
Contents i

The Theory and Practice of
Concurrency

A.W. Roscoe

Published 1997, revised to 2000 and lightly revised to 2005.

This version produced December 2010 for the web site of Understanding
Concurrent Systems.

This book is out of print.

This version is copyright Bill Roscoe.

ii Contents

Contents

Preface xi

0 Introduction 1

0.1 Background . 1

0.2 Perspective . 4

0.3 Tools . 7

0.4 What is a communication? . 8

I A FOUNDATION COURSE IN CSP 11

1 Fundamental concepts 13

1.1 Fundamental operators . 14

1.1.1 Prefixing . 14

1.1.2 Recursion . 14

1.1.3 Guarded alternative . 15

1.1.4 Further choice operators . 22

1.1.5 A few important processes . 29

1.2 Algebra . 29

1.3 The traces model and traces refinement 35

1.3.1 Working out traces(P) . 36

1.3.2 Traces and laws . 39

iv Contents

1.3.3 Specification and refinement 42

1.3.4 Afters and initials . 47

1.4 Tools . 48

2 Parallel operators 51

2.1 Synchronous parallel . 51

2.2 Alphabetized parallel . 55

2.3 Interleaving . 66

2.4 Generalized parallel . 69

2.5 Parallel composition as conjunction 71

2.6 Tools . 75

2.7 Postscript: On alphabets . 77

3 Hiding and renaming 79

3.1 Hiding . 79

3.2 Renaming and alphabet transformations 88

3.2.1 Injective functions . 89

3.2.2 Non-injective functions . 90

3.2.3 Relational renaming . 91

3.3 A basic guide to failures and divergences 95

3.4 Tools . 101

4 Piping and enslavement 103

4.1 Piping . 103

4.2 Enslavement . 109

4.3 Tools . 114

5 Buffers and communication 117

5.1 Pipes and buffers . 117

5.2 Buffer tolerance . 129

5.3 The alternating bit protocol . 132

5.4 Tools . 138

5.5 Notes (2005) . 139

Contents v

6 Termination and sequential composition 141

6.1 What is termination? . 141

6.2 Distributed termination . 145

6.3 Laws . 146

6.4 Effects on the traces model . 149

6.5 Effects on the failures/divergences model 150

II THEORY 153

7 Operational semantics 155

7.1 A survey of semantic approaches to CSP 155

7.2 Transition systems and state machines 157

7.3 Firing rules for CSP . 165

7.4 Relationships with abstract models 177

7.4.1 Extracting failures and divergences 177

7.4.2 Infinite traces and infinite branching 179

7.5 Tools . 184

7.6 Notes . 185

8 Denotational semantics 187

8.1 Introduction . 187

8.2 The traces model . 190

8.3 The failures/divergences model . 199

8.3.1 Building the model . 199

8.3.2 Calculating the semantics of processes 205

8.4 The stable failures model . 215

8.5 Notes . 222

9 Analyzing the denotational models 225

9.1 Deterministic processes . 225

9.2 Analyzing fixed points . 232

9.3 Full abstraction . 236

9.4 Relations with operational semantics 246

9.5 Notes . 251

vi Contents

10 Infinite traces 253

10.1 Calculating infinite traces . 253

10.2 Adding failures . 259

10.3 Using infinite traces . 266

10.3.1 Infinitary specifications and fairness 266

10.3.2 Fixed-point induction over U 274

10.4 Notes . 275

11 Algebraic semantics 277

11.1 Introduction . 277

11.2 Operational semantics via algebra 279

11.3 The laws of ⊥N . 283

11.4 Normalizing . 285

11.5 Sequential composition and SKIP . 295

11.6 Other models . 298

11.7 Notes . 301

12 Abstraction 303

12.1 Modes of abstraction . 304

12.1.1 Lazy and eager abstraction 304

12.1.2 Mixed abstraction . 310

12.2 Reducing specifications . 314

12.3 Abstracting errors: specifying fault tolerance 317

12.4 Independence and security . 324

12.5 Tools . 334

12.6 Notes . 334

III PRACTICE 339

13 Deadlock! 341

13.1 Basic principles and tree networks 341

13.1.1 Assumptions about networks 341

13.1.2 Ungranted requests and conflicts 345

13.1.3 The Fundamental Principle and tree networks 351

Contents vii

13.2 Specific ways to avoid deadlock . 353

13.2.1 Node orderings . 354

13.2.2 Cyclic communication networks 359

13.2.3 Resource sharing . 363

13.2.4 Communication order . 365

13.3 Variants . 369

13.3.1 Introduction . 369

13.3.2 Cycle-cutting sets . 372

13.3.3 Selective requests . 376

13.3.4 Weak variants . 377

13.4 Network decomposition . 381

13.5 The limitations of local analysis . 384

13.6 Deadlock and tools . 386

