
A Dichotomy for Non-repeating Queries with Negation
in Probabilistic Databases

Robert Fink
University of Oxford

Dan Olteanu
University of Oxford & LogicBlox Inc.

ABSTRACT
This paper shows that any non-repeating conjunctive rela-
tional query with negation has either polynomial time or
#P-hard data complexity on tuple-independent probabilis-
tic databases. This result extends a dichotomy by Dalvi and
Suciu for non-repeating conjunctive queries to queries with
negation. The tractable queries with negation are precisely
the hierarchical ones and can be recognised efficiently.

1. INTRODUCTION
Charting the tractability frontier of query evaluation lies

at the foundation of probabilistic databases [23]. Existing
probabilistic database management systems, such as Mys-
tiQ [6] and MayBMS/SPROUT [15], fundamentally rely on
query tractability results as they provide exact evaluation
techniques for tractable queries and approximate techniques
for intractable queries. Thus far, complexity dichotomies
are known for non-repeating conjunctive queries (a.k.a. con-
junctive queries without self-joins) [6] and union of conjunc-
tive queries [9] on tuple-independent probabilistic databases:
The data complexity of any query in each of these languages
is either #P-hard or in polynomial time.
This paper shows a similar complexity dichotomy for que-

ries with negation in probabilistic databases. All tractable
queries are precisely the hierarchical ones and can be recog-
nised in LOGSPACE in the size of the query.
The query language considered in this paper is that of

relational algebra queries constructed using non-repeating
relation symbols, equi-joins, projections, and difference (uni-
on not allowed). We denote this language by 1RA−. By
non-repeating we mean that a relation symbol can occur at
most once in the query. We also discuss extensions of 1RA−,
in particular non-repeating relational calculus queries with
or without union, and their implications for tractability.
Following earlier work on query tractability in probabilis-

tic databases, this paper considers the tuple-independent
model, where every tuple in the input database is annotated
by a Boolean random variable stating the probability of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS’14, June 22–27, 2014, Salt Lake City, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2375-8/14/06. $15.00. http://dx.doi.org/10.1145/2594538.2594549.

existence of that tuple, and any two such variables are in-
dependent. For more complex probabilistic models, query
tractability is quickly lost: for block-independent disjoint
tables, tractability analysis essentially falls back to that for
tuple-independent databases by restricting joins to key at-
tributes, while for the general model of probabilistic c-tables,
already selection or projection queries can be #P-hard [23].
The following theorem states the main result of this paper:

Theorem 1. The data complexity of any 1RA− query Q
on tuple-independent databases is polynomial time if Q is
hierarchical and #P-hard otherwise.

We next define the hierarchical property. Let Q be a
1RA− query. We denote by [A] the equivalence class of at-
tribute A in Q, as enforced by join and difference operators;
for instance, given relations over schemas X(A) and Y (B),
both the join X 1A=B Y and the difference X −A↔B Y
under the attribute mapping A↔ B enforce that [A] = [B].

Definition 1. A 1RA− query Q is hierarchical if for ev-
ery pair of attribute classes [A] and [B] that have no at-
tributes in Q’s result, there is no triple of relation symbols
R, S, and T in Q such that R has attributes in [A] and
not in [B], S has attributes in both [A] and [B], and T has
attributes in [B] and not in [A].

The hierarchical property can be decided for 1RA− queries
in LOGSPACE [7, 12]. In the special case of queries with-
out the difference operator, the notion of hierarchical queries
defaults to the one introduced previously for non-repeating
conjunctive queries and also characterises all tractable que-
ries within that class [6]. While the syntactic characteriza-
tions are equivalent, the tractability and hardness proofs for
1RA− are non-trivial generalizations of those for conjunctive
queries. Careful treatment is needed for the interaction of
projection and difference operators, which can encode uni-
versal quantification and can lead to hardness already for
cases where one single input relation is probabilistic and all
other relations are deterministic. A further source of com-
plexity is the lack of commutativity and associativity of the
difference operator, which leads to many incomparable min-
imal hard query patterns made out of difference and join
operators. We next exemplify techniques used in the hard-
ness and tractability proofs.

Hardness proof for non-hierarchical queries
We prove that every non-hierarchical query Q has #P-hard
data complexity by reduction from the #P-hard model-coun-
ting problem for positive bipartite DNF formulas: Given any

−

A 1

B AB

Pattern P5.3

π∅

1

X(A) −

R(A) πA

1

T (B) S(A,B)

Query Q

Figure 1: A query (right) matches a pattern (left).

R,X

A Φ

1 >
2 >

T

B Φ

x1 ¬x1
y1 ¬y1
y2 ¬y2

S

A B Φ

1 x1 >
1 y1 >
1 y2 ⊥
2 x1 >
2 y1 ⊥
2 y2 >

T 1 S

A B Φ

1 x1 ¬x1
1 y1 ¬y1
1 y2 ⊥
2 x1 ¬x1
2 y1 ⊥
2 y2 ¬y2

πA(T 1 S)
A Φ

1 ¬x1 ∨ ¬y1
2 ¬x1 ∨ ¬y2

R− πA(T 1 S)
A Φ

1 x1y1
2 x1y2

Figure 2: Sketch of a hardness reduction for query
Q in Figure 1. To avoid clutter (and in contrast to
the naming convention used in Section 4), Q uses
the same attribute names across multiple relations.

formula Ψ and the query Q, we construct an input database
whose input tuples are annotated with variables in Ψ such
that the result ofQ becomes annotated with Ψ. To count the
models of Ψ, we call an oracle that computes the probability
PQ of the query Q on a tuple-independent database where
each variable has probability 1/2. The number of models
#Ψ is then 2nPQ, where n is the number of variables in Ψ.
The starting point of our analysis is an alternative charac-

terisation of the hierarchical property of queries via match-
ing one of 48 minimal patterns; for each query, we craft a
specific reduction depending on which pattern is matched.
A pattern is a concise graphical representation of an infinite
class of queries that satisfy certain structural properties. For
example, the query Q in Figure 1 (right) is non-hierarchical
as witnessed by the three relations R, S, T , and it matches
the pattern shown in Figure 1 (left). Intuitively, the query
matches the pattern, because the arrangement of the three
relation symbols R(A), S(A,B), T (B) and the operators
connecting them in the query correspond to the structure of
the attributes A and B and the operators in the pattern.

Example 1. We exemplify the reduction for query Q in
Figure 1 and the formula Ψ = x1y1 ∨ x1y2. The input rela-
tions and intermediate query results are shown in Figure 2.
Each relation has a special column Φ that holds Boolean
annotation formulas over variables in Ψ: Relations R and
X have only true (>) annotations, S has true and false (⊥)
annotations, and all other relations have non-trivial anno-
tations. Whereas the input relations are tuple-independent,
the intermediate results exhibit correlated annotations. The
query result is the projection on the empty set of the bottom-
right relation; the annotation associated with the nullary re-
sult tuple is Ψ. Our filling of input tables may use variables
as constants, e.g., for attribute B in tables S and T .
The reduction strategy is determined solely by the pattern

matched by Q. The key challenge is to specify a database

for the relation symbols that establish the match (R, S, T ,
in this example) such that they give rise to formula Ψ when
Q is evaluated over this database. The remaining relation
symbols (X, in this example) are populated such that they
leave the annotations introduced by R, S, T unaltered. 2

Example 1 shows the power of negation: Our query Q can
compute #Ψ for any positive 2DNF formula Ψ and is thus
#P-hard already when one of its relations is uncertain (here,
T) and all others are standard certain relations. In contrast,
hardness can only be achieved for conjunctive queries when
at least two input relations are uncertain.

Efficient algorithm for hierarchical queries
Our evaluation approach for hierarchical 1RA− queries is to
compile formulas annotating the query result into ordered
binary decision diagrams (OBDDs), whose probabilities can
be computed in time linear in their sizes [26]. While for hier-
archical non-repeating conjunctive queries the OBDD sizes
are independent of the query size and linear in the database
size since the resulting formulas admit read-once representa-
tions [19], this is not the case for hierarchical 1RA− queries,
where the OBDD sizes remain linear in the database size,
but may depend exponentially on the query size.

Example 2. The annotation of the result of the hierar-
chical Boolean query Q′ on the database D in Figure 3 is

Ψ =r1
[
t1(¬u1 ∨ ¬v1) ∨ t2(¬u1 ∨ ¬v2)

]
∨

r2
[
t1(¬u2 ∨ ¬v1) ∨ t2(¬u2 ∨ ¬v2)

]
.

