
Approximating Aggregations in
Probabilistic Databases

Lo Po Tsui

Kellogg College

University of Oxford

Supervisor: Dr. Dan Olteanu

SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

September 2013



“Based on the law of probability, everything is possible because the sheer existence of pos-
sibility confirms the existence of impossibility.”

Dejan Stojanovic



Abstract

Aggregate queries in probabilistic databases can return probability distributions
with exponentially many possible values, which is not only computationally ex-
pensive, but also overwhelming for the user. This dissertation proposes two
approximation techniques for aggregate queries in probabilistic databases: his-
togram approximation and top-k approximation. While histogram approxima-
tion provides a broad overview of the distribution by grouping adjacent values
into bins, top-k approximation retrieves the most probable k tuples, which are of-
ten the ones most relevant to the user. Efficient algorithms with low complexity
have been developed for handling MIN, MAX, COUNT, and SUM aggregations
for both approximation approaches. When measured against state-of-the-art
algorithms designed to perform exact query evaluation, both approximation ap-
proaches demonstrate a clear advantage in scalability and allow for a perfor-
mance speedup of multiple orders of magnitude.



Acknowledgements

I would like to express my sincere gratitude to Dr. Dan Olteanu for his support,
guidance and advice throughout the last five months. Dr. Dan Olteanu not only
introduced me to the field of probabilistic databases, but also spent countless
hours contributing ideas to the dissertation. Most importantly, the encourage-
ment during the hard time when things were all breaking apart are motivating
and have kept me moving forward. It was indeed a great pleasure to collaborate
with him.

Additionally, I am thankful to Jakub Zavodny for his input into the dissertation,
especially on probability bounds and concentration inequalities.

I am also grateful for the guidance and advice provided by Professor Daniel
Kroening in the Michaelmas and Hilary term, which was especially important
to me as the masters course is my first proper exposure to Computer Science.

It’s a real pleasure to have met my friends and everyone in the department
in the previous year, they have made my last year at Oxford a fulfilling and
enjoyable experience. I am in particular appreciative to the lecturers and class
tutors, the time they dedicated in instilling knowledge into me not only forms
the cornerstone of the dissertation, but also makes me a more humble person.

Last but not least, my special thanks go to my family for their love and support
since the day I was born.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Probabilistic Databases and Possible Worlds Semantics . . . . . . . . . . . . 10
2.2 Probabilistic Data Representation and PC-Tables . . . . . . . . . . . . . . . 11
2.3 Monoids, Semirings, and Semimodules . . . . . . . . . . . . . . . . . . . . . 15
2.4 Aggregations and PVC-Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Decomposition Trees and Convolutions . . . . . . . . . . . . . . . . . . . . . 19

3 Two Approximation Flavours: Histograms and Top-k 24
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Value-based Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Histogram Approximation . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Top-k Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Probability-based Approximations . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Working with Probability Bounds . . . . . . . . . . . . . . . . . . . 29

3.4 Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Tree Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Histogram Approximation 33
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 MIN/MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.5 SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



5 Top-k Approximation 55
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 MIN/MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.4 COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.5 SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Implementation 81
6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Code Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Handling Null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.3 Random Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.4 Node Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Experiments 87
7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.3 Algorithms Benchmarked . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.4 Semimodule Expressions for the Experiments . . . . . . . . . . . . . 89

7.2 Summary of Experimental Findings . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Histogram Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.2 Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.3 Performance of Histogram Zooming . . . . . . . . . . . . . . . . . . 94
7.3.4 Accuracy of Histograms with Approximate Probability . . . . . . . . 97

7.4 Top-k Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4.2 Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.3 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusion 107
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 109

A Computation of Mean, Variance, and Third Moment For D-Trees 114
A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3 UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 MIN/MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ii



A.5 COUNT/SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Source Code 119

iii



List of Figures

1.1 An example of probabilistic database. (Gross in the unit of millions) . . . . 1
1.2 Possible worlds of the probabilistic database in Figure 1.1 . . . . . . . . . . 2
1.3 Incomplete representation of probabilistic data in a traditional database . . 2
1.4 Performance of Histogram Approximation and Top-k Approximation. (Base

on the average performance for aggregating 10,000 tuples) . . . . . . . . . . 6

2.1 Recursive Algorithm !·" for rewriting a positive relational algebra query with-
out aggregates Q. We assume R.*, S.* do not select column Φ. . . . . . . . 13

2.2 Recursive algorithm !·" for rewriting a positive relational algebra query with
aggregates Q to account for computation of semiring (K) and semimodule
expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 PC-Table for the Oscars winners. (viewers in the unit of millions) . . . . . . 17

3.1 Comparison of exact evaluation and histogram approximation . . . . . . . . 26
3.2 Comparison of exact evaluation and top-k approximation . . . . . . . . . . 28
3.3 Example of a histogram with approximate probabilities . . . . . . . . . . . 29
3.4 An example of tree flattening, where the two d-trees are equivalent. . . . . . 31
3.5 Tree flattening on UNION nodes . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Recursion tree for the Recursive FFT Algorithm to evaluate X1+X2+ . . .+X8 47
4.2 Performance of Standard DP and FFT for convolution of two random variables 48

5.1 Percentage of the grid to be filled to compute the probability of the most
probable value as µ varies (N = 1000) . . . . . . . . . . . . . . . . . . . . . 77

7.1 Decomposition tree for a type I semimodule expression . . . . . . . . . . . . 89
7.2 Decomposition tree for a type II semimodule expression . . . . . . . . . . . 90
7.3 Performance for the proposed algorithms compared to exact evaluation using

Standard DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Scalability of Histogram Approximation . . . . . . . . . . . . . . . . . . . . 93
7.5 Effect of Dependency on Histogram Approximation . . . . . . . . . . . . . . 95
7.6 Histogram used in the experiment to benchmark the Early Binning Algo-

rithm. The histogram has a non-zero probability in the entire range 1 to
96963. However, the probability in the tails are too low to be observable. . 96

7.7 Benchmark Score for using the Early Binning Algorithm to zoom into differ-
ent regions of the histogram in Figure 7.6 . . . . . . . . . . . . . . . . . . . 96

7.8 Accuracy of NA for COUNT and SUM aggregations . . . . . . . . . . . . . 99
7.9 Examples of Histogram with Approximate Probabilities evaluated using NA

for COUNT and SUM aggregations (#Bins = 25) . . . . . . . . . . . . . . . 100

iv



7.10 Scalability of Top-k Approximation . . . . . . . . . . . . . . . . . . . . . . . 101
7.11 Effect of Dependency on Top-k Approximation . . . . . . . . . . . . . . . . 103
7.12 D-Tree used for investigating the effect of skewness in top-k approximation

for MAX aggregations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.13 Effect of skewed variables on Top-k Approximation for MAX aggregations . 105
7.14 Effect of skewed variables on Top-k Approximation for COUNT aggregations 106

v



Chapter 1

Introduction

1.1 Background

Probabilistic Databases

As mankind enters the age of Big Data, a rich profusion of data has suddenly become
available for collection and use. Data uncertainty, however, is ubiquitous in real-world
applications. Examples include imprecision in sensor measurements, incompleteness in user-
generated forms, ambiguity in natural language processing, probabilistic data generated
by information extraction techniques [18], and of course the uncertainty inherent in risk
analysis. Indeed, uncertain data is a first class citizen in databases, and the ability to handle
probabilistic data will therefore represent a significant step forward in the development of
the next generation of database management systems (DBMSs). Probabilistic databases
are promising candidates to extend the capabilities of traditional databases by storing,
retrieving, and processing probabilistic data in the same way as deterministic data.

For example, consider a web data extraction tool that gathers movie information from the
internet: different sources might provide contradictory information, in which case the tool
could assign a confidence level to the information gathered based on the credentials of the
source. Figure 1.1 provides an example of probabilistic regarding movie gross: Avatar, for
instance, might have a total gross of $400M, $700M or $900M with probabilities of 0.1,
0.5, and 0.4, respectively. (We assume here that the tuples for the same title are mutually
exclusive, and that tuples with different titles are independent.)

Movie

MID Title Gross Probability

1 Avatar 400 0.1
1 Avatar 700 0.5
1 Avatar 900 0.4
2 Titanic 600 0.8
2 Titanic 800 0.2

Figure 1.1: An example of probabilistic database. (Gross in the unit of millions)

1



Probabilistic databases can be understood intuitively via possible worlds semantics: that is,
a probabilistic database can be interpreted as a probability distribution over a finite set of
possible worlds, where each world corresponds to a possible deterministic database instance.
For example, the database in Figure 1.1 corresponds to a total of six possible worlds, as
depicted in Figure 1.2. Note that the sum of the probability of all possible worlds must
equal to one, as one of the six possible worlds must correspond to the true state of the
probabilistic database.

W1

MID Title Gross

1 Avatar 400
2 Titanic 600

Probability = 0.1× 0.8 = 0.08

W2

MID Title Gross

1 Avatar 400
2 Titanic 800

Probability = 0.1× 0.2 = 0.02

W3

MID Title Gross

1 Avatar 700
2 Titanic 600

Probability = 0.5× 0.8 = 0.4

W4

MID Title Gross

1 Avatar 700
2 Titanic 800

Probability = 0.5× 0.2 = 0.1

W5

MID Title Gross

1 Avatar 900
2 Titanic 600

Probability = 0.4× 0.8 = 0.32

W6

MID Title Gross

1 Avatar 900
2 Titanic 800

Probability = 0.4× 0.2 = 0.08

Figure 1.2: Possible worlds of the probabilistic database in Figure 1.1

In contrast, in a traditional database, only one of the contradictory tuples could be stored
(with the most reasonable choice being the entry with the highest probability), resulting
in the deterministic database in Figure 1.3. Such incomplete representation leads not only
to a loss of information, however, but also to inaccurate query results, as demonstrated in
Example 1. The same is observed in real-world scenarios. For example, Gupta and Sarawagi
[25] demonstrate how the inclusion of alternative extractions can significantly improve the
overall recall of information extraction systems.

Movie

MID Title Gross

1 Avatar 700
2 Titanic 600

Figure 1.3: Incomplete representation of probabilistic data in a traditional database

2



Aggregations

In traditional databases, aggregations are useful in summarising multiple tuples – sometimes
millions of them – into one single value. Common examples are MIN, MAX, COUNT, and
SUM aggregations. Possible worlds semantics suggests that aggregations in probabilistic
databases, on the other hand, can be understood as aggregations in each of the separate
possible worlds, resulting in a probability distribution over the range of all possible val-
ues.

Example 1. To find the total gross across all movies, one can use a SUM aggregate query:

SELECT SUM(Gross) AS Result FROM Movie

Applying the query to the traditional database in Figure 1.3 returns a single value

700 + 600 = 1300

On the other hand, applying the query to the probabilistic database in Figure 1.1 returns
multiple possible values, each of which corresponds to the result from one or more possible
worlds. The probability distribution is given by:

World Result Probability

W1 1000 0.08
W2 1200 0.02
W3 1300 0.4

W4 & W5 1500 0.1+0.32=0.42
W6 1700 0.08

The probabilistic result indicates that the most likely total gross is 1500, though it is shown
as almost equally likely to be 1300. The traditional database, in contrast, completely misses
the most probable answer of 1500, which demonstrates how the retention of as many worlds
as possible ultimately improves the accuracy of query result.

Challenges

The challenges in probabilistic databases can be divided into three categories: semantics
and representation, query evaluation, and user interfaces [10].

Semantics and Representation While possible worlds semantics provides a well-defined
meaning to probabilistic databases, it is impractical to store each of the possible
worlds separately, as the number of possible worlds is exponential to the number of
tuples in the database; more succinct representation is therefore needed for proba-
bilistic data. Simple representation systems include tuple-independent probabilistic
databases, in which all tuples are assumed to be independent probabilistic events, and
block-independent-disjoint databases (BID databases), in which mutual exclusiveness
between tuples can be represented in addition to independence [44]. Another valuable
tool is the probabilistic conditioned table (pc-table), which allows for the modelling
of arbitrary correlations using proposition formulae over random variables to encode

3



the correlations between individual tuples; such tables subsumes the simpler represen-
tations [23]. More recently, pc-tables have been extended into so-called probabilistic
value-conditioned tables (pvc-tables), which were proposed as a means of succinctly
representing the results of aggregate queries [19]. Further discussion on pc-tables and
pvc-tables can be found in Chapter 2.

Query Evaluation Along with the ongoing work to define the query languages for proba-
bilistic databases, efficient query evaluation is one of the most active areas of research
in the field of probabilistic databases. Because probabilistic databases store multiple
possibilities for individual tuple, they are often orders of magnitude larger their de-
terministic counterparts, making the efficiency of query evaluation one of the largest
obstacles in managing probabilistic data. Additionally, while some queries Q have
been proved to have polynomial data complexity, others can be #P-hard [44]. It
has therefore recently become popular to tackle query evaluation for probabilistic
databases through approximation techniques, such as the computation of probability
bounds [38] or the use of Monte Carlo approximations [12].

User Interface Queries over probabilistic databases can return probability distributions
with exponentially many possible answers. It is therefore often unnecessary, and
sometimes even undesirable, to present the full distribution to users. Research on user
interfaces has focused on methods to summarise and visualise the possible answers.

1.2 Motivation and Objectives

Motivation

The ubiquity of uncertain data has made probabilistic databases relevant in a wide range
of real-world scenarios: information extraction [18], sensor data management [32], data
cleaning [1], entity resolution [26], scientific data management [13], business intelligence and
financial risk assessment [2], and even crime fighting [3]. While some of these applications
will benefit from the inclusion of support for aggregations, which will allow users to analyse
data from a whole new perspective, the support for aggregations is crucial in other situations
such as decision support systems, as reflected in the TPC-H queries that involve aggregations
in all 22 of them.

As shown in Example 1, an aggregate query over a probabilistic database returns a proba-
bility distribution instead of a single value. The size of the distribution is proportional to
the number of tuples being aggregated for MIN, MAX, and COUNT aggregations, and it
can be exponential for SUM aggregations. The fact that aggregations are often run on thou-
sands, if not millions, of tuples, however, necessarily implies problems with both evaluation
efficiency and user interface.

Evaluation Efficiency The fact that aggregations are often run on numerous tuples sug-
gests that the speed of computation can have a far-reaching impact on the practicality
of aggregations in probabilistic databases. It is therefore important for computations
to be efficient and have low complexity to allow for better scalability.

User Interface Because only one of the possible values in a distribution corresponds to
the ground truth, the sum of the probabilities for all possible values must add up to

4



exactly one. This fact implies that there will be many possible values with very low
probabilities. It is unlikely that the user would be interested in all of these individual
values; thus, instead of bombarding the user with a plethora of low-quality answers,
employing data summarisation can optimise the utility of query results.

Because of the above problems, earlier work on supporting aggregate queries in probabilistic
databases has focused on the computation of the expected value instead of the full probability
distribution. Expected value computations, however, can sometimes lead to an unintuitive
understanding of query results, especially when the data is skewed. Furthermore, there are
some situations when the computation of the expected value is insufficient: for example,
an investor evaluating the potential profit of an investment will be concerned about the
expected return as much as the tail probabilities, which are directly related to the risk of
the investment. It was not until recently that Fink et al. [19] proposed a framework for
exact evaluation (i.e. the computation of full probability distribution) on positive relational
algebra queries with aggregate.

Objective

This dissertation aims to tackle the problem of evaluation efficiency and data summarisa-
tion of aggregate query evaluation over probabilistic databases by proposing two different
types of approximations: histogram approximation and top-k approximation. Histogram
approximation captures the overall impression of a probability distribution by grouping
adjacent values into bins, thereby reducing the number of distinct answers and increasing
the probability mass in each. Top-k approximation, on the other hand, retrieves only the
most probable tuples, essentially filtering out low-quality answers and focusing only on the
highest-quality results. In both cases, efficient algorithms exploiting the structure of the
problem will be proposed to enhance the performance of aggregate query evaluation.

1.3 Contributions

Here we investigate the problem of approximating the results of aggregate queries in prob-
abilistic databases. Approximation is essential for such queries: in addition to the hardness
of probability computation already present for queries without aggregation [44], aggregate
queries pose new challenges since their answer size can be exponential to the input database
size (that is, each possible world of the input probabilistic database can lead to a different
aggregate answer). We therefore consider here two effective complementary approaches to
approximate the query results and thus keep their size within reasonable limits: histograms
approximation and top-k approximation. Both approaches are natural and are used in stan-
dard relational databases and beyond to limit result size and computation time. Assuming
a large probability distribution representing all query results, these techniques allow us to
compute only a histogram representation of the distribution, or only the most probable
values within the distribution. Arguably, these approaches present more intuitive results
to users than very large, raw probability distributions. In both cases, the performance
savings can be several orders of magnitude when compared to exact evaluation using the
state-of-the-art algorithms, as demonstrated in the performance overview in Figure 1.4.
The approximation approaches also demonstrate better scalability as all the algorithms in
Figure 1.4 have a lower complexity than the state-of-the-art algorithms.

5



Exact Evaluation (State-of-the-art)
Histogram Approximation
Top-k Approximation

Extended Heap Method

Bin Convolution Algorithm

(Algorithm 21 on page 52)

(Algorithm 17 on page 44)

15x

(Algorithm 3 on page 22)

240xNormal Approximation Algorithm

(Algorithm 15 on page 40) 300x

630xNormal Approximation Algorithm

1x Standard DP

1x Standard DP
(Algorithm 3 on page 22)

1x Standard DP
(Algorithm 3 on page 22)

Recursive FFT Algorithm
(Algorithm 19 on page 49)

15x Recursive FFT Algorithm
(Algorithm 19 on page 49)

350x(Algorithm 30 on page 69)

SUM

COUNT

MIN/MAX

Performance of Histogram Approximation and Top-k Approximation against Exact Evaluation

Figure 1.4: Performance of Histogram Approximation and Top-k Approximation. (Base on
the average performance for aggregating 10,000 tuples)

In particular, our specific technical contributions are as follows:

• We leverage an existing knowledge compilation approach designed for exact evalu-
ation on aggregate queries [19] and propose a framework for performing histogram
approximation and top-k approximation on aggregate queries. Our approach to ap-
proximating complex aggregate queries essentially relies on evaluating a decomposition
tree, which is a tree where the inner nodes are convolutions or Shannon expansions
with respect to different aggregation monoids and the leaves are independent random
variables with given finite probability distributions, under the two approximation set-
tings.

• The proposed framework supports the computation of equi-width histograms, for
which the user can specify either the number of bins or the width of the bins, as
well as histograms with arbitrary bin intervals. Furthermore, the framework supports
histogram zooming, in which the user can refine the resolution of any individual part
of the histogram efficiently.

• The proposed framework supports ongoing retrieval of the next most probable tuple
sequentially (i.e. the user does not have to decide k upfront).

6



• We devise a class of efficient algorithms for tackling the fundamental problem of
MIN, MAX, COUNT, and SUM convolution of probability distributions under the
two approximation settings. Convolution of probability distributions is fundamental
in probability theory and appears in a diverse range of areas, such as physics [45],
chemistry [45], biology [22], engineering [40], operational research [40], and finance
[8]; the proposed algorithms are therefore applicable beyond the field of probabilistic
databases.

• We devise a low complexity algorithm to handle Shannon expansion under the his-
togram approximation setting and observe that efficient computation of Shannon
expansion for top-k approximation can be achieved by a slight modification of the
instance-optimal Threshold Algorithm (TA) [16].

• By combining value-based approximations with probability-based approximations,
we introduce the computation of histograms with approximate probabilities. The
probability-based approximation is used for COUNT and SUM aggregations to get
around their intrinsic NP-hard complexity for probability computation.

• A heap-based algorithm is proposed for exact evaluation on MIN and MAX aggrega-
tions. The algorithm is significantly faster and has lower complexity than the state-
of-the-art algorithms.

• A Fast Fourier Transform (FFT)-based algorithm is proposed for exact evaluation
on COUNT and SUM aggregations. The algorithm has lower complexity than the
state-of-the-art algorithms.

• We develop the framework and implement the proposed algorithms. The algorithms
are benchmarked thoroughly against the state-of-the-art algorithms for exact evalua-
tion, and the behaviour of the algorithms under different situations is investigated. We
also compare the different viable algorithms for the same aggregation and determine
the preferred algorithm.

1.4 Related Work

While research into probabilistic databases dates back as far as the early 1980s [5, 21, 34],
it has attracted an outbreak of interest in recent years, resulting in the development of
well-known prototypes such as Trio [48], MystiQ [12] and MayBMS [28]. A recent book by
Suciu, Olteanu, Ré, and Koch [44] provided a thorough treatment of cutting-edge research
on probabilistic databases.

Among the plethora of researches into query evaluation for probabilistic databases [11,
12, 17, 17, 38], relatively few attempts have been made to support aggregations. Among
those that did, it has been popular to tackle the problem in approximate settings due
to its computational hardness. For example, Jampani et al. [29] proposed a Monte Carlo
method: first the database is sampled, and then the query can be evaluated over the samples.
This approach is very general and supports complicated queries; the result of such queries,
however, is necessarily approximate and comes without strict error guarantees. Yang et al.
[49] improved Monte Carlo sampling by considering aggregate constraints – that is, while
individual records might be uncertain, there can still be global statistical constraints on

7



the database instances. For example, while the gross of a movie contributed from each
individual theatre is inherently uncertain, it might be known that the worldwide gross of
the movie is between $200M and $300M, which serves to constrain the sampling.

It has also been popular to compute the expected value and other statistical measures of
aggregate query results instead of the full probability distribution. Kennedy and Koch
[31] proposed a Monte Carlo-based algorithm to estimate the expected values as well as
other statistical measures for aggregations. Their approach includes the use of symbolic
representations of probabilistic data computed alongside the query evaluation to defer Monte
Carlo sampling, which allows goal-oriented sampling to increase the efficiency of the system.
Jayram et al. [30] tackled a similar problem by estimating the expected value of aggregate
queries, but with a focus on I/O efficiency by using data stream algorithms. Murthy et al.
[36] described how aggregate queries were handled in the Trio system [48], which involves
the computation of the exact expected value as well as the lowest and highest value of the
resulting distribution.

Notably, the use of histogram approximation has gone relatively unexplored in the field of
probabilistic databases. The only major work found in the literature is by Cormode and
Garofalakis [9]: the authors grouped adjacent values in the data source into buckets, and
optimal representative values for each bucket were then found using the proposed dynamic
programming-based algorithm by minimising the distance between the actual values and
the representative values. Query evaluation was then run over the reduced data represen-
tation, resulting in query results in approximate settings. Because errors in the data source
are necessarily propagated during the evaluation stage, however, the accuracy of such query
results is questionable at best. In contrast to their work, our evaluation technique acts on
the complete distributions in the data source while building histograms during the evalu-
ation stage. Thus, the resulting histograms are an exact representation of the probability
distribution that would result if one were to perform an exact evaluation.

Ré et al. [39] proposed a top-k approximation approach for aggregate queries on probabilistic
databases by running Monte Carlo simulations on each of the possible answers. In particular,
by tightening the probability bounds on possible answers with more simulations, some
answers can be excluded as soon as their upper bounds are lower than the lower bound of
at least k possible answers. While results with higher accuracy can be achieved by running
ever more simulations, they come at the cost of performance.

Finally, Soliman et al. [43] tackled a different top-k approximation problem by retrieving
the most probable set of the k highest-scoring tuples based on a predefined scoring function.
Their work stands in contrast to our work, in which we retrieve all possible tuples together
with the k most probable aggregated values for each tuple. For example, a grouped aggre-
gate (SQL query with the GROUP BY clause) will return one tuple for each group along
with a probability distribution over the possible values in the aggregated column for each
tuple. Their framework returns the most probable set of k tuples with the highest values in
the aggregated column by considering the corresponding set in all possible worlds; in con-
trast, our framework retrieves all tuples with the k most probable values in the aggregated
column for individual tuple.

8



1.5 Outline

• Chapter 2 introduces aggregate query evaluation in probabilistic databases using
pvc-tables and defines the mathematical notions used in this dissertation, including
monoids, semirings and semimodules.

• Chapter 3 introduces both approximation approaches and provides an overview of the
underlying framework.

• Chapter 4 presents the details of the framework for histogram approximation as well
as the class of algorithms for handling MIN, MAX, COUNT, and SUM aggregations
efficiently.

• Chapter 5 is the top-k approximation counterpart of the previous chapter on histogram
approximation.

• Chapter 6 discusses the details of our implementation.

• Chapter 7 benchmarks the proposed algorithms and discusses the experimental results.

• Chapter 8 concludes the dissertation and provides suggestions for future work.

9



Chapter 2

Preliminaries

2.1 Probabilistic Databases and Possible Worlds Semantics

A probabilistic database is one that can exist in any of several possible states such that
each state corresponds to a traditional database conforming to the same schema. Out of
the several possible states, only one of them matches the ground truth – in other words,
the individual states are mutually exclusive events. The likelihood that any given state
matches the ground truth is indicated by its associated probability, and the sum of all of
these state probabilities must be equal to one. For example, the probabilistic relationship
shown in Figure 1.1 can exist in any of the six possible states enumerated in Figure 1.2.
Each state is also known as a possible world, an interpretation of probabilistic databases
known as possible worlds semantics. Thus, a probabilistic database can also be viewed as a
probability distribution over a series of deterministic database, and a traditional database
as a special case of a probabilistic database: that case, of course, occurs when there is
exactly one possible world with a state probability of one.

There are essentially two kinds of uncertainty in probabilistic databases: tuple-level uncer-
tainty and attribute-level uncertainty. Tuple-level uncertainty occurs when it is uncertain
whether an individual tuple belongs to a particular relation. For example, in a relation
storing the winners of the Oscars since the establishment of the award in 1929, it might
be uncertain whether a particular movie has won an Oscar when different sources provide
contradictory information, in which case a probability could be attached to the tuple to
represent that likelihood. On the other hand, attribute-level uncertainty occurs when there
are multiple possible values for a particular attribute of a given tuple. The example we pre-
sented in Figure 1.1 is an attribute-level uncertain relation: the movie Avatar could have a
total gross of $400M, $700M or $900M, while the movie Titanic could have a gross of $600M
or $800M. At any rate, because possible values can be treated as mutually exclusive tuples,
any probabilistic database that can handle tuple-level uncertainty and represent mutual
exclusiveness can also handle attribute-level uncertainty.

While evaluating a query Q on a deterministic database instance D returns a deterministic
relation Q(D), possible worlds semantics suggests that evaluating the same query Q on
a probabilistic database instance D′ is equivalent to evaluating the query in each of the
possible worlds Wi, resulting in a probabilistic relation consisting of the possible world

10



Q(Wi) with the original world probability P (Wi). This is known as possible answer sets
semantics. Because it would be impractical, however, to present all possible worlds to the
user, possible answer sets semantics is often used for views rather than queries. Query
evaluation in probabilistic databases often employs possible answers semantics, where a set
of pairs (t, P (t)) is returned, with t being a possible tuple in one or more of the possible
worlds Q(Wi), and P (t) representing the marginal probability of the tuple t. Marginal
probability (also known as tuple confidence) indicates the total probability of the tuple by
considering all possible worlds. In other words, P (t) =

∑
t∈Q(Wi)

P (Wi). The query results
can then be presented in the form of a traditional relation, with an extra column indicating
marginal probability.

