4.. Since all transitions from an existential quotient state have a corre-
sponding transtion from an existential state in ) (by Remark C.10.1), we
can take k; € K; N E and k,’+1 S A(k,,a) n Ki+1.

By Lemma C.4.1 we know P’ = {p' € A(pi,a) | ki+1 <de P'} is non-empty.
We choose Piy1 € P' N'maz?(p;). Define o(T) = (Kit1,pi+1). Hence
ki+1 S Kz'+1 and k,’.,.l <de Di+1, therefore Kz'+1 Cde Pi+1, as required.

2. (Ki,pi,a,d,0,d,1) is a suffix of T or (since Duplicator makes the next
two moves) (K;,p;,a,d,0,d,1)(K;y1,pi,a,d,1) is a suffix of T'. That is,
(Ki,pi) € Uge x E.

We take k; € K; (and k; € U). By Lemma C.4.1, there are k; 11 € A(k;,a)
and Pi+1 € A(pi, a) such that k‘i+1 <de PDi+1- We choose ki—i—l S minge (k,),
hence Ky = [ki—i-l]de S A;e. Thus, Kit1 Cpip1- We define,

U(T) = (Ki+17pi7a7d7 1)
o(T") = (Kit1,piv1)

3. (K;,pi,a,8,1,d,0)(K;, pit1,a,d,0) is a suffix of T'. Hence (K, p;) € Uge X
U.
We take k; € K; such that k; <4, p;- By Lemma C.4.1 there is k;41 €
A(k;,a) such that k11 <ge piy1. We take the minimal such k;y; (hence
ki+1 (S minge(ki)) and define K,‘+1 = [ki—i-l]de (S A(K“a) Since ki+1 <de
Pit1 it follows that K; i1 C p;y1. We define,

o(T) = (Ki+1,pi+1)
Hence o is a Cge-respecting minimax strategy. O

We now show that Cgj.-respecting minimax strategies can be composed.

Corollary C.12.3 Let Ko € Q/ =4e,Po € Q such that Ko Cge po, and go € Q

such that py <g4e qo- Let o be a Cg.-respecting minimaz strategy for Duplicator

on G(Ko,po) and let 0% be a Duplicator winning strategy for G (po, qo).
Then o < 0% is a Cg.-respecting strategy.

Proof. The proof is by induction.

In the base case, let 7 be a Spoiler strategy for G*(Ko,qo), and let T =
((tj)j<w,w) be the (1,0 > 0%)-conform protoplay. We have k € Ky such that
k <ge Po <dge go and, by Lemma, C.4.2, k <4, qo, therefore Ky Cg4e qo-

Now, let i € w and T; = ((¢;);<i,w[0..i — 1]) be the prefix of T of length
i+ 1. Let t; = (Kj;,¢;) and let (p;)j<; be the intermediate p-sequence of T;.
Assume K; Cge pi <ge ¢i- We show that K;11 Cge pir1 <de gi+1 holds for the
next (Q/ =qe XQ)-position t;41 = (K;t1,¢+1) of T and the next state of the
intermediate p-sequence. There are four cases:
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- Assume (K;,q;) € U% x U. Let t9 := 7(&(Ty)) = (Ki,gisa,8,1,d,0)

and t} = 7(ET)Y) = (Ki,git1,a,d,0). Let o Ude(g(Ti)t?t}) =
(Kit1,qi+1), and p;y1 be the next state of the intermediate p-sequence.
If p; € E, the definition of o x 0% implies K;11 Cge pit1, since E(T") is
o-conform (both K;11 and p; 11 are chosen according to o). Also, pit+1 <de
gi+1 by Lemma C.4.1, since p; <4e ¢; and (p;,¢;) € ExU. Hence K; 11 Cge
Pit1 <de ¢i+1-
If p; € U, the definition of o > 0% also implies K;1; Cge git1, since
E(T") is o%-conform (p;y1 is chosen according to o, hence piy1 <ge
giy1)- Because (T} 4+1) is o-conform (that is, K, is chosen according to
o), we have K; 11 Cae pit1 <de Qit1-

e The remaining three cases are simlarly analogous to Lemma C.4.3

Since Kz'+1 Cae Piv1 Zde Qit1 W€ have k‘i+1 € K,'_|_1 such that k,’+1 <z Pit+1,
and therefore k; 1 <4 gi+1 by application of Lemma C.4.2 and K; 1 Cge qiy1-
Hence o 1 0% is Cy.-respecting. O

Lemma C.12.1 Let Ko, po, qo,0, 0% be chosen like Corollary C.12.3.