The difference operator entangles the annotations of the par-
ticipating relations in such a way that the resulting annota-
tion Ψ is not a read-once formula; this entanglement is the
pivotal intricacy introduced by the difference operator.
We show in Section 3 that for every tuple-independent

database D, the annotation of the result of Q′ on D admits
an OBDD of size O(|D| · f(Q)), where f(Q) is the OBDD
width and only depends on the query size |Q|.
The underlying idea is to translate Q′ into an equivalent

disjunction of disjunction-free existential relational calculus
queries such that each of the disjuncts gives rise to a compact
OBDD and all OBDDs have compatible variable orders and
can be combined efficiently into a single OBDD. We denote
the language of such queries by RC∃. ForQ′, this translation
yields the RC∃ query

QRC =∃A
(
R(A) ∧ ¬U(A)

)
∧ ∃BT (B)︸ ︷︷ ︸

Q1

∨

∃AR(A) ∧ ∃B
(
T (B) ∧ ¬V (B)

)︸ ︷︷ ︸
Q2

.

The formulas annotating the results of the two queries Q1
and Q2 on the database D from Figure 3 are

Ψ1 = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2)
Ψ2 = (r1 ∨ r2) ∧ (t1¬v1 ∨ t2¬v2).

and clearly Ψ1 ∨Ψ2 ≡ Ψ. The RC∃ expressions Q1 and Q2
can be written such that (i) for each quantifier ∃X(Q′) ev-
ery relation symbol in Q′ contains variable X, and (ii) the
nesting order of the quantifiers is the same in both Q1 and
Q2. Property (i) ensures that the formulas Ψ1 and Ψ2 ad-
mit OBDDs of size O(|D|), as exemplified in the diagrams

π∅

−

1

R(A) T (B)

1

U(A) V (B)

R

A Φ

1 r1
2 r2

T

B Φ

1 t1
2 t2

U

A Φ

1 u1
2 u2

V

B Φ

1 v1
2 v2

R 1 T

A B Φ

1 1 r1t1
1 2 r1t2
2 1 r2t1
2 2 r2t2

R 1 T − U 1 V

A B Φ

1 1 r1t1¬(u1v1)
1 2 r1t2¬(u1v2)
2 1 r2t1¬(u2v1)
2 2 r2t2¬(u2v2)

Figure 3: Hierarchical query Q′ and a database D = (R, T, U, V). The tables R 1 T and R 1 T − U 1 V show
how the annotations of R, T, U, V are propagated by Q′.

r1

r2

¬u1

¬u2

t1

t2

>⊥

r1

r2

t1

t2

¬v1

¬v2

>⊥

r1

¬u1

r2 r2

¬u2 ¬u2

t1 t1

¬v1

t2 t2

¬v2

>⊥

Figure 4: From left to right: OBDDs for Ψ1, Ψ2, and
Ψ = Ψ1 ∨Ψ2 in Example 2.

of Figure 4. Property (ii) implies that these OBDDs can be
constructed under the same global variable order, and it fol-
lows from classic results [26] that we can efficiently combine
them via disjunctions and conjunctions. 2

2. PRELIMINARIES
Due to lack of space, we defer the introduction of ter-

minology for propositional formulas, their probabilistic in-
terpretation when taken over Boolean random variables, as
well as for probabilistic c-tables and annotation semirings to
the extended version of this paper [12] and a recent mono-
graph [23]. We next introduce a few necessary notions on
the 1RA− and RC∃ query languages and OBDDs.
The relational algebra query language 1RA−. We

assume database schemas with unique attribute names. The
set of attributes of a relation R is sch(R). A query Q is non-
repeating if each relation symbols occurs at most once in Q.
1RA− is the class of non-repeating, union-free relational

algebra queries composed of: Relation symbols; Equi-join:
Q1 1ρ Q2, where ρ is a conjunction of equality conditions
ρ = (A1=B1)∧· · ·∧(An=Bn) such that all Ai are attributes
of Q1 and all Bi are attributes of Q2; Projection: πA1,...,An
for attributes A1, . . . , An, or πĀ for a set Ā of attributes;
Difference: Q1 −ρ Q2, where the attributes exported by
Q1 and Q2 are {A1, . . . , An} and {B1, . . . , Bn} respectively,
and ρ is the following conjunction of attribute mappings
(A1↔B1) ∧ · · · ∧ (An↔Bn).
In Q1 1ρ Q2 and Q1 −ρ Q2, we write A ∈ ρ to express

that ρ contains an equality condition on A, and (A=A′) ∈ ρ
or (A↔A′) ∈ ρ to express that ρ contains the equality
condition A=A′ or A↔A′, respectively. When no confu-
sion arises, we choose a schema with suggestive unique at-
tribute names like R(Ar), S(As, Bs), T (Bt) and then write
the queries R 1Ar=As S and (R 1 T) −Ar↔As∧Bt↔Bs S
more concisely as R 1 S and (R 1 T)− S.

We interchangeably use algebraic expressions and their
ordered parse trees when referring to queries; in the latter
case, the leaves are relations and inner nodes are algebra
operators. Given a query Q and an operator Op in Q, Op
has even polarity if the number of “−” operators between
Op (exclusive) and the root of Q (inclusive), for which Op is
a right descendant, is even, and has odd polarity otherwise.
The pol function captures this notion: pol(Q,Op) is 1 if Op
has odd polarity in Q, and 0 otherwise.
The equivalence class [A] of an attribute A in Q is defined

as in the introduction, where we consider the difference op-
erators as joins on all attributes of its operands.
The attributes exported by a query Q, denoted E(Q), are

defined recursively on the query structure:

If Q = Q1 1ρ Q2, then E(Q) = E(Q1) ∪ E(Q2)
If Q = Q1 −ρ Q2, then E(Q) = E(Q1)
If Q = πĀ(Q1), then E(Q) = Ā

If Q = σρ(Q1), then E(Q) = E(Q1)
If Q = R, then E(Q) = sch(R)

A query Q exports [A] if there exists A′ ∈ [A] such that
A′ ∈ E(Q). Conversely, Q does not export [A] if for all
A′ ∈ [A] it holds that A′ 6∈ E(Q). By Q[A], Q[¬B], and
Q[A][¬B] we denote a query Q that exports [A], does not
export [B], and respectively exports [A] and not [B].
We use π−A1,···−An(Q) as syntactic sugar for discarding

A1, . . . , An, i.e., π−A1,...,−An(Q) = πE(Q)−{A1,...,An}(Q). Si-
milarly, for an attribute A, the operator π[A] is a shortcut
for πA′ for any A′ ∈ [A], and the operator π−[A] denotes
π−A1,...,−An where [A] = {A1, . . . , An}.
The relational calculus query language RC∃ is the

class of queries that are expressions {H̄ | F}, where the
query body F is a formula defined by the following grammar:

F ::= R(X̄) | ∃X(F1) | F1 ∧ F2 | F1 ∨ F2 | ¬(F1),

and the query head H̄ is the tuple of variable symbols that
occur unquantified in F . In the sequel, we represent a query
by its formula F alone. The size |Q| of a query Q is the
number of its relation symbols. A variable X is root in a
query ∃X(Q) if X occurs in every relation symbol in Q [8].

Definition 2. An RC∃ query Q is canonicalised if every
occurrence of a relation symbol R(X̄) in Q has the same
query variables X̄.

Binary decision diagrams (BDDs) form a representa-
tion system for Boolean propositional formulas such as the
annotations used in probabilistic databases. A BDD over
a set X of variables is a directed acyclic graph where inner
nodes are labeled with variables from X and terminal nodes
are true (>) and false (⊥). Each inner node has two outgo-
ing edges, for the case its variable is set to true (solid edge)

and false (dotted edge) respectively. Each root-to-leaf path
in a BDD is a (possibly partial) assignment of variables.
A BDD is ordered (OBDD) if there is a total order Π on

its variables such that the variables visited by each path are
in Π-order. A level in an OBDD corresponds to all nodes
labeled with the same variable. The width1 of a BDD is the
maximum number of edges crossing the section of the OBDD
between the nodes of any two consecutive levels, where edges
incident to the same node are counted as one.
In this paper, we make use of the following results:

Lemma 1 ([26]). Let Φ1, Φ2 be two formulas, Π be a
fixed variable order on their variables, and O1 and O2 be
Π-OBDDs of width w1 and w2 for Φ1 and Φ2, respectively.
Then, Π-OBDDs for Φ1 ∧ Φ2 and for Φ1 ∨ Φ2 can be con-
structed in time O(|O1|·|O2|) and have width at most w1 ·w2.
Given an OBDD for a formula Ψ, the probability PΨ can

be computed in time linear in the size of the OBDD.