2.2 Probabilistic Data Representation and PC-Tables

Probabilistic data can be stored by representing each possible world as a separate database
instance, along with the associated probability for each. While this representation is com-
plete, meaning that arbitrary correlations between tuples can be captured, it is not efficient:
the number of possible worlds is exponential to the size of the database. For example, a
tuple-level uncertain relation with 10,000 tuples will have a total of 210000 possible worlds. It
is obviously impractical to store all of those worlds separately; thus, having a more efficient
method of representation is essential.

One succinct representation would simply store the possible tuples along with individual
marginal probabilities. Such a representation would not be complete, however, as there
would be no way to capture the correlations between tuples, effectively requiring that all
tuples be independent. That is where probabilistic conditioned tables (pc-tables) become
useful: they bridge the gap by providing a representation system that is complete and
succinct at the same time [23]. A pc-table is similar to a traditional relation, but it has an
extra column, Φ, storing the lineage of each tuple. Lineage is an annotation attached to the
tuple in the form of a propositional formula composed of random variables with specified
probability distributions. Each possible assignment of the random variables corresponds to
a possible world, with the world probability equal to the probability of the assignment. The
lineage can either evaluate to a Boolean, in which case the corresponding possible world
consists of only the tuples having a True annotation (known as set semantics), or to an
integer, in which case the annotation indicates the number of times the tuple exists in the
possible world, thus supporting duplicates (known as bag semantics).

Example 2. The table “Movie” presented in Figure 1.1 can be represented as a pc-table as
follows:

Movie

MID Title Gross Φ

1 Avatar 400 x = 1
1 Avatar 700 x = 2
1 Avatar 900 x = 3
2 Titanic 600 y = 1
2 Titanic 800 y = 2

Variable

Variable Value Φ

x 1 0.1
x 2 0.5
x 3 0.4
y 1 0.8
y 2 0.2

11



We first note that because the lineages of the tuples evaluate to Booleans, this corresponds
to set semantics. One possible assignment is {x← 1, y ← 1}, with probability

P (x = 1)× P (y = 1) = 0.1× 0.8 = 0.08

Keeping only tuples with a True annotation for the assignment leads to the following possible
world:

{x← 1, y ← 1}
MID Title Gross

1 Avatar 400
2 Titanic 600

Probability = 0.08

This corresponds to the possible world W1 in Figure 1.2, while the remaining five possible
assignments to x and y result in the other five possible worlds.

Another way of looking at the pc-table is to realise that the use of repeated random variables
in multiple tuples introduces a correlation between them; thus, the individual tuples for
Avatar are correlated because of the variable x. In particular, tuples are mutually exclusive
if the product of the annotations always evaluates to False, which is indeed the case for the
tuples listed for Avatar:

(x = 1) ∧ (x = 2) ∧ (x = 3) =⇒ False

On the other hand, because the tuples between Avatar and Titanic do not share the same
variables, they must be independent. This suggests that the table is attribute-level uncertain
for the movies Avatar and Titanic over the attribute Gross.

More complicated correlations between tuples can be represented by introducing more com-
plicated lineages. In fact, pc-tables have been proved to be complete [23]; thus, any kind
of correlation between the tuples can be represented by manipulating the lineages of the
tuples.

Example 3. Consider the same table “Movie” in Figure 1.1. More complicated correlations
in the table can be introduced by manipulating the lineages for the tuples:

Movie

MID Title Gross Φ

1 Avatar 400 x = 1
1 Avatar 700 x = 2
1 Avatar 900 x = 3
2 Titanic 600 (x = 1) ∨ (x = 2)
2 Titanic 800 x = 3

12



In this new table, there are positive correlations in addition to mutual exclusiveness. For
example, the probability of Avatar having a gross of $400M or $700M is positively correlated
to the probability of Titanic having a gross of $600M. One possible scenario to explain this
kind of correlation could be that the information for Titanic having a gross of $600M comes
from the same source as that for Avatar having a gross of $400M or $700M.

Query Evaluation

Because pc-tables are essentially traditional relations with an extra column for annotation,
it is common to find probabilistic databases built on top of traditional databases in order to
leverage the countless hours of research that has gone into traditional databases. Similarly,
query evaluation for pc-tables can be achieved by rewriting a traditional query to take
lineage into account. Fink et al. [19] devised a recursive algorithm for rewriting positive
relational algebra queries without aggregates for pc-tables. The algorithm is depicted in
Figure 2.1.

!R" = select R.*, R.Φ from R

!δB←A(Q)" = select R.*, R.A as B, R.Φ as Φ from
(
!Q"

)
R

!σAθB(Q)" = select R.*, R.Φ · [AθB] as Φ from
(
!Q"

)
R

!πA1,...,An(Q)" = select R.A1, . . . , R.An,
∑(

R.Φ
)
as Φ from

(
!Q"

)
R group by R.A1, . . . , R.An

!Q1 ×Q2" = select R.*, S.*, R.Φ ∧ S.Φ as Φ from
(
!Q1"

)
R,
(
!Q2"

)
S

!Q1 %&ψ Q2" = select R.*, S.*, R.Φ ∧ S.Φ as Φ from
(
!Q1"

)
R,
(
!Q2"

)
S where ψ

!Q1 ∪Q2" = select R.*,
∑(

R.Φ
)
as Φ from

(
select * from

(
!Q1"

)
union all select * from

(
!Q2"

))
R group by R.*

Figure 2.1: Recursive Algorithm !·" for rewriting a positive relational algebra query without
aggregates Q. We assume R.*, S.* do not select column Φ.

Example 4. Let’s consider the pc-tables “M” and “O”, which store information about
movies and Oscar winners respectively:

M

mid title country Φ

1 Slumdog Millionaire UK x = 1
1 Slumdog Millionaire India x = 2
2 A Beautiful Mind USA y
3 Scary Movie USA z

O

mid year Φ

2 2005 w
1 2006 u
1 2007 v

Now consider a query for retrieving the countries that have produced Oscar-winning films:

πcountry(M %& O)

13



By using the algorithm in Figure 2.1, the relational algebra query is rewritten to become:

1 SELECT

2 R.country,
∑

(R.Φ) AS Φ
3 FROM

4 (SELECT

5 M.∗, O.∗, M.Φ ∧O.Φ AS Φ
6 FROM

7 M , S
8 WHERE

9 M.mid = O.mid) R
10 GROUP BY

11 R.country

The evaluation result is depicted in the following pc-table:

R

Country Φ

UK (x = 1)(u+ v)
India (x = 2)(u+ v)
USA yw

There is an intuitive meaning to the lineages in “R”. For example, for the UK to have
produced an Oscar-winning film, Slumdog Millionaire has to be a UK movie (x = 1) and
the Oscar-winner in either 2006 or 2007 (u+ v).

Together with the table for the probability distributions of the variables, the lineages in the
table R can be turned into tuple confidences. For example, given the following variable
relation “V” 1:

V

Variable Value Probability

x 1 0.6
x 2 0.3
y True 1.0
z True 0.8
u True 0.6
v True 0.5
w True 0.9

Computing the probability of each of the lineages being True using table “V” leads us to the
final result with tuple confidences. For example, the tuple confidence of the answer UK is
given by the probability that (x = 1)(u+ v) evaluates to be True, which has the probability

1The sum of the probabilities for each variable must be equal to one. For cases where the sum is less
than one, we assume the remaining mass attributes to the valuation of either 0 or False. For example,
P (u = False) = 1− 0.6 = 0.4

14



P ((x = 1)(u+ v) = () = P (x = 1)× P ((u+ v) = ()
= 0.6× (1− P ((u+ v) = ⊥))
= 0.6× (1− P (u = ⊥)× P (v = ⊥))
= 0.6× (1− (1− 0.6)× (1− 0.5))

= 0.48

Repeating the computation for all other tuples leads us to the final result of the query:

M

Country Φ

UK 0.48
India 0.24
USA 0.9

2.3 Monoids, Semirings, and Semimodules

Because pc-tables allow probabilistic data to be stored with a size proportional to the
number of possible tuples, they are efficient for handling queries without aggregates as the
number of tuples returned is proportional to the product of the size of the database and
the size of the query. Aggregate queries, however, can return an exponential number of
tuples [33]; in such cases, pc-tables are no longer so efficient. In such cases, probabilistic
value-conditioned tables (pvc-tables) come to the rescue, providing a way to represent the
results of aggregate queries in polynomial space by employing the mathematical concepts
of monoids, semirings and semimodules [19], which will be introduced in this section.

Definition 1. A monoid is a set M with an operation +M : M ×M → M and a neutral
element 0M ∈M that satisfy the following axioms for all m1,m2,m3 ∈M :

(m1 +M m2) +M m3 = m1 +M (m2 +M m3)

0M +M m1 = m1 +M 0M = m1

A monoid is commutative if m1 +M m2 = m2 +M m1.

Many aggregation operations can be described with monoids by choosing the appropriate
set M , the operation +M , and the neutral element 0M . For example, MAX aggregation
acts on integers v1, v2, . . . , vn ∈ N using the associative max operator

max(v1, v2, . . . , vn) = v1 +max v2 + . . .+max vn

with the neutral element −∞

max(v,−∞) = −∞+max v = v +max −∞ = v

15



Together with the fact that the max operator is commutative, the MAX aggregation can
be described by the commutative monoid (N±∞,max,−∞). Similarly, MIN aggregation
can be described by the commutative monoid (N±∞,min,∞) and SUM aggregation can be
described by the commutative monoid (N,+, 0). COUNT is a special case of SUM where
the values being added are equal to 1.

Definition 2. A commutative semiring is a set S together with operations +S , ·S : S×S →
S and neutral elements 0S , 1S ∈ S such that (S,+S , 0S) and (S, ·S , 1S) are commutative
monoids and the following holds for all s1, s2, s3 ∈ S:

s2 ·S (s2 +S s3) = (s1 ·S s2) +S (s1 ·S s3)

(s1 + s2) ·S s3 = (s1 ·S s3) +S (s2 ·S s3)

0S · s1 = s1 ·S 0S = 0S

Commutative semirings are the canonical algebraic structure for handling tuple annotations
[24]. Tuple annotations for set semantics can be represented by commutative semirings over
Booleans (B,∨, False,∧, T rue). In this case, a semiring expression K would be a Boolean
expression, such as x, x ∧ (y ∨ z) and x ∨ (u = 1), where x, y, and z are random variables
over Booleans and u is a random variable over integers. On the other hand, the bag se-
mantics can be represented by commutative semirings over integers (N0,+, 0,×, 1). In this
case, a semiring expression K would be an algebraic expression, such as u, u+ 1 or u× v,
where u and v are random variables over integers. Set semantics is used for aggregations
in which duplicates have no impact on the result, such as MIN and MAX aggregations as
MAX(5, 5, 5, 1) = MAX(5, 1) = 5, and bag semantics is used for SUM and COUNT aggre-
gations, where duplicates can affect the aggregation results, such as SUM(5, 5, 5, 1) = 16
and MAX(5, 1) = 5.

Definition 3. Let (S,+S , 0S , ·S , 1S) be a commutative semiring. An S-semimodule M
consists of a commutative monoid (M,+M , 0M ) and a binary operation ⊗ : S ×M → M
such that for all s1, s2 ∈ S and m1,m2 ∈M we have

s1 ⊗ (m1 +M m2) = s1 ⊗m1 +M s1 ⊗m2

(s1 +S s2)⊗m1 = s1 ⊗m1 +M s2 ⊗m1

(s1 ·S s2)⊗m1 = s1 ⊗ (s2 ⊗m1)

s1 ⊗ 0M = 0S ⊗m1 = 0M

1S ⊗m1 = m1.

While monoids can be used to represent the values being aggregated and semirings can be
used to represent their annotations, semimodules connect the two and provide a complete
representation for aggregations over values conditioned on annotations. In particular, φ1 ⊗
v1 +M φ2 ⊗ v2 +M . . . +M φn ⊗ vn represents an aggregation with the operator +M over
possible values vi, i = 1 . . . n, with φi conveying the probability of the existence of vi (set
semantics) or the number of occurrences of vi (bag semantics).

16



2.4 Aggregations and PVC-Tables

Having introduced the notion of monoids, semirings and semimodules, we are now in a
position to define pvc-tables for aggregate queries:

Definition 4. Probabilistic value-conditioned tables (pvc-tables) are extension of pc-tables
in which semimodule expressions are allowed to be stored in any attributes of a tuple other
than values.

Just as in pc-tables, pvc-tables can be built on top of traditional databases. Traditional
aggregate queries can then be rewritten according to the algorithm presented in Figure 2.1,
together with the two additional rules defined in Figure 2.2 [19].

!)A1,...,An;α1←AGG1(B1),...,αl←AGGl(Bl)(Q)" = select R.A1, . . . , R.An, Γ1 as α1, . . . ,Γl as αl,[(∑
K
R.Φ

)
/= 0K

]
as Φ from

(
!Q"

)
R group by R.A1, . . . , R.An

!)∅;α1←AGG1(B1),...,αl←AGGl(Bl)(Q)" = select Γ1 as α1, . . ., Γl as αl, 1K as Φ from
(
!Q"

)
R

where Γi =

{∑
AGGi

(
R.Φ⊗ R.Bi

)
if AGGi = MIN,MAX,SUM,PROD

∑
SUM

(
R.Φ⊗ 1

)
if AGGi = COUNT

Figure 2.2: Recursive algorithm !·" for rewriting a positive relational algebra query with
aggregates Q to account for computation of semiring (K) and semimodule expressions.

To demonstrate how semimodule expressions and pvc-tables can be used for aggregate query
evaluations, let’s consider the following pc-tables “O” and “V” in Figure 2.3, which store
information about Oscar winners and the probability distribution for the random variables
respectively.

O

mid title country viewers Φ

1 Avatar USA 50 x
2 Forrest Gump USA 40 y + z
3 Gandhi India 30 z
4 Harry Potter UK 50 y
5 Slumdog Millionaire UK 45 x+ z
6 Titanic USA 60 yz

V

variable value probability

x True 1.0
y True 0.4
z True 0.6

Figure 2.3: PC-Table for the Oscars winners. (viewers in the unit of millions)

17



Full-Table Aggregates

We first consider an aggregate query for finding the maximum number of viewers of the
Oscar winners:

)∅;result←MAX(viewers)(O)

This kind of query is known as a full-table aggregate since it involves aggregating values
from individual tuples across the entire table. This kind of query corresponds to SQL
aggregate queries without the GROUP BY clause:

SELECT MAX(viewers) AS result FROM O

According to the query rewriting rules in Figure 2.2, the query is rewritten to handle the
lineages as follows:

SELECT
∑

MAX(O.Φ⊗O.viewers) AS result, True AS Φ FROM O

Running the rewritten query returns the following pvc-table:

R

result Φ

x⊗ 50 +max (y + z)⊗ 40 +max z ⊗ 30
+max y ⊗ 50 +max (x+ z)⊗ 45 +max yz ⊗ 60

True

The semimodule expression encapsulates all of the information regarding the probability
distribution over the possible values in the result of the aggregation. The final step would be
to use the variable table V to turn the semimodule expression into a probability distribution,
which will be explained in Section 2.5.

Grouped Aggregates

Now consider another aggregate query for finding the maximum number of viewers of the
Oscar winners grouped by country. This query takes the form

)country;result←MAX(viewers)(O)

Unlike full-table aggregates, grouped aggregates do not perform aggregations over all tuples
in the table. Instead, they begin by grouping the tuples based on one or more attributes;
aggregations are then performed separately over the tuples in each of the groups. Group
aggregates correspond to SQL queries with the GROUP BY clause:

SELECT country, MAX(viewers) AS result FROM O GROUP BY country

The query can be rewritten according to Figure 2.2 to handle the lineage:

SELECT country,
∑

MAX(Φ⊗ viewers) AS result, (
∑

K Φ) /= False
FROM O GROUP BY country

18



Evaluating the rewritten query returns the following pvc-table:

O

country result Φ

USA x⊗ 50 +max (y + z)⊗ 40 +max yz ⊗ 60 x+ (y + z) + yz
UK y ⊗ 50 +max (x+ z)⊗ 45 y + (x+ y)
India z ⊗ 30 z

While full-table aggregates return exactly one tuple with one semimodule expression per
attribute, grouped aggregates return multiple tuples, with each tuple corresponding to
a group; grouped aggregates therefore also return multiple semimodule expressions. In
both cases, evaluating aggregate queries in probabilistic databases boils down to turning
semimodule expressions into probability distribution over the possible values.

2.5 Decomposition Trees and Convolutions

While pvc-tables contain the query results in the form of semimodule expressions, these
expressions have to be converted into probability distributions over the possible values
before presenting them to users. One straight-forward approach is to substitute all possible
assignments of the variables into the semimodule expressions. For example, consider the
semimodule expression representing the maximum number of viewers for Oscar winners
from the USA for the relation given in Figure 2.3:

x⊗ 50 +max (y + z)⊗ 40 +max yz ⊗ 60

One possible assignment is {x← (, y ← ⊥, z ← (}, with probability

P (x = ()× P (y = ⊥)× P (z = () = 1.0× (1− 0.4)× 0.6 = 0.36

according to table “V” in Figure 2.3. Substitution into the semimodule expression gives

(⊗ 50 +max (⊥ ∨()⊗ 40 +max (⊥ ∧()⊗ 60

= (⊗ 50 +max (⊗ 40 +max ⊥⊗ 60

= 50 +max 40 +max 0M

= (50 +max 40) +max 0M (associativity)

= 50 +max −∞ (neutral element of MAX = -∞)

= 50

Therefore one of the possible value for the aggregation is 50, with probability ≥ 0.36.2

This brute-force approach, however, takes time exponential to the number of variables in
the semimodule expression. For example, for a semimodule expression with 100 Boolean
variables, there will be a total of 2100 possible enumerations.

2The probability can be larger than 0.36 as there could be other assignments that lead to the same value
50, in which case the probability adds up.

19



Fink et al. [19] proposed a more efficient method by recursively dividing the semimodule
expression into two independent semimodule expressions, resulting in a tree-like structure
known as the decomposition tree (d-tree). When it is impossible to further divide the
semimodule expression into two independent parts – for example, when there is a repeating
variable in every part of the expression – Shannon expansion can be employed to resolve
the dependency by enumerating the possible substitutions for the repeating variable. Once
the d-tree is formed, the probability distribution of the aggregation result can be obtained
by recursively combining the random variables in the d-tree in a bottom-up manner. The
full algorithm can be found in Algorithm 1.

ALGORITHM 1: Compilation of a semimodule expression into a decomposition tree

Input: Semimodule expression Φ
Output: Decomposition Tree of Φ

Compile (Φ)
begin

if Φ has no variables then
return Φ

end
if ∃ independent Φ1,Φ2 s.t. Φ1 + Φ2 = Φ then

return Compile(Φ1) ⊕ Compile(Φ2)
end
if ∃ independent Φ1,Φ2 s.t. Φ1 ⊗ Φ2 = Φ then

return Compile(Φ1) ⊗ Compile(Φ2)
end
if ∃ independent Φ1,Φ2 s.t. Φ1 · Φ2 = Φ then

return Compile(Φ1) 3 Compile(Φ2)
end

Choose variable x ∈ X occurring in Φ
return

⊔
x (∀s ∈ S, Px[s] /= 0: Compile(Φs))

end

To illustrate how this works, we continue our demonstration using the same semimodule
expression:

x⊗ 50 +max (y + z)⊗ 40 +max yz ⊗ 60

Because the part x⊗50 is independent from the part (y+z)⊗40+max yz⊗60, the first step
involves dividing the expression into the two parts connected by the operator +max:

..+max.

x⊗ 50

.

(y + z)⊗ 40 +max yz ⊗ 60

The left branch can be further divided into the semiring part and the monoid part, connected
by the operator ⊗. At the same time, the right branch contains repeating variables y and

20



z, and there is no way of dividing the expression into two independent parts; thus, we will
have to apply Shannon expansion on either y or z. On this occasion, we will apply Shannon
expansion on the variable y:

..+max.

⊗

.

x

.

50

.

⊔
y

.

40 +max z ⊗ 60

.

y ← '

.

z ⊗ 40 +max 0M

.

y ← ⊥

At this point, all of the expressions in the leaves are free of repeating variables. We will
expand them recursively until the d-tree is binary:

..+max.

⊗

.

x

.

50

.

⊔
y

.

+max

.

40

.

⊗

.

z

.

60

.

y ← '

.

+max

.

⊗

.

z

.

40

.

0M

.

y ← ⊥

At this point, the decomposition tree is complete, and it is equivalent to the semimodule
expression x⊗ 50 +max (y + z)⊗ 40 +max yz ⊗ 60.

Exact Evaluation on a D-Tree

Once the d-tree is formed, the remaining step is to reduce the d-tree into a probability
distribution. First of all, we note that all of the leaves in the d-tree are random variables.3

Thus, a subtree at the bottom of the d-tree can be reduced into a probability distribution
by combining the two random variables using the operator connecting them. The process
can then be repeated until the entire d-tree is reduced to a probability distribution.

It is clear that the efficiency of d-tree evaluation hangs on the efficiency of combining
probability distributions for different types of nodes. In fact, besides VARIABLE nodes,
there are two types of nodes: UNION Nodes and CONVOLUTION Nodes. While UNION
Nodes correspond to Shannon expansions, CONVOLUTION Nodes correspond to all other
types of operators, including +max,+min,+sum,+K ,×K , and ⊗.

3Constants can be treated as random variables with exactly one possible outcome.

21



For UNION nodes, all children – which are the probability distributions computed from
the expanded expressions – can be combined using the algorithm presented in Algorithm
2 [19]. The algorithm has a complexity O(NM), where N is the number of children and
M is the support size (the number of values with non-zero probability in the probability
distribution) of the children.

ALGORITHM 2: Shannon expansion for a semimodule expression Φ on variable α

Input: Semimodule expression Φ, Expanding variable α
Output: Probability distribution of Φ

ShannonExpansion(Φ, α)
begin

z ← {}
foreach (vα, pα) ∈ α do

x← ExactEvaluation(Φ|α←v)
foreach (vx, px) ∈ x do

z[vx]← z[vx] + px × pα
end

end
return z

end

For CONVOLUTION nodes, Fink et al. [19] proposed an efficient dynamic programming-
based algorithm for combining the probability distributions. This action of combining
probability distributions over an operator is also known as the convolution of probability
distributions, and it is fundamental in probability theory. The algorithm is presented in
Algorithm 3, and will be referred as the Standard DP throughout the dissertation. The
algorithm has a complexity O(M2) for convolving two random variables with a support size
M .

ALGORITHM 3: Standard DP for evaluating x⊕ y

Input: Operator ⊕, random variables x and y
Output: Probability distribution of the convolution result x⊕ y

StandardDP(⊕, x, y)
begin

z ← {}
foreach (vx, px) ∈ x do

foreach (vy, py) ∈ y do
z[vx ⊕ vy]← z[vx ⊕ vy] + px × py

end
end
return z

end

We continue our demonstration based on the d-tree we derived at the end of Section 2.5
to show how evaluation on a d-tree proceeds. We start with convolution of the random
variables in the fourth level, resulting in a reduced d-tree:

22



..+max.

⊗

.

x

.

50

.

⊔
y

.

+max

.

40

.

{(0M , 0.4), (60, 0.6)}

.

y ← '

.

+max

.

{(0M , 0.4), (40, 0.6)}

.

0M

.

y ← ⊥

Repeating the process by convolving the random variables in the third level leads us to a
further reduced d-tree:

..+max.

⊗

.

x

.

50

.

⊔
y

.

{(40, 0.4), (60, 0.6)}

.

y ← '

.

{(0M , 0.4), (40, 0.6)}

.

y ← ⊥

Continuing the process even further results in a d-tree with only two leaves:

..+max.

{(0M , 0.1), (50, 0.9)}

.

{(0M , 0.08), (40, 0.44), (60, 0.48)}

Lastly, convolution of the two probability distributions over the MAX operator leads to the
final probability distribution:

{(0M , 0.008), (40, 0.044), (50, 0.468), (60, 0.48))}

The result suggests that the most probable maximum number of viewers for Oscar winners
from the USA is 60M and 50M , with probabilities of 0.48 and 0.468, respectively. Note
that the neutral element 0M has a non-zero probability in the result, suggesting there is a
chance that none of the movies from the USA exists in the original table O and therefore
do not form a group in the result of the aggregate query at all. For this result, the neutral
element 0M will also be referred as null.

23



Chapter 3

Two Approximation Flavours:
Histograms and Top-k

3.1 Overview

3.1.1 Workflow

The proposed framework for aggregate query evaluation consists of three steps:

Step 1. Traditional SQL aggregate queries are rewritten according to the rules in Figure
2.1 and Figure 2.2 to take into account the lineage of the tuples. The rewritten
queries can then be evaluated over the probabilistic databases using a query engine
similar to the ones used for traditional databases, resulting in a pvc-table that consists
of a set of tuples whose values may be semimodule expressions. The exact form of
the semimodule expressions depend on the aggregate operation and type of random
variables in the input pvc-table.

Step 2. The semimodule expressions in the resulting pvc-table are compiled into decom-
position trees (d-trees) using Algorithm 1 on page 20. As shown in prior work [19],
d-trees allow computation of semimodule expressions in one pass over such d-trees.

Step 3. Our novelty comes in the computation of the probability distribution of a given
d-tree (and hence of its equivalent semimodule expression). While we also provide an
efficient algorithm for exact computation, our focus is on proposing two distinct and
natural approximation approaches for this computation step. As shown in Chapter 7,
these approaches can outperform the state-of-the-art best exact method by orders of
magnitude.

3.1.2 Assumptions

We have made a few assumptions in the design of the framework:

Queries The framework supports positive relational algebra queries with aggregates.

24



Aggregate Values The values to be aggregated are assumed to be positive integers.
Nonetheless, negative integers can be supported by shifting the domain of the val-
ues such that all of them are positive, and real numbers with finite decimal places can
be handled by scaling the values to integers.

Null Value Null, also known as the neutral element, is represented by the integer 0 in the
framework.

3.2 Value-based Approximations

Instead of retrieving the entire probability distribution, which can have very many dis-
tinct possible values, value-based approximation reduced the number of possible values by
summarising and finding representatives for the possible values of the distribution.

3.2.1 Histogram Approximation

Histogram approximation summarises a probability distribution by grouping adjacent values
into bins. This action not only reduces the number of distinct answers but also increases
the probability, and hence the quality, of each answer. Histogram approximations are most
suitable to situations when an overall impression of the distribution is needed, but not the
exact probability of each possible answer. Figure 3.1 provides a comparison of the result
of exact evaluation and histogram approximation for a MAX aggregate query. For most
practical purposes, the histogram conveys as much information as the full distribution, but
in a much more concise and intuitive way.

Additionally, the proposed framework supports histogram zooming, which allows the user
to refine the resolution (i.e. increase the number of bins) of part of the histogram efficiently.
This has far-reaching implications as it allows users to explore and interact with the dis-
tributions in a whole new level. In particular, the user can first instruct the framework to
evaluate an aggregate query using equi-width histograms by specifying either the number
of bins or the width of each bin for the histograms. The user can then discover interesting
patterns or anomalies in the histograms returned, and zoom into the interesting parts to
find out more about the pattern. In the extreme case, the user can even zoom into part
of the histogram with a resolution of bin width = 1 unit. Most importantly, the efficiency
of the algorithms for histogram approximation demonstrates that the computation of the
histogram, together with multiple zooming, can still be orders of magnitude more efficient
than the computation of the entire distribution.