13.6.1 Direct mechanical checking of deadlock freedom 386

13.6.2 Automated checking of rule-based proofs 389

13.7 Notes . 391

14 Modelling discrete time 395

14.1 Introduction . 395

14.2 Meeting timing constraints . 396

14.3 Case study 1: level crossing gate . 401

14.4 Checking untimed properties of timed processes 411

14.4.1 Abstracting time . 413

14.4.2 Untimed specifications in a timed harness 415

14.5 Case study 2: the alternating bit protocol 416

14.5.1 Describing time-outs . 417

14.5.2 The sender and receiver . 419

14.6 Urgency and priority . 423

14.6.1 Consequences for semantic models 425

14.7 Tools . 426

14.8 Notes . 426

viii Contents

15 Case studies 429

15.1 Combinatorial systems: rules and tactics 430

15.2 Distributed data and data-independence 436

15.2.1 A ring database . 438

15.2.2 Data-independence . 444

15.2.3 Cache coherency . 455

15.3 Analyzing crypto-protocols . 461

15.3.1 Data types for symbolic encryption 464

15.3.2 Defining reliable nodes . 466

15.3.3 Creating a set of deductions 470

15.3.4 The lazy spy . 473

15.3.5 Cutting corners . 478

15.4 Notes . 481

A Mathematical background 485

A.1 Partial orders . 485

A.1.1 Basics . 485

A.1.2 Functions and fixed points . 490

A.1.3 Product spaces . 498

A.2 Metric spaces . 505

B A guide to machine-readable CSP 513

B.1 Introduction . 513

B.2 Expressions . 514

B.3 Pattern matching . 520

B.4 Types . 523

B.5 Processes . 527

B.6 Special definitions . 530

B.7 Mechanics . 533

B.8 Missing features . 534

B.9 Availability . 534

C The operation of FDR 537

C.1 Basic operation . 537

C.1.1 Running the operational semantics efficiently 537

Contents ix

C.1.2 Normalization . 541

C.1.3 Checking refinement . 546

C.1.4 Parallel FDR . 549

C.2 Hierarchical compression . 550

C.2.1 Methods of compression . 551

C.2.2 Using compression . 553

Notation 561

Bibliography 565

Main index 577

Index of named processes 589

x Contents

Preface

Since C.A.R. Hoare’s text Communicating Sequential Processes was published in
1985, his notation has been extensively used for teaching and applying concurrency
theory. This book is intended to provide a comprehensive text on CSP from the
perspective that 12 more years of research and experience have brought.

By far the most significant development in this time has been the emer-
gence of tools to support both the teaching and industrial application of CSP. This
has turned CSP from a notation used mainly for describing ‘toy’ examples which
could be understood and analyzed by hand, into one which can and does support
the description of industrial-sized problems and which facilitates their automated
analysis. As we will see, the FDR model checking tool can, over a wide range of
application areas, perform analyses and solve problems that are beyond most, if not
all, humans.

In order to use these tools effectively you need a good grasp of the fundamen-
tal concepts of CSP: the tools are most certainly not an alternative to gaining an
understanding of the theory. Therefore this book is still, in the first instance, a text
on the principles of the language rather than being a manual on how to apply its
tools. Nevertheless the existence of the tools has heavily influenced both the choice
and presentation of material. Most of the chapters have a section specifically on the
way the material in them relates to tools, two of the appendices are tool-related,
and there is an associated web site

http://www.comlab.ox.ac.uk/oucl/publications/books/concurrency/

on which readers can find

• a list of tools available for CSP

xii Preface

• demonstrations and details of some of the tools

• directories of example files containing most of the examples from the text
and many other related ones

• practical exercises which can be used by those teaching and learning from
this book

• a list of materials available to support teaching (overhead foils, solutions to
exercises, etc.) and instructions for obtaining them

as well as supporting textual material. Contact information, etc., relating to those
tools specifically mentioned in the text can be found in the Bibliography.