Example 3. Figure 4 shows three OBDDs under the same
variable order r1, u1, r2, u2, t1, v1, t2, v2. Solid lines denote
the true-edges and dotted lines the false-edges. The path
r1
>−→ ¬u1

⊥−→ r2
⊥−→ ⊥ encodes that under any truth as-

signment ν with ν(r1) = > and ν(¬u1) = ν(r2) = ⊥, the
expression Ψ1 = (r1¬u1 ∨ r2¬u2) ∧ (t1 ∨ t2) becomes false.
The width of the left two OBDDs is three: There are three
edges with different sinks crossing from level of r2 to ¬u2
and respectively from t1 to ¬v1. The rightmost OBDD rep-
resents the disjunction of the two leftmost OBDDs (using
the ITE algorithm [4]) and has width five. 2

3. HIERARCHICAL 1RA− QUERIES
We show in this section the following result:

Lemma 2. Any hierarchical 1RA− query on tuple-inde-
pendent databases has polynomial-time data complexity.

Proof. We prove the lemma via a sequence of steps:

QRA is a hierarchical 1RA− query
⇒

Lemma 3
QRA is equivalent to an RC∃ query QRC that is

RC-hierarchical and ∃-consistent
⇒

Lemma 4
For any database D, we can find an OBDD of size

O(|D| · 2|QRC |) for the annotation Φ of the result QRC(D)
⇒

Corollary 1

The probability of Φ can be computed in O(|D| · 2|QRC |).

The reason for translating 1RA− queries to RC∃ queries
is that relational calculus is more flexible and allows to un-
fold negated expressions as per ¬(Q1 ∧ Q2) ≡ ¬Q1 ∨ ¬Q2.
Since the 1RA− query QRA and the RC∃ query QRC are
equivalent for any input database D, the formulas annotat-
ing their results are equivalent too and thus have the same
probability. We then show how QRC ’s annotation can be
compiled into an OBDD of size O(|D| · 2|QRC |).
The RC∃ query QRC is a disjunction of disjunction-free

RC∃ expressions. In contrast to QRA, QRC may have re-
peating relation symbols. It is hierarchical in a syntactically
more restricted sense:
1There is a different notion of BDD width in the literature
that refers to the maximum number of nodes in any level.

Definition 3. An RC∃ query Q is RC-hierarchical if for
every sub-query ∃X(Q′) in Q it holds that X is root in Q′.

Recall from Section 2 that a variable X is root in Q′

if it appears in every relation symbol in Q′, and that an
RC∃ query is canonicalised if each relation symbol occurs
only with the same variable symbols. In addition, the RC∃
queries obtained via rewriting can be written such that the
nesting order of the existential quantifiers is the same over
all of their disjunction-free expressions.

Definition 4. A canonicalised RC∃ query is ∃-consistent
if there exists a total order >∃ of the variable symbols in Q
such that X >∃ Y implies that there is no sub-query of the
form ∃YQ′(∃X) in Q.

Intuitively, ∃-consistency for an RC∃ query that is a con-
junction or disjunction of sub-queries means that these sub-
queries have compatible join orders (i.e., non-contradicting
>∃ orders). This means that their annotations, as well as
the conjunction, disjunction, and negation of their annota-
tions, can be compiled into OBDDs over the same variable
order. In addition, the RC-hierarchical property effectively
helps inferring from the order of quantifiers in the query a
variable order for the OBDD that keeps its size only linear
in the number of variables and thus in the database size but
possibly exponential in the query size. We next illustrate
these concepts via an example.

Example 4. Consider the following three RC∃ queries:

Q1 =∃A
(
M(A) ∧ ¬R(A)

)
∧ ∃BN(B)

Q2 =∃AM(A) ∧ ∃B
(
N(B) ∧ ¬T (B)

)
Q3 =∃A

(
M(A) ∧ U(A)

)
∧ ∃B

(
N(B) ∧ V (B)

)
All three queries are RC-hierarchical since for each occur-

rence of ∃A and ∃B , A andB, respectively, are root variables.
Let us evaluate the queries over the database D, viz:

M

A Φ

1 m1
2 m2

N

B Φ

1 n1
2 n2

R

A Φ

1 r1
2 r2

T

B Φ

1 t1
2 t2

U

A Φ

1 u1
2 u2

V

B Φ

1 v1
2 v2

The annotations Φi of Qi (i = 1, 2, 3) evaluated on D are

Φ1 = (m1r̄1 ∨m2r̄2) ∧ (n1 ∨ n2)
Φ2 = (m1 ∨m2) ∧ (n1t̄1 ∨ n2t̄2)
Φ3 = (m1u1 ∨m2u2) ∧ (n1v1 ∨ n2v2)

and can be represented by OBDDs of width 2 under the
respective variable orders Π1, Π2, Π3:

Π1 : m1, r1,m2, r2, n1, n2

Π2 : m1,m2, n1, t1, n2, t2

Π3 : m1, u1,m2, u2, n1, v1, n2, v2

Now consider the query Q123 = Q1∨Q2∨Q3; this query is
canonicalised, RC-hierarchical, and ∃-consistent. The vari-
able orders Π1, Π2, and Π3 are compatible in the sense that
they can be extended into an order Π123 over all variables:

Π123 : m1, r1, u1,m2, r2, u2, n1, t1, v1, n2, t2, v2

In the light of Lemma 1, the OBDDs of Φ1, Φ2, and Φ3 can
be combined to yield an OBDD of width at most 23 for the
annotation Φ1 ∨ Φ2 ∨ Φ3 of query Q123. 2

3.1 From 1RA− to RC∃

At the core of the evaluation algorithm for hierarchical
1RA− queries is a rewriting of 1RA− queries into equivalent
safe RC∃ queries. The rewriting procedure [[·]] is the stan-
dard recursive inside-out translation from relational algebra
to safe relational calculus (Lemma 5.3.11, [1]), with the ad-
dition that after each recursive translation step we “flatten”
the resulting RC∃ query as follows:

• Every ∃ operator is pushed as deep as possible in the
RC∃ query without pushing it past a ¬ operator: ∃X
distributes over disjunctions and is pushed past con-
juncts in which X does not appear. Lemma 3 shows
that every ∃X operator can be pushed untilX becomes
root, i.e., X occurs in all relation symbols in its scope.

• Every ¬ operator is recursively pushed (as per ¬(A ∧
B)→ ¬A∨¬B and its dual) as deep as possible in the
RC∃ query without pushing it past an ∃ operator.

• Conjunctions of disjunctions are eagerly expanded into
disjunctions of conjunctions as per

(A ∨B) ∧ (C ∨D)→ AB ∨AC ∨BC ∨BD.

Our translation has several desirable properties:

Lemma 3. For any hierarchical 1RA− query QRA, the
translated RC∃ query QRC = [[QRA]] satisfies the following:

(a) QRC is equivalent to QRA.

(b) QRC is canonicalised.

(c) QRC is a disjunction of disjunction-free RC∃ queries.

(d) For every variable X in QRC , QRC has no sub-query of
the form ∃X(Q)∧Q′(∃X); here, Q(∃X) denotes a query
Q in which ∃X occurs.

(e) QRC is RC-hierarchical.

(f) The quantifiers in QRC can be ordered such that QRC is
∃-consistent.

Condition (d) permits sub-queries of the form ¬∃X(Q) ∧
¬∃X(Q′) or ∃X(Q) ∨ ∃X(Q′), but disallows, e.g., ∃X(Q) ∧
∃X(Q′), ∃X(Q) ∧ ¬∃X(Q′), ∃X(Q) ∧ ¬∃Y (Q′′ ∧ ¬∃X(Q′′′)).

Example 5. Consider the following two 1RA− queries:

Qa =π∅
[
M(A) 1 N(B)−

[
R(A) 1 T (B)− U(A) 1 V (B)

]]
Qb =π∅

[
πA
(
M(A) 1 N(B)

)
− πA

[
R(A) 1 T (B)− U(A) 1 V (B)

]]
.

Query Qa translates to Q123 from Example 4 (subsumed
sub-queries removed to avoid clutter). Qb is similar to Qa,
but with additional projections on A on both sides of the
top-most difference operator, and translates to

[[Qb]] = ∃A
(
M(A) ∧ ¬R(A)

)
∧ ∃BN(B) ∨

∃AM(A) ∧ ∃BN(B) ∧ ¬∃BT (B) ∨

∃A
(
M(A) ∧ U(A)

)
∧ ∃BN(B) ∧ ¬∃B

(
T (B)¬V (B)

)
.