The proposed algorithms are designed to be flexible and support the computation of the
histogram with arbitrary number of bins having arbitrary intervals. In fact, the flexibility
lays the foundation for the computation of equi-width histogram, histogram zooming, and
range queries, which corresponds to feeding the algorithms with different bin intervals:

Equi-Width Histogram With the input for the number of bins B or the width of each
bin W from the user, the framework can derive the bin intervals for the equi-width
histogram by first computing the least value and the largest value of the probability
distribution. For example, given a probability distribution with values in the range

25



Pr
ob

ab
ilit

y

0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

Value
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Exact Evaluation for a MAX Aggregation

Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Value
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Histogram Approximation for a MAX Aggregation

Figure 3.1: Comparison of exact evaluation and histogram approximation

26



[1, 500], an equi-width histogram with B = 5 or W = 100 can be obtained by running
the histogram approximation algorithms with bin intervals

[1, 100], [101, 200], [201, 300], [301, 400], [401, 500]

Histogram Zooming On top of the number of bins B or the width of each bin W , his-
togram zooming also requires the lower limit and the upper limit of the region to be
zoomed from the user. For example, zooming into the region [101, 150] with B = 5 or
W = 10 for a histogram with values in the range [1, 500] can be achieved by running
the histogram approximation algorithms with bin intervals

[1, 100], [101, 110], [111, 120], [121, 130], [131, 140], [141, 150], [151, 500]

Note that the inclusion of the bins [1, 100] and [151, 500] ensures the bin intervals
cover the entire distribution, which is needed for the algorithms to run properly. The
two auxiliary bins can then be discarded from results before presenting to the user.

Answering Range Queries The framework for the evaluation of histogram approxima-
tions can also be used for answering range queries. For example, a movie investor
might be interested in finding the probability that the total gross of horror movies
in 2013 is over $500M, in which case the query can be answered by computing the
histogram with bin intervals

[L, 499], [500, U ]

where L and U are the least and the largest value in the distribution respectively.
The required probability will be equal to the bin probability for [500, U ].

3.2.2 Top-k Approximation

While histogram approximation provides a broad overview of the complete probability dis-
tribution, there are situations when the user is more concerned with the most probable
answers.1 Top-k approximation summarises the probability distribution by retrieving only
the most probable answers, which are the ones with the highest quality.

In particular, the top-k approximation framework we propose retrieves the answers sequen-
tially in sorted order. The sequential nature of the algorithm implies the user does not have
to decide k upfront, and can retrieve further tuples efficiently until enough information is
found in the retrieved tuples.

Figure 3.2 compares the result of exact evaluation and top-k approximation with k = 3 for
a MAX aggregation. It is clear that, while there are many more possible answers in the full
distribution, most of them are of low quality and do not convey much information.

3.3 Probability-based Approximations

While histogram approximation summarises a probability distribution by grouping adjacent
values into bins, the bin probability is exactly equal to the sum of probabilities for the

1“It is a truth very certain that, when it is not in our power to determine what is true, we ought to follow
what is most probable.” - René Descartes

27



Pr
ob

ab
ilit

y

0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

Value
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Exact Evaluation for a MAX Aggregation

Rank Value Probability

1 6459 0.00459487
2 7564 0.00381569
3 6617 0.00342772

Figure 3.2: Comparison of exact evaluation and top-k approximation

values between the lower and upper intervals of the corresponding bin. Similarly, while top-
k approximation retrieves only the most probable values from a probability distribution,
their probabilities are exactly equal to the corresponding probability in the probability
distribution. Therefore, histogram approximation and top-k approximation are both value-
based approximations.

However, it is not uncommon to find situations when exact probabilities are not crucial and a
rough indication for the magnitudes of the probabilities is equally acceptable. Indeed, it has
been suggested that relative probability between possible answers is much more important
than absolute probabilities [44]. This opens up a whole new dimension of approximation:
the computation of approximate probabilities with bounds. In particular, the approxi-
mate probability provides an estimate of the actual probability, and the lower and upper
bounds provide a strict guarantee on the possible range for the probability. To ensure the
framework can take advantage of both value-based approximations and probability-based
approximations, we propose algorithms for the computation of histograms with approximate
probabilities and top-k most probable values with approximate probabilities, which allows
for an efficiency beyond the already promising performance of value-base approximation.

28



At any rate, we ensure the algorithms can fall back to pure value-based approximations
when exact probabilities are crucial.

Figure 3.3 depicts an example of histogram with approximate probabilities from the evalua-
tion of a COUNT aggregation: the height of each bar indicates the approximate probability,
and the red error indicator marks the bound of the approximation. It is clear that as long as
the bounds are tight in comparison of the bin probability, the introduction of probability-
based approximation has little effect on the result.

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Value
0 50 100 150 200 250 300 350 400 450 500 550

Histogram Approximation for a COUNT aggregation

Figure 3.3: Example of a histogram with approximate probabilities

3.3.1 Working with Probability Bounds

The introduction of approximate probabilities calls for the need to perform arithmetic op-
erations over probability bounds while preserving the strict guarantee of the bounds. For
instance, the evaluation of a sub-query might return a histogram with bounded probabilities,
and the main query must be able to process the bounded probabilities to return the final
histogram. In particular, the algorithms proposed in the dissertation performs addition,
subtract and multiplication over probabilities, therefore the support for the corresponding
arithmetic operations over probability bounds is necessary.

Consider the arithmetic operator 5 and the probability bounds [l1, u1] and [l2, u2], the
correctness for the probability bound [l1, u1] 5 [l2, u2] can be ensured by computing the
lowest and highest values reachable for p1 5 p2, where p1 ∈ [l1, u1] and p2 ∈ [l2, u2]. For
example, adding the probability bound [0.4, 0.6] to another probability bound [0.1, 0.2] leads
to the bound [0.5, 0.8]. Algorithms 4, 5 and 6 provide the detailed algorithms for addition,
subtraction and multiplication over probability bounds respectively.

29



ALGORITHM 4: Add Probability Bounds

Input: Probability Bounds left and right
Output: Probability Bound left+ right

AddBoundedProb(left, right)
begin

result.lower ← left.lower + right.lower
result.upper ← left.upper + right.upper
return result

end

ALGORITHM 5: Subtract Probability Bounds

Input: Probability Bounds left and right
Output: Probability Bound left− right

SubBoundedProb(left, right)
begin

result.lower ← left.lower − right.upper
result.upper ← left.upper − right.lower
return result

end

ALGORITHM 6: Multiply Probability Bounds

Input: Probability Bounds left and right
Output: Probability Bound left× right

MulBoundedProb(left, right)
begin

result.lower ← left.lower × right.lower
result.upper ← left.upper × right.upper
return result

end

Algorithms 4, 5 and 6 can easily be extended to add, subtract or multiply a probability
bound with an exact probability: one simply treats the exact probability p as a probability
bound [p, p].

3.4 Optimisations

In this section, we present optimisations for the framework that will improve the perfor-
mance of both histogram approximation and top-k approximation.

3.4.1 Tree Flattening

The associativity and commutativity of MIN, MAX, COUNT, and SUM suggests that if
+ is one of the aggregate operators +MIN,+MAX,+COUNT,+SUM, then ((α + β) + γ) is
equivalent to (α + β + γ), where the order in which the operator acts on α, β and γ will
not affect the final outcome. This suggests that two nodes of the same convolution type

30



can be combined if they have a parent-child relationship in the d-tree, as depicted in Figure
3.4.

..⊕.

⊕

.

α

.

β

.

γ

..⊕.

α

.

β

.

γ

Figure 3.4: An example of tree flattening, where the two d-trees are equivalent.

Similar operation can also be performed on UNION nodes. However, one also has to take
into account the variable assignment attached to each branch in this case. This is done by
simply combining the variable assignments of the branches. An example is demonstrated
in Figure 3.5.

..⊔.

⊔

.

α

.

y ← 0

.

β

.

y ← 1

.

x← 0

.

γ

.

x← 1 ..⊔.

α

.

x, y ← 0, 0

.

β

.

x, y ← 0, 1

.

γ

.

x← 1

Figure 3.5: Tree flattening on UNION nodes

The algorithm for flattening a d-tree is presented in Algorithm 7. However, with careful
bookkeeping, it is even possible to incorporate tree flattening into the tree compilation stage
directly, thereby eliminating the need for the extra flattening step.

ALGORITHM 7: Flatten a decomposition tree

Input: Root Node node of Unflattened D-Tree dtree
Result: dtree is flattened in-place

FlattenTree(node)
begin

foreach child ∈ children of node do
FlattenTree(child)
if type(node) = type(child) then

foreach grandchild ∈ children of child do
Add grandchild to the children of node
if type(node) = UNION then

/* node.probs[child] stores the probability of the assignment from
node to child */

node.probs[grandchild]← node.probs[child]× child.probs[grandchild]
end

end
Remove child from the children of node

end
end

end

31



Tree flattening provides two benefits to the performance of the framework. Firstly, by
minimising the height of decomposition trees, the number of recursive function calls needed
during the evaluation stage are reduced, which in turn reduces the size of the recursive
stack. More importantly, tree flattening exposes more information to a node by giving it
direct access to more children, which allows the algorithms to optimise the evaluation by
making use of the extra information.

32



Chapter 4

Histogram Approximation

4.1 Overview

In contrast to exact evaluation, where a complete probability distribution over the possible
values of the aggregate query result is returned, histogram approximation evaluates the
histogram representation of the probability distribution by grouping the possible values
into bins. In other words, histogram approximation provides a synopsis of the probability
distribution. In this chapter, we will present efficient algorithms for evaluating of MIN,
MAX, COUNT, and SUM aggregate queries in this approximation setting.

4.1.1 Strategy

A straight forward approach for histogram approximation is to first perform an exact eval-
uation on the query to obtain the complete probability distribution, and the values in the
distribution can then be put into the corresponding bin one by one. While this approach re-
sults in a histogram representation of the result, which is arguably more concise and intuitive
than the complete distribution, the approach does not take advantage of the approximation
setting to speed up the query evaluation.

For this reason, we will look into the special structure of histogram approximation, and
devise algorithms that will fully take advantage of the approximation setting. More specifi-
cally, given a convolution node (or UNION node) ⊕ in a d-tree, and assume we have reduced
the child subtrees of ⊕ into random variables X1, X2, . . . , XN , then the computation of his-
togram approximation with B bins [a1, b1], [a2, b2], . . . , [aB, bB] for the node ⊕ boils down
to the computation of

Probability of bin [ai, bi] = P (ai ≤ X1 ⊕X2 ⊕ . . .⊕XN ≤ bi) (4.1)

The ultimate goal is to compute Equation 4.1 without the full probability distributions for
the random variables Xi, but with only their histogram representation, i.e. the probabilities
P (aj ≤ Xi ≤ bj), j = 1 . . . B. This ensures the child subtree of ⊕ can be computed as
efficiently as the node itself using the algorithms presented in this chapter, which maximises
the performance of the approximation by allowing the efficient algorithms to act on all levels
of the d-tree recursively.

33



4.1.2 Framework

The interface for histogram evaluation is presented in Algorithm 8, where each node type
in d-trees must implement the interface. It supports the computation of histogram with
arbitrary bin intervals, as long as bin intervals cover the entire distribution. When given a
d-tree, the evaluation for histogram approximation can be initiated by calling the interface
on the root node of the tree, and the evaluation request will then be propagated recursively
through the interface to other nodes in the d-tree.

ALGORITHM 8: Histogram Approximation Interface

Input: A Decomposition Tree Node node, Bin Intervals bins
Output: Histogram Evaluation for Decomposition Tree node with bins

HistogramEvaluation(node, bins)

While the interface presented in Algorithm 8 provides the flexibility to evaluate histograms
with arbitrary bins, it is often the case that the user might be unsure of what intervals to
use. Algorithm 9 bridges the gap by computing equi-width histogram when the target bin
width w or target number of bins B is given. (B can be turned into w via w =

⌊
R−L
B

⌋
,

where L and R are the least and largest values in the distribution respectively).

ALGORITHM 9: Equi-Width Histogram Evaluation for a Decomposition Tree

Input: Root Node of Decomposition Tree root, Bin Width w
Output: Histogram Evaluation for Decomposition Tree root with bin width w

EquiWidthHistogramEvaluation(root, w)
begin

[L,R]← GetDistributionRange(root)
B ← 7(R− L)/w8
bins← [L,L+ w − 1], [L+ w,L+ 2w − 1], ..., [L+B × w,R]
return HistogramEvaluation(root, bins)

end

Similarly, histogram zooming can be achieved by supplying the interface with the correct
bin intervals, as depicted in Algorithm 10.

ALGORITHM 10: Histogram Zooming for a Decomposition Tree

Input: Root Node of Decomposition Tree root, Bin Width w, Zooming Boundaries l and r
Output: Zoomed Histogram with bin width w

ZoomHistogram(root, w, l, r)
begin

[L,R]← GetDistributionRange(root)
B ← 7(r − l)/w8
bins← [L, l − 1], [l, l + w − 1], ..., [l +B × w, r], [r + 1, R]
histogram← HistogramEvaluation(root, bins)
Remove bins [L, l − 1] and [r + 1, R] from histogram
return histogram

end

34



4.2 Algorithms

Based on the discussion in the previous section, the evaluation of histogram approximation
for d-trees requires two algorithms for each type of nodes:

GetDistributionRange(node) This returns the least and the largest values of the distri-
bution obtained from the convolution of the children of node according to the operator
of node.

HistogramEvaluation(node, bins) This returns the result of histogram approximation
for the distribution obtained from the convolution the children of node according to
the operator of node.

4.2.1 VARIABLE

VARIABLE nodes correspond to the random variables in semimodule expressions, where
each random variable carries a complete probability distribution. Because the leaves of
d-trees are always VARIABLE nodes, the algorithms for VARIABLE nodes form the base
cases for the recursive computation of histogram approximation.

Distribution Range

Getting the distribution range of a VARIABLE node is as simple as finding the minimum
and maximum of the probability distribution, as presented in Algorithm 11. The algorithm
has a complexity of O(M), where M is the support size of the distribution. Additionally,
because it is natural to store the probability distributions in sorted order by value in the
database, the complexity would be O(1) in such cases.

ALGORITHM 11: Get Distribution Range for a VARIABLE Node

Input: VARIABLE Node node
Output: Distribution Range of node

Distribution Range(node)
begin

least←∞
largest← −∞
foreach (v, p) ∈ probability distribution of node do

least← min(v, least)
largest← max(v, largest)

end
return [least, largest]

end

Histogram with Exact Probabilities

Because the entire probability distribution is already present in a VARIABLE node, his-
togram evaluation for a VARIABLE node simply involves going through the values in the

35



distribution one by one and placing the values into the correct bins, as depicted in Algo-
rithm 12. The algorithm has a complexity O(M logB), where M is the size of the support
of the probability distribution and B is the target number of bins to be computed.

ALGORITHM 12: Histogram Evaluation for a VARIABLE node

Input: VARIABLE Node node, Bin Intervals bins
Output: Histogram with bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bin intervals bins
Set probability of each bin in histogram to 0
foreach (v, p) ∈ probability distribution of node do

bintarget ← the bin in bins that v belongs to /* via Binary Search */
Add p to the bin probability of bintarget in histogram

end
end
return histogram

4.2.2 UNION

UNION node is created when Shannon expansion is performed on one or more variables for
a semimodule expression, and each of the branches of a UNION node corresponds to one
of the possible assignments for the expanding variables. Consider a UNION node Y with
children X1, X2, . . . , XN , where the probability of the assignment for the branch connecting
the UNION node Y and the child Xi is wi, then the result of the computation on the
UNION node is given by the probability distribution of Y , where

P (Y = v) =
N∑

i=1

wi × P (Xi = v) (4.2)

This suggests exact evaluation on a UNION node (using Algorithm 2 on page 22) has a com-
plexity O(NM), where M is the support size of the probability distribution for individual
child Xi. Technically, if the support sizes of the probability distributions for Xi, i = 1 . . . N
are different, M refers to the maximum one.

Distribution Range

According to Equation 4.2, the possible values for a UNION node Y directly come from the
possible values in its children Xi, i = 1 . . . N , hence

supp(Y ) =
N⋃

i=1

supp(Xi)

This indicates that the least and largest values for a UNION node must inherit from its
children, resulting in Algorithm 13. The algorithm has a complexity O(N).

36



ALGORITHM 13: Get Distribution Range for a Union Node

Input: UNION Node node
Output: Distribution Range of node

GetDistributionRange(node)
begin

least←∞
largest← −∞
foreach child ∈ children of node do

[L,R]← GetDistributionRange(child)
least← min(L, least)
largest← max(R, largest)

end
return [least, largest]

end

Histogram with Exact/Approximate Probabilities - Bin Union Algorithm (BUA)

Equation 4.2 can easily be extended to give

P (l ≤ Y ≤ r) =
N∑

i

wi × P (l ≤ Xi ≤ r) (4.3)

Equation 4.3 suggests that histograms with the same bins can be combined in a similar way
as complete distributions for a UNION node to obtain a histogram representation for Y .
The idea is used in Algorithm 14, which has a complexity O(NB), where B is the target
number of bins.

ALGORITHM 14: Histogram Evaluation for a UNION Node - Bin Union Algorithm (BUA)

Input: UNION Node node, Bin Intervals bins
Output: Histogram with bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bin intervals bins
Set probability of each bin in histogram to 0
foreach child ∈ children of node do

w ← Probability of the branch from node to child
histogramchild ← HistogramEvaluation(child, bins)
foreach bin in bins do

/* histogram[bin] refers to the bin probability of bin in histogram */
histogram[bin]← histogram[bin] + w × histogramchild[bin]

end
end
return histogram

end

37



4.2.3 MIN/MAX

MIN and MAX nodes correspond to the operators +min and +max in semimodule expressions
respectively. Because MIN and MAX are symmetric to each other, the algorithms developed
for one of them can readily be adapted to work on the other. For this reason, we will only
focus on MAX nodes in this section. Exact evaluation for a MIN/MAX node can be done
via multiple applications of Standard DP (Algorithm 3 on page 22), with a complexity
O((NM)2), where N is the number of children for the MIN/MAX node and M is the
support size of the probability distributions for its children.

Distribution Range

The algorithm we propose for getting distribution range for MAX nodes replies on the fol-
lowing proposition:

Proposition 1. Given the random variables X1, X2, . . . XN over the integers,

supp(MAX(X1, X2, . . . , XN )) =
N⋃

i=1

supp(Xi)− {x ∈ N : x < max
i=1...N

(min(supp(Xi)))}

Proof. Consider the situation when the random variableXi, i = 1 . . . N takes the outcome vi,
in which case MAX(X1, X2, . . . , XN ) becomes MAX(v1, v2, . . . , vN ), returning exactly one
value (the one with the maximum value) among the set {v1, v2, . . . , vN}. This demonstrates
that the possible values in the result of MAX(X1, X2, . . . , XN ) must come from the supports
of the input variables, hence

supp(MAX(X1, X2, . . . , XN )) ⊆
N⋃

i=1

supp(Xi)

Next, consider the value u and the index m, where

u = max
i=1...N

(min(supp(Xi))), m = argmax
i=1...N

(min(supp(Xi)))

Now, for the convolution to evaluate to v ∈
N⋃
i=1

supp(Xi), the outcomes taken by all the

random variables Xi, i = 1 . . . N must be ≤ v, which is always possible if v ≥ u as the
minimum possible outcomes of all the random variables are ≤ u. However, if v < u, then it
is impossible for the random variable Xm to take an outcome ≤ v as its minimum possible
outcome is u, suggesting

P (MAX(X1, X2, . . . , Xm, . . . , XN ) < u) = 0

Therefore supp(MAX(X1, X2, . . . , XN )) contains all the elements in the set
N⋃
i=1

supp(Xi),

except for the elements from the set {x ∈ N : x < maxi=1...N (min(supp(Xi)))}.

38



However, we also note that while the values in the set
(

N⋃

i=1

supp(Xi)

)
⋂{

x ∈ N : x < max
i=1...N

(min(supp(Xi)))

}

have probability = 0 in the final distribution, those values are part of the active domain of
the query as they are the possible values of the input random variables. For this reason,

we will define the distribution of a MAX node as
N⋃
i=1

supp(Xi), which has the same form as

the distribution for a UNION node. Consequently the algorithm for getting the least and
largest values in the distribution for a MAX node is identical to that for a UNION node
(Algorithm 13 on page 37).

Histogram Approximation with Exact Probability - Bin Convolution Algorithm
(BCA)

Proposition 2. Given the independent random variables X1, X2, . . . , XN over the integers
and an integer v,

P (MAX(X1, X2, . . . , XN ) ≤ v) =
N∏

i=1

P (Xi ≤ v) (4.4)

Proof. While the proposition can be proved algebraically, we will present a more intuitive
proof by contradiction.

Firstly, consider each of the random variables Xi taking the outcome ui ≤ v, in which
case MAX(X1, X2, . . . , XN ) = MAX(u1, u2, . . . , uN ) returns exactly one value (the maxi-
mum one) from the set {u1, u2, . . . , uN}, proving that the result must also be ≤ v. This
suggests that if each of the random variables Xi takes the outcome ≤ v, the outcome of
the MAX convolution must also be ≤ v. In other words, the set of events that leads to
MAX(X1, X2, . . . , XN ) ≤ v must consist of all the events where all the random variables
Xi have outcomes ≤ v. Hence,

P (MAX(X1, X2, . . . , XN ) ≤ v) ≥
N∏

i=1

P (Xi ≤ v) (4.5)

To turn the inequality in Equation 4.5 into equality, we have to prove that it is impossible for
MAX(X1, X2, . . . , XN ) ≤ v if one or more random variables have outcomes > v, therefore
the events where all the random variables Xi have outcomes ≤ v form the complete set of
events for MAX(X1, X2, . . . , XN ) ≤ v. This can be proved by contradiction.

Let’s assume that there exists an event, where k > 0 random variables have outcomes αi > v
for i = 1 . . . k, and the other N−k random variables have outcome βj ≤ v for j = 1 . . . N−k,
which will lead to MAX(X1, X2, . . . , XN ) ≤ v. However, because the MAX convolution will
always return the maximum value among its input, MAX(α1,α2, . . . ,αk,β1,β2, . . . ,βN−k) =
MAX(α1,α2, . . . ,αk) > v will be returned, which contradicts to our assumption that
MAX(X1, X2, . . . , XN ) ≤ v. This proves that such event cannot exist, hence the events
whereXi ≤ v for all i = 1 . . . N form a complete set of events for MAX(X1, X2, . . . , XN ) ≤ v.

39



Based on Proposition 2, an algorithm for histogram evaluation for a MAX node is pre-
sented in Algorithm 15. The algorithm proceeds by computing the cumulative histogram
for its children, and combining the histograms according to Equation 4.4. Lastly, the algo-
rithm reverts the cumulative histogram back to a regular histogram. The algorithm has a
complexity of O(NB), where B is the target number of bins.

ALGORITHM 15: Histogram Evaluation for a MAX Node - Bin Convolution Algorithm (BCA)

Input: MAX Node node, Bin Intervals bins
Output: Histogram with bin intervals bins

HistogramEvaluation(bins)
begin

histogram ← New Histogram with bin interval bins
Set bin probability of each bin in histogram to 1
foreach child ∈ children of node do

histogramchild ← HistogramEvaluation(child, bins)
pcumulative ← 0
foreach bin ∈ bins do

/* histogram[bin] is the probability of bin in histogram */
pcumulative ← pcumulative + histogramchild[bin]
histogram[bin]← histogram[bin]× pcumulative /* Equation 4.4 */

end
end

/* Revert the cumulative histogram back to a regular histogram */
B ← Number of bins in bins
for i = B to 2 do

histogram[bins[i]] -= histogram[bins[i− 1]]
end
return histogram

end

As we have mentioned, the symmetric nature of MIN and MAX nodes suggests the propo-
sitions and algorithms we presented for MAX in this section can be adapted for MIN
straightforwardly. In particular, the equivalent of Proposition 2 for MIN nodes is stated in
Proposition 3.

Proposition 3. Given the independent random variables X1, X2, . . . , XN over the integers
and an integer v,

P (MIN(X1, X2, . . . , XN ) > v) =
N∏

i=1

P (Xi > v)

4.2.4 COUNT

A COUNT node can be treated as a special case of a SUM node, where the input random
variables have support {0, 1}. However, due to the popularity of COUNT aggregate queries,
we will develop algorithms optimised for COUNT nodes. Exact evaluation for a COUNT

40



node can be done via multiple applications of Standard DP (Algorithm 3 on page 22) with
a complexity O(N2), where N is the number of children for the COUNT node.

In particular, the computation for the distribution of a COUNT node Y can be defined
by

Y =
N∑

i=1

Xi (4.6)

where X1, X2, . . . , XN , representing the children of the COUNT node, are independent
random variables with probability distributions

P (Xi = 1) = pi

P (Xi = 0) = p̄i = 1− pi

The distribution for Y is also known as Poisson Binomial distribution.

Distribution Range

According to Equation 4.6, the distribution Y ranges from 0 to N , therefore the algorithm
presented in Algorithm 16 is surprising simple.

ALGORITHM 16: Get Distribution Range for a COUNT Node

Input: COUNT Node node
Output: Distribution Range of node

GetDistributionRange(node)
begin

N ← Number of children of node
return [0, N ]

end

Histogram Approximation with Approximate Probability - Normal Approxima-
tion Algorithm (NA)

Central Limit Theorem (CTL) states that the distribution obtained from the sum of N
independent random variables can be approximated by normal distribution, provided that
N is large enough. As it is often the case that one is trying to aggregate a huge number
of tuples, this is highly relevant to the situation. However, central limit theorem does not
provide a guarantee on the error for the probability approximated. Since the confidence
level of the approximation would be a valuable information to the user, we look for a way to
bound the error on the approximate probability, which lead us to the error bound derived
via asymptotic expansions using Taylors formula by Neammanee [37]. The work is designed
specifically for Poisson-Binomial distribution, therefore the bounds provided are tighter
than other more general approaches.

Firstly, Neammanee [37] improves the central limit theorem by including two terms in the
asymptotic expansions, as described in Proposition 4.

41



Proposition 4. Define

G(x) = Φ(x) +
1

6
√
2πσ3

(
N∑

i=1

pip̄i(pi − p̄i))(1− x2)e−
x2

2 (4.7)

where Φ(x) is the standard normal distribution

Φ(x) =
1√
2π

x∫

−∞

e−
t2

2 dt

and σ is the standard deviation of the distribution Y

σ2 =
N∑

i=1

pi(1− pi)

Then P (a ≤ Y ≤ b) can be approximated by

G(
b− µ+ 0.5

σ
)−G(

a− µ− 0.5

σ
) (4.8)

Neammanee [37] then derived an error bound for the approximation in Equation 4.8. While
the error bound can be derived for distributions with arbitrary value of σ2, the bound gets
worse as σ decreases, which is consistent to the central limit theorem that the distribution
is only well approximated when the number of random variables N is large. For this reason,
we will only compute histogram with approximate probabilities when σ2 ≥ 25, and fall back
to the computation of histogram with exact probabilities when σ2 < 25, using the efficient
algorithms propose in the next section.

Proposition 5. We define the absolute error between the exact probability and the approx-
imate probability as ∆, where

∆ = |P (a ≤ Y ≤ b)− (G(
b− µ+ 0.5

σ
)−G(

a− µ− 0.5

σ
))|

Neammanee bound states that

∆ ≤
{

0.3056
σ2 if 25 ≤ σ2 < 100

0.1618
σ2 if σ2 ≥ 100

(4.9)

Neammanee bound is a uniform bound, which means the bound is independent of the values
a and b. For this reason, the error is equally large in the central portion as the tails. How-
ever, because central portion contains most of the probability mass, and the probabilities at
the tails are usually close to 0, the error in the tails is therefore relatively larger. In sight of
this, we will introduce Chernoff bound [6], which provides an exponentially tighter bound
as one moves away from the mean of the distribution. The Chernoff bound for Poisson
Binomial distribution is presented in Proposition 6.