The Introduction (Chapter 0) gives an indication of the history, purpose and
range of applications of CSP, as well as a brief survey of the classes of tools that
are available. There is also a discussion of how to go about one of the major steps
when using CSP to model a system: deciding what constitutes an event. It provides
background reading which should be of interest to more experienced readers before
beginning the rest of the book; those with no previous exposure to concurrency
might find some parts of the Introduction of more benefit after looking at Part I.

The rest of the book is divided into three parts and structured to make it
usable by as wide an audience as possible. It should be emphasized, however, that
the quantity of material and the differing levels of sophistication required by various
topics mean that I expect it will be relatively uncommon for people to attempt the
whole book in a short space of time.

Part I (Chapters 1–6) is a foundation course on CSP, covering essentially
the same ground as Hoare’s text except that most of the mathematical theory is
omitted. At an intuitive level, it introduces the ideas behind the operational (i.e.,
transition system), denotational (traces, failures and divergences) and algebraic
models of CSP, but the formal development of these is delayed to Part II. Part
I has its origins in a set of notes that I developed for an introductory 16-lecture
course for Oxford undergraduates in Engineering and Computing Science. I would
expect that all introductory courses would cover up to Section 5.1 (buffers), with the
three topics beyond that (buffer tolerance, communications protocols and sequential
composition1) being more optional.

Part II and Part III (Chapters 7–12 and 13–15, though Chapter 12 arguably
belongs equally to both) respectively go into more detail on the theory and practice

1Instructors who are intending to deal at any length with the theory presented in Part II should

consider carefully whether they want to include the treatment of sequential composition, since it

can reasonably be argued that the special cases it creates are disproportionate to the usefulness of

that operator in the language. Certainly it is well worth considering presenting the theory without

these extra complications before going back to see how termination and sequencing fit in.

Preface xiii

of CSP. Either of them would form the basis of a one-term graduate course as a
follow-on to Part I, though some instructors will doubtless wish to mix the material
and to include extracts from Parts II and III in a first course. (At Oxford, intro-
ductory courses for more mathematically sophisticated audiences have used parts
of Chapters 8 and 9, on the denotational semantics and its applications, and some
courses have used part of Chapter 13, on deadlock.) The chapters of Part III are
largely independent of each other and of Part II.2

This book assumes no mathematical knowledge except for a basic under-
standing of sets, sequences and functions. I have endeavoured to keep the level of
mathematical sophistication of Parts I and III to the minimum consistent with giv-
ing a proper explanation of the material. While Part II does not require any further
basic knowledge other than what is contained in Appendix A (which gives an intro-
duction to the ideas from the theory of partial orders and metric/restriction spaces
required to understand the denotational models), the mathematical constructions
and arguments used are sometimes significantly harder than in the other two parts.

Part II describes various approaches to the semantic analysis of CSP. De-
pending on your point of view, you can either regard its chapters as an introduction
to semantic techniques for concurrency via the medium of CSP, or as a compre-
hensive treatment of the theory of this language. Each of the three complementary
semantic approaches used – operational, denotational and algebraic – is directly
relevant to an understanding of how the automated tools work. My aim in this part
has been to give a sufficiently detailed presentation of the underlying mathematics
and of the proofs of the main results to enable the reader to gain a thorough under-
standing of the semantics. Necessarily, though, the most complex and technical
proofs are omitted.

Chapter 12 deserves a special mention, since it does not so much introduce
semantic theory as apply it. It deals with the subject of abstraction: forming
a view of what a process looks like to a user who can only see a subset of its
alphabet. A full understanding of the methods used requires some knowledge of
the denotational models described in Chapters 8, 9 and 10 (which accounts for the
placing of Chapter 12 in Part II). However, their applications (to the formulation
of specifications in general, and to the specification of fault tolerance and security
in particular), are important and deserve attention by the ‘practice’ community as
well as theoreticians.