LikeQ123, the RC∃ query [[Qb]] has three disjuncts, but the
nesting orders of ¬ and ∃B operators in the second and third
conjuncts differ from the corresponding order in Q123. The
translations of Qa and Qb satisfy Lemma 3: For example,
for every operator ∃A (or ∃B), A (or B) is a root variable in
its scope (Property (e)), and the nesting orders of ∃A and
∃B are consistent in all sub-queries (Property (f)). 2

The query translation can lead to large RC∃ queries: A
conservative upper bound on their sizes would be a non-
elementary function of the size of the input 1RA− query,
explained by the rapid increase in the size and number of
disjuncts when pushing down negations, projections, and
conjunctions. A singly-exponential upper bound holds for
1RA− queries where for all projections π−X(Q) that are
right descendants of a difference operator, attributes in the
equivalence class [X] occur in all relation symbols of Q (i.e.,
X is root in Q). The query Qa in Example 5 satisfies this
condition trivially, since it has no projection that is a right
descendant of a difference operator. While this conservative
upper bound suffices for the data-complexity argument in
Lemma 2 since the blowup is in the size of the query only,
it is not practical and better translation algorithms, which
avoid the generation of subsumed disjuncts, are called for.

3.2 OBDD Construction
The last step in the proof of Lemma 2 is the OBDD com-

pilation of the annotation Φ of the RC∃ query QRC obtained
from QRA as per Lemma 3. This OBDD has a total order
Π over the Boolean variables annotating the input tuples
that can be derived from the structure of QRC . Let us first
exemplify the construction of this order.

Example 6. Consider the query

Q = ∃X
[
R(X) ∧ ∃Y (S(X,Y) ∧ ¬T (X,Y))

]
.

Since X is a root variable, the OBDDs for different values of
X are independent and can be concatenated. For each value
a in the active domain of X, we construct the OBDD for the
query R(a)∧∃Y (S(a, Y)∧¬T (a, Y)); one good variable order
for this OBDD is the sequence of the annotation of R(a) and
all annotations of S(a, b) and of T (a, b) for all values b in the
active domain of Y . If we write R(1) for the annotation of
tuple (1) in R, and similarly for S and T (all values being
positive integers), then the overall variable order is

R(1), S(1, 1), T (1, 1), S(1, 2), T (1, 2), S(1, 3), T (1, 3) . . . ,
(tuples with X = 1)

R(2), S(2, 1), T (2, 1), S(2, 2), T (2, 2), S(2, 3), T (2, 3) . . . ,
(tuples with X = 2) and so on.

The annotations are ordered in lexicographically ascending
order: We first consider all annotations with X = 1, then
all annotations with X = 2, etc. For all annotations with
X = 1, we first consider those with Y = 1, then those with
Y = 2, etc. This variable order leads to a compact OBDD
because the order of random variables annotating bindings
of query variables X,Y in the relations R,S, T is compatible
with the nesting order of the quantifiers ∃X and ∃Y . 2

Lemma 4. For any RC∃ query QRC that satisfies the prop-
erties of Lemma 3, the annotation Φ of QRC on a tuple-
independent database D can be represented by an OBDD of
size O(|D| · 2|QRC |).

Proof. We prove the lemma for Boolean queries QRC ;
the general case follows trivially. Let the relation symbols
in QRC be R1, . . . , Rn, the variables be X1, . . . , Xm, and
let ADom(Xi) be the active domain of variable Xi. The
annotation of tuple Ā of relation Ri is denoted by Ri(Ā),
e.g., the annotation of tuple (a, b) in relation R1 is R1(a, b).
We assume without loss of generality that the order of the
query variables X1, . . . , Xm is such that Xi >∃ Xj ⇔ i <
j with respect to the nesting order >∃ defined by the ∃-
consistency of QRC ; that is, i < j allows for the quanti-
fier nesting ∃XiQ(∃Xj), but not ∃XjQ(∃Xi). Since QRC is
canonicalised and ∃-consistent (Lemma 3), we can assume
without loss of generality that in each relation symbol R
the query variables occur in >∃ order (we can always re-
label the query and database schema such that the query
variables occur in >∃-order). For example, QRC may con-
tain R(X1, X5, X7), but not R(X7, X1, X5). Furthermore,
we assume a total order over the active domain of the data-
base such that for any xi ∈ ADom(Xi) and xj ∈ ADom(Xj)
it holds that xi < xj ⇔ i < j; similarly for relation names:
R1 < R2 < · · · < Rn, where in addition the relation names
are not part of the active domains of query variables and
occur before the domain constants in this order.
We define a total order Π on the annotations of the tu-

ples in D as follows. We first associate with every anno-
tation R(Ā) the string string(R(Ā)) = ĀR, e.g., annotation
R2(A7, B2, C7) is associated with the string A7B2C7R2. The
order Π is then defined as

R(Ā) <Π R′(Ā′)⇔ string(R(Ā)) <lex string(R(Ā′))

where <lex is the lexicographic order on strings as defined
by the total order of the active domain of the database and
the relation names. Note that Π is uniquely defined by the
order of the relation symbols and the order on the active
domain of D. However, different orders on the former and
the latter give rise to different orders Π.
We show by structural induction over Φ that it has a Π-

OBDD of width 2|QRC | where |QRC | denotes the number of
relation symbols in QRC :

• The base case is a relation symbol R(Ā) which corre-
sponds to a trivial Π-OBDD with one variable R(Ā)
and width 2.

• If QRC = Q1 ∧ Q2 or QRC = Q1 ∨ Q2, then by in-
duction hypothesis the annotations of Q1 and Q2 have
Π-OBDDs of width 2|Q1| and 2|Q2|, respectively. Then
by Lemma 1, the annotation of QRC has a Π-OBDD
of width 2|Q1| · 2|Q2| = 2|QRC |.

• If QRC = ¬Q, then by induction hypothesis Q has a
Π-OBDD of width 2|Q|. Swapping the > and ⊥ nodes
in this OBDD yields the required Π-OBDD for QRC .

• If QRC = ∃XiQ, then for every Al ∈ ADom(Xi) the
annotations Φl of queries Q[Al/Xi] are over disjoint
sets of variables because QRC is RC-hierarchical by
Lemma 3 and henceXi is root in Q. Moreover, each Φl
has a Π-OBDD of width 2|Q| by induction hypothesis.
Let ADom(Xi) = {A1, . . . , Ah} such that Ak <lex Al
if and only if k < l. The annotation Φ of QRC is the
disjunction

∨
Al∈ADom(Xi)

Φl. Since the formulas Φl
are over disjoint sets of variables for distinct values of
l, an OBDD for their disjunction is obtained by their

concatenation in which the ⊥ node of the OBDD for
Φl is replaced by the root node of the OBDD for Φl+1.
It remains to show that this construction yields an
OBDD over order Π. First, note that the OBDD
for each Φl is over order Π by induction hypothesis;
we next show that for any two annotations R(Āk)
in Φk and R′(Āl) in Φl with k < l, it holds that
R′(Āk) <Π R′(Āl); by the definition of <Π, this is
equivalent to showing ĀkR <lex ĀlR

′. The strings Āk
and Āl are identical in the first i − 1 places since, by
construction, the variables Xj with j < i are set to the
same constants. The lexicographic order of Āk and Āl
— and hence the Π-order of R(Āk) in Φk and of R′(Āl)
in Φl — is determined by the values of Xi in Āk and in
Āl; this value is Al in Āl and Ak in Āk. Since we con-
catenate the OBDDs in the order Φ1 → · · · → Φh and
since A1 <lex · · · <lex Ah it follows that Āk <lex Āl
and thus R(Āk) <Π R′(Āl). The constructed OBDD
has width 2|QRC | = 2|Q|, because the concatenation
leaves the width unchanged. 2

The OBDD construction in the above proof shows that
conjunction, disjunction, negation, and existential quantifi-
cation of RC∃ queries representing rewritings of 1RA− que-
ries correspond to analogous operations on OBDDs repre-
senting the annotations of such queries. In particular, the
width of the resulting OBDD is bounded above by the prod-
uct of the widths of the input OBDDs. This is a conservative
upper bound that allows a uniform and simple treatment
of RC∃ operations in the proof. A tighter bound can be
obtained via a more specific analysis: Any non-repeating
RC-hierarchical RC∃ query Q admits an OBDD of width at
most |Q| and size linear in the input database size and in-
dependent of the query size [19]. This tighter bound on the
OBDD width can be immediately extended to ∃-consistent
conjunction and disjunction of such queries Q1, . . . , Qn: The
resulting OBDD has width |Q1| · . . . · |Qn|, which is smaller
than 2|Q1|+···+|Qn| as used in the proof.
We can now use both Lemmata 1 and 4 to obtain the

polynomial-time computation of query probability:

Corollary 1 (Lemmata 1, 4). Let QRC be a RC∃ qu-
ery satisfying the properties of Lemma 3. For any tuple-
independent database D, the probability of the query result
QRC(D) can be computed in time O(|D| · 2|QRC |).

4. NON-HIERARCHICAL 1RA−QUERIES
We show in this section the following result:

Lemma 5. The data complexity of any non-hierarchical
1RA− query is #P-hard.