42



Proposition 6. Chernoff bound dictates that

P (Y ≤ µ− λ) ≤ e−
λ2

2µ

P (Y ≥ µ+ λ) ≤ e−
λ2

2(µ+λ/3)

(4.10)

where µ is the expected value of the distribution Y .

Clearly, the Chernoff bound can be much tighter than Neammanee bound, but only in the
tails. By using both the Neammanee bound the Chernoff bound, we can achieve a relatively
tight uniform bound in the central portion of the distribution, and exponentially tighter
bounds in the tails. The Normal Approximation Algorithm (NA) is presented in Algorithm
17. The Normal Approximation Algorithm involves the computation of the expected value
and the variance of its children in the preprocessing step, which takes O(N). Computing
the approximate probability takes O(1) per bin, therefore the computation of all the bin
probability takesO(B). In general, B ; N , therefore the Normal Approximation Algorithm
has an overall complexity of O(N).

Histogram with Exact Probabilities - Deferred Binning Algorithm (DBA)

Sometimes the computation of histogram with approximate probabilities is not applicable,
either because σ2 is too small for accurate approximation, or when exact probability is
crucial to the situation. For this reason, we will introduce an efficient algorithm for the
evaluation of histogram with exact probabilities for COUNT nodes.

Firstly, we demonstrate that any algorithm for the computation of SUM convolution can-
not possibly involve the computation of histograms as intermediate results. This is because
combining histograms leads to a rapid increase in the bin width under SUM convolution,
as demonstrated in Example 5.

Example 5. Consider random variables X1 and X2, where the probability distributions are
approximated by histograms H1 and H2 with bins

H1

Lower Upper Probability

1 5 0.6
6 10 0.4

H2

Lower Upper Probability

1 2 0.1
3 4 0.9

To find the histogram representation for the distribution Y = X1 + X2, we combine the
histograms according to the rule that summing two bin intervals can be done via [L1, R1] +
[L2, R2] = [L1 + L2, R1 +R2], therefore the histogram H1 +H2 is given by:

H1 +H2

Lower Upper Probability

2 7 0.06
7 12 0.04
4 9 0.54
9 14 0.36

43



ALGORITHM 17: Histogram Evaluation for a COUNT Node - Normal Approximation Algorithm

(NA)

Input: COUNT Node node, Bin Intervals bins
Output: Histogram with approximate probabilities and bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bin intervals bins

for i = 1 to N do
child← ith child of children of node
pi ← 1.0−GetNullProb(child)

end

µ←
∑N

i=1 pi
σ2 ←

∑N
i=1 pi × (1− pi)

/* Neammanee Bound in Equation 4.9 */
if σ2 < 25 then

Revert to evaluation of histogram with exact probabilities using other algorithms
else if σ2 < 100 then

∆← 0.3056/σ2

else
∆← 0.1618/σ2

end

foreach bin ∈ bins do
[a, b]← bin /* [a,b] is the boundaries of bin */

/* Computation of Approximate Probability */

prob← G( 1σ (b− µ+ 0.5))−G( 1σ (a− µ− 0.5)) /* G is defined in Equation 4.7 */

/* Chernoff Bound in Equation 4.10 */
if b < µ then

λ← µ− b
chernoff ← exp(−λ2/(2× µ))

else if a > µ then
λ← a− µ
chernoff ← exp(−λ2/(2× (µ+ λ/3)))

else
chernoff ← 1

end

/* Computation of Lower and Upper Probability Bounds */
lower ← max(prob−∆, 0)
upper ← min(prob+∆, chernoff)

/* histogram[bin] is the probability of bin in histogram */
histogram[bin] ← the approximate probability prob with bound [lower, upper]

end
return histogram

end

44



However, bins with overlapping intervals is not valid in a histogram as there will be no way
to tell the probability for the overlapping region, therefore bins with overlapping intervals
have to be merged into one bin. For example, the bin [2, 7] and the bin [7, 12] overlap in
the region [7, 7], therefore they have to be merged to give the bin [2, 12] with probability
0.06 + 0.04 = 0.1. However, the merged bin [2, 12] also overlaps with the bins [4, 9] and
[9, 14], suggesting that they all have to be merged, resulting in exactly one bin [2, 14] with
probability 1.

Based on the observation in Example 5, we will derive an algorithm that does not involve
the computation of histogram as intermediate result, but can still take advantage of the
histogram approximation setting. In particular, the algorithm involves dividing the children
of a COUNT node into two groups with equal sizes, and performs an exact evaluation using
Standard DP (Algorithm 3 on page 22) over the two groups separately, resulting in two
exact probability distributions. The distributions can then be combined to give histogram
efficiently using Algorithm 18. Because Standard DP has a complexity of O(N2) of COUNT
convolution, splitting them into two groups and evaluating each of them exactly will have
a complexity of O(2 × (N2 )

2) = O(N
2

2 ). Lastly, combining the two distributions according
to Algorithm 18 will have a complexity O(NB), therefore the total complexity is given by

O(N(N2 +B)). In general, we have B ; N , therefore O(N(N2 +B))→ O((N
2

2 )), suggesting
the algorithm can be up to twice as fast as Standard DP.

ALGORITHM 18: Histogram Evaluation for a COUNT Node - Deferred Binning Algorithm

(DBA)

Input: Count Node node, Bin Intervals bins
Output: Histogram with bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bin intervals by bins
Set the bin probability of all bins in histogram to 0
for i = 1 to N do

childi ← ith child of children of node
end

pdfleft ← Perform Exact Convolution for {childi, i = 1 . . . N
2 } using Standard DP

pdfright ← Perform Exact Convolution for {childi, i = N
2 + 1 . . . N} using Standard DP

foreach (v, p) in pdfleft do
foreach bin in bins do

[a, b]← the boundaries of bin
Add P (a− v ≤ pdfright ≤ b− v) to bin in histogram

/* via Binary Search on the cumulative distribution of pdfright */

end
end
return histogram

end

45



Histogram with Exact Probabilities - Recursive Fast Fourier Transform (FFT)

Despite the Deferred Binning Algorithm (Algorithm 18) has exploited the approximation
setting and provides up to two times speedup over exact evaluation using Standard DP,
it has the same quadratic complexity as Standard DP, suggesting that Deferred Binning
Algorithm might not be efficient enough when the number of values to be aggregated N gets
larger. For this reason, we will present a Fast Fourier Transform (FFT) based algorithm
that has a lower complexity.

We first note that if we represent the probability distribution of a random variable Xi by
the polynomial (x is an auxiliary variable):

R∑

v=0

P (Xi = v)xv = P (Xi = 0) + P (Xi = 1)x+ P (Xi = 2)x2 + . . .+ P (Xi = R)xR

Then the convolution result X1 +X2 will be equal to the multiplication of the polynomial
representation of X1 and X2. Intuitively, this is because the convolution result

P (X1 +X2 = V ) =
V∑

u=0

P (X1 = u)× P (X2 = V − u)

matches the coefficient of the V th order term in polynomial multiplication.

Example 6. Consider two random variables X1 and X2, with probability distributions

X1

Value Probability

0 0.5
1 0.3
2 0.2

X2

Value Probability

0 0.1
1 0.5
2 0.4

The polynomial representations of the two probability distributions are

X1 : 0.5x
0 + 0.3x1 + 0.2x2

X2 : 0.1x
0 + 0.5x1 + 0.4x2

The multiplication of the two probability distributions is given by

(0.5x0 + 0.3x1 + 0.2x2)× (0.1x0 + 0.5x1 + 0.4x2)

= 0.05x0 + 0.28x1 + 0.37x2 + 0.22x3 + 0.08x4 (4.11)

The polynomial in Equation 4.11 can then be interpreted as the convolution result of X1+X2:

X1 +X2

Value Probability

0 0.05
1 0.28
2 0.37
3 0.22
4 0.08

46



It is well known that the multiplication of two polynomials with size R can be computed in
O(R logR) by using Fast Fourier Transform (FFT) [7], which implies convolution for two
random variables X1+X2 can also happen in O(R logR), where R is the distribution range
(the difference between the least and largest values of the distribution) of X1 and X2.

In our case, we need to convolve not only two distributions, but N of them:

Y =
N∑

i=1

Xi = X1 +X2 + . . .+XN

Because FFT can only be applied to convolve two random variables at one time, we have
split the convolutions into two halves:

Z1 = X1 +X2 + . . .+XN/2

Z2 = XN/2+1 +XN/2+2 + . . .+XN

Therefore Y = Z1 + Z2, where FFT can be applied to convolve Z1 and Z2 efficiently.
Clearly, before we can convolve Z1 and Z2, we have to evaluate the convolution for Z1 and
Z2. However, as the convolution of Z1 and Z2 is an identical problem as the convolution
of Y , but with smaller size, it can be evaluated in a similar fashion by divide (splitting the
convolution into two halves) and conquer (convolving the two halves via FFT), resulting
in a recursive algorithm. For example, consider the convolution for X1 + X2 + . . . + X8,
the algorithm we propose will perform the computation according to the recursion tree in
Figure 4.1, where each inner node corresponds to an FFT convolution.

..X1 +X2 + . . .+X8

.

X1 +X2 +X3 +X4

.

X1 +X2

.

X1

.

X2

.

X3 +X4

.

X3

.

X4

.

X5 +X6 +X7 +X8

.

X5 +X6

.

X5

.

X6

.

X7 +X8

.

X7

.

X8

Figure 4.1: Recursion tree for the Recursive FFT Algorithm to evaluate X1+X2+ . . .+X8

Additionally, the recursion tree in Figure 4.1 suggests the recursive algorithm will apply
FFT convolution multiple times (7 times Figure 4.1), where each time the convolution is over
random variables with distribution of different ranges. For example, imagine all the random
variables in Figure 4.1 have a range R, then X1 + X2 involves a convolution of variables
with range R, while (X1 +X2 +X3 +X4) + (X5 +X6 +X7 +X8) involves a convolution
of variables with range 4R. While FFT convolution has a lower complexity than Standard

47



Standard DP
FFT

Ti
m

e 
/ s

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Range R
0 100 200 300 400 500 600 700 800 900 1000

Performance of Standard DP and FFT for convolution of two distributions with varying range

Figure 4.2: Performance of Standard DP and FFT for convolution of two random variables

DP (Algorithm 3 on page 22), FFT convolution involves more overhead, therefore it might
be less efficient than Standard DP when the range for the two distributions to be convolved
is small. It is clear in Figure 4.1 that the recursive algorithm performs many convolutions
of random variables of small range (those at the bottom of the recursion tree), therefore it
is important for the recursive algorithm to revert to Standard DP when convolving random
variables at the bottom of the tree. In particular, Figure 4.2 compares the runtime of DP
and FFT convolutions of two distributions with different ranges R, which suggests that
Standard DP performs better when N < 300.1 The recursive algorithm that combines FFT
and Standard DP for exact evaluation is presented in Algorithm 19. The algorithm has a
complexity O(N(logN)2), where N is the number of children of the COUNT node.

Despite its lower complexity in comparison to the Deferred Binning Algorithm (Algorithm
18 on page 45), the Recursive FFT Algorithm can only evaluates the full distribution for the
COUNT node but not take advantage of the histogram approximation setting, therefore it
is unclear which of the two algorithms will be better under different circumstances.2 Their
performances will be benchmarked and investigated in Chapter 7.

1There exists different variants of implementation for FFT convolution, and the one we used is the
Cooley-Tukey algorithm [7]. The algorithm requires the range of the two input distributions to be a power
of 2, therefore the algorithm needs to pad the distributions with 0 so as to make the size of the distributions
a power of 2, making the runtime a constant in region between adjacent powers of 2.

2We note that, however, after obtaining the histogram representation of the distribution using Algorithm
12 on page 36, time saving due to the approximation setting can happen in other nodes in the d-tree.

48



ALGORITHM 19: Exact Evaluation for COUNT/SUM Node - Recursive FFT Algorithm (FFT)

Input: COUNT/SUM Node node
Output: The Probability Distribution of the Evaluation Result

ExactEvaluation(node)
begin

/* Getting the random variables for the child subtrees of node */
for i = 1 to N do

child← ith child of children of node
Xi ← ExactEvaluation(child)

end
return FFTRecursive({X1, X2, . . . , XN})

end

FFTRecursive(A)
begin

if Size of A = 1 then
return the only element in A

end

Yleft ← FFTRecursive(First half of A)
Yright ← FFTRecursive(Second half of A)
if Size of Yleft < 300 then

return ConvolveByStandardDP (Yleft, Yright) /* See Algorithm 3 on page 22 */
else

return ConvolveByFFT (Yleft, Yright) /* See Cooley and Tukey [7] */
end

end

4.2.5 SUM

For a SUM node Y with N children, which can be represented by the independent random
variables X1, X2, . . . , XN , the computation for the SUM node can be defined as the SUM
convolution of the random variables:

Y =
N∑

i=1

Xi (4.12)

While the random variables X1, X2, . . . , XN are independent, they can be non-identically
and arbitrarily distributed as long as the distribution is finite. SUM nodes have the most
expensive computation compared to MIN, MAX, and COUNT nodes as up to an exponential
number of possible values can be returned. Exact Evaluation for a SUM node can be done
via multiple applications of Standard DP (Algorithm 3 on page 22), with a complexity
O((NR)2), where R is the range of the distributions.

Distribution Range

According to Equation 4.12, the least and largest possible values in Y come from the least
and largest possible values in the random variables Xi, i = 1 . . . N , therefore the distribution
range for a SUM node can be retrieved by Algorithm 20.

49



ALGORITHM 20: Get Distribution Range for a SUM Node

Input: COUNT Node node
Output: Distribution Range of node

GetDistributionRange(node)
begin

least←∞
largest← −∞
foreach child ∈ children of node do

[L,R]← GetDistributionRange(child)
least← least+ L
largest← largest+R

end
return [least, largest]

end

Histogram with Approximate Probabilities - Normal Approximation Algorithm
(NA)

Since a SUM node is the general version of a COUNT node, the Central Limit Theorem
(CTL) is also applicable here. However, the Neammanee bound (Equation 4.9) is only
applicable when the random variables have the support {0, 1}, therefore we need a more
general version of it for SUM nodes. This leads us to the Berry-Esseen theorem [4, 14],
where it provides an error bound for using normal approximation on Y , as long as the
random variables Xi are independent to each other. Berry-Essent theorem is presented in
Proposition 7, where the lower bound for C is derived by Esseen [15]. The upper bound
for C has been subsequently lowered since the original estimate at 7.59 [14], and the best
estimate in the literature is 0.5600 due to Shevtsova [42].

Proposition 7. For Equation 4.12, Berry-Esseen theorem states that

|P (Y < x)− Φ(
x− µ

σ
)| ≤ C ·

∑N
i=1 ρi

(
∑N

i=1 σ
2
i )

3/2
(4.13)

where ρi and σ are the absolute third moment and standard deviation of Xi respectively,
and

C ≥
√
10 + 3

6
√
2π

= 0.40973218 . . .

Similarly, while Chernoff bound (Equation 4.10) serves well for COUNT nodes to provide
an exponentially tighter bounds in the tails of the distribution, it is only applicable when
the input variables have support {0, 1}. Hoeffding’s inequality [27] is the general version
of Chernoff bound, where it lifts the constraint that the input variables need to have the
support {0, 1}, and provides a bound even when the input variables have arbitrary distri-
bution, which makes it the suitable for a SUM node. Hoeffding’s inequality is presented in
Proposition 8.

50



Proposition 8. With Equation 4.12 and

µ =
N∑

i=1

pi

Hoeffding’s inequality states that

P (Y ≤ µ− λ) ≤ 2e
− 2λ2∑N

i=1(bi−ai)
2

P (Y ≥ µ+ λ) ≤ e
− 2λ2∑N

i=1(bi−ai)
2

(4.14)

By combining Berry-Esseen bound and Hoeffding bound, we arrive at the Normal Approx-
imation Algorithm (NA) for the evaluation of histogram with approximate probabilities for
SUM node in Algorithm 21. Similar to its counterpart for COUNT node (Algorithm 17),
it has a complexity of O(N). We also note that the algorithm calls for the computation of
mean, variance and absolute third moment for the child subtrees, where efficient algorithms
for this purpose will be derived in the Appendix A.

Histogram with Exact Probabilities - Early Binning Algorithm (EBA)

While the Normal Approximation algorithm (Algorithm 21) provides an efficient approach
for the computation of histogram with approximate probabilities for SUM nodes, there are
situations when it is crucial for the bin probability to be exact. In this section, we will
discuss some efficient approaches for the computation of histogram with exact probabilities
for a SUM node.

As we have demonstrated in Example 5, summing random variables with histogram repre-
sentations will lead to a rapid increase in the bin width, making the resulting histogram com-
pletely useless. This implies the computation cannot be proceeded when only the histogram
representations of the SUM node’s children are given, therefore the complete probability
distributions of its children have to be retrieved. This suggests that to compute histogram
with exact probabilities for a SUM node, the subtrees below the SUM node will have to be
evaluated exactly, making SUM node a blocking operator. Example 5 also suggests that any
algorithm for the computation cannot possibly involves histograms as intermediate result,
which provides a guideline when devising efficient algorithms for the computation.

Firstly, we note that the Deferred Binning Algorithm for COUNT node (Algorithm 18 on
page 45), where we divide the children into two groups and perform exact evaluation on
them separately before combining the probability distributions in the form of a histogram
efficiently, will also be applicable for SUM nodes with minor changes to the algorithm.
The similarity between SUM and COUNT node suggests that there will be around 2 times
performance speedup using this approach.

Additionally, we will propose an algorithm that is optimised for histogram zooming for
SUM aggregate queries, based on the idea that when using Standard DP repeatedly to
convolve random variables one by one, it is sometimes possible to move values in the inter-
mediate distribution to the correct bins earlier, therefore reducing the size of intermediate
distribution and saving sequential computation time.

51



ALGORITHM 21: Histogram Evaluation for a SUM Node - Normal Approximation Algorithm

(NA)

Input: Sum Node node, Bin Intervals bins
Output: Histogram with bounded probabilities and bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bins

µ,σ2, ρ,κ← 0
for i = 1 to N do

child ← ith child of node

µ← µ+GetMean(child)
σ2 ← σ2 +GetV ariance(child)
ρ← ρ+GetThirdMoment(child)

/* κ is used in the computation of Hoeffding Bound */
[L,R]← GetDistributionRange(child)
κ← κ+ (R− L)2

end

/* Berry-Esseen Bound in Equation 4.13 */
∆ = 0.5600× ρ/σ3

foreach bin ∈ bins do
[a, b] ← the boundaries of bin

/* Computation of Approximate Probability */

prob← Φ( b−µσ )− Φ(a−µ−1σ )

/* Hoeffding Bound in Equation 4.14 */
if b < µ then

λ← µ− b
hoeffding = 2exp(−2λ2/κ)

else if a > µ then
λ← a− µ
hoeffding = exp(−2λ2/κ)

else
hoeffding = 1

end

/* Computation of Lower and Upper Probability Bounds */
lower ← max(prob− 2∆, 0)
upper ← min(prob+ 2∆, hoeffding)

/* histogram[bin] is the probability of bin in histogram */
histogram[bin] ← the approximate probability prob with bound [lower, upper]

end
return histogram

end

52



To understand how the algorithm works, let’s consider the convolution of N random vari-
ables X1, X2, . . . , XN

YN =
N∑

i=1

Xi

We define Yk to be the intermediate result after the convolution of the first k random
variables

Yk =
k∑

i=1

Xi

Let V k
min and V k

max be the least and largest values in the distribution
∑N

i=k+1Xi:

V k
min =

N∑

i=k+1

min(Xi)

V k
max =

N∑

i=k+1

max(Xi)

For (v, p) ∈ Yk, if v + Vmin and v + Vmax belong to the same bin [a, b], i.e.

a ≤ v + Vmin ≤ v + Vmax ≤ n

By definition, we have Vmin ≤
∑N

i=k+1Xi ≤ Vmax, hence

a ≤ v +
N∑

i=k+1

Xi ≤ b (4.15)

Equation 4.15 suggests that while the value v in the intermediate distribution might be
convolved into other values by the remaining variables Xk+1, Xk+1, . . . , XN , the convolved
values will always belong to the bin [a, b]. Therefore the result will not be changed if
one simply remove the v from the intermediate distribution and add p to the bin [a, b]
directly.

Based on this idea, we develop the Early Binning Algorithm (EBA), which extends Standard
DP (Algorithm 3 on page 22) by moving values in the intermediate distribution to the
appropriate bin as early as possible. This results in a smaller intermediate distribution,
potentially leading to an exponential saving. Intuitively, the algorithm works the best when
some of the bins are wide enough, making the algorithm suitable for histogram zooming.
The Early Binning Algorithm is presented in Algorithm 22. Despite the algorithm’s slightly
higher complexity O(N2R(R + logB)), where R is the range of the distributions for the
node’s children and B is the target number of bins, the algorithm is expected to have a
better average runtime due to the potentially shrinking intermediate distribution.

Together with the fact that the Recursive FFT Algorithm (Algorithm 19 on page 49) is also
applicable to a SUM node, we now have three different algorithms for the computation of
histogram with exact probabilities for SUM nodes, namely the Deferred Binning Algorithm
(Algorithm 18), the Early Binning Algorithm (Algorithm 22) and the Recursive FFT Algo-
rithm. While the Recursive FFT Algorithm has lower complexity O(NR log(NR) log(N)),

53



where N is the number of children of a SUM node and R is the range of the distribution of
its children, the Deferred Binning Algorithm and the Early Binning Algorithm are heavily
optimised for the histogram approximation setting, therefore it is unclear which algorithms
will have the best performance at this point. For this reason, their performance will be
examined and compared in Chapter 7.

ALGORITHM 22: Histogram Evaluation for a SUM Node - Early Binning Algorithm (EBA)

Input: Sum node node, Bin Intervals bins
Output: Histogram with bin intervals bins

HistogramEvaluation(node, bins)
begin

histogram ← New Histogram with bins

X ← {} /* X holds the intermediate distribution */
X[0]← 1
for i = 1 to N do

/* Convolution of random variables via Standard DP */

Y ← ExactEvaluation(ith child of node)
Z ← {} /* Z = X + Y */
for (vx, px) ∈ X, (vy, py) ∈ Y do

Z[vx + vy]← Z[vx + vy] + pxpy
end

/* Calculating minimum and maximum shift */
Vmin, Vmax ← 0, 0
for j = i+ 1 to N do

[L,R]← GetDistributionRange(jth child of node)
Vmin ← Vmin + L
Vmax ← Vmax +R

end

/* Early Binning Extension - Run only when there are values to be binned
early */

if Vmax − Vmin ≤ width of at least one of the bins then
foreach (v, p) ∈ Z do

bmin ← the bin containing v + Vmin /* via Binary Search */
bmax ← the bin containing v + Vmax /* via Binary Search */
if bmin = bmax then

Remove v from Z
histogram[bmin]← histogram[bmin] + p

end
end

end

X ← Z
end

return histogram
end

54



Chapter 5

Top-k Approximation

5.1 Overview

Top-k approximation retrieves only the most probable values and the corresponding prob-
abilities in the probability distribution of aggregate query result. While histogram approx-
imation provides a synopsis, top-k approximation provides the highest quality results in
the distribution. In this chapter, we will present efficient algorithms for evaluation of MIN,
MAX, COUNT, and SUM aggregate queries in this approximation setting.

5.1.1 Strategy

Similar to histogram approximation, the most straight-forward approach to support top-k
approximation is to first perform an exact evaluation on the aggregate query to obtain the
full probability distribution over the possible answers, and the most probable k answers can
then be extracted straightforwardly after the distribution is sorted by probability. Arguably,
by returning only the k most probable answers, this approach provides more concise and
intuitive result than exact evaluation. However, the approach does not take advantage of
the approximation setting fully to improve the performance of query evaluation.

For this reason, we will develop algorithms specifically designed for top-k approximations.
The recursive nature of a decomposition tree (d-tree) suggests that the evaluation of top-k
approximation can be tackled by solving the identical problem for each node in a d-tree.
More specifically, given a convolution node (or UNION node) ⊕ in a d-tree, with N children
represented by the random variables X1, X2, . . . , XN , we need to develop algorithms to
compute

Pvi = P (X1 ⊕X2 ⊕ . . .⊕XN = vi) (5.1)

in increasing order of i ∈ N1 sequentially, where Pvi ≥ Pvi+1.

The ultimate goal is to perform the computation for Equation 5.1 without having the full
probability distributions for its children Xi, but only with the most probable values of the
distributions. This ensures the algorithms can be applied to the child node of ⊕ in the same
way as the node ⊕ itself in a recursive manner, allowing speedup to happen in all levels of
the d-tree.

55



5.1.2 Framework

The framework for top-k approximation relies on one core method and two auxiliary meth-
ods for each type of nodes in a decomposition tree:

Next Most Probable Value

This is the core method for the evaluation of top-k approximation for each node, where the
tuple containing the next most probable value and the corresponding probability for the
result of the current node is returned. The interface is presented in Algorithm 23.

ALGORITHM 23: Next Top Interface

Input: A Node in Decomposition Tree node
Output: The Next Most Probable Tuple (V alue, Probability)

NextTop(node)

After compiling an aggregate query into a d-tree, top-k approximation can then be achieved
by the calling the interface NextTop (Algorithm 23) k times on the root node of the d-tree,
as depicted in Algorithm 24.

ALGORITHM 24: Top-k Evaluation for a Decomposition Tree

Input: Root Node of a Decomposition Tree root, Number of Most Probable Values k
Output: Top-k Most Probable Values with the corresponding Probability

TopkEvaluation(node)
begin

topk ← Empty List
for i = 1 to k do

Add NextTop(node) to topk
end
return topk

end

Next Least Value & Next Largest Value

The proposed algorithm for the computation of the next most probable values for a MIN/-
MAX node (Algorithm 30 on page 69) consumes the probability distributions of its children
sequentially in sorted order of values. Owing to the fact that the children of a MIN/MAX
node can be any type of nodes, it is necessary for all types of nodes to support efficient
retrieval of the least and largest values (and the corresponding probabilities) sequentially.
For this reason, the framework requires two auxiliary methods for the nodes, and their
interfaces are presented in Algorithm 25 and Algorithm 26 respectively.

While retrieving the next least and largest values are auxiliary methods for the computation
of the most probable values, there are situations when they can be applicable in their own
rights. For example, a risk-taking investor might be interested in finding out the highest
possible profit of an investment and the corresponding probability, where the probability
distribution for the profit is derived from an aggregate query. This can be done efficiently

56



by calling NextLargest() on the root node of the d-tree to retrieve the largest value in the
final distribution.

ALGORITHM 25: Next Least Tuple Interface

Input: A Node in Decomposition Tree node
Output: The Next Least Tuple (V alue, Probability)

NextLeast(node)

ALGORITHM 26: Next Largest Tuple Interface

Input: A Node in Decomposition Tree node
Output: The Next Largest Tuple (V alue, Probability)

NextLargest(node)

Because NextLeast() and NextLargest() are symmetric to each other, we will focus on the
algorithms for NextLargest() in the rest of the chapter. It should then be straight forward
to adapt the algorithms to work for NextLeast().

