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Key Features of DAGger

k-Medoids Clustering of Uncertain Data

» It considers the possible worlds semantics for uncertain data

» natural semantics for incomplete and probabllistic databases.

» the input is a probability distribution over a set of possible worlds,
whereby each world defines a set of input objects.

» the output is equivalent to clustering within each world and defines
probability distributions for objects belonging to clusters.

» It allows for arbitrary correlations, which are:

» used In results to queries in probabilistic databases,

» obtained by structuring text using Conditional Random Fields,

» enforced by experts and learned from data in Bayesian Networks and
Markov Logic Networks.

If correlations are ighored, the output can be arbitrarily off from the

true clustering result.

» It can compute exact and approximate probabilities with error
guarantees for the clustering output.

State-of-the-art techniques (e.g. UK-means, UKmedoids, MMVar):
» do not support the possible worlds semantics,
» lack support for correlations and assume probabilistic independence,
» use deterministic cluster medoids or expected means, and
» can only compute clustering based on expected distances.

In many cases, the output is a hard clustering that assigns each object to one
cluster, like in deterministic k-medoids or k-means.

DAGger’s Approach

» The uncertainty and correlations in the input data are represented
symbolically in a language of probabilistic events.

» Clustering events are captured within the same formalism.

» This formalism supports a wide range of tasks:
» probability computation for clustering events,

» sensitivity analysis and explanation of clustering output,
» different clustering algorithms, e.g., k-medoids, Markov clustering.

» All clustering events are represented within one event network:
» Common expressions are represented only once.
» Yields a highly repetitive and interconnected structure due to the
combinatorial nature of clustering.
» For k-medoids and Markov clustering, the events have the same
structure at each step, and at any iteration step are expressions over the
events at the previous clustering iteration.

» Compute the probability of all events by bulk-compiling an entire event
network into one decision tree.
» Only the current root-to-leaf path of this decision tree is kept at any one
time, while exploring it depth-first.
» Anytime approximation with error guarantees can be achieved by
exploring small fragments of the decision tree.

k-Medoids Clustering of Certain Data

1. ( Initialisation) Initially choose an object as medoid for each cluster.
» (Given: objects oy,...,0n, and clusters C;, ..., C,.

2. ( Assignment) Assign object to the cluster of the closest medoid.
» “closest” defined using any distance metric, e.g., Euclidean distance,
Manhattan distance or Minkowski distance.

3. ( Update) Choose new medoid for each cluster.
4. Repeat phases 2 and 3 for a number of iterations, or until fixpoint reached.

Language of Probabilistic Events

» Propositional events over independent Boolean random variables.
» Construct that can succinctly express real values conditioned on
propositional formulas:
» ® @ v expresses that the value v € R is conditioned by the formula ¢ < B:
if ® then VvV else 0.
» Sums of if-then-else expressions: ¢, @ Vi +...+ dp vy

» Comparisons of such sums: ¢, @ Vy+ ...+ PpVa<Via Wi +... +Vne Wn
This language allows for succinct encoding — independently of the number of

possible variable assignments — of sums of distances from an object to any
other object in a cluster, conditioned on the uncertainty of these objects.

Our approach is a realisation of k-medoids clustering on uncertain data.

» It Is equivalent to performing k-medoids clustering in each possible world of
the input, yet avoids the explicit enumeration of possible worlds.

» The probability that an object belongs to a cluster is the sum of probabilities
of those worlds in which this event occurs.

» Each object belongs to each cluster or is medoid with a certain probability.

Examples of clustering queries:
» membership: does a given object belong to a given cluster?
» medoid: is a given object the medoid of a given cluster?
» CO-Occurrence: are given objects clustered together?

Membership event ¢! {o,- c Cj} for object o; and cluster C; at step t > 1:
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Medoid event ¢ | c; = ;| for object o; and cluster C; at step t > 1:
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Legend:

» ¢[0]] Is the event that object o; exists. For certain data, this event is true.
» d(.,-) Is the distance function between objects.
> Al (o,-, Cj) is the total distance-sum of o; to the objects in C; at step .

Exact and Approximate Probability Computation
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» Compilation of event network into decision tree using Shannon expansion:
d=XAPxv-XArP_x This means that: P(¢) = Px- P(®|x) + (1 - Px) - P(®|-x)

» If ® Is the network, then the restrictions ¢|x and ¢|_x are obtained by
masking in ¢ those nodes that become true or false.

» Repeated application of Shannon expansion eventually masks nodes in the
network and adds the probabillity of the variable assignments (x or -x) to the
probability mass of these nodes.

» Approximate probability computation strategies decide how to invest
(eagerly, lazily, or hybrid) the error budget while exploring the decision tree.

Experimental Evaluation with k-Medoids Clustering of Uncertain Data

» haive means k-medoids in each possible world.
» types of correlations considered: positive, mutex (block-independent
disjoint); conditional independence.
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