Proof. Given a 1RA− query Q and any 2DNF formula
Ψ, we use a reduction from the model-counting problem #Ψ
by means of a construction of a database D such that Ψ and
the query result Q(D) have the same probability. The reduc-
tion depends on structural properties of Q. We show that
the non-hierarchical property is equivalent to matching a
pattern from the list of all possible patterns made up of inner
nodes that are difference or join operators and leaves that
correspond to three relations R[A][¬B], S[A][B], and T [B][¬A]

for two distinct attribute classes [A] and [B]. The notion of
a match is then refined to that of an annotation-preserving

1

1

A B

AB

P1.1 1

−

A B

AB

P1.2 −

1

A B

AB

P1.3 −

−

A B

AB

P1.4

1

1

A AB

B

P2.1 1

−

A AB

B

P2.2 −

1

A AB

B

P2.3 −

−

A AB

B

P2.4

1

1

AB A

B

P3.1 1

−

AB A

B

P3.2 −

1

AB A

B

P3.3 −

−

AB A

B

P3.4

1

AB 1

A B

P4.1 1

AB −

A B

P4.2 −

AB 1

A B

P4.3 −

AB −

A B

P4.4

1

A 1

B AB

P5.1 1

A −

B AB

P5.2 −

A 1

B AB

P5.3 −

A −

B AB

P5.4

1

A 1

AB B

P6.1 1

A −

AB B

P6.2 −

A 1

AB B

P6.3 −

A −

AB B

P6.4

Figure 5: The 24 query patterns P1.1, ..., P6.4. The
10 grey patterns can by reduced to other patterns
as indicated by the arrows, since the labels A and B
are symmetric and can be swapped, and the join (1)
operator is commutative and its sub-queries can also
be swapped. Further 24 patterns can be obtained by
swapping A and B in the above patterns.

match, for which a database construction scheme is possible
such that the query result becomes annotated by Ψ.
The proof steps are summarised as follows:

Q is non-hierarchical
⇔

Proposition 1
Q has a match with a pattern in Figure 5

⇔
Lemma 7

Q has an annotation-preserving match with a pattern
⇒

Lemma 8
Q is hard for #P. 2

4.1 Database construction scheme
Our database construction scheme prescribes how to pop-

ulate relations used in a non-hierarchical query such that the
query result is annotated with a desired 2DNF formula. It
particularly focuses on two distinguished attributes [A] and
[B] that witness the non-hierarchical property of the query.
We assume two finite sets of constants, A and B, and a

constant � distinct from those in A and B. In this section,
the projection operator πΦ

A is used to symbolise the projec-
tion on attribute A and the annotation column Φ; in con-
trast, πA selects only column A, neglecting the annotations
of tuples. The notation (a1, . . . , an|Φ(a1, . . . , an)) denotes a
tuple (a1, . . . , an) annotated with formula Φ(a1, . . . , an).

Preserving the data of one attribute
We commence by analysing queries with one distinguished
attribute A. Let Φ be a total function on A. A relation Q
is A-reducible to (A,Φ) if the [A]-attributes of Q are filled
with all values from A, all non-[A]-attributes are filled with
�, and the annotation of a tuple identified by a ∈ A is Φ(a):

πΦ
[A](Q) = {(a|Φ(a)) | a ∈ A}
πC(Q) = {(�)} for any attribute C with C 6∈ [A].

By redA(Q) = A|Φ we denote that Q is A-reducible to
(A,Φ). Queries that do not export [A] are called ∅-redu-
cible to a nullary function Φ (denoted red∅(Q) = �|Φ) if

πΦ
∅ (Q) = {(Φ)}
πC(Q) = {(�)} for any attribute C.

We next define three classes of relations QA, Qfill, and Q∅
that are characterised by their A-reductions; let Φ> be the
constant function Φ>(.) = >.

Q[A] ∈ QA if redA(Q) = A|Φ (1)

Q[A] ∈ Qfill if redA(Q) = A|Φ> (2)

Q[¬A] ∈ Qfill if red∅(Q) = �|Φ> (3)
Q ∈ Q∅ if Q = ∅ (4)

In Equation (1), Φ can also be ¬Φ. Queries QA are re-
lations in which the values of [A]-attributes are populated
with values from A, and values for non-[A]-attributes are
set to �. There is a functional dependency [A] → Φ such
that every tuple is represented by its [A]-value a and has a
corresponding annotation Φ(a) or ¬Φ(a). Queries Qfill are
similar to QA-queries, but every tuple is annotated with >.
Queries Q∅ are simply empty relations.

Example 7. Given the domain A = {x1, x2, x3}, the fol-
lowing relation X over the distinguished attribute A and
two attributes B, C with B,C 6∈ [A] satisfies the properties
of a QA-query, and relation Y is a Qfill-query.

QA-relation X

Ax Bx Cx Φ

x1 � � x1
x2 � � x2
x3 � � x3

Qfill-relation Y

Ay By Cy Φ

x1 � � >
x2 � � >
x3 � � >

In relation X we use the same symbols xi both as data
values for A and annotations; the functional dependency
Ax → Φ is thus trivially satisfied by Φ(xi) = xi. 2

Figure 6 shows how QA, Qfill, and Q∅-queries are propa-
gated through query operators: Given query classes Q1 and
Q2, the right-most column (Q1 Op Q2) in the table shows
the class to which a query that combines two queries from
those respective classes by operator Op belongs.

Example 8. Continuing Example 7, the equi-joinX 1 Y
(on the corresponding A, B, C attributes) of QA-query X
and Qfill-query Y yields the following relation:

QA-query X 1 Y

Ax Ay Bx By Cx Cy Φ

x1 x1 � � � � x1
x2 x2 � � � � x2
x3 x3 � � � � x3

Q1 Op Q2 Q1 Op Q2

QA 1 Qfill QA
− Q∅ QA

QAB 1 Qfill QAB
− Q∅ QAB

Qfill 1 QA QA
QAB QAB
Qfill Qfill

− QA QA
QAB QAB
Q∅ Qfill

Figure 6: Class membership of queries connecting
classes QA, Qfill, and Q∅ with operators 1, −.

This join satisfies the conditions of a QA-query as sug-
gested by the rule QA 1 Qfill → QA in Figure 6. Similarly,
the difference of Y −X is also a QA-query:

QA-query Y −X
Ay By Cy Φ

x1 � � ¬x1
x2 � � ¬x2
x3 � � ¬x3

Now let Q[A] be a query that contains a QA-relation X [A].
We can populate the relations of Q such that Q is a QA-
query, i.e., that Q satisfies the above properties for QA:

Lemma 6. Given a query Q, a distinguished attribute A
of Q, and a distinguished relation XA of Q that satisfies
Equation (1), the remaining relations of Q can be filled such
that Q satisfies Equation (1).

Proof. We first identify the set OP− of difference op-
erators in Q that do not have X as a right descendant and
partition the relations of Q into three sets:

relsX = {X}
rels∅ = relations right descendants of a OP− operator
relsfill = all other relations

We populate every relsfill relation as a Qfill-query, and ev-
ery rels∅ relation as a Q∅-query. For the former, it suffices to
populate each [A] attribute of a relsfill-relation with A, and
each non-[A]-attribute with �. The following inductive ar-
gument shows that every operator on the path in Q between
X and the root of Q is a QA-query: First, this trivially holds
at X itself. Now let Op be an operator on the path between
X and the root of Q. We have the cases:
• QL 1 QR, where without loss of generality QL con-
tains X. Then, QL is a QA-query, QR contains a rela-
tion from relsfill and is a Qfill-query. Hence, QL 1 QR
is a QA-query.

• QL −QR, where QL contains X. Then the difference
operator is in OP− and QR is a Q∅-query, QL is a
QA-query, and hence QL −QR is a QA-query.

• QL − QR, where QR contains X. Then, QR is a QA-
query, QL contains a relation from relsfill and is a Qfill-
query. Hence, QL −QR is a QA-query. 2

If X has even polarity in Q, then the annotation ΦQ(a)
of a tuple (a) in π[A](Q) is the same as the corresponding
annotation ΦX(a) of a tuple (a) in π[A](X); if X has odd
polarity in Q, then ΦQ(a) = ¬ΦX(a).

Preserving the data of two attributes
We can extend the above technique to queries that contain
relations over two distinguished attributes A and B whose
values we would like to preserve; we only sketch this next.
Let ΦAB be a total function on A×B, and let ΦA be a to-

tal function on A∪A×B such that ΦA(a) ≡
∨
b∈B ΦA(a, b)

for all a ∈ A. As before, a relation Q is A-reducible to
(A,ΦA) if

πΦ
[A](Q) = {(a|ΦA(a)) | a ∈ A}
πC(Q) = {(�)} for any attribute C with C 6∈ [A].

Similarly, Q is AB-reducible to (A×B,ΦAB) if

πΦ
[A][B](Q) = {(a, b|ΦAB(a, b)) | a ∈ A, b ∈ B}
πC(Q) = {(�)} for any attribute C with C 6∈ [A] ∪ [B].