5.2 Algorithms

5.2.1 VARIABLE

VARIABLE nodes correspond to the random variables in semimodule expressions, where
each random variable carries a complete probability distribution. Because the leaves of
d-trees are always VARIABLE nodes, the algorithms for VARIABLE node also form the
base cases for the recursive computation of top-k approximation.

Next Largest

With the complete probability distribution carried by a VARIABLE node, the next largest
value in the distribution can easily be retrieved by first sorting the distribution by value,
and the tuple (value, probability) can then be returned one by one in a similar manner as an
iterator. Because it is natural to store the probability distributions of the random variables
by value in the database, the sorting step can often be skipped. For a VARIABLE node
with a (unsorted) distribution of support size M , the preprocessing step takes O(M logM)
and the subsequent retrieval takes O(1) per tuple.

Next Top

Retrieving the next most probable tuple (value, probability) for a VARIABLE node is sim-
ilar to the process for retrieving the next largest tuple, except the distributions are sorted
by probability instead of value. Once again, for a VARIABLE node with a distribution
of support size M , the preprocessing step takes O(M logM) and the subsequent retrieval
takes O(1) per tuple.

57



5.2.2 UNION

UNION node is created when Shannon expansion is performed on one or more variables for
a semimodule expression, and each of the branches of a UNION node corresponds to one
of the possible assignments for the expanding variables. Consider a UNION node Y with
children X1, X2, . . . , XN , where the probability of the assignment for the branch connecting
the UNION node Y and the child Xi is wi, then the result of the computation on the
UNION node is given by the probability distribution of Y , where

P (Y = v) =
N∑

i=1

wi × P (Xi = v) (5.2)

This suggests exact evaluation on a UNION node (using Algorithm 2 on page 22) has a com-
plexity O(NM), where M is the support size of the probability distribution for individual
child Xi. Technically, if the support sizes of the probability distributions for Xi, i = 1 . . . N
are different, M refers to the maximum one.

Next Largest

According to Equation 5.2, the possible values in Y come directly from the possible values
in Xi, hence

supp(Y ) =
⋃

i

supp(Xi)

The result indicates that the next largest value in Y must come from the next largest value
in its children. Base on this idea, we propose the algorithm to retrieve the next largest
value for a UNION node in Algorithm 27, where a maximum heap is used to retrieve the
largest value from its children efficiently.

The number of tuples to be popped from the heap for the retrieval of the next largest tuple
(v, p) depends on the number of the children having the value v in their distributions. When
the value v is only in the distribution of one child, then only one tuple needs to be popped.
On the other hand, if the value v is in the distribution of all N children, then N tuples need
to be popped from the heap for the retrieval. Therefore the complexity of the algorithm
ranges from O(logN) to O(N logN) per retrieval.

Example 7. To demonstrate how Algorithm 27 proceeds in retrieving the next largest value
and the corresponding probability, consider a UNION node with three children represented
by the random variables X1, X2, and X3, where the branch probabilities from the UNION
node to X1, X2, and X3 are 0.5, 0.3, and 0.2 respectively.

We will represent the probability distributions of the random variables in the form of tuples
(value, probability) in the following table:

w1 = 0.5 w2 = 0.3 w3 = 0.2

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

58



ALGORITHM 27: Next Largest Tuple for a UNION Node

Input: UNION Node node
Output: The Tuple (V alue, Probability) with Next Largest Value

NextLargest(node)
begin

/* Execute only the first time the method is called */
if not initialised then

pool← Empty Max Heap
for i = 1 to N do

childi ← ith children of node
wi ← Branch Probability from node to childi
(v, p)← NextLargest(childi)
Add (v, p, i) to pool with Key = v

end
initialised← True

end

ptotal ← 0
v ← Key of Largest Element in pool
while Key of the Largest Element in pool = v do

v, p, i← Pop Largest Element in pool
ptotal ← ptotal + p× wi /* Equation 5.2 */
(vnext, pnext)← NextLargest(childi)
Add (vnext, pnext, i) to pool with Key = vnext

end
return (v, ptotal)

end

During initialisation stage, the next largest value for each of the children will be retrieved
and placed into a maximum heap. The values currently in the heap are labelled in red:

w1 = 0.5 w2 = 0.3 w3 = 0.2

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

Firstly, the largest value in the heap is popped, which corresponds to the tuple (100, 0.8)
from X1. After the tuple probability 0.8 is multiplied by w1 = 0.5, we have computed the
first largest tuple (100, 0.4) for the UNION node. At the same time, because we have popped
the value that belongs to X1 in the heap, we will retrieve the next largest value from X1 and
add it to the heap:

w1 = 0.5 w2 = 0.3 w3 = 0.2

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

59



The next largest value in the heap is 20. However, because the value is in the distribution
of X1, X2, and X3, three tuples (20, 0.2), (20, 0.6), (20, 1.0) will be popped from the heap.
Combining the tuples according to Equation 5.2 leads us to the next largest tuple (20, 0.48)
for the UNION node. Because the value we popped belongs to all three variables, therefore
we should retrieve the next largest tuples for all three children and add them to the heap.
However, the values in X1 and X3 have been exhausted, therefore we can only add the next
largest value from X2 to the heap:

w1 = 0.5 w2 = 0.3 w3 = 0.2

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

Lastly, the final value in the heap is popped, corresponding to the tuple (10, 0.4). Together
with the weight w2 = 0.3, the next largest tuple for the UNION node (10, 0.12) is computed.
At this point, the computation is done as the heap is empty.

w1 = 0.5 w2 = 0.3 w3 = 0.2

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

Next Most Probable

Equation 5.2 indicates that for a UNION node with N children represented by the random
variables X1, X2, . . . , XN , P (UNION(X1, X2, . . . , XN ) = v) is a monotonic function of the
corresponding probabilities from its children P (Xi = v), i = 1 . . . N . This suggests that
if we retrieve the next most probable tuples from the children sequentially, it is possible
to deduce the next most probable tuple for the UNION node early by using Threshold
Algorithm (TA) [16].

We will explain TA via an example. Consider a UNION node with two children X1, X2,
where the probabilities of the branches from the node to X1 and X2 are w1 = 0.6 and
w2 = 0.4 respectively. Part of the probability distributions for X1 and X2 are shown in the
following table:

w1 = 0.6 w2 = 0.4

X1 X2

(100, 0.3) (50, 0.6)
(80, 0.1) (100, 0.1)
(45, 0.08) (65, 0.05)

...
...

In each step, we retrieve the next most probable tuples from X1 and X2, and derive a lower
bound and upper bound for P (UNION(X1, X2) = v), where v ∈ the set of values retrieved

60



from either X1 or X2. Therefore the first step involves retrieving the tuples (100, 0.3) and
(50, 0.6) from X1 and X2 respectively.

Because the tuple (100, 0.3) we just retrieved from X1 is the tuple with the highest probabil-
ity inX1, it is guaranteed that all the other tuples we retrieve fromX1 subsequently will have
a lower probability than 0.3. For this reason, we will call this value the threshold of X1, la-
belled as T1 = 0.3. While the tuple we retrieved from X2 indicates that P (X2 = 50) = 0.6,
we do not have enough information to compute P (UNION(X1, X2) = 50) exactly as we
haven’t retrieved the tuple with value 50 from X1 yet. In fact, it is possible that 50 is not
even in the distribution of X1. However, it is guaranteed that

0 ≤ P (X1 = 50) ≤ T1

The inequality and the information that P (X2 = 50) = 0.6 can then be used in Equation
5.2 to derive the following bound on P (UNION(X1, X2) = 50):

0× w1 + P (X2 = 50)× w2 ≤ P (UNION(X1, X2) = 50) ≤ T1 × w1 + P (X2 = 50)× w2

0.24 ≤ P (UNION(X1, X2) = 50) ≤ 0.42

Similarly, we can derive a threshold on X2 based on the information that the tuple (50, 0.6)
we retrieved from X2 has a higher probability than any other subsequent tuples, hence
T2 = 0.6. However, we also note that the sum of probabilities for all the tuples in X2

is 1, therefore we can place a tighter bound on the threshold: T2 = 1 − 0.6 = 0.4. The
threshold can then be used with the information P (X1 = 100) = 0.3 in Equation 5.2 to get
the following bound:

P (X1 = 100)× w1 + 0× w2 ≤ P (UNION(X1, X2) = 50) ≤ P (X1 = 100)× w1 + T2 × w2

0.18 ≤ P (UNION(X1, X2) = 50) ≤ 0.34

The current state of the computation is depicted in the following tables (the red labels
indicate the tuples that have been retrieved for processing in the current step):

w1 = 0.6 w2 = 0.4

X1 X2

(100, 0.3) (50, 0.6)
(80, 0.1) (100, 0.1)
(45, 0.08) (65, 0.05)

...
...

T1 = 0.3 T2 = 0.4

Retrieved Tuples

Value Lower Prob Upper Prob

50 0.24 0.42
100 0.18 0.34

Because the bounds for the values 50 and 100 overlap, we are not in a position to deduce
whether 50 or 100 is the most probable tuple yet, therefore we have to continue the com-
putation to tighten the bounds. Retrieving the next most probable tuples from X1 and X2

and updating the bounds of the retrieved values using a similar procedure as the previous
step lead us to the following state:

61



w1 = 0.6 w2 = 0.4

X1 X2

(100, 0.3) (50, 0.6)
(80, 0.1) (100, 0.1)
(45, 0.08) (65, 0.05)

...
...

T1 = 0.1 T2 = 0.1

Retrieved Tuples

Value Lower Prob Upper Prob

50 0.24 0.30
100 0.22 0.22
80 0.06 0.10

At this point, we have confirmed that the value 50 has a lower probability bound higher
than the upper probability bounds of all seen tuples (i.e. value 100 and 80), making it a
candidate of being the most probable tuple for UNION(X1, X2). To confirm this, we have
to ensure that the lower probability bound of the value 50 is also higher than the upper
probability bounds for all the unseen tuples (such as values 45 and 65). Base on T1 and T2

with Equation 5.2, we can derive an overall threshold T that provides an upper bound on
the probabilities of the unseen tuples:

T = T1 × w1 + T2 × w2

= 0.1× 0.6 + 0.1× 0.4

= 0.1

Because T < 0.24, the result confirms that the value 50, with a probability bound [0.24, 0.30]
is the most probable tuple.

In summary, TA consists of the following four steps in each stage:

1. Retrieve the next most probable tuples from X1 and X2. These tuples will be referred
to as the seen tuples.

2. Deduce an upper bound on the probability of the unseen tuples for X1 and X2,
labelled T1 and T2. Specifically, assuming the last tuple retrieved from Xi is (vi, pi),
then Ti = min(pi, 1− pi).

3. For the values we have seen (either in this step or in previous steps), compute a lower
bound and an upper bound for the probability using Equation 5.2 with T1 and T2.

4. Compute the upper probability bound for the unseen tuples T = T1 × w1 + T2 × w2.
If there exists a seen tuple with a lower probability bound higher than the upper
probability bound of all other seen tuples (i.e. the values we have computed in step
3) and unseen tuples (i.e. the value T ), return the tuple. Otherwise repeat from step
1.

The TA algorithm we adapted for the purpose of computing the next most probable tuple
on a UNION node is presented in Algorithm 28. TA has been proved to be instance optimal
[16], which means it has the optimal complexity for all input instances.

Note that while the algorithm returns probability bounds (i.e. top-k approximation with
approximate probability), the bounds can be tightened by allowing the algorithm to scan
more tuples from the children. Nonetheless, the bounds will generally be very tight, as they
would usually overlap with the probability bounds of another tuple otherwise.

62



ALGORITHM 28: Next Most Probable Tuple for a UNION Node - Threshold Algorithm (TA)

Input: UNION Node node
Output: The Next Most Probable Tuple (V alue, Probability)

NextLargest(node)
begin

/* Execute only the first time the method is called */
if not initialised then

pool← {}
retrieved← {}
guide←MaxHeap
for i = 1 to N do

childi ← ith children of node
wi ← Branch Probability from node to childi
(v, p)← NextTop(childi)
Add (v, p, i) to guide with Key (p× wi)
cumulativei ← 1

end
initialised← True

end

while True do
(v, p, i)← Pop the largest item from guide /* Optimisation: Retrieve from the
children that will lower the threshold the most */
if v /∈ retrieved then

if v ∈ pool then
v, l, unseen← Pop v from pool
Remove i from unseen
l← l + p× wi /* Update the lower probability bound for v */

else
unseen = {1, 2, . . . , N}
l← p× wi /* Compute the lower probability bound for v */

end
Add (v, l, unseen) to pool

end

cumulativei ← cumulativei − p
Ti ← min(p, cumulativei)

threshold←
∑N

i=1 Ti × wi /* Update threshold T */

(v, p)← NextTop(childi)
Add (v, p, i) to guide with Key (p× wi)

vtop, ltop, unseentop ← tuple in pool with largest l
if ltop ≥ threshold then

if ltop ≥ all elements in {l +
∑

i∈unseen Ti × wi, (v, l, unseen) ∈ pool ∧ v /= vtop} then
utop ← l +

∑
i∈unseentop

Ti × wi /* Upper probability bound for vtop */

Move the tuple for vtop from pool to retrieved
return (vtop, ltop, utop)

end
end

end
end

63



5.2.3 MIN/MAX

MIN and MAX nodes correspond to the operators +min and +max in semimodule expressions
respectively. Because MIN and MAX are symmetric to each other, the algorithms developed
for one of them can readily be adapted to work on the other. For this reason, we will only
focus on MAX nodes in this section. Exact evaluation for a MIN/MAX node can be done
via multiple applications of Standard DP (Algorithm 3 on page 22), with a complexity
O((NM)2), where N is the number of children for the MIN/MAX node and M is the
support size of the probability distributions for its children.

Next Largest

Proposition 1 on page 38 states that

supp(MAX(X1, X2, . . . , XN )) =
N⋃

i=1

supp(Xi)−{x ∈ N : x < max
i=1...N

(min(supp(Xi)))} (5.3)

Equation 5.3 suggests the next largest value for a MAX node comes directly from the next
largest value of its children.

Proposition 2 on page 39 states that

P (MAX(X1, X2, . . . , XN ) ≤ v) =
N∏

i=1

P (Xi ≤ v)

Therefore

P (MAX(X1, X2, . . . , XN ) = v) =
N∏

i=1

P (Xi ≤ v)−
N∏

i=1

P (Xi < v) (5.4)

Equation 5.3 and Equation 5.4 can be combined so that one can retrieve the next largest
tuple for a MAX node by retrieving the next largest tuples from its children sequentially
and keeping track of the total remaining probabilities for the children. Base on this idea,
we propose the Heap Method in Algorithm 29, which is similar to the algorithm for retriev-
ing the next largest tuple for a UNION node (Algorithm 27 on page 59), except for the
computation of probabilities for the tuples. Similar to Algorithm 27, the algorithm has a
complexity ranging from O(logN) to O(N logN) per retrieval.

Example 8. We demonstrate the Heap Method by considering a MAX node with three
children represented by the random variables X1, X2 and X3. We represent the probabil-
ity distributions of the random variables in the form of tuples (value, probability) in the
following table:

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

64



ALGORITHM 29: Get Next Largest Tuple for a MAX Node - Heap Method (HM)

Input: MAX Node node
Output: The Tuple (value, probability) with Next Largest Value

NextLargest(node)
begin

/* Execute only the first time the method is called */
if not initialised then

heap← Empty Max Heap
for i = 1 to N do

childi ← ith child of node of children
(v, p)← NextLargest(childi)
Add (v, p, i) to heap with key = v
Set Ri ← 1

end
Rtotal ← 1
initialised← True

end

R′total ← Rtotal

v ← Key of Largest Element in heap
while Key of Largest Element in heap = v do

(v, p, i)← Pop Largest Element in heap
R′i ← Ri /* R′i = P (childreni ≤ v) */
Ri ← Ri − p /* Ri = P (childreni < v) */

Rtotal ← Rtotal ×Ri/R′i /* Rtotal =
∏N

i=1 Ri */
(vnext, pnext)← NextLargest(childi)
Add (vnext, pnext, i) to heap with key = vnext

end
ptotal ← R′total −Rtotal /* Equation 5.4 */
return (v, ptotal)

end

During initialisation stage, the next largest value for each of the children will be retrieved
and placed into a maximum heap. Additional, the remaining probability for the variable Xi

will be labelled as Ri, which has the value 1 initially. We arrive at the following state after
the initialisation stage, where the values currently in the heap are labelled in red:

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

R1 = 1 R2 = 1 R3 = 1

Firstly, the tuple with the largest value (100, 0.8) from X1 is popped from the heap. According
to Equation 5.4, we have

P (MAX(X2, X2, X3) = 100) = R1 ×R2 ×R3 − (R1 − 0.8)×R2 ×R3

= 0.8

65



Therefore the largest tuple (100, 0.8) is returned. We then decrease R1 by 0.8, and put the
next largest value retrieved from X1 to the heap, leading us to the following state:

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

R1 = 0.2 R2 = 1 R3 = 1

At this point, the largest value in the heap is 20, shared by three tuples from each of the
random variables: (20, 0.2), (20, 0.6), (20, 1.0). We pop all three of them from the heap, and
compute the probability according to Equation 5.4 to give:

P (MAX(X2, X2, X3) = 20) = R1 ×R2 ×R3 − (R1 − 0.2)× (R2 − 0.6)× (R3 − 1.0)

= 0.2

Therefore the next largest tuple (20, 0.2) is returned. Because we have consumed all the
values in the distribution of X1 and X3, we will only retrieve the next largest value from X2

and add it to the heap. Updating the values for R1, R2, R3 leads us to

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

R1 = 0 R2 = 0.4 R3 = 0

Lastly, the final tuple (10, 0.4) is popped from the heap. The probability is given by

P (MAX(X2, X2, X3) = 100) = R1 ×R2 ×R3 −R1 × (R2 − 0.4)×R3

= 0

At this point, the computation is completed as all the values in the distributions have been
consumed.

X1 X2 X3

(100, 0.8)
(20, 0.2) (20, 0.6) (20, 1.0)

(10, 0.4)

Exact Evaluation using the Heap Method

We observe that using the Heap Method, which is designed for top-k approximation, to
retrieve all the tuples in the distribution can still acquire a lower complexity than using
Standard DP, suggesting the Heap Method as a replacement for Standard DP for exact
evaluation over MIN/MAX nodes.

66



Firstly, consider exact evaluation on a MAX node with N children, represented by the ran-
dom variables X1, X2, . . . , XN . We further assume that the support size of the distributions
of the children is M . While Standard DP does not require the distributions of the children
to be sorted, the Heap Method acts on distributions that are sorted by value. Therefore
the preprocessing step for using the Heap Method for exact evaluation involves sorting N
distributions of size M , which has a complexity of O(NM logM).

With the distributions sorted, the Heap Method can then be used to compute the exact
evaluation result on the MAX node one by one. In exact evaluation, we are interested in the
entire probability distribution, therefore we will compute not just the largest k tuples, but
all of them instead. Because the Heap Method proceeds by adding and popping each value
retrieved from the children to a heap of size N once, it has a complexity O(NM logN) in
the computational step.

Combining the complexity of the preprocessing step and the computational step leads us
to

O(NM logM) +O(NM logN) = O(NM log(NM))

The result suggests that using the Heap Method for exact computation has a lower com-
plexity than using Standard DP, which has a complexity O((NM)2).

Next Most Probable

Before we propose the algorithm for computing the next most probable tuple for a MAX
node, we present a key observation regarding the probability distribution of the evaluation
result for a MAX node:

Base on Proposition 2 on page 39, we have

P (MAX(X1, X2, . . . , XN ) ≤ v) =
N∏

i=1

P (Xi ≤ v)

Therefore

P (MAX(X1, X2, . . . , XN ) > v) = 1−
N∏

i=1

P (Xi ≤ v) (5.5)

According to Equation 5.5, the probability P (MAX(X1, X2, . . . , XN ) > v) converges to 1
quickly as N increases, even when v is relatively large (i.e. P (Xi ≤ v) is also large). For
example, if P (X1 ≤ v) = p for i = 1 . . . N , then the probability for

P (MAX(X1, X2, . . . , XN ) > v) = 1−
N∏

i=1

p = 1− pN

is captured in the following table:

1− pN

p = 0.5 p = 0.9 p = 0.99 p = 0.999

N = 100 1.000000 0.999973 0.633968 0.095208
N = 1000 1.000000 1.000000 0.999957 0.632304
N = 10000 1.000000 1.000000 1.000000 0.999955
N = 100000 1.000000 1.000000 1.000000 1.000000

67



The result demonstrates that most of the probability mass in MAX(X1, X2, . . . , XN ) lies
on the tuples with the largest values, even if the distributions of the input variables are
heavily skewed. In other words, the most probable tuples are likely to be the ones with the
largest values. Therefore if we compute the tuples starting from the ones with the largest
values, it would not take long before we encounter the most probable tuple (v, p).

At the same time, by tracking a threshold T on the upper probability bound for the unseen
tuples (i.e. tuples with smaller values from the children that haven’t been retrieved yet), the
most probable tuple can be confirmed once p > T . More specifically, if we keep track of the
remaining probability Ri for each of the random variables Xi (i.e. if the last tuple retrieved
from the children has the value u, then Ri = P (Xi < u)), then the total probability of the
unseen tuples is given by:

P (MAX(X1, X2, . . . , XN ) < u) =
N∏

i=1

P (Xi < u)

=
N∏

i=1

Ri

Because any unseen tuples cannot possibly have a probability larger than the total proba-
bility of all the unseen tuples, the threshold T is defined by:

T =
N∏

i=1

Ri

Since the Heap Method (Algorithm 29 on page 65) already computes the largest tuples
sequentially, we simply have to adapt the algorithm so that it also takes into account of the
threshold T before returning a tuple. The algorithm, known as the Extended Heap Method
(EHM), is presented in Algorithm 30.

5.2.4 COUNT

A COUNT node can be treated as a special case of a SUM node, where the input random
variables have support {0, 1}. However, due to the popularity of COUNT aggregate queries,
we will develop algorithms optimised for COUNT nodes. Exact evaluation for a COUNT
node can be done via multiple applications of Standard DP (Algorithm 3 on page 22) with
a complexity O(N2), where N is the number of children for the COUNT node.

In particular, the computation for the distribution of a COUNT node Y can be defined
by

Y =
N∑

i=1

Xi (5.6)

where X1, X2, . . . , XN , representing the children of the COUNT node, are independent
random variables with probability distributions

P (Xi = 1) = pi

P (Xi = 0) = p̄i = 1− pi

68



ALGORITHM 30: Get Next Most Probable Tuple for a MAX Node - Extended Heap Method

(EHM)

Input: MAX Node node
Output: The Next Most Probable Tuple (value, probability)

NextTop(node)
begin

/* Execute only the first time the method is called */
if not initialised then

heap← Empty Max Heap
pool← Empty Max Heap /* Holds tuples computed but not yet returned */
for i = 1 to N do

childi ← ith child of node of children
(v, p)← NextLargest(childi)
Add (v, p, i) to heap with key = v
Set Ri ← 1

end
Rtotal ← 1
initialised← True

end

while pool is empty or probability of the most probable tuple in pool < Rtotal do
/* Computing the next largest tuple */
R′total ← Rtotal

v ← Key of Largest Element in heap
while Key of Largest Element in heap = v do

v, p, i← Pop Largest Element in heap
R′i ← Ri /* R′i = P (childreni ≤ v) */
Ri ← Ri − p /* Ri = P (childreni < v) */

Rtotal ← Rtotal ×Ri/R′i /* Rtotal =
∏N

i=1 Ri */
(vnext, pnext)← NextLargest(childi)
Add (vnext, pnext, i) to heap with key = vnext

end
ptotal ← R′total −Rtotal /* Equation 5.4 */
Add (v, ptotal) to pool with key ptotal

end
end

v, ptotal ← Pop most probable tuple from pool
return (v, ptotal)

The distribution for Y is also known as Poisson Binomial distribution.

For top-k approximation, we are only interested in evaluating some of the tuples (v, p) in the
distribution for Y , it is therefore tempting to express a closed formula for the distribution
of Y as a function of v. The closed formula has the following form [47]:

P (Y = v) =
∑

A∈Fv

∏

i∈A
pi
∏

j∈Ac

p̄j

where Fv is the set of all subsets of {1..N} with size v. For example, with N = 3 and v = 2,

69



we have Fv = {{1, 2}, {1, 3}, {2, 3}}. In general,

|Fv| =
(
N

v

)

However, |Fv| can be astronomical even forN with moderate size. For example, forN = 100,
|Fv| can be as large as 100891344545564193334812497256, making it impractical for real-
world usage. Fortunately, the computation can be performed more efficiently via dynamic
programming.

In fact, Standard DP (Algorithm 3 on page 22) is one of the dynamic programming ap-
proaches to tackle the computation efficiently. To demonstrate how Standard DP proceeds,
we consider a COUNT node Y with 3 children represented by the random variables X1, X2,
and X3:

Y =
3∑

i=1

Xi

where supp(Xi) = {0, 1} for i = 1 . . . 3, and

P (Xi = 0) = 1− pi, P (Xi = 1) = pi

p1 = 0.2, p2 = 0.4, p3 = 0.6

The computation can be visualised via a grid, where the cell (u, v) stores the probabil-
ity

P (
u∑

i=1

Xi = v)

Therefore the cells with u = 3 correspond to the distribution for Y =
∑3

i=1Xi, and the
goal is to fill some or all of those cells efficiently.

Standard DP proceeds by initialising the cell (0, 0) to 1. Additionally, we know that
P (
∑u

i=1Xi = v) = 0 for v > u as it is impossible to sum u random variables with a
maximum value 1 to a number larger than u. Therefore the cells for v > u are set to 0,
resulting in the following grid:

..

..u = 3 ..? ..? ..? ..? ..

..u = 2 ..? ..? ..? ..0 ..

..u = 1 ..? ..? ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

70



In the uth step, Standard DP considers the uth variable Xu, and computes the probability
distribution for

∑u
i=1Xi by using the probability for

∑u−1
i=1 Xi computed in the previous

step. More specifically, P (
∑u

i=1Xi = v) will be computed using the following formula:

P

(
u∑

i=1

Xi = v

)
=






P
(∑u−1

i=1 Xi = v
)
× (1− pu) if v = 0

P
(∑u−1

i=1 Xi = v − 1
)
× pu + P

(∑u−1
i=1 Xi = v

)
× (1− pu) if v > 0

(5.7)

Equation 5.7 has an intuitive meaning: For
∑u−1

i=1 Xi + Xu to take the outcome v, then
either

∑u−1
i=1 Xi takes the outcome v− 1 and Xu takes the outcome 1, or

∑u−1
i=1 Xi takes the

outcome v and Xu takes the outcome 0.

Therefore the first step involves considering the first random variable X1 (p1 = 0.2), and
computes the values for the cells (1, 0) and (1, 1) using Equation 5.7:

(1, 0) : 1× 0.8 = 0.8

(1, 1) : 1× 0.2 + 0× 0.8 = 0.2

The current state of the grid is as follows, where cells that have just been filled in are
labelled in red, and cells that have been used for the computation are filled in yellow:

..

..u = 3 ..? ..? ..? ..? ..

..u = 2 ..? ..? ..? ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

The next step considers the random variable X2 (p2 = 0.4), and computes the values for
the cells (2, 0), (2, 1) and (2, 2) using Equation 5.7:

(2, 0) : 0.8× 0.6 = 0.48

(2, 1) : 0.8× 0.4 + 0.2× 0.6 = 0.44

(2, 2) : 0.2× 0.4 + 0× 0.6 = 0.08

Filling in the newly computed cells leads to the following grid:

71



..