For every Spoiler strategy T in G%(Ko,q0), po ¢ F implies that the (1,0 >
0%€)-conform play contains a position (Kj,q;) € Qae x F. That is, 0 =<1 0% is a
winning strategy for Duplicator in G(Ky, qo) with winning set {u € P¥ | Ji(u; €
Qde X F}

Proof. For a Spoiler strategy 7in G%¢(Ky,qo),let po ¢ F,and T = ((t;)i < w,w)
be the (7,0 < 0%)-protoplay.

For contradiction, assume there is no i € w with ¢; = (K;,q;) € Qge x F.
Take T" = ((pi, ¢i)i<w,w) for (p;)icw, the intermediate p-sequence of T'. Since
T is (0 > 0%¢)-conform, T" is 0%¢ conform. However, since there is no ¢; ¢ F,
T" is not a win for Duplicator . This contradicts the fact that 0% is a winning
strategy for Duplicator. Hence, there is a position t; € Qge x F. m|

Finally,

Theorem C.12.1 Let A be an LWAA, and p,q be states such that p <ge q.
A(q) de-simulates A3, ([plge). That is, there is a winning Duplicator strategy in

G ([plac; q)-
Proof. We fix,

1. For every K € (g, a representative r(K) such that, if K N F # (), then
r(K) ¢ F.

2. For every (K,p) € Qge X @ such that K Cg4 p, a Cge-respecting mini-
max strategy 0%, of Duplicator for G(K,p). (Such a strategy exists by
Corollary C.12.3.)
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3. For every (p,q) € @ x @ such that p <4, ¢, a winning Duplicator strategy
ode for G%(p,q).

Given a prefix T}, of a G%([p]4e, q)-play T, let (ti)i<n be the subsequence of
(Qge X Q)-positions in T,,. Take,

j=min{i <n| (Ki,q) € Fge x FAVi'(i <i' <n— qy € F)}

or j = 0 if this set is empty. Let T{; ; be the suffix of T; starting with ¢;. Define,

o(Ti) = U%j,r(Kj) > UTd(eKj),Qj (Ti.11)

0 is Cge-respecting by Corollary C.12.3. Therefore, if t; = (K, g;) is the first
(F4e x F)-position after the last (Qge X F')-position (or the first at all), we have
K; Cge ;- We then update o to o ) b3 af(eKj),qj, where r(K) € K; N F,
and only the suffix starting with (K, g;) of the play is taken into account when
determining the Duplicator moves. _

This strategy o forces play to reach a position (Kj,q;) € Qq4e X F' (and
Kj Cge g;) by Lemma C.12.1. Thus, every Fg. X F position is followed by a
Q4e X F in a o-conform protoplay. That is, o is a winning Duplicator strategy

in G%([plae, q)- m|

C.12.2 A}, Simulates A

Corollary C.12.4 Let q(l] € [golde- There is a Duplicator strategy o= for
G%(qy, [go]ae) such that, for every Q x Q4e-position (g;,[gilae) of a o=-conform

play, ¢; € [gilae-
Such a strategy is =q.-respecting.

Proof. Follows immediately from the construction of A%, and Corollary C.8.1.
O

Theorem C.12.2 Let A be a Biichi automaton with states pg,qo such that
Po <de qo- The automaton Aj,([go]ae) de-simulates A(po). That is, there is
a winning strategy for Duplicator in G%(po, [qo)de)-

Proof. For 0%, a winning Duplicator strategy for G%(py, q), and 0=, a =ge-

respecting Duplicator strategy for G%(qo, [qo]de), we show 0% 1 0= is a winning
strategy in G%(pq, [go]) for Duplicator.

Given a Spoiler strategy T for G%(po, [qo]de), let T = (ti)i<w be a (7, 0% pq
o=)-conform protoplay with intermediate g-sequence (g;)i<w-

For T' = ((p;, q;))i<w, We know E(T") is de-conform. Therefore, for every
i < w with p; ¢ F we have j > 4 such that q; ¢ F. Similarly, for T" =
((g;,[@i)de))i<w we know that E(T") is o=-conform. Consequently q;- € [gjlde-
That is, [gj]ae ¢ Fae- 09° 0= is a winning Duplicator strategy. m|
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Theorem C.12.3 For every LWAA A with a co-Biichi acceptance condition,
the automata A and A3, de-simulate each other. In particular, L(A) = L(AZ,).

Proof. Follows from Theorem C.12.1 and Theorem C.12.2. O
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