By redAB(Q) = A × B|ΦAB we denote that Q is AB-
reducible to (A ×B,ΦAB). We define additional classes of
queries:

Q[A][¬B] ∈ QA if redA(Q) = A|ΦA (5)

Q[A][B] ∈ QA if redAB(Q) = A×B|ΦA (6)

Q[A][B] ∈ QAB if redAB(Q) = A×B|ΦAB (7)

Q[A][¬B] ∈ Qfill if redA(Q) = A|Φ> (8)

Q[A][B] ∈ Qfill if redAB(Q) = A×B|Φ> (9)

Q[¬A][¬B] ∈ Qfill if red∅(Q) = �|Φ> (10)
Q ∈ Q∅ if Q = ∅ (11)

In Equations (5)–(7), ΦA and ΦAB can also be negated.
Queries from these classes are propagated by query opera-
tors as depicted in Figure 6. Lemma 6 can be extended to
the case of two attributes A and B:

• For a distinguished relation XA¬B of Q that satisfies
Equation (5), the remaining relations of Q can be filled
such that Q satisfies Equation (5) if Q exports [A] but
not [B], or Equation (6) if Q exports [A] and [B].

• For a distinguished relation XAB of Q, the remain-
ing relations in Q can be filled such that Q satisfies
Equation (7) if Q exports [A] and [B].

4.2 Patterns and matches
We next define hard minimal query patterns and matches.

Definition 5. A (query) pattern P over attributes A,B
and relational operators Op1, Op2 ∈ {1,−} is a binary tree
with leaves A,B,AB, root node Op1, and inner node Op2.

There are 2 · 2 · 2 · 6 = 48 different patterns: There are
two distinct unlabeled binary trees with three leaves, the two
operators can each be either 1 or −, and there are 6 possible
orders of the labels A, AB, and B. Figure 5 shows 24 of
the 48 patterns and omits for each pattern the symmetric
pattern obtained by swapping leaves A and B.

Definition 6. A 1RA− query Q matches a pattern P
over attributes A and B if there is mapping from the nodes
A, B, AB, Op1, and Op2 of P to relations R[A][¬B], T [¬A][B],
S[A][B], and operators Op1 and respectively Op2 in the parse
tree of Q that preserves ancestor-descendant relationships.

1

−

A AB

B

P2.2 1

1

πBs

−

−

1

M U

1

X N

Z

T

V

Q1 −

AB 1

A B

P4.3 1

1

πBs

−

Z −

1

M U

1

X N

T

V

Q2 −

AB 1

A B

P4.3 −

X −

Y 1

Z 1

M T

Q3

Figure 7: Patterns P2.2 and P4.3 and parse trees of queries Q1, Q2, Q3 over the schema M(Am), N(An), T (Bt, Ct),
U(Bu), V (Bv, Cv), X(Ax, Bx), Y (Ay, By), Z(Az, Bz). Q1 is an (M,X, T)-match of pattern P2.2; it also matches other
patterns and is an annotation-preserving (M,X, T)-match of P2.2, since Op2 (the least common ancestor of M
and X) is left-deep. Although Q2 is an (M,X, T)-match of P2.2, it is not an annotation-preserving match of P2.2,
since Op2 is a right descendant of the top-most difference operator. However, Q2 is an annotation-preserving
(M,Z,U)-match of pattern P4.3. Query Q3 is an annotation-preserving (M,X, T)-match of pattern P4.3.

We also say that Q is an (R,S, T)-match of P to emphasise
which relations establish the match. Figures 1 and 7 show
examples of queries matching patterns. Pattern matching is
intimately linked to the non-hierarchical property:

Proposition 1. A 1RA− query is non-hierarchical if and
only if it matches one of the patterns in Figure 5.

The notion of a match is further specialised to that of an
annotation-preserving match. Whereas the database con-
struction scheme detailed in Section 4.1 does not work for
general matches, it does work for annotation-preserving mat-
ches. We first define left-deep operators.

Definition 7. An operator Op is left-deep in a 1RA−
query Q if Op is a left descendant of every difference oper-
ator on the path between the root of Q and Op.

Example 9. In Figure 7, the bottom-most difference op-
erator in Q1 is left-deep, while the bottom-most difference
operator in Q2 is not left-deep. 2

Definition 8. A 1RA− query Q is an annotation-preser-
ving match of a pattern P over attributes A and B if:

1. Q is an (R,S, T)-match of P ;

2. For every difference operator Op− in Q, if Op1 is a
right descendant of Op−, then Op− does not export
[A] or [B].

3. If Op2 is a left descendant of Op1 in Q, then Op2 is
left-deep in the sub-query rooted at Op1.

We say thatQ is an annotation-preserving (R,S, T)-match
of P to emphasise the relations establishing the match. Fig-
ure 7 shows examples of annotation-preserving matches.
We next look closer at the connection between matches

and annotation-preserving matches. Lemma 7 establishes
next that any query that matches a pattern necessarily also
has an annotation-preserving match with a (possibly dif-
ferent) pattern; furthermore, the relation symbols that es-
tablish the annotation-preserving match can be found by
exploring the query tree in left-to-right depth-first in-order.

Lemma 7. Let Q be a 1RA− query and o1, . . . , on be the
sequence of its parse tree nodes in left-to-right depth-first
in-order, and Q1, . . . , Qn be the corresponding sequence of
sub-queries rooted at o1, . . . , on. If Qi is the first sub-query
in the above order that matches a pattern in Figure 5, then
Qi is an annotation-preserving match with a pattern.

Example 10. Consider query Q2 in Figure 7. The sub-
query rooted at the top-most difference operator is the first
one to match a pattern and also has an annotation-preserving
(M,Z,U)-match with P4.3. 2

4.3 Hardness reductions
The 24 patterns in Figure 5 are the smallest hard patterns

for 1RA−, and any query that is an annotation-preserving
match of one of them is hard for #P.

Lemma 8. The data complexity of any 1RA− query that
is an annotation-preserving match of one of the patterns in
Figure 5 is #P-hard.

Putting together Proposition 1 and Lemmata 7 and 8,
we obtain that the data complexity of all non-hierarchical
1RA− queries is #P-hard.
The proof of Lemma 8 goes over each pattern case and

shows hardness via a reduction from the #2DNF problem:
Let Q be a query that is an annotation-preserving (R,S, T)-
match for a pattern P , and let Ψ =

∨
(i,j)∈E xiyj be a 2DNF

formula with |E| clauses over disjoint variable sets X and
Y. We construct in polynomial time a tuple-independent
database D using the database construction scheme in Sec-
tion 4.1 such that the annotation of the query result Q(D)
is either Ψ and hence PQ(D) = PΨ = #Ψ · 2−|vars(Ψ)|, or ¬Ψ
and then PQ(D) = 1− PΨ.
We next give reductions for patterns P4.3 and P5.3; all re-

ductions are given in an extended paper [12]. Pattern P1.1
is the only one needed to show hardness of non-hierarchical
1RA− queries without difference, i.e., of non-repeating con-
junctive queries studied in prior work [6]. The reduction for
pattern P5.3 establishes that a query matching P5.3 can be
hard already when constrained to databases in which one
relation is probabilistic and all other relations are certain.
Reduction for pattern P4.3. We use the illustration of

a query matching P4.3 in Figure 8(left). By Definition 8,
a query Q that is an annotation-preserving match of P4.3

QRT

QTQR

QS QST

QSQT

QR

Op1 = −

Op2 =1

R[A][¬B]

S[A][B]

T [¬A][B]

Op1 = −

Op2 =1R[A][¬B]

S[A][B]T [¬A][B]

Figure 8: Schematic illustration of a query that is
an annotation-preserving match of pattern P4.3 (left)
or P5.3 (right). A curly path indicates that other
operators may occur on it.

satisfies the following structural constraint: If Op1 is a right
descendant of a difference operator, then this operator does
not export [A] or [B]. Furthermore, attributes [A] and [B]
are exported by every operator on the paths from S to R and
from S to T , respectively. We encode the 2DNF formula Ψ
as a database D such that the annotation of the query result
Q(D) is Ψ, if the polarity of Op2 is odd in QRT . In case of
even polarity, we derive a database D and another formula
Υ from Ψ such that PQ(D) = PΥ and linearly many calls to
an oracle for PΥ suffice to compute #Ψ.
Case 1: Odd polarity (pol(QRT , Op2) = 1). We fill

the relations R,S, T such that QR is a QA-query, QT is a
QB-query, and QS is a QAB-query, and for all three rela-
tions the annotation functions are the identity. In other
words, R consists of a tuple with A-value xi and annotation
xi for each variable xi ∈ X that occurs in Ψ; T consists of
a tuple with B-value yj and annotation yj for each variable
yj ∈ Y that occurs in Ψ; S consists of a tuple with (A,B)-
values (xi, yj) and annotation > for each clause xiyj in Ψ.
Note that when used outside annotations, the variables are
considered constants in relations R,S, T . For the remaining
relations, we distinguish two cases: (1) Any relation that
appears on the right side of a difference operator different
from Op1 and Op2, is set to ∅. (2) Any relation with an [A]
attribute and no [B] attribute is filled like R, but with anno-
tations >. Symmetrically, any relation with a [B] attribute
and no [A] attribute is filled like T , but with annotations >.
Relations with both [A] and [B] attributes are filled with
the Cartesian product of X and Y and annotations >. In
all of the above cases, any attribute that is neither in [A]
nor in [B] is filled with constant �.
Since Op2 has odd polarity in QRT and since both [A] and

[B] are exported by every operator on the path between
Op1 and Op2, QRT and QS − QRT are QAB-queries with
annotations

redAB(QRT) = X×Y|¬ΦRT ,ΦRT (xi, yi) = xiyi

redAB(QS −QRT) = X×Y|ΦRST ,

ΦRST (xi, yj) =
{
xiyj if (i, j) ∈ E
⊥ if (i, j) 6∈ E.