..u = 3 ..? ..? ..? ..? ..

..u = 2 ..0.48 ..0.44 ..0.08 ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

Lastly, the random variable X3 (p3 = 0.6) will be considered in a similar way as in the
previous steps, leading to a completely filled grid:

..

..u = 3 ..0.192 ..0.464 ..0.296 ..0.048 ..

..u = 2 ..0.48 ..0.44 ..0.08 ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

At this point, the computation is complete and the entire distribution for Y =
∑3

i=1Xi can
be read off from the cells in the row u = 3. However, the demonstration also reveals that
despite we are only interested in some of the tuples in the final distribution, none of the
tuples is computed until the very last step using Standard DP.

For this reason, we will adapt Standard DP to compute P (
∑3

i=1Xi = v) for arbitrary v
by filling in the minimal number of cells in the grid. In particular, based on the initial
conditions used by Standard DP and Equations 5.8, we reach at the following recurrence
relation for the computation of the cells in the grid:

αu,v =






1 if u = 0, v = 0
0 if v > u
αu−1,v × (1− pu) if u > 0, v = 0
αu−1,v−1 × pu + αu−1,v × (1− pu) if u > 0, 0 < v ≤ u

(5.8)

where αu,v = P (
∑u

i=1Xi = v).

72



Equation 5.8 allows the probability P (
∑N

i=1Xi = V ) to be computed simply by evaluating
αN,V , where all the necessary computation for filling the other cells will be invoked by
the recurrence. With the computed results from the previous steps stored, the recurrence
approach will be at least as efficient as Standard DP, therefore this approach will be used in
both computing the next largest tuple and computing the next most probable tuple.

Next Largest Tuple

The largest value in the result of a COUNT node is N . Therefore the algorithm for com-
puting the next largest tuple for a COUNT node will make use of the recurrence formula
in Equation 5.8, starting from the cell αN,N . Subsequent largest tuples can be retrieved by
evaluating αN,N−1, αN,N−2, and so on using the recurrence relation. The algorithm is pre-
sented in Algorithm 31, and has a time complexity O(N) and space complexity O(N).

ALGORITHM 31: Get Next Largest Tuple for a COUNT Node

Input: COUNT Node node
Output: The Next Largest Tuple (value, probability)

NextLargest(node)
begin

/* Execute only the first time the method is called */
if not initialised then

for i = 1 to N do
child← ith child of children of node
pi ← 1.0−GetNullProb(child)

end
v ← N /* The largest tuple has value N */
gridcurr[0]← 1
for i = 1 to N do

gridcurr[i]← gridcurr[i− 1]× pi
end
gridprev ← gridcurr
initialised← True
return (v, gridcurr[N ])

end

v ← v − 1 /* Next Largest Value */
gridcurr ← Array with Size N
Set every element in gridcurr to 0
for i = N − v to N do

gridcurr[i]← gridprev[i− 1]× (1− pi) + gridcurr[i− 1]× pi
end
return (v, gridcurr[N ])

end

We will demonstrate Algorithm 31 by computing the 2 largest tuples on the same example
we used to demonstrate Standard DP. Specifically, we consider a COUNT node Y with 3
children represented by the random variables X1, X2, and X3:

Y =
3∑

i=1

Xi

73



where supp(Xi) = {0, 1} for i = 1 . . . 3, and

P (Xi = 0) = 1− pi, P (Xi = 1) = pi

p1 = 0.2, p2 = 0.4, p3 = 0.6

Firstly, the grid is initialised using the first two formulae in Equation 5.8, leading to the
following grid:

..

..u = 3 ..? ..? ..? ..? ..

..u = 2 ..? ..? ..? ..0 ..

..u = 1 ..? ..? ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

To retrieve the largest tuple, we use the last formula in Equation 5.8 to compute α3,3, which
involves the computation of the following cells:

(1, 1) : α0,0 × 0.2 + α0,1 × 0.8 = 1× 0.2 + 0× 0.8 = 0.2

(2, 2) : α1,1 × 0.4 + α1,2 × 0.6 = 0.2× 0.4 + 0× 0.6 = 0.08

(3, 3) : α2,2 × 0.6 + α2,3 × 0.4 = 0.08× 0.6 + 0× 0.4 = 0.048

The largest value 3 with probability 0.048 is returned, and the computation in the current
step is visualised in the following grid, where the cells that have just been filled in are labelled
in red, and the cells that have been used for the computation are labelled in yellow:

..

..u = 3 ..? ..? ..? ..0.048 ..

..u = 2 ..? ..? ..0.08 ..0 ..

..u = 1 ..? ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

74



To compute the next largest tuple, α3,2 needs be evaluated using the recurrence relation in
Equation 5.8. Assuming the cells computed in the previous step are stored, the computation
of the following extra cells are needed:

(1, 0) : α0,0 × 0.2 = 1× 0.8 = 0.8

(2, 1) : α1,0 × 0.4 + α1,1 × 0.6 = 0.8× 0.4 + 0.2× 0.6 = 0.44

(3, 2) : α2,1 × 0.6 + α2,2 × 0.4 = 0.44× 0.6 + 0.08× 0.4 = 0.296

At this point, the next largest tuple with value 2 and probability 0.296 is returned, and the
computation for this step can be visualised in the following grid:

..

..u = 3 ..? ..? ..0.296 ..0.048 ..

..u = 2 ..? ..0.44 ..0.08 ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

Next Most Probable Tuples

While the recurrence relation in Equation 5.8 enables us to compute P (
∑N

i=1Xi = v)
efficiently for arbitrary value v, we first need to find out the value with the next highest
probability in the distribution

∑N
i=1Xi. This can be done by using Proposition 9, where

the proof can be found in Samuels [41].

Proposition 9. The distribution for
∑N

i=1Xi, where supp(Xi) = {0, 1} for i = 1 . . . N , is
bell-shaped, and the most probable value in the distribution is in the pair of integers nearest
to µ =

∑N
i=1 pi.

With Proposition 9, the most probable value in the distribution is restricted to 7µ8 and
<µ=. The recurrence relation in Equation 5.8 can then be used to evaluate αN,+µ, and

αN,-µ., which correspond to the probabilities for P (
∑N

i=1Xi = 7µ8) and P (
∑N

i=1Xi = <µ=)
respectively. The one with a higher probability can then be returned as the most probable
value. Because Proposition 9 also states that the distribution is bell-shaped, therefore the
next most probable value will be restricted to the pair of integers that are closest to the
most probable value but haven’t been returned, and their probabilities can once again be
computed using the recurrence relation. The method is referred as the Grid Method, and
is presented in Algorithm 32.

Using Standard DP on a COUNT node with N children requires (N+1)(N+2)
2 cells in the grid

to be filled before any tuple in the final distribution can be extracted, but the number of cells

75



ALGORITHM 32: Get Next Most Probable Tuple for a COUNT Node - Grid Method (GM)

Input: COUNT Node node
Output: The Next Top Tuple (value, probability)

NextTop(node)
begin

/* Execute only the first time the method is called */
if not initialised then

for i = 1 to N do
child← ith child of children of node
pi ← 1.0−GetNullProb(child)

end

µ←
∑N

i=1 pi
vleft, vright ← floor(µ), ceiling(µ)
grid ← Two dimensional array of size (N + 1)× (N + 1) filled with −1
initialised← True

end

pleft, pright ← GetGrid(grid,N, vleft), GetGrid(grid,N, vright)
if pleft ≤ pright then

tuple← (vright, pright)
vright ← vright + 1
return tuple

else
tuple← (vleft, pleft)
vleft ← vleft − 1
return tuple

end
end

GetGrid(grid, u, v)
begin

/* Dynamic Programming - Return the computed results directly */
if grid[u][v] ≥ 0 then

return grid[u][v]
end

/* Recurrence Relation in Equation 5.8 */
if u = 0 and v = 0 then

grid[u][v]← 1
else if v > u then

grid[u][v]← 0
else if v = 0 then

grid[u][v]← GetGrid(grid, u− 1, v)× (1− pu)
else

grid[u][v]← GetGrid(grid, u− 1, v − 1)× pu +GetGrid(grid, u− 1, v)× (1− pu)
end

return grid[u][v]
end

76



to be filled to extract the most probable tuple (i.e. top-1) using the Grid Method depends
on value for µ. The percentage of cells to be filled to extract the most probable tuple using
the Grid Method compared to Standard DP is presented in Figure 5.1, where the result
suggests up to 2× speedup can be achieved using the Grid Method for µ = N/2, and even
better performance can be attained as µ moves away from N/2. The result suggests the
Grid Method has a time and space complexity of O (N2), but provides multiple performance
speedup compared to Standard DP for the computation of the most probable tuple. Once
the most probable tuple is computed, computation for subsequent most probable tuples can
be done in time O (N).

On the other hand, the Recursive FFT Algorithm (Algorithm 19 on page 49) is also ap-
plicable in the current situation, with a lower time complexity O(N(logN)2) and space
complexity O(N), making it more scalable than the Grid Method. However, the Recursive
FFT Algorithm computes the entire probability distribution instead taking advantage of
top-k approximation, where only some of the tuples in the distribution are required, there-
fore it is unclear whether the Grid Method or Recursive FFT Algorithm will provide a better
performance for typical range of N . The performance of the Recursive FFT Algorithm and
the Grid Method will be compared in Chapter 7.

Pe
rc

en
ta

ge

0

10

20

30

40

50

60

70

80

90

100

μ
0 100 200 300 400 500 600 700 800 900 1000

Percentage of cells to be filled for computing the most probable tuple using the Heap Method in comparison to Standard DP

Figure 5.1: Percentage of the grid to be filled to compute the probability of the most
probable value as µ varies (N = 1000)

We continue to use the same example to demonstrate the computation for top-2 most
probable tuples with the Grid Method. Specifically, we consider a COUNT node Y with 3

77



children represented by the random variables X1, X2, and X3:

Y =
3∑

i=1

Xi

where supp(Xi) = {0, 1} for i = 1 . . . 3, and

P (Xi = 0) = 1− pi, P (Xi = 1) = pi

p1 = 0.2, p2 = 0.4, p3 = 0.6

Firstly, the grid is initialised using the same initialisation condition as in Standard DP,
where the first two formulae for the recurrence relation (Equation 5.8) are used, resulting
in the following grid:

..

..u = 3 ..? ..? ..? ..? ..

..u = 2 ..? ..? ..? ..0 ..

..u = 1 ..? ..? ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

Because µ = 0.2 + 0.4 + 0.6 = 1.2, therefore the cell (3, 1) and cell (3, 2) will be computed
using the recurrence relation, resulting in values 0.464 and 0.296 respectively. The result
shows that the tuple (1, 0.464) is the most probable tuple in the distribution and should
be returned. The computed result is visualised in the following grid, where the cells that
have just been computed are labelled in red, and the cells that have been used for the
computation are labelled in yellow:

..

..u = 3 ..? ..0.464 ..0.296 ..? ..

..u = 2 ..0.48 ..0.44 ..0.08 ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

78



Proposition 9 states that the distribution is bell-shaped. As the most probable value we
just computed is 1, the next most probable value must either be 0 or 2. Because we have
already computed cell (3, 2) in the previous step, the only computation that needs to be
done is for the cell (3, 0), which has a value 0.192. The result suggests that the next most
probable tuple is (2, 0.296), and the computation is done at this point. The grid for the
current step is as follows:

..

..u = 3 ..0.192 ..0.464 ..0.296 ..? ..

..u = 2 ..0.48 ..0.44 ..0.08 ..0 ..

..u = 1 ..0.8 ..0.2 ..0 ..0 ..

..u = 0 ..1 ..0 ..0 ..0 ..

.. ..v = 0 ..v = 1 ..v = 2 ..v = 3 ..

5.2.5 SUM

For a SUM node Y with N children, which can be represented by the independent and non-
identically distributed random variablesX1, X2, . . . , XN , the computation for the SUM node
can be defined as the SUM convolution of the random variables:

Y =
N∑

i=1

Xi (5.9)

Top-k approximation for a SUM node Y involves computing P (Y = v) for some values v.
However, the computation for P (Y = v) can be reduced into the sub-set sum problem,
which is a well-known NP-hard problem, suggesting any attempt to compute the probabil-
ity of a particular tuple will already take exponential time. We will therefore tackle the
problem using dynamic programming to compute the probabilities of all the tuples at once
with a pseudo-polynomial time, where the most probable tuples can then be extracted and
returned.

Clearly, Standard DP (Algorithm 3 on page 22) is one of those approaches with a complex-
ity O((NR)2), where R is the range (the difference between the least and largest values of
the distribution) of the distributions. However, the quadratic complexity makes Standard
DP inadmissible when N becomes larger. Fortunately, the Recursive FFT Algorithm (Al-
gorithm 19 on page 49) we proposed earlier is also applicable for the top-k approximation
on SUM nodes, with a lower complexity O(NR log(NR) log(N)) .

Granted, the Recursive FFT Algorithm can only be used to compute of the full distribution,
which implies there will be no time saving due to the top-k approximation setting for SUM
nodes. Nonetheless, because SUM can produce a support that is exponential to N , there

79



could be a significant time saving for other nodes in the d-tree as those nodes will only need
to consume the most probable tuples from the SUM nodes instead of the entire exponentially
sized distributions.

80



Chapter 6

Implementation

6.1 System Overview

The proposed framework has been built using Python, supporting exact evaluation, his-
togram approximation and top-k approximation for MIN, MAX, COUNT, and SUM aggre-
gations. Python has the advantage of being concise and clear, allowing readers to capture
the essence of the implementation without getting into the language specifics. Additionally,
the versatile nature of Python allows new approximation algorithms to be implemented and
benchmark against the state-of-the-art algorithms readily. The system has been designed
to be very modular and flexible to support future development, even to the extent of adding
support for completely new types of approximations.

Granted, Python is known to be slower than some other languages, such as C, but the
language speed does not affect the relative performance between the proposed algorithms
and the state-of-the-art algorithms, which is the essence of the dissertation. However, it is
important for all the implementations to be written in native Python for fair comparison.
For example, while the python package scipy provides an implementation of FFT in C, we
have reimplemented the algorithm in native Python to ensure the comparison is language
agnostic. While the system uses external packages with a C backend such as numpy and
scipy, they are only used in places where they will not affect the benchmark result, such
as random data generation. This ensures similar performance speedup will be achieved
when the algorithms are ported into any other probabilistic database management system,
possibly implemented using other languages.

6.1.1 Code Organisation

The system consists of multiple packages serving different purposes. We will brief the details
of each of the packages in this section.

• debug

– The debugging package ensures correctness of the implementation by providing
facilities to compare the result of exact evaluation with histogram approximation
and top-k approximation. Specifically, the probability distribution obtained from

81



exact evaluation will be converted into its histogram representation to compare
with the result of histogram approximation, and the top-k most probable tuples
will be extracted from the distribution for comparing with the result of top-k
approximation.

– The system has been tested with this package using thousands of randomly gen-
erated decomposition trees to ensure its correctness.

• dtree

– The dtree package contains the data structure to represent decomposition trees,
which contains the pointer to the root node of the decomposition tree as well as
methods for loading and exporting the decomposition tree from and to disk.

– The data structure also serves as the starting point of the evaluation, where
it performs all the necessary preprocessing, such as deriving the bin intervals,
before delegating the evaluation to the nodes in the tree recursively.

• generators

– The generators package provides facilities for generating decomposition trees us-
ing randomly generated random variables, according to the specification provided
by the user.

– Details of random decomposition tree generation can be found in Section 6.2.3.

• nodes

– The nodes package provides the algorithms for exact evaluation, histogram ap-
proximation, and top-k approximation as well as all the auxiliary methods for
different node types.

– The node interface is also defined in the package, where the implementation of
different node types must conform to. Details of the node interface can be found
in Section 6.2.4.

– Implemented node types include MIN, MAX, COUNT, SUM, UNION, VARI-
ABLE, and PROD, which are the set of node types that could exist in the d-tree
for MIN, MAX, COUNT, or SUM aggregations.

– The proposed algorithms are then implemented as a method of the corresponding
node type.

• shared

– Containing data structures that are used across the entire framework.

– Including the data structure for representing probability distributions, histograms
and probability bounds.

• utilities

– The package provides supporting facilities that are used across the entire frame-
work.

– Examples include an implementation of minimum/maximum heap, timing facili-
ties for benchmarking, and facilities for outputting result in a beautiful manner.

82



6.2 Implementation Details

While the details of the algorithms have been presented in the previous chapters, we will
discuss some of the implementation decisions in this section.

6.2.1 Handling Null

Despite we have made the design decision of representing null using a seemingly ordinary
integer 0, it is important to handle null carefully as its true meaning changes with the neutral
element 0M of the node type under consideration, as depicted in the following table:

Node Type 0M

MIN ∞
MAX -∞

COUNT 0
SUM 0

For example, 0 needs to be interpreted as ∞ in a MIN node, which can have a significant
affect on the correctness of the result as 0 and ∞ are on the opposite ends of the number
line.

While it is possible to work around this issue by careful book keeping in exact evaluation and
top-k approximation, such as casting the value 0 retrieved from the children to∞ when the
current node type is MIN, things could get more complicated in histogram approximation.
For example, there is no trivial way to extract the null probability from the bin [0, 5], which
is essential for casting the value 0 to ∞. In sight of this, null probability will be treated
specially in histogram approximation. In particular, it is important that 0 does not share
the same bin with other values in the histograms. This can be achieved by ensuring that
0 is excluded from the histograms completely, and null probability can then be computed
exactly alongside histogram approximation. Luckily, because the computation of the null
probabilities for MIN, MAX, COUNT, and SUM nodes is as simple as computing the
product of the null probabilities of their children, this can be done efficiently according to
Algorithm 33.

ALGORITHM 33: Compute Null Probability for a MIN/MAX/COUNT/SUM Node

Input: MIN/MAX/COUNT/SUM Node node
Output: Null Probability prob

GetNullProb(node)
begin

prob← 1.0
foreach child ∈ children of node do

prob← prob×GetNullProb(child)
end
return prob

end

83



6.2.2 Data Structures

Probability Distributions

Because the proposed algorithms involve only sequential access of probability distribu-
tions, the most efficient way to represent a probability distribution is to store the tuples
(value, probability) directly in a list. Additionally, null probability will also be stored sep-
arately to enable efficient null probability computation. We will assume the probability
distributions stored in the database are sorted by value, which is the most natural or-
der.

Histogram

A histogram is defined by the intervals of the bins and the corresponding probabilities.
Because there should be no gap between adjacent bins, one only needs to store the left
boundary of the bin intervals in a list. The corresponding probabilities can then be stored
in a separate list. As discussed in the Section 6.2.1, the null value 0 will be excluded from
the histogram, therefore the null probability will be stored separately.

On top of its succinctness, the representation also has the advantage of supporting binary
search for identifying the bin a particular value belongs to readily in O(logB) time, where
B is the number of bins in the histogram.

Example 9. Consider a histogram with the following bin intervals and probabilities:

Lower Boundary Upper Boundary Probability

1 5 0.3
6 10 0.2
11 20 0.4
21 100 0.1

It can be represented succinctly using two lists:

intervals = [1, 6, 11, 21, 101]

probabilities = [0.3, 0.2, 0.4, 0.1]

Probability Bounds

Support for probability bounds in the system can be accomplished without changing the
underlying implementation of the algorithms by creating a class for probability bounds
that overrides the +, − and ∗ operator according to the algorithm proposed in Section
3.3.1 (page 29). By ensuring the probability bounds have the same interface as exact
probabilities (floating points), the implementations can be agnostic to the nature of the
probability being worked on, and let the overridden methods take care of arithmetic of
probability bounds.

84



6.2.3 Random Data Generation

To benchmark the algorithms for different types of aggregations, it is important for the
system to be capable of generating decomposition trees with arbitrary structures. For
this reason, the system has a built-in tree generator, where the user can specify the type of
nodes in each level of the tree along with the specifics of the probability distributions for the
random variables, such as the distribution skewness or the range of values in the distribution.
The system will then produce a decomposition tree conforming to the instructions using
randomly generated random variables. The generated decomposition tree will be exported
to disk in the form of JSON, which allows the user to visualise the decomposition tree using
any existing JSON parser, or even fine tune the tree by changing the values in the JSON.
The JSON can lastly be loaded back to the system for benchmarking.1

The JSON represents the tree recursively by storing each node in the form the triplet
[NodeType, Children, Others]. Children is a list of triplets, each of which is a child of
the node; Others is a dictionary, representing the specific details of the node.

Example 10. Consider a decomposition tree with the following form

..+max.

X1

.

X2

where X1 and X2 are random variables with probability distributions

X1

Value Probability

0 0.8
1 0.2

X2

Value Probability

0 0.4
1 0.6

The decomposition tree will have the following JSON representation when exported to disk:

1 [

2 "MAX",

3 [

4 [

5 "VARIABLE", [], {"pdf": [[0, 0.8], [1, 0.2]]}

6 ],

7 [

8 "VARIABLE", [], {"pdf": [[0, 0.4], [1, 0.6]]}

9 ]

10 ],

11 {}

12 ]

1The exported tree is also important for rerunning an experiment if any anomaly is observed.

85



6.2.4 Node Interface

Performing evaluation for a decomposition tree boils down to performing the same evalu-
ation in each of its nodes (and hence the corresponding subtrees) in a recursive manner,
therefore a common interface across all types of nodes is necessary. Base on all the discus-
sions in the dissertation, the node interface is summarised in the following table:

Node Interface

Method Description

Exact Evaluation

ExactEvaluation Return the result of exact evaluation for the subtree

Histogram Approximation

HistogramEvaluation Return the result of histogram approximation for the subtree

GetLeastVal Return the least value in the distribution for the subtree

GetLargestVal Return the largest value in the distribution for the subtree

Top-k Approximation

NextTop Return the next most probable tuple for the subtree

NextLeast Return the next least tuple for the subtree

NextLargest Return the next largest tuple for the subtree

Others

GetNullProb Return the null probability for the subtree

GetMean Return the mean of the distribution for the subtree

GetVariance Return the variance of the distribution for the subtree

GetThirdMoment Return the third moment of the distribution for the subtree

86



Chapter 7

Experiments

In preparing this dissertation, we benchmarked the performance of each of the proposed
algorithms using semimodule expressions corresponding to the different types of aggregate
queries. Our experimental results provide solid evidence of the advantages of employing
histogram approximation and top-k approximation in lieu of exact evaluation; namely, an
observed performance speedup of over two orders of magnitude beyond the state-of-the-
art algorithms for exact evaluation. The experimental results will be presented in this
chapter.

7.1 Experimental Setup

7.1.1 Methodology

In the experiments described in this chapter, we investigate the following aspects of the
proposed algorithms:

Scalability , or the performance of the algorithms as the number of tuples to be aggregated
increases.

Dependency , or the effect on algorithm performance as correlations are introduced be-
tween the tuples.

Skewness , or the effect on algorithm performance as the tuples are annotated by skewed
variables.

Accuracy of the algorithms in producing probability-based approximations.

These investigations were carried out by designing a set of similar semimodule expressions,
identical in all but one aspect. For example, in the experiment investigating the scalability
of the algorithms, we used a set of semimodule expressions of varying size but identical
in all other ways. Each semimodule expression was then compiled into the corresponding
decomposition tree (d-tree) such that the random variables in the d-tree is represented by
randomly generated probability distributions.

87



Different algorithms were then used to evaluate the d-tree into a full probability distri-
bution (exact evaluation), a histogram representation of the distribution (histogram ap-
proximation), or a representation of the most probable tuples in the distribution (top-k
approximation). The wall clock time for running each algorithm was recorded.

To minimise the effect of runtime fluctuations on the experimental results, each experiment
was repeated for at least 10 times (up to 50 times if the runtime of each trial is relatively
short), and the average wall clock time over all trials was reported. Because this dissertation
focuses on improving Standard DP (Algorithm 3 on page 22; the state-of-the-art algorithm
proposed by Fink et al. [19] for exact evaluation), it was sometimes more natural to present
the results in the form of performance speedup relative to Standard DP, a metric that will
be referred to hereafter as the benchmark score:

Benchmark Score =
Wall Clock time for Standard DP

Wall Clock Time of Target Algorithm

7.1.2 Environment

All experiments were conducted in the following environment:

CPU: 2.6 GHz Intel Quad Core i7

RAM: 16 GB

OS: Mac OS 10.8.4 Mountain Lion 64bit

Version: Python 2.7.5 using cPython with GCC 4.2.1

Packages: Numpy 1.7.1, Scipy 0.12.0

7.1.3 Algorithms Benchmarked

The following table provides a summary of the algorithms proposed in the dissertation for
benchmarking:

Name Aggregation Type Reference

Histogram Approximation

BCA: Bin Convolution Algorithm MIN/MAX Algorithm 15 (Page 40)

NA: Normal Approximation Algorithm
COUNT Algorithm 17 (Page 44)

SUM Algorithm 21 (Page 52)

DBA: Deferred Binning Algorithm COUNT/SUM Algorithm 18 (Page 45)

EBA: Early Binning Algorithm SUM Algorithm 22 (Page 54)

FFT: Recursive FFT Algorithm COUNT/SUM Algorithm 19 (Page 49)

Top-k Approximation

EHM: Extended Heap Method MIN/MAX Algorithm 30 (Page 69)

GM: Grid Method COUNT Algorithm 32 (Page 76)

FFT: Recursive FFT Algorithm COUNT/SUM Algorithm 19 (Page 49)

88



The other algorithms proposed were all auxiliary algorithms; thus, they were not bench-
marked directly. Because of the importance of Shannon expansion in the proposed frame-
work, it is worth noting that the Bin Union Algorithm (BUA; Algorithm 14 on page 37)
for histogram approximation and the Threshold Algorithm (TA; Algorithm 28 on page
63) for top-k approximation were benchmarked indirectly in experiments involving UNION
nodes.

7.1.4 Semimodule Expressions for the Experiments

We will now define two types of queries (and thus their equivalent semimodule expressions)
that were used across multiple experiments. Other types of semimodule expressions that
were used in only one experiment will be introduced along with that experiment.

Type I

Type I queries correspond to aggregate queries over N independent tuples. The semimodule
expression has the following form:

(s1 ⊗m1) + (s2 ⊗m2) + . . .+ (sN ⊗mN ) (7.1)

where

N corresponds to the size of the semimodule expression.

Semiring expression si is a random variable with support {0, 1}, where P (si = 1) is ran-
domly generated float in the range [0, 1].

Monoid expression mi is a randomly generated integer ranging from 1 to R.

+ can either be +MIN, +MAX, +COUNT or +SUM

Compiling the semimodule expression in Equation 7.1 yields the (flattened) d-tree in Figure
7.1.

..⊕.

⊗

.

S1

.

M1

.

...

.

...

.

⊗

.

SN

.

MN

Figure 7.1: Decomposition tree for a type I semimodule expression

Type II

Type II queries correspond to aggregate queries over N correlated tuples; The semimodule
expression has the following form:

(s1 ⊗m1) + (s2 ⊗m2) + . . .+ (sN ⊗mN ) (7.2)

89



where

N corresponds to the size of the semimodule expression.

Semiring expression si has the form

si =
D∑

j=0

(x = j)yi,j

x is a random variable with support {0, . . . , D}, and yi,j are independent random
variables with support {0, 1}. All tuples are therefore dependent because they are all
correlated with x, and one can control the depth of dependency between the tuples
by adjusting D, where D = 0 implies no dependency (as si becomes (x = 0)yi,0 =
(0 = 0)yi,0 = yi,0), and larger D implies more dependency.