The final projection π−[A]−[B] yields one answer tuple, whose
annotation is the disjunction of all clauses in Ψ.
Case 2: Even polarity (pol(QRT , Op2) = 0). Let Θ

be the set of assignments of variables X ∪ Y. Then the
number of models of Ψ is defined by #Ψ =

∑
θ∈Θ:θ|=Ψ 1. If

we partition Θ into disjoint sets Θ0 ∪ · · · ∪ Θ|E|, such that

θ ∈ Θi if and only if θ satisfies exactly i clauses of Ψ, then
this sum can equivalently by written as

#Ψ =
∑

θ∈Θ1:θ|=Ψ

1 + · · ·+
∑

θ∈Θm:θ|=Ψ

1 = |Θ1|+ · · ·+ |Θ|E||.

We next show how to compute |Θi| (and hence #Ψ) using
an oracle for PΥ, with Υ defined below. Let Z = {z1, . . . , z|E|}
be a set of variables disjoint from X ∪Y and define Υ as

Υ =
|E|∨
i=1

¬zi ∧ ¬ψi or, equivalently ¬Υ =
|E|∧
i=1

(zi ∨ ψi) (12)

We fix the probabilities of variables in X and Y to 1/2 and
of variables in Z to pz ∈ [0, 1]. The probability 1−PΥ = P¬Υ
can be expressed by conditioning on the number of satisfied
clauses of Ψ:

P¬Υ =
|E|∑
k=0

P

(
¬Υ

∣∣∣∣ exactly k clauses
of Ψ are satisfied

)
︸ ︷︷ ︸

p
|E|−k
z

·P
(

exactly k clauses
of Ψ are satisfied

)
︸ ︷︷ ︸

1
2

|X|+|Y|
· |Θk|

=
1
2

|X|+|Y|
|E|∑
k=0

p
|E|−k
z |Θk|

Intuitively, the first term simplifies to p|E|−kz , because if
exactly k clauses ψi are satisfied in ¬Υ, then in order to
satisfy the remaining |E|−k clauses (zi∨ψi) at least |E|−k
of the zi must be satisfied, and this occurs with probabil-
ity p

|E|−k
z . This is a polynomial in pz of degree |E|, with

coefficients |Θ0|, . . . , |Θ|E||. The |E| + 1 coefficients can be
derived from |E|+1 pairs (pz, PΥ) using Lagrange’s polyno-
mial interpolation formula. We conclude that |E|+ 1 oracle
calls to PΥ suffice to determine #Ψ =

∑|E|
i=0 |Θi|.

It remains to show how Υ can be encoded as the anno-
tation of a query that is an annotation-preserving match
of P4.3; given this encoding, any algorithm that evaluates
PQ(D) constitutes the above oracle. Formula Υ is encoded
using the database construction scheme from Case 1, where
the annotation of a tuple with (A,B)-values (xi, yj) corre-
sponding to clause ψk = xiyj in Ψ becomes ¬zk. Then, the
annotation of a tuple with (A,B)-values (xi, yj) in the re-
sult of the sub-query rooted at Op1, i.e., QS−QRT , becomes
¬zk ∧ ¬ψk. The final projection π−[A]−[B] yields one result
tuple, whose annotation is the disjunction of the annotation
of QS −QRT which is exactly Υ.
Reduction for pattern P5.3. We use the illustration

of a query matching P5.3 in Figure 8 (right). We only de-
scribe here the case when [B] is not exported by Op1, in
which case the sub-query QST contains a projection opera-
tor Opπ = π−[B] such that every operator between Opπ and
Op1 exports [A] but not [B], and every operator between
Opπ and Op2 exports [A] and [B]. Let Qπ be the sub-query
rooted at Opπ.
The first step is to show that one may without loss of

generality assume that Op2 is left-deep in Qπ. Assume to
the contrary that there is a difference operator Op− between
Opπ and Op2 that has Op2 as a right descendant; clearly,
Op− exports [A] and [B] and hence its left sub-query con-
tains relations X [A][¬B] and Y [¬A][B] or it contains a relation
Z [A][B]. In the former case, Q is an annotation-preserving
(R,S, Y)-match of pattern P5.4; in the latter case, Q is an

R

Ar Φ

1 >
2 >

T

Bt Φ

x1 ¬x1
y1 ¬y1
y2 ¬y2

S

As Bs Φ

1 x1 >
1 y1 >
1 y2 ⊥
2 x1 >
2 y1 ⊥
2 y2 >

QT 1 QS

As Bs Φ

1 x1 ¬x1
1 y1 ¬y1
1 y2 ⊥
2 x1 ¬x1
2 y1 ⊥
2 y2 ¬y2

Qπ = QST

As Φ

1 ¬x1 ∨ ¬y1
2 ¬x1 ∨ ¬y2

QRST

Ar Φ

1 x1y1
2 x1y2

Figure 9: Relations R,S, T for the hardness reduction of a query with an annotation-preserving match for
pattern P5.3 where (1) Op1 does not export [B] and (2) the projection operator π−[B] on the path between Op1
and Op2 has even polarity in QST (the sub-query containing both relations S and T). Only attributes [A] and
[B] are depicted, and it is assumed that R, S, T have even polarity in their respective sub-queries QR, QS,
and QT . The database is with respect to the formula Ψ = ψ1 ∨ ψ2 = x1y1 ∨ x1y2.

annotation-preserving (R,Z, T)-match of pattern P6.4. In
both cases, the new Op2 is Op− and left-deep in Qπ.
Next, two cases need to be analysed separately depending

on the polarity of Opπ in QST .
Case 1: Even polarity (pol(QST , Opπ) = 0). Let

N = {1, . . . , |E|} be the set of integers that numbers consec-
utively the clauses in Ψ: Ψ = ψ1∨· · ·∨ψ|E|. We set relation
R to contain a tuple (n) annotated with > for every clause
number n ∈ N. Relation S contains all tuples (n, v) where
n ∈ N is a clause number and v ∈ X ∪Y is a variable from
Ψ; (n, v) is annotated with > if clause n contains variable v,
and with ⊥ otherwise. Relation T has a tuple (v) annotated
with ¬v for each variable v in Ψ. Figure 9 exemplifies how
R, S, T are filled for a query matching P5.3 and for formula
Ψ = x1y1 ∨ x1y2 and how these annotations are propagated
through the query.
Case 2: Odd polarity (pol(QST , Opπ) = 1). Intu-

itively, since the number of difference operators between the
root of the query and the relations S and T is even, they
act equivalently to a sequence of join operators for query
annotations: We fill the relations such that QT is a QB-
query, QS is a QAB-query, QR is a QA-query, and then QST
is a QA-query, where for relations R and T the annotation
functions are the identity and for relation S, the anotation
function is > for all tuples (xi, yj) corresponding to clauses
in Ψ and ⊥ otherwise.

5. BEYOND 1RA− QUERIES
In this section we discuss the effect of various extensions

of 1RA− on query tractability.
A dichotomy for full relational algebra seems unattainable

since key reasoning tasks for such queries, such as equiva-
lence, emptiness, or subsumption, are undecidable: Given
two equivalent queries, one hard and one tractable, we thus
cannot decide whether their union is tractable. Restrictions
on the use of negation, e.g., guarded negation [3], enable
decidability of query equivalence and can pave the way to
a complexity dichotomy for (possibly repeating) relational
queries with guarded negation in probabilistic databases.