Monoid expression mi is a randomly generated integer ranging from 1 to R.

+ can either be +MIN, +MAX, +COUNT or +SUM

Compiling the semimodule expression returns the d-tree depicted in Figure 7.2.

..⊔.

⊕

.

⊗

.

y0,1

.

M1

.

...

.

⊗

.

y0,N

.

MN

.

x← 0

.

...

.

x← i

.

⊕

.

⊗

.

yD,1

.

M1

.

...

.

⊗

.

yD,N

.

MN

.

x← D

Figure 7.2: Decomposition tree for a type II semimodule expression

7.2 Summary of Experimental Findings

Figure 7.3 provides an overview of the performance compared to Standard DP (Algorithm
3 on page 22) when the number of tuples to be aggregated is on the order of 10,000. The
algorithms recommended for deployment in real-world systems are highlighted in red. While
some of the other algorithms might provide better performance under special circumstances
(such as when the probability distribution of the input variables is highly skewed), the
experimental results suggest that the highlighted algorithms provide the best performance
in most settings.

For histogram approximation, the results are clearly promising, with a speedup of over
two orders of magnitude measured across all types of aggregations. More importantly, all
of the highlighted algorithms demonstrate better scalability than exact evaluation. While
the recommended algorithms for COUNT and SUM aggregations compute histograms with

90



Histogram Approximation

Name Performance Note

MIN/MAX

BCA: Bin Convolution Algorithm 300×

COUNT

NA: Normal Approximation Algorithm 240× Accuracy over 99%

FFT: Recursive FFT Algorithm 15×

DBA: Deferred Binning Algorithm 4×

SUM

NA: Normal Approximation Algorithm 630× Accuracy over 95%

FFT: Recursive FFT Algorithm 15×

DBA: Deferred Binning Algorithm 2×

EBA: Early Binning Algorithm 2× Up to 10× for
histogram zooming

Top-k Approximation

Name Performance Note

MIN/MAX

EHM: Extended Heap Method 350×

COUNT

FFT: Recursive FFT Algorithm 15×

GM: Grid Method 5× Up to 15× for skewed variables

SUM

FFT: Recursive FFT Algorithm 15×

Figure 7.3: Performance for the proposed algorithms compared to exact evaluation using
Standard DP

approximate probabilities, the accuracy of those approximate probabilities is generally very
high (over 95%). Thus, those probabilities, when taken together with the lower and upper
probability bounds, generally provide a confidence level high enough for real-world applica-
tions.

For top-k approximation, the performance across different algorithms varies. With a speedup
of over two orders of magnitudes speedup measured for MIN/MAX aggregations, the algo-
rithms for top-k approximation provide a speedup only 10 times faster than exact evaluation

91



using Standard DP for COUNT and SUM aggregations. While all of the highlighted algo-
rithms demonstrate better scalability than Standard DP, there is still a clear advantage to
using histogram approximation over top-k approximation for COUNT and SUM aggrega-
tions.

Additionally, the experimental results confirms that the introduction of dependency be-
tween tuples has little effect on the performance speedup of the proposed algorithms over
exact computation. The introduction of dependency does naturally increase the runtime of
the algorithms, however, as it introduces more nodes into the d-tree to resolve the depen-
dency.

7.3 Histogram Approximation

7.3.1 Scalability

The first experiment uses a Type I semimodule expression (Equation 7.1) and investigates
the performance of the algorithms as the size of the expression N increases. The result is
presented in Figure 7.4.

Figure 7.4a demonstrates the clear advantage of using histogram approximation for MIN/-
MAX aggregations; the benchmark scores suggests that over two orders of magnitude in
performance speedup can be achieved. Most importantly, the benchmark scores increase
with N , which is an indication that the algorithm scales better than Standard DP. The re-
sult reflects the lower complexity O(NB) of the Bin Convolution Algorithm (BCA) relative
to Standard DP O((NM)2), where B is the number of bins for the target histogram and
M is the support size of the random variables (in this experiment, M = 1).

Both the COUNT and SUM aggregations demonstrate similar behaviours due to the sim-
ilarity of the algorithms used. In both cases, the Normal Approximation Algorithm (NA)
demonstrates the best performance and scalability, which reflects its low complexity: O(N).
Additionally, a higher benchmark score is observed for SUM aggregations than for COUNT
aggregations, which is due to the higher complexity of using Standard DP on SUM aggre-
gations than COUNT aggregations: O((NR)2) vs O(N2), where R is the range of values
to be aggregated. It should be noted that Normal Approximation Algorithm produces
histograms with approximate probabilities, the accuracy of which will be investigated in
Section 7.3.4.

On the other hand, both the Deferred Binning Algorithm (DBA) and the Recursive FFT
Algorithm (FFT) can be used to compute histograms with exact probabilities (the Recursive
FFT Algorithm returns a full probability distribution, which can then be turned into a
histogram without a significant impact on the benchmark score). Although the Deferred
Binning Algorithm exploits the approximation settings for the computation, it does not
provide significantly better performance than the Recursive FFT Algorithm even when N is
relatively small. Most importantly, the constant benchmark score suggests that the Deferred
Binning Algorithm is as scalable as Standard DP, while the Recursive FFT Algorithm shows
better scalability.

At any rate, the Recursive FFT Algorithm is still one order of magnitude slower than
the Normal Approximation Algorithm. Thus, the Normal Approximation Algorithm is the

92



BCA :: Histogram (#Bins = 2)
BCA :: Histogram (#Bins = 10)
BCA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

0

50

100

150

200

250

300

350

400

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Scalability of Histogram Approximation for MIN/MAX Aggregations

(a) MIN/MAX - Type I Semimodule Expression with R = 50000

FFT :: Full Distribution
NA :: Histogram (#Bins = 2)
NA :: Histogram (#Bins = 10)
NA :: Histogram (#Bins = 100)
DBA :: Histogram (#Bins = 2)
DBA :: Histogram (#Bins = 10)
DBA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

1

10

100

500

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Scalability of Histogram Approximation for COUNT Aggregations

(b) COUNT - Type I Semimodule Expression with R = 1

FFT :: Full Distribution
NA :: Histogram (#Bins = 2)
NA :: Histogram (#Bins = 10)
NA :: Histogram (#Bins = 100)
DBA :: Histogram (#Bins = 2)
DBA :: Histogram (#Bins = 10)
DBA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

1

10

100

1000

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Scalability of Histogram Approximation for SUM Aggregations

(c) SUM - Type I Semimodule Expression with R = 10

Figure 7.4: Scalability of Histogram Approximation

93



preferred algorithm for histogram approximation on COUNT and SUM aggregations unless
it is crucial to return a histogram with exact probabilities, in which case the Recursive FFT
Algorithm should be used instead.

7.3.2 Dependency

One of the most powerful features of pc-tables and pvc-tables is their ability to represent
arbitrary correlations between tuples; it is therefore important for histogram approximation
techniques to be efficient in handling not only independent tuples, but also correlated tuples.
Technically, the introduction of dependency between tuples introduces Shannon expansion
in the form of a UNION node in the d-tree.

In this experiment, we used a Type II semimodule expression (Equation 7.2) with varying
D, which corresponds to an aggregate query over correlated tuples with varying dependency.
The result is presented in Figure 7.5.

The fluctuation in the benchmark scores as D, the depth of dependency between tuples,
varies is relatively small across all results for MIN, MAX, COUNT, and SUM aggregations.
This indicates that the introduction of dependency between the tuples has little effect
on the performance speedup of the proposed algorithms. Intuitively, this is because the
computation for a UNION node is relatively inexpensive. The bottleneck of the evaluation
still lies on the convolution nodes; thus, the introduction of the UNION nodes has little
effect on the benchmark scores.

It should be noted, however, that when greater dependency is introduced between the
tuples, more nodes must be added to the d-tree in order to resolve the dependency. For
this reason, the actual runtime of the algorithm increases with D. The runtime for the
algorithms increases at the same rate as that for Standard DP, however, thereby keeping
the benchmark scores constant.

7.3.3 Performance of Histogram Zooming

Behind the scenes, histogram zooming is really just regular histogram computation with
specific bin intervals. Because the performance of most of the algorithms proposed is de-
pendent on only the number of bins and not the intervals of the bins themselves, the per-
formance of histogram zooming is very similar to that of regular histogram computation.
The only exception is the Early Binning Algorithm (EBA) for SUM aggregations, which is
designed to exploit the irregularity of the bin intervals to put values into the correct bin as
early as possible; thus, that algorithm will perform differently depending on the details of
zooming.

To benchmark the performance of the Early Binning Algorithm when zooming into different
regions of a histogram, we conducted an experiment based on the histogram in Figure 7.6.
That histogram is the evaluation result of a Type I semimodule expression (Equation 7.1)
with N = 200, R = 1000 over SUM aggregations. The experiment proceeded by zooming
into different parts of the histogram, and we report the benchmark score of the algorithm
in Figure 7.7.

94



BCA :: Histogram (#Bins = 2)
BCA :: Histogram (#Bins = 10)
BCA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

0

20

40

60

80

100

Dependency D
0 1 2 3 4 5 6 7 8 9 10

Effect of Dependency on Histogram Approximation for MIN/MAX Aggregations

(a) MIN/MAX - Type II Semimodule Expression with N = 2500, R = 50000

FFT :: Full Distribution
NA :: Histogram (#Bins = 2)
NA :: Histogram (#Bins = 10)
NA :: Histogram (#Bins = 100)
DBA :: Histogram (#Bins = 2)
DBA :: Histogram (#Bins = 10)
DBA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

5

10

20

50

Dependency D
0 1 2 3 4 5 6 7 8 9 10

Effect of Dependency on Histogram Approximation for COUNT Aggregations

(b) COUNT - Type II Semimodule Expression with N = 2500, R = 1

FFT :: Full Distribution
NA :: Histogram (#Bins = 2)
NA :: Histogram (#Bins = 10)
NA :: Histogram (#Bins = 100)
DBA :: Histogram (#Bins = 2)
DBA :: Histogram (#Bins = 10)
DBA :: Histogram (#Bins = 100)

Be
nc

hm
ar

k 
Sc

or
e

1

10

100

Dependency D
0 1 2 3 4 5 6 7 8 9 10

Effect of Dependency on Histogram Approximation for SUM Aggregations

(c) SUM - Type II Semimodule Expression with N = 2500, R = 10

Figure 7.5: Effect of Dependency on Histogram Approximation

95



Pr
ob

ab
ilit

y

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Value
1 10000 20000 30000 40000 50000 60000 70000 80000 90000 96963

Histogram used in the experiment to benchmark EBA

Figure 7.6: Histogram used in the experiment to benchmark the Early Binning Algorithm.
The histogram has a non-zero probability in the entire range 1 to 96963. However, the
probability in the tails are too low to be observable.

#Bins = 2
#Bins = 10
#Bins = 100

4.3x

6.3x

9.7x

1.4x
1.7x 1.8x

3.8x

5.9x

9.7x

1.3x
1.5x

1.7x

3.6x

5.8x

9.6x

1.3x
1.5x

1.7x

Be
nc

hm
ar

k 
Sc

or
e

0

1

2

3

4

5

6

7

8

9

10

11

Zooming Interval
[1,10000] [2500,7500] [4500,5500] [40000,50000] [42500,47500] [44500,45500]

Benchmark on EBA by zooming into different regions of a histogram

Figure 7.7: Benchmark Score for using the Early Binning Algorithm to zoom into different
regions of the histogram in Figure 7.6

96



The result demonstrates that the Early Binning Algorithm provides better performance
when used to zoom into a region where the probability is low. For example, the algorithm
provides a speedup of up to 10 tens when used to zoom into the region [4500, 5500], which
has a total probability close to 0 as indicated in Figure 7.6. This effect is because a region
where the probability is high implies there are many ways for the random variables to sum
to a value belonging to that region; there are comparatively few ways to do the same in
regions with low probability. By zooming into a region with lower probability, we allow
the Early Binning Algorithm to put more intermediate values outside of the region into
the correct bin early on, thus saving later computations. Because a user will generally
be more interested in zooming into a region with a higher probability, however, the result
demonstrates that the performance of the algorithm is limited to a speedup of around
2 times in most common scenarios. This makes the performance of the Early Binning
Algorithm similar to the Deferred Binning Algorithm, which was shown to be suboptimal
to the Recursive FFT Algorithm in Section 7.3.1.

7.3.4 Accuracy of Histograms with Approximate Probability

In Section 7.3.1, we demonstrated that the Normal Approximation Algorithm (NA) pro-
vides much better performance than competitor algorithms for histogram approximation
on COUNT and SUM aggregations. Unlike its competitors, however, the Normal Approx-
imation Algorithm produces histograms with approximate probabilities rather than exact
probabilities. Thus, it is essential to ensure that the accuracy of the approximate probabil-
ities is high enough for real-world usage.

For each bin, the Normal Approximation Algorithm computes an approximate probability
as well as the lower and upper bounds for the probability. We will therefore introduce two
metrics, one for measuring the tightness of the bounds and the other for the accuracy of
the approximate probability.

The first metric is referred as the percentage bound ∆bound, defined as follows (where B is
the number of bins in the histogram):

∆bound =

(∑B
i=1

1
2 (Upper Bound for bini − Lower Bound for bini)

)
/B

1/B
× 100%

=
1

2
×

B∑

i=1

(Upper Bound for bini − Lower Bound for bini)× 100% (7.3)

Intuitively, ∆bound indicates the average percentage error per bin between the approximate
probability and the lower/upper probability bound. For example, if ∆bound = 10%, then
for a bin with approximate probability 0.5, the probability bounds are expected to be
0.5± 0.05.

The second metric is referred to as the percentage error ∆error, defined as follows (where
B still is the number of bins in the histogram):

97



∆error =

(∑B
i=1 |Approximate Probability−Actual Probability|

)
/B

1/B
× 100%

=
B∑

i=1

(|Approximate Probability−Actual Probability|)× 100% (7.4)

Intuitively, ∆error indicates the average percentage error per bin between the approximate
probability and the actual probability. For example, if ∆error = 10%, then for a bin with
approximate probability 0.5, the actual probability is expected to be 0.5± 0.05.

The experimental results measuring ∆bound and ∆error are presented in Figure 7.8. First,
both ∆bound and ∆error notably decrease with increasing N , an observation consistent with
the Central Limit Theorem, which states that the accuracy of normal approximation in-
creases with the number of random variables being convolved. Additionally, ∆error is one
or two orders of magnitude less than ∆bound across the two experiments. This observation
indicates the possibility to further tighten the theoretical bounds even though the Normal
Approximation Algorithm we propose already leverages the best theoretical bounds that
currently exist in the literature.

In particular, the Normal Approximation Algorithm on COUNT aggregations shows very
promising results: the accuracy is over 99.9% and the bounds are less than 1% of the bin
probability. The accuracy is so high and the probability bounds are so tight that there is
almost no difference when compared to histograms with exact probabilities. An example
of a histogram with approximate probabilities evaluated using the Normal Approximation
Algorithm on COUNT aggregations is presented in Figure 7.9a: the bounds are so tight
that a magnifier is needed to show where they were marked by a red indicator.

On the other hand, while ∆bound and ∆error are slightly larger for SUM aggregations, the
result still suggests that accuracy over 99% can be achieved with sufficiently tight bounds
(< 10% of bin probability for N > 5000). The accuracy of the approximate probability and
the tightness of the bounds are therefore still sufficient for most real-world applications.
An example of a histogram with approximate probabilities evaluated using the Normal
Approximation Algorithm on SUM aggregations is presented in Figure 7.9b.

Given the accuracy measured in this section and the high performance recorded in Section
7.3.1, the Normal Approximation Algorithm is the most promising candidate for histogram
approximation on COUNT and SUM aggregate queries, especially when the number of
tuples being aggregated is large.

7.4 Top-k Approximation

7.4.1 Scalability

This experiment was based on settings identical to those in the scalability experiment for
histogram approximation in Section 7.3.1; the two experiments are therefore directly com-
parable. More specifically, the experiment uses a Type I semimodule expression (Equation
7.1) with varying N ; the experimental result is presented in Figure 7.10.

98



Δbound (#Bins = 10)
Δbound (#Bins = 50)
Δbound (#Bins = 100)
Δerror (#Bins = 10)
Δerror (#Bins = 50)
Δerror (#Bins = 100)

Δ
bo

un
d o

r Δ
er

ro
r

0.001%

0.01%

0.1%

1%

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Accuracy of the Normal Approximation Algorithm for COUNT Aggregations

(a) COUNT - Type I Semimodule Expression with R = 1

Δbound (#Bins = 10)
Δbound (#Bins = 50)
Δbound (#Bins = 100)
Δerror (#Bins = 10)
Δerror (#Bins = 50)
Δerror (#Bins = 100)

Δ b
ou

nd
 o

r Δ
er

ro
r

1%

10%

100%

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Accuracy of the Normal Approximation Algorithm for SUM Aggregations

(b) SUM - Type I Semimodule Expression with R = 10

Figure 7.8: Accuracy of NA for COUNT and SUM aggregations

99



Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Value
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Histogram with Approximate Probability evaluated using NA on a COUNT Aggregation

0.990

0.995

2400 2600

(a) COUNT - Type I Semimodule Expression with N = 5000, R = 1

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Value
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000

Histogram with Approximate Probability evaluated using NA on a SUM Aggregation

(b) SUM - Type I Semimodule Expression with N = 5000, R = 10

Figure 7.9: Examples of Histogram with Approximate Probabilities evaluated using NA for
COUNT and SUM aggregations (#Bins = 25)

100



EHM :: Top-k (k = 1)
EHM :: Top-k (k = 10)
EHM :: Top-k (k = 50)
EHM :: Top-k (k = 100)

B
en

ch
m

ar
k 

S
co

re

0

50

100

150

200

250

300

350

400

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Scalability of Top-k Approximation for MIN/MAX Aggregations

(a) MIN/MAX - Type I Semimodule Expression with R = 50000

FFT :: Full Distribution
GM :: Top-k (k = 1)
GM :: Top-k (k = 10)
GM :: Top-k (k = 50)
GM :: Top-k (k = 100)

Be
nc

hm
ar

k 
Sc

or
e

0

2

4

6

8

10

12

14

16

18

20

Size N
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Scalability of Top-k Approximation for COUNT Aggregations

(b) COUNT - Type I Semimodule Expression with R = 1

Figure 7.10: Scalability of Top-k Approximation

101



For MIN/MAX aggregations, the Extended Heap Method (EHM) demonstrates very promis-
ing results, outperforming Standard DP by two orders of magnitude. Most importantly, the
benchmark score increases with N , which is an indication of the better scalability of the
Extended Heap Method compared to Standard DP. We also note here that the benchmark
scores for different values of k are very close to each other, which suggests that includ-
ing extra tuples in the top-k approximation is inexpensive, conforming to our expectation
that the complexity per tuple retrieval for the Extended Heap Method can be as low as
O(logN).

On the other hand, the story is quite different for COUNT aggregations, where the Grid
Method (GM) provides a speedup of only roughly 3 times. Additionally, the benchmark is
unchanging as N increases, suggesting the Grid Method is not more scalable than Standard
DP. We should emphasise, however, that we are observing the worst performance of the Grid
Method; this experiment used random variables with a uniform distribution, meaning that
the expected value µ of the final distribution is close to N/2; that value was demonstrated in
Figure 5.1 to be the worst case for the Grid Method. We will investigate the performance of
the Grid Method with skewed random variables in Section 7.4.3. Importantly, though, the
Recursive FFT Algorithm (FFT) demonstrates better results and better scalability than
the Grid Method. Although the Recursive FFT Algorithm does not take advantage of the
approximation setting and simply computes the entire distribution (from which top-k tuples
can then be extracted), the result confirms that its lower complexity – O(N logN) – can
beat the Grid Method, which has been optimised for the top-k approximation setting, even
for N with moderate size.

Top-k approximation for SUM aggregations is based on the Recursive FFT Algorithm,
which was benchmarked in Section 7.3.1. (The Recursive FFT Algorithm computes the full
distribution, but the most probable tuples can be extracted from the distribution without
significantly affecting the benchmark scores.) The result is similar to applying the Recursive
FFT Algorithm on COUNT aggregations, for which a speedup of up to 15 times has been
measured.

7.4.2 Dependency

Once again, this experiment was based on the same experimental settings as the dependency
experiment for histogram approximation in Section 7.3.2 in order to make the two directly
comparable. More specifically, the experiment uses a Type II semimodule expression (Equa-
tion 7.2) with varying D. The experimental result is presented in Figure 7.11.

Unsurprisingly, the result conveys the same message discovered earlier in the dependency
experiment for histogram approximation: the introduction of correlations between the tuples
has little effect on the benchmark scores, but does increase the runtime of the algorithms
(since more nodes must be included in the d-tree as dependency is introduced). The result
provides evidence that the algorithms proposed for top-k approximation can continue to
outperform Standard DP even when dependency between tuples is introduced.

102



EHM :: Top-k (k = 1)
EHM :: Top-k (k = 50)
EHM :: Top-k (k = 100)

Be
nc

hm
ar

k 
Sc

or
e

0

10

20

30

40

50

60

70

80

90

100

110

Dependency D
0 1 2 3 4 5 6 7 8 9 10

Effect of Dependency on Top-k Approximation for MIN/MAX Aggregations

(a) MIN/MAX - Type II Semimodule Expression with N = 2500, R = 50000

FFT :: Full Distribution
GM :: Top-k (k = 1)
GM :: Top-k (k = 10)
GM :: Top-k (k = 100)

Be
nc

hm
ar

k 
Sc

or
e

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Dependency D
0 1 2 3 4 5 6 7 8 9 10

Effect of Dependency on Top-k Approximation for COUNT Aggregations

(b) COUNT - Type II Semimodule Expression with N = 2500, R = 1

Figure 7.11: Effect of Dependency on Top-k Approximation

103



7.4.3 Skewness

Unlike histogram approximation or exact evaluation, top-k approximation involves the com-
putation of only the most probable tuples in the probability distribution, therefore the per-
formance of the algorithms could depend on where the most probable tuples locate in the
distribution, which is in turn determined by the skewness of the input random variables. In
this section, we will measure how skewness could affect the performance of the algorithms
for top-k approximation.

MIN/MAX Aggregations

For MAX aggregations, the Heap Method (HM) is expected to have better performance
when the random variables are negatively skewed (i.e. more likely to have larger values),
as this allows the Heap Method to scan fewer tuples before encountering and retrieving
the most probable tuple. (Remember that the Heap Method scans the tuples with larger
values first; see Algorithm 30 on page 69 for more details.) For MIN aggregations, the exact
opposite is true.

In this experiment, we will consider the following MAX convolution:

MAX(x1, x2, . . . , x250)

where xi is a random variable with supp(xi) being a set of 25 randomly generated in-
tegers in the range [1, 5000]. Skewness is introduced into xi by setting the probability
distribution to be exponential. More specifically, given a skewness factor s, and assume
supp(xi) = {vi,1, vi,2, . . . , vi,25}, where vi,j < vi,j+1, each value vi,j is assigned a weight
according to

W (vi,j) = rand(0, 1)×






e
ln(10|s|)(vi,j−vi,1)

vi,25−vi,1 if s < 0

1 if s = 0

e
−

ln(10s)(vi,j−vi,1)

vi,25−vi,1 if s > 0

where rand(0, 1) generates a random float in the range [0, 1].

The probability distribution for the outcome vi,j is then given by the normalised weight:

P (xi = vi,j) =
W (vi,j)∑25
k=1W (vi,k)

Intuitively, if s < 0, then P (xi = vi,25) is on average 10|s| times larger than P (xi = vi,1),
and the probability for the values in between increases exponentially. If s = 0, then the
distribution is uniform. If s > 0, then P (xi = vi,25) is on average 10s times less than
P (xi = vi,1), and the probability for the values in between decreases exponentially. The
compiled d-tree used for the experiment is depicted in Figure 7.12.

The experimental result is presented in Figure 7.13. The result confirms that the per-
formance of Standard DP is unaffected by the skewness of the random variables since it

104



..+MAX.

x1

.

x2

.

· · ·

.

x250

Figure 7.12: D-Tree used for investigating the effect of skewness in top-k approximation for
MAX aggregations.

necessarily involves the computation of all of the tuples in the distribution. Additionally,
the result conforms to our expectation that the Extended Heap Method (EHM) has better
performance for negatively skewed input variables. The impact on the performance of the
Extended Heap Method due to skewness, however, is relatively small. For example, intro-
ducing a positively skewed distribution in which lower values are 106 times more probable
slows down the algorithm by only a factor of 10. This confirms the argument we made for
Equation 5.5 (page 67) that the most probable tuples are within the largest tuples even
when the input variables are heavily skewed. At any rate, the result demonstrates that
using the Extended Heap Method for top-k approximation can still outperform Standard
DP by a factor of 100 even for heavily skewed random variables.

Standard DP :: Exact Evaluation
EHM :: Top-k (k = 1)
EHM :: Top-k (k = 10)
EHM :: Top-k (k = 50)
EHM :: Top-k (k = 100)

Ti
m

e 
/ s

0.001

0.01

0.1

1

10

Skewness Factor s
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Effect of Skewness to Top-k Approximation for MAX Aggregations

Figure 7.13: Effect of skewed variables on Top-k Approximation for MAX aggregations

COUNT Aggregations

The Grid Method (GM) can be used for the computation of top-k approximations for
COUNT aggregations: we have demonstrated in Figure 5.1 (page 77) that the number of

105



cells to be filled to compute the probability of the most probable value is dependent on
the sum of the expected value µ for the input variables. Importantly, the Grid Method is
expected to perform worst when µ is close to N/2, where N is the number of input variables
for the COUNT aggregation, and perform best when µ is close to 0 or N .

We conducted this experiment using a Type I semimodule expression (Equation 7.1), with
N = 5000 and R = 1 over the SUM operator. However, we override the default uniform
distribution for the random variables (semirings) so that P (si = 0) = 1− µ/N and P (si =
1) = µ/N for all i, where µ is varied in the experiment. This ensures that the expected
value of the sum of the input variables is given by:

N∑

i=1

E(si) =
N∑

i=1

0× (1− µ/N) + 1× (µ/N) = µ

The experimental result is presented Figure 7.14. First, the result confirms that exact
evaluation using Standard DP is unaffected by the skewness. Additionally, the runtime for
the Grid Method fits the theoretical expectation in Figure 5.1 perfectly: worst performance
was observed when µ = N/2, in which case the algorithm outperformed Standard DP by a
factor of about 3 times; best performance was observed when µ = 0 or µ = N , in which cases
the algorithm outperformed Standard DP by up to 12 times. We must note here, however,
that it is not uncommon to find skewness in null probability of the input variables in real-
world scenarios. For example, a poorly written web extraction tool might produce many
tuples with high null probability since most of the data extracted is uncertain, while a well-
written web extraction tool might produce many tuples with lower null probability.

Standard DP :: Exact Evaluation
GM :: Top-k (k = 1)
GM :: Top-k (k = 10)
GM :: Top-k (k = 50)
GM :: Top-k (k = 1000)

Ti
m

e 
/ s

0

1

2

3

4

5

6

7

8

9

10

μ
0 1000 2000 3000 4000 5000

Effect of Skewness to Top-k Approximation for COUNT Aggregations

Figure 7.14: Effect of skewed variables on Top-k Approximation for COUNT aggregations

106



Chapter 8

Conclusion

8.1 Summary

This dissertation proposes a framework for evaluating aggregate queries over probabilis-
tic databases in two completely different approximate settings, Histogram approximation
and Top-k Approximation, by leveraging an existing knowledge compilation technique [19].
The proposed approximation approaches stand in contrast to all existing approximation
approaches currently in the literature, for which the computation of expected values for
query answers is the most common practice. In fact, there is no known work on the
use of histogram approximation techniques for even non-aggregate queries in probabilis-
tic databases.