5.1 Non-repeating relational algebra
If we add the union operator to the language 1RA−, we

need a different syntactic characterisation of the tractable
queries, since the hierarchical property is not defined for
queries with union. An immediate attempt would consider
all (union-free) sub-queries obtained by choosing one term at
each union and checking whether all of them are hierarchical.
This approach fails since such sub-queries are not necessar-

ily ∃-consistent. For instance, the non-repeating relational
algebra query Q = π∅[S(A,B)−(R(A) 1 S1(A,B)∪T (B) 1
S2(A,B))] has two hierarchical union-free sub-queries under
π∅: S(A,B) − (R(A) 1 S1(A,B)) and S(A,B) −(T (B) 1

S2(A,B)). However, these sub-queries cannot be rewritten
to ∃-consistent RC∃ queries, since they have roots A and B
respectively; it can be further shown that Q is #P-hard.
An alternative characterisation would be to check ∃-consis-

tency and the RC∃-hierarchical property of the RC∃ expres-
sion Qr representing the rewriting of a non-repeating rela-
tional algebra query Q described in Section 3.1. Then Q
is tractable when Qr is ∃-consistent and RC-hierarchical.
Checking these properties can be done efficiently in the size
of the input RC∃ query, yet Qr may be much larger than
Q (as per discussion at the end of Section 3.1). It is open
whether the characterisation of tractable non-repeating re-
lational algebra queries can be done more efficiently than
following this procedure via ∃-consistency, which incurs the
non-trivial time to rewrite the input query.

5.2 Non-repeating RC∃

There are subtle differences between 1RA− and non-repea-
ting RC∃ that revolve around RC∃’s flexibility to allow dis-
junction and negation on sub-queries of different schemas.
For instance, the non-repeating RC∃ queries S(x, y)∧¬R(x)
and S(x, y) ∧ (R(x) ∨ T (y)) cannot be expressed in 1RA−.
Whereas the former query is tractable, the latter is #P-
hard: This means that 1RA− cannot express both tractable
and hard queries that are expressible in non-repeating RC∃.
For non-repeating RC∃, the RC-hierarchical property alone

does not characterise the tractable queries, even when we
take away disjunction. Indeed, the RC∃ query equivalent
to the 1RA− query from Figure 3, i.e., Q = ∃A∃BR(A) ∧
S(B)∧¬(U(A)∧V (B)), does not satisfy the RC-hierarchical
property since neither A nor B are root in the expression
and they cannot be pushed further down. However, as for
1RA− queries, we can rewrite a non-repeating RC∃ query Q
into an RC∃ query Qr as outlined in Section 3.1, e.g., Qr =
∃A[R(A)∧¬U(A)]∧∃BS(B)∨∃AR(A)∧∃B [S(B)∧¬V (B)]
for the above query Q, and then again Q is tractable when
Qr is RC-hierarchical and ∃-consistent.

6. RELATED WORK
Negation is a substantial source of complexity already for

databases with incomplete information and without proba-
bilities [2]. In probabilistic databases, the MystiQ system
supports a limited class of NOT EXISTS queries [25]. A
framework for the exact and approximate evaluation of full

relational algebra queries (thus including negation) in prob-
abilistic databases is part of SPROUT [13, 11]. Further work
looks at approximating queries with negation [18].
Our dichotomy is in line with and contributes to a succes-

sion of complexity results for queries on probabilistic databa-
ses: Starting from a first example of a #P-hard query [14],
polynomial-time/#P-hard dichotomies have been established
by Dalvi and Suciu for non-repeating conjunctive queries [5]
and unions of conjunctive queries (UCQs) [9]; a trichotomy
has been proven for positive queries with HAVING aggre-
gates [22]; the precise tractability frontier for so-called quan-
tified queries such as relational division and set equivalence,
which can be expressed as repeating queries with nested
negation, is also known [13]. Our result strictly generalises
the dichotomy for non-repeating conjunctive queries. It
corrects an earlier statement by the authors (Theorem 6.4
in [13]). Whereas tractable 1RA− queries can be charac-
terised efficiently by the hierarchical syntactic property, for
UCQs no such efficient decision procedure is known. Fur-
ther complexity results are known for inequality joins [19,
20] and queries with aggregates and group-by clauses [10].
The closest in spirit to the proof techniques in this paper

are those for the UCQ dichotomy result [9]. The algorithm
for tractable UCQ queries translates them into relational
calculus expressions that have root variables and satisfy
properties similar to what we call canonicalised. These prop-
erties are captured by the notion of separator variables. Sim-
ilar to the case of root variables in our algorithm, the exis-
tence of a separator variable ensures that the annotations of
the query expression are independent for different valuations
of the separator variable. Our notion of ∃-consistency for
queries with negation is inspired by the notion of inversion-
freeness for UCQ queries.
The vast majority of hardness reductions in the above

works are from the #P-hard model-counting problem for
positive (2)DNF formulas [24, 21]. The complexity class
#P was originally defined by Valiant [24].
OBDDs have been proposed by Bryant [4]. The first

connection between polysize OBDDs and tractable queries
has been shown for hierarchical non-repeating conjunctive
queries [19]. The class of inversion-free UCQs is equiva-
lent to the class of UCQ queries that admit polysize OB-
DDs [17]. UCQs with inequalities have also been charac-
terised in terms of their corresponding OBDDs [16].
An overview of various topics in probabilistic databases

has been compiled recently [23].

Acknowledgment. The authors would like to thank Dan
Suciu for discussions on this work.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
Theor. Comput. Sci., 78(1), 1991.

[3] V. Bárány, B. ten Cate, and M. Otto. Queries with
guarded negation. PVLDB, 5(11), 2012.

[4] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Computers,
35(8), 1986.

[5] N. Dalvi and D. Suciu. Efficient Query Evaluation on
Probabilistic Databases. In VLDB, 2004.

[6] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB J., 16(4), 2007.

[7] N. Dalvi and D. Suciu. Management of probabilistic
data: Foundations and challenges. In PODS, 2007.

[8] N. Dalvi and D. Suciu. “The Dichotomy of
Conjunctive Queries on Probabilistic Structures”. In
PODS, 2007.

[9] N. N. Dalvi and D. Suciu. The dichotomy of
probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6), 2012.

[10] R. Fink, L. Han, and D. Olteanu. Aggregation in
probabilistic databases via knowledge compilation.
PVLDB, 5(5), 2012.

[11] R. Fink, J. Huang, and D. Olteanu. Anytime
approximation in probabilistic databases. VLDB J.,
22(6), 2013.

[12] R. Fink and D. Olteanu. A dichotomy for
non-repeating queries with negation in probabilistic
databases. Technical report, U. Oxford, 2014.

[13] R. Fink, D. Olteanu, and S. Rath. Providing Support
for Full Relational Algebra Queries in Probabilistic
Databases. In ICDE, 2011.

[14] E. Grädel, Y. Gurevich, and C. Hirsch. The
complexity of query reliability. In PODS, 1998.

[15] J. Huang, L. Antova, C. Koch, and D. Olteanu.
MayBMS: A probabilistic database management
system. In SIGMOD, 2009.

[16] A. K. Jha and D. Suciu. On the tractability of query
compilation and bounded treewidth. In ICDT, 2012.

[17] A. K. Jha and D. Suciu. Knowledge compilation meets
database theory: Compiling queries to decision
diagrams. Theory Comput. Syst., 52(3), 2013.

[18] S. Khanna, S. Roy, and V. Tannen. Queries with
difference on probabilistic databases. PVLDB, 4(11),
2011.

[19] D. Olteanu and J. Huang. Using OBDDs for efficient
query evaluation on probabilistic databases. In SUM,
2008.

[20] D. Olteanu and J. Huang. Secondary-storage
confidence computation for conjunctive queries with
inequalities. In SIGMOD, 2009.

[21] J. S. Provan and M. O. Ball. The complexity of
counting cuts and of computing the probability that a
graph is connected. SIAM J. Comput., 12(4), 1983.

[22] C. Ré and D. Suciu. The Trichotomy of HAVING
Queries on a Probabilistic Database. VLDB J, 18(5),
2009.

[23] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Morgan & Claypool
Publishers, 2011.

[24] L. Valiant. The complexity of enumeration and
reliability problems. SIAM J. Comput., 8, 1979.

[25] T.-Y. Wang, C. Ré, and D. Suciu. Implementing NOT
EXISTS predicates over a probabilistic database. In
QDB/MUD, 2008.

[26] I. Wegener. BDDs–design, analysis, complexity, and
applications. Discrete Applied Mathematics, 138(1-2),
2004.

	Introduction
	Preliminaries
	Hierarchical 1RA- queries
	From 1RA- to RC
	OBDD Construction

	Non-hierarchical 1RA- queries
	Database construction scheme
	Patterns and matches
	Hardness reductions

	Beyond 1RA- queries
	Non-repeating relational algebra
	Non-repeating RC

	Related work
	References