Histogram approximation groups the possible query answers into bins, providing a synopsis
of an overall probability distribution. The framework we developed supports the compu-
tation of histograms with arbitrary bin intervals, thereby allowing histograms of arbitrary
resolution. Manipulation of the bin intervals leads to further exciting applications, such
as zooming into part of the histogram for finer resolution and answering range queries effi-
ciently. Top-k approximation, in contrast, is orthogonal to histogram approximation since it
retrieves only the most probable tuples in the distribution, the ones that are often the most
relevant to the user. We have demonstrated how the two approximation approaches provide
a more intuitive meaning to the query results by capturing the essence of the distribution
instead of bombarding the user with millions of low-quality possible answers.

We then develop algorithms conforming to the framework for MIN, MAX, COUNT, and
SUM aggregations. More specifically, we develop efficient algorithms for computing the
histogram representation or the top-k most probable tuples for the distribution result from
the convolution of random variables over MIN, MAX, COUNT, and SUM aggregations.
Because the convolution of probability distributions is fundamental to probability theory
and has been used in a wide range of areas, it is expected that the algorithms can be
adapted to situations outside of the field of probabilistic databases. Most of the proposed
algorithms have a lower complexity than the state-of-the-art algorithms for exact evaluation,
while the others provide a guaranteed performance speedup of at least several times over.
To investigate the behaviours of the algorithms under different circumstances, the proposed
framework has been implemented and used to benchmark the algorithms thoroughly.

107



An overview of the performance of the proposed algorithms is presented in Figure 1.4
(page 6): histogram approximation techniques demonstrate very promising results, with
a speedup of over two orders of magnitude measured across all aggregations. While the
histogram approximation algorithm for COUNT and SUM aggregations (the Normal Ap-
proximation Algorithm) produces histograms with approximate probabilities, we note that
these approximate probabilities are highly accurate (over 99%) with tight lower and upper
bounds (less than a few percent of the respective bin probabilities).

Top-k approximation, on the other hand, demonstrates a performance speedup of over 350×
for MIN/MAX aggregations, which is equally promising. While the performance for top-k
approximations on COUNT and SUM aggregations is limited by their NP-hard complexity,
it remains possible to achieve performance improvements of over 15×. Most importantly, all
the algorithms in Figure 1.4 provide better scalability than the state-of-the-art algorithms
for exact evaluation.

Finally, we have demonstrated how expected values and other statistical measures of the
query answers can also be computed efficiently under the proposed framework, making
the framework capable of performing exact evaluation, histogram approximation, top-k ap-
proximation, and expected value computation for aggregate queries over probabilistic data.
Taken together with the promising performance of the proposed algorithms, now confirmed
by experimentation, we believe that the framework lays down a strong foundation for effi-
cient aggregate query evaluation applicable in a wide range of real-world situations.

8.2 Future Work

In addition to the aggregation operators that have been incorporated into the framework
(MIN, MAX, COUNT, SUM), AVERAGE is also a popular aggregation operation; support
for AVERAGE aggregation could therefore further bolster the utility of the framework.
While AVERAGE is conceptually a combination of SUM and COUNT aggregations, the
fact that both SUM and COUNT aggregations return a probability distribution makes the
problem more complicated than simple divisions.

Additionally, while the accuracy of the Normal Approximation Algorithm for COUNT and
SUM aggregations is generally high with tight lower and upper bounds, there are situations
in which the user might request even tighter bounds. In the current framework, this can
be only achieved by resorting to the evaluation of histograms with exact probabilities,
which is substantially slower. An algorithm in which the bounds can be incrementally
tightened would bridge the gap between the two methods. For example, recent work by Li
and Shi [35] tackles this problem, but their work is mainly for theoretical purposes, and
experimental results show a performance slower than exact evaluation using the state-of-
the-art algorithms.

Lastly, while the algorithms proposed in this dissertation are based on computation over
complete decomposition trees, Fink et al. [20] proposed a technique to compute the lower
and upper probability bounds of a Boolean propositional formula via a partially compiled
decomposition tree. Extending their work to semimodule expressions would open up a
new dimension of approximation via partially compiled decomposition trees, an exciting
direction for future work indeed.

108



Bibliography

[1] Lyublena Antova, Christoph Koch, and Dan Olteanu. 1010
6
worlds and beyond: effi-

cient representation and processing of incomplete information. The VLDB Journal, 18
(5):1021–1040, October 2009. ISSN 1066-8888. doi: 10.1007/s00778-009-0149-y. URL
http://dx.doi.org/10.1007/s00778-009-0149-y.

[2] Subi Arumugam, Ravi Jampani, Luis Leopoldo Perez, Fei Xu, Christopher M. Jer-
maine, and Peter J. Haas. Mcdb-r: Risk analysis in the database. PVLDB, 3
(1):782–793, 2010. URL http://dblp.uni-trier.de/db/journals/pvldb/pvldb3.

html#HaasJAXPJ10.

[3] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. Uldbs:
Databases with uncertainty and lineage. In IN VLDB, pages 953–964, 2006.

[4] Andrew C. Berry. The accuracy of the gaussian approximation to the sum of indepen-
dent variates. Transactions of the American Mathematical Society, 49(1):pp. 122–136,
1941. ISSN 00029947. URL http://www.jstor.org/stable/1990053.

[5] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. In Pro-
ceedings of the 13th International Conference on Very Large Data Bases, VLDB ’87,
pages 71–81, San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc. ISBN
0-934613-46-X. URL http://dl.acm.org/citation.cfm?id=645914.671645.

[6] Herman Chernoff. A Note on an Inequality Involving the Normal Distribution. The
Annals of Probability, 9(3):533–535, June 1981. ISSN 0091-1798. doi: 10.1214/aop/
1176994428. URL http://dx.doi.org/10.1214/aop/1176994428.

[7] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):pp. 297–301, 1965. ISSN
00255718. URL http://www.jstor.org/stable/2003354.

[8] P.H. Cootner. The random character of stock market prices. M.I.T. Press, 1964. URL
http://books.google.co.uk/books?id=jW9gT8U6dqQC.

[9] Graham Cormode and Minos Garofalakis. Histograms and wavelets on probabilistic
data. IEEE Transactions on Knowledge and Data Engineering, 22(8):1142–1157, 2010.
ISSN 1041-4347. doi: http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.66.

[10] Nilesh Dalvi, Christopher Ré, and Dan Suciu. Probabilistic databases: diamonds in
the dirt. Commun. ACM, 52(7):86–94, July 2009. ISSN 0001-0782. doi: 10.1145/
1538788.1538810. URL http://doi.acm.org/10.1145/1538788.1538810.

109

http://dx.doi.org/10.1007/s00778-009-0149-y
http://dblp.uni-trier.de/db/journals/pvldb/pvldb3.html#HaasJAXPJ10
http://dblp.uni-trier.de/db/journals/pvldb/pvldb3.html#HaasJAXPJ10
http://www.jstor.org/stable/1990053
http://dl.acm.org/citation.cfm?id=645914.671645
http://dx.doi.org/10.1214/aop/1176994428
http://www.jstor.org/stable/2003354
http://books.google.co.uk/books?id=jW9gT8U6dqQC
http://doi.acm.org/10.1145/1538788.1538810


[11] Nilesh Dalvi, Karl Schnaitter, and Dan Suciu. Computing query probability with inci-
dence algebras. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’10, pages 203–214, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0033-9. doi: 10.1145/1807085.1807113. URL
http://doi.acm.org/10.1145/1807085.1807113.

[12] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases.
In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A.
Blakeley, and K. Bernhard Schiefer, editors, VLDB, pages 864–875. Morgan Kaufmann,
2004. ISBN 0-12-088469-0.

[13] Landon Detwiler, Wolfgang Gatterbauer, Brent Louie, Dan Suciu, and Peter Tarczy-
Hornoch. Integrating and ranking uncertain scientific data. In Proceedings of the
2009 IEEE International Conference on Data Engineering, ICDE ’09, pages 1235–
1238, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3545-6.
doi: 10.1109/ICDE.2009.209. URL http://dx.doi.org/10.1109/ICDE.2009.209.

[14] C. G. Esseen. On the liapunoff limit of error in the theory of probability. Arkiv fr
matematik, astronomi och fysik, A28(2):1–19, 1942. ISSN 0365-4133.

[15] C. G. Esseen. A moment inequality with an application to the central limit theorem.
Scandinavian Actuarial Journal, 1956(2):160–170, 1956. doi: 10.1080/03461238.1956.
10414946. URL http://www.tandfonline.com/doi/abs/10.1080/03461238.1956.

10414946.

[16] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, PODS ’01, pages 102–113, New York,
NY, USA, 2001. ACM. ISBN 1-58113-361-8. doi: 10.1145/375551.375567. URL
http://doi.acm.org/10.1145/375551.375567.

[17] R. Fink, D. Olteanu, and S. Rath. Providing support for full relational algebra in
probabilistic databases, 2011. ISSN 1063-6382.

[18] Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. Sprout2: a squared
query engine for uncertain web data. In Timos K. Sellis, Renée J. Miller, Anastasios
Kementsietsidis, and Yannis Velegrakis, editors, SIGMOD Conference, pages 1299–
1302. ACM, 2011. ISBN 978-1-4503-0661-4. URL http://dblp.uni-trier.de/db/

conf/sigmod/sigmod2011.html#FinkHOR11.

[19] Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in probabilistic databases via
knowledge compilation. CoRR, abs/1201.6569, 2012.

[20] Robert Fink, Jiewen Huang, and Dan Olteanu. Anytime approximation in probabilistic
databases. The VLDB Journal, pages 1–26, 2013. ISSN 1066-8888. doi: 10.1007/
s00778-013-0310-5. URL http://dx.doi.org/10.1007/s00778-013-0310-5.

[21] Erol Gelenbe and Georges Hébrail. A probability model of uncertainty in data bases.
In ICDE, pages 328–333. IEEE Computer Society, 1986. ISBN 0-8186-0655-X. URL
http://dblp.uni-trier.de/db/conf/icde/icde86.html#GelenbeH86.

[22] N.S. Goel and N. Dyn. Stochastic Models in Biology. Academic Press, 1974. ISBN
9780122874604. URL http://books.google.co.uk/books?id=xK4fC6UYQ68C.

110

http://doi.acm.org/10.1145/1807085.1807113
http://dx.doi.org/10.1109/ICDE.2009.209
http://www.tandfonline.com/doi/abs/10.1080/03461238.1956.10414946
http://www.tandfonline.com/doi/abs/10.1080/03461238.1956.10414946
http://doi.acm.org/10.1145/375551.375567
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2011.html#FinkHOR11
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2011.html#FinkHOR11
http://dx.doi.org/10.1007/s00778-013-0310-5
http://dblp.uni-trier.de/db/conf/icde/icde86.html#GelenbeH86
http://books.google.co.uk/books?id=xK4fC6UYQ68C


[23] Todd J. Green and Val Tannen. Models for incomplete and probabilistic information.
In Torsten Grust, Hagen Hpfner, Arantza Illarramendi, Stefan Jablonski, Marco Mesiti,
Sascha Mller, Paula-Lavinia Patranjan, Kai-Uwe Sattler, Myra Spiliopoulou, and Jef
Wijsen, editors, EDBT Workshops, volume 4254 of Lecture Notes in Computer Science,
pages 278–296. Springer, 2006. ISBN 3-540-46788-2. URL http://dblp.uni-trier.

de/db/conf/edbtw/edbtw2006.html#GreenT06.

[24] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In
Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, PODS ’07, pages 31–40, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-685-1. doi: 10.1145/1265530.1265535. URL http://doi.acm.org/

10.1145/1265530.1265535.

[25] Rahul Gupta and Sunita Sarawagi. Creating probabilistic databases from information
extraction models. In Proceedings of the 32nd international conference on Very large
data bases, VLDB ’06, pages 965–976. VLDB Endowment, 2006. URL http://dl.

acm.org/citation.cfm?id=1182635.1164210.

[26] Oktie Hassanzadeh and Renée J. Miller. Creating probabilistic databases from
duplicated data. The VLDB Journal, 18(5):1141–1166, October 2009. ISSN
1066-8888. doi: 10.1007/s00778-009-0161-2. URL http://dx.doi.org/10.1007/

s00778-009-0161-2.

[27] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):pp. 13–30, 1963. ISSN
01621459. URL http://www.jstor.org/stable/2282952.

[28] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: a
probabilistic database management system. In Ugur etintemel, Stanley B. Zdonik,
Donald Kossmann, and Nesime Tatbul, editors, SIGMOD Conference, pages 1071–
1074. ACM, 2009. ISBN 978-1-60558-551-2. URL http://dblp.uni-trier.de/db/

conf/sigmod/sigmod2009.html#HuangAKO09.

[29] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine, and Pe-
ter J. Haas. Mcdb: a monte carlo approach to managing uncertain data. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data, SIGMOD
’08, pages 687–700, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi:
10.1145/1376616.1376686. URL http://doi.acm.org/10.1145/1376616.1376686.

[30] T. S. Jayram, Satyen Kale, and Erik Vee. Efficient aggregation algorithms for
probabilistic data. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’07, pages 346–355, Philadelphia, PA, USA, 2007.
Society for Industrial and Applied Mathematics. ISBN 978-0-898716-24-5. URL
http://dl.acm.org/citation.cfm?id=1283383.1283420.

[31] O. Kennedy and C. Koch. Pip: A database system for great and small expectations. In
Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 157–
168, 2010. doi: 10.1109/ICDE.2010.5447879.

[32] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Probabilistic event ex-
traction from rfid data. In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen,

111

http://dblp.uni-trier.de/db/conf/edbtw/edbtw2006.html#GreenT06
http://dblp.uni-trier.de/db/conf/edbtw/edbtw2006.html#GreenT06
http://doi.acm.org/10.1145/1265530.1265535
http://doi.acm.org/10.1145/1265530.1265535
http://dl.acm.org/citation.cfm?id=1182635.1164210
http://dl.acm.org/citation.cfm?id=1182635.1164210
http://dx.doi.org/10.1007/s00778-009-0161-2
http://dx.doi.org/10.1007/s00778-009-0161-2
http://www.jstor.org/stable/2282952
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2009.html#HuangAKO09
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2009.html#HuangAKO09
http://doi.acm.org/10.1145/1376616.1376686
http://dl.acm.org/citation.cfm?id=1283383.1283420


editors, ICDE, pages 1480–1482. IEEE, 2008. URL http://dblp.uni-trier.de/db/

conf/icde/icde2008.html#KhoussainovaBS08.

[33] Jens Lechtenbörger, Hua Shu, and Gottfried Vossen. Aggregate queries over conditional
tables. J. Intell. Inf. Syst., 19(3):343–362, November 2002. ISSN 0925-9902. doi:
10.1023/A:1020197923385. URL http://dx.doi.org/10.1023/A:1020197923385.

[34] Ezio Lefons and Albert Silvestri. An analytic approach to statistical databases. In In
9th Int. Conf. Very Large Data Bases, pages 260–274. Morgan Kaufmann, Oct-Nov,
1983.

[35] Jian Li and Tianlin Shi. An fptas for approximating a sum of random variables. CoRR,
abs/1303.6071, 2013.

[36] R. Murthy, R. Ikeda, and J. Widom. Making aggregation work in uncertain and
probabilistic databases. Knowledge and Data Engineering, IEEE Transactions on, 23
(8):1261–1273, 2011. ISSN 1041-4347. doi: 10.1109/TKDE.2010.166.

[37] K. Neammanee. A refinement of normal approximation to poisson binomial. Interna-
tional Journal of Mathematics and Mathematical Sciences, 2005(5):717–728, 2005. doi:
http://dx.doi.org/10.1155/IJMMS.2005.717.

[38] Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate Confidence Compu-
tation in Probabilistic Databases. In Proceedings of the 26th International Conference
on Data Engineering, 2010. Long paper.

[39] Christopher Ré, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation on
probabilistic data. In in ICDE, pages 886–895, 2007.

[40] S. Redner. A Guide to First-Passage Processes. A Guide to First-passage Processes.
Cambridge University Press, 2001. ISBN 9780521652483. URL http://books.google.

co.uk/books?id=xtsqMh3VC98C.

[41] S. M. Samuels. On the Number of Successes in Independent Trials. The Annals of
Mathematical Statistics, 36(4), 1965. ISSN 00034851. doi: 10.2307/2238127. URL
http://dx.doi.org/10.2307/2238127.

[42] I.G. Shevtsova. An improvement of convergence rate estimates in the lyapunov the-
orem. Doklady Mathematics, 82(3):862–864, 2010. ISSN 1064-5624. doi: 10.1134/
S1064562410060062. URL http://dx.doi.org/10.1134/S1064562410060062.

[43] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Probabilistic
top-k and ranking-aggregate queries. ACM Trans. Database Syst., 33(3):13:1–13:54,
September 2008. ISSN 0362-5915. doi: 10.1145/1386118.1386119. URL http://doi.

acm.org/10.1145/1386118.1386119.

[44] Dan Suciu, Dan Olteanu, Chris Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[45] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 2011. ISBN 9780080475363. URL http://books.

google.co.uk/books?id=N6II-6HlPxEC.

[46] Bengt von Bahr and Carl-Gustav Esseen. Inequalities for the rth absolute moment of

112

http://dblp.uni-trier.de/db/conf/icde/icde2008.html#KhoussainovaBS08
http://dblp.uni-trier.de/db/conf/icde/icde2008.html#KhoussainovaBS08
http://dx.doi.org/10.1023/A:1020197923385
http://books.google.co.uk/books?id=xtsqMh3VC98C
http://books.google.co.uk/books?id=xtsqMh3VC98C
http://dx.doi.org/10.2307/2238127
http://dx.doi.org/10.1134/S1064562410060062
http://doi.acm.org/10.1145/1386118.1386119
http://doi.acm.org/10.1145/1386118.1386119
http://books.google.co.uk/books?id=N6II-6HlPxEC
http://books.google.co.uk/books?id=N6II-6HlPxEC


a sum of random variables, 1 ≤ r ≤ 2. The Annals of Mathematical Statistics, 36(1):
pp. 299–303, 1965. ISSN 00034851. URL http://www.jstor.org/stable/2238095.

[47] Y. H. Wang. On the number of successes in independent trials. Statistica Sinica, 3:
295–312, 1993.

[48] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and
lineage. Technical Report 2004-40, Stanford InfoLab, August 2004. URL http://

ilpubs.stanford.edu:8090/658/.

[49] Mohan Yang, Haixun Wang, Haiquan Chen, and Wei-Shinn Ku. Querying uncertain
data with aggregate constraints. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data, SIGMOD ’11, pages 817–828, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0661-4. doi: 10.1145/1989323.1989409. URL
http://doi.acm.org/10.1145/1989323.1989409.

113

http://www.jstor.org/stable/2238095
http://ilpubs.stanford.edu:8090/658/
http://ilpubs.stanford.edu:8090/658/
http://doi.acm.org/10.1145/1989323.1989409


Appendix A

Computation of Mean, Variance,
and Third Moment For D-Trees

The computation of expected value (mean) for the answers of aggregate queries over proba-
bilistic databases has been well studied in the literature [30, 31, 36]. While the focus of the
dissertation is on the computation of histogram approximation and top-k approximation, the
Normal Approximation Algorithm (NA; Algorithm 21 on page 52) for computing histogram
approximation for SUM aggregations calls for the need to compute mean(µ), variance(σ2)
and absolute third moment(ρ) efficiently for a given decomposition tree (d-tree). Addition-
ally, by bringing the computation of expected values (and other statistical measures) to the
proposed framework, we now have a consistent framework that supports exact computa-
tion, histogram approximation, top-k approximation and expected value computation for
aggregate queries.

A.1 Overview

The definition of mean, variance and absolute third moment is presented in Definition
5.

Definition 5. Given a probability distribution

{(v1, p1), (v2, p2) . . . , (vM , pM )}

The mean, variance and absolute third moment of the distribution is defined by

Mean = µ =
M∑

i=1

vi × pi (A.1)

Variance = σ2 =
M∑

i=1

(vi − µ)2 × pi (A.2)

Absolute Third moment = ρ =
M∑

i=1

|vi − µ|3 × pi (A.3)

114



It is clear that the computation of mean, variance and absolute third moment for a d-
tree (or part of a d-tree) can be done by first obtaining the full probability distribution
via exact computation, and the definitions of the statistical measures can then be applied
over the distribution. However, similar to the strategy we used for the computation of
histogram approximation and top-k approximation, our ultimate goal is to devise recursive
algorithms that can skip the exact evaluation phrase in all levels of the tree, which requires
algorithms that can compute mean, variance and third-moment for a node when given the
mean, variance and third-moment of its children.

A.2 VARIABLE

Because a VARIABLE node carries the complete probability distribution, the computa-
tion of µ, σ2 and ρ can be done by simply applying Equations A.1, A.2 and A.3 to the
distribution.

A.3 UNION

For a UNION node Y withN children, represented by the random variablesX1, X2, . . . , XN ,
and the probability of the assignment(s) on the ith branch is wi, the probability distribution
Y is given by

P (Y = v) =
N∑

i=1

wi × P (Xi = v) (A.4)

Now consider S =
⋃

i supp(Xi) and a function f(v),

∑

v∈S
f(v)× P (Y = v) =

∑

v∈S
f(v)

N∑

i=1

wi × P (Xi = v) (Substitution of Equation A.4)

=
∑

v∈S

N∑

i=1

f(v)× wi × P (Xi = v)

=
N∑

i=1

∑

v∈S
f(v)× wi × P (Xi = v)

=
N∑

i=1

wi

∑

v∈S
f(v)× P (Xi = v) (A.5)

115



Now, if f(v) = v, and the mean of Xi = µi,

µ =
∑

v∈S
v × P (Y = v)

=
N∑

i=1

wi

∑

v∈S
v × P (Xi = v) (Substitution of Equation A.5)

=
N∑

i=1

wi × µi (A.6)

Similarly, if f(v) = (v − µ)2, and the variance of Xi = σ2i ,

σ2 =
∑

v∈S
(v − µ)2 × P (Y = v)

=
N∑

i=1

wi

∑

v∈S
(v − µ)2 × P (Xi = v) (Substitution of Equation A.5)

=
N∑

i=1

wi × σ2i (A.7)

And if f(v) = |v − µ|3, and the third-moment of Xi = ρ,

ρ =
∑

v∈S
|v − µ|3 × P (Y = v)

=
N∑

i=1

wi

∑

v∈S
|v − µ|3 × P (Xi = v) (Substitution of Equation A.5)

=
N∑

i=1

wi × ρi (A.8)

The result demonstrates that the mean, variance and third moment of a UNION node is the
weighted sum of the mean, variance and third moment of its children respectively. Therefore
the computation will simply involve getting the mean, variance and third moment of the
node’s children using the algorithms presented in this chapter, and combine them according
to Equations A.6, A.7 and A.8.

A.4 MIN/MAX

We start by making the observation that there is not enough information for the compu-
tation of the mean of a MIN/MAX node when only the means of its children is given. For
example, consider the following two random variables X1 and X2 with probability distribu-
tions:

116



X1

Value Probability

20 0.2
60 0.8

µ = 52

X2

Value Probability

10 0.4
100 0.6

µ = 64

The convolution result of MAX(X1, X2) has the probability distribution

MAX(X1, X2)

Value Probability

100 0.6
60 0.32
20 0.08
10 0

µ = 80.8

However, consider the random variables X3 and X4 with probability distributions:

X3

Value Probability

52 1

µ = 52

X4

Value Probability

64 1

µ = 64

The convolution result of MAX(X3, X4) has the probability distribution

MAX(X3, X4)

Value Probability

64 1
52 0

µ = 64

The result demonstrates while X1 and X2 have the same means as X3 and X4, the mean of
the convolution result can be different, suggesting having the means of a MIN/MAX node’s
children are insufficient for the computation of the mean for the node. For this reason, the
computation of mean, variance and third moment for MIN/MAX node will simply involve an
exact evaluation to obtain the complete distribution, Equations A.1, A.2 and A.3 can then
be applied to turn the distribution into mean, variance and third moment respectively. This
suggests that MIN and MAX are blocking operators under the computation of statistical
measures. Fortunately, the Heap Method (Algorithm 29 on page 65) supports efficient exact
evaluation for MIN/MAX node.

117



A.5 COUNT/SUM

For a COUNT/SUM node Y , with N children by the random variables X1, X2, . . . , XN , the
convolution result is given by

Y =
N∑

i=1

Xi (A.9)

Because the children of a COUNT/SUM node must be independent, as otherwise Shannon
expansions will take place until this is the case, the variables X1, X2, . . . , XN are indepen-
dent.

It is well-known that if the random variables Xi are independent, and have mean and
variance µi and σ2i respectively, then

µ =
N∑

i=1

µi (A.10)

σ2 =
N∑

i=1

σ2i (A.11)

While there is no such simple equality for absolute third moment, it is possible to provide
an upper bound for it [46]:

ρ ≤ 4×
N∑

i=1

ρi (A.12)

We note that the upper bound for ρ can then be used in Equation 4.13 to provide an
overestimated bound for the normal approximation error in Algorithm 21 (page 52).

The result demonstrates that the computation of mean, variance and absolute third moment
for a COUNT/SUM node is as simple as getting the mean, variance and absolute third
moment of its children using the algorithms presented in this chapter, and combining them
according to Equations A.10, A.11 and A.12.

118



Appendix B

Source Code

With over 8000 lines of code, it would be impractical to include all of them in the disserta-
tion. Thus, the source code will be available to be downloaded at

https://dl.dropboxusercontent.com/u/88890773/ProBASE.zip

The source code is protected with the password

Unc3rta1nty

119


	Introduction
	Background
	Motivation and Objectives
	Contributions
	Related Work
	Outline

	Preliminaries
	Probabilistic Databases and Possible Worlds Semantics
	Probabilistic Data Representation and PC-Tables
	Monoids, Semirings, and Semimodules
	Aggregations and PVC-Tables
	Decomposition Trees and Convolutions

	Two Approximation Flavours: Histograms and Top-k
	Overview
	Workflow
	Assumptions

	Value-based Approximations
	Histogram Approximation
	Top-k Approximation

	Probability-based Approximations
	Working with Probability Bounds

	Optimisations
	Tree Flattening


	Histogram Approximation
	Overview
	Strategy
	Framework

	Algorithms
	VARIABLE
	UNION
	MIN/MAX
	COUNT
	SUM


	Top-k Approximation
	Overview
	Strategy
	Framework

	Algorithms
	VARIABLE
	UNION
	MIN/MAX
	COUNT
	SUM


	Implementation
	System Overview
	Code Organisation

	Implementation Details
	Handling Null
	Data Structures
	Random Data Generation
	Node Interface


	Experiments
	Experimental Setup
	Methodology
	Environment
	Algorithms Benchmarked
	Semimodule Expressions for the Experiments

	Summary of Experimental Findings
	Histogram Approximation
	Scalability
	Dependency
	Performance of Histogram Zooming
	Accuracy of Histograms with Approximate Probability

	Top-k Approximation
	Scalability
	Dependency
	Skewness


	Conclusion
	Summary
	Future Work

	Bibliography
	Computation of Mean, Variance, and Third Moment For D-Trees
	Overview
	VARIABLE
	UNION
	MIN/MAX
	COUNT/SUM

	Source Code