Chapter 13, on deadlock avoidance, is included because deadlock is a much

2The only dependency is of Section ?? on Chapter 14. It follows from this idependence that a

course based primarily on Part III need not cover the material in order and that instructors can

exercise considerable freedom in selecting what to teach. For example, the author has taught a

tool-based graduate course based on Section 15.1, Chapter 5, Section 15.2, Appendix C, Chapter

14, Chapter 12 (Sections 12.3 and 12.4 in particular), the first half of Chapter 13 and Section 15.4.

xiv Preface

feared phenomenon and there is an impressive range of techniques, both analytic and
automated, for avoiding it. Chapter 14 describes how the untimed version of CSP
(the one this book is about) can be used to describe and reason about timed systems
by introducing a special event to represent the passage of time at regular intervals.
This has become perhaps the most used dialect of CSP in industrial applications of
FDR. Each of these two chapters contains extensive illustrative examples; Chapter
15 is based entirely around five case studies (two of which are related) chosen to
show how CSP can successfully model, and FDR can solve, interesting, difficult
problems from other application areas.

The first appendix, as described above, is an introduction to mathematical
topics used in Part II. The second gives a brief description of the machine-readable
version of CSP and the functional programming language it contains for manipulat-
ing process state. The third explains the operation of FDR in terms of the theory
of CSP, and in particular describes the process-compression functions it uses.

At the end of each chapter in Parts II and III there is a section entitled
‘Notes’. These endeavour, necessarily briefly, to put the material of the chapter in
context and to give appropriate references to related work.

Exercises are included throughout the book. Those in Part I are mainly
designed to test the reader’s understanding of the preceding material; many of
them have been used in class at Oxford over the past three years. Some of those
in Parts II and III have the additional purpose of developing sidelines of the theory
not otherwise covered.

Except for one important change (the decision not to use process alphabets,
see page 77), I have endeavoured to remain faithful to the notation and ideas pre-
sented in Hoare’s text. There are a few other places, particularly in my treatment
of termination, variable usage and unbounded nondeterminism, where I have either
tidied up or extended the language and/or its interpretation.

Bill Roscoe
May 1997

Acknowledgements

I had the good fortune to become Tony Hoare’s research student in 1978, which gave
me the opportunity to work with him on the development of the ‘process algebra’
version of CSP and its semantics from the first. I have constantly been impressed
that the decisions he took in structuring the language have stood so well the twin
tests of time and practical use in circumstances he could not have foreseen. The
work in this book all results, either directly or indirectly, from his vision. Those

Preface xv

familiar with his book will recognize that much of my presentation, and many of
my examples, have been influenced by it.

Much of the theory set out in Chapters 7, 8, 9 and 11 was established by the
early 1980s. The two people most responsible, together with Tony and myself, for
the development of this basic theoretical framework for CSP were Steve Brookes
and Ernst-Rudiger Olderog, and I am delighted to acknowledge their contributions.
We were, naturally, much influenced by the work of those such as Robin Milner,
Matthew Hennessy and Rocco de Nicola who were working at the same time on
other process algebras.

Over the years, both CSP and my understanding of it have benefited from the
work of too many people for me to list their individual contributions. I would like to
thank the following present and former students, colleagues, collaborators and corre-
spondents for their help and inspiration: Samson Abramsky, Phil Armstrong, Geoff
Barrett, Stephen Blamey, Philippa Hopcroft (née Broadfoot), Sadie Creese, Naiem
Dathi, Jim Davies, Richard Forster, Paul Gardiner, Michael Goldsmith, Anthony
Hall, Jifeng He, Huang Jian, Jason Hulance, David Jackson, Lalita Jategaonkar
Jagadeesan, Alan Jeffrey, Mark Josephs, Ranko Lazić, Eldar Kleiner, Gavin Lowe,
Helen McCarthy, Jeremy Martin, Albert Meyer, Michael Mislove, Nick Moffat, Lee
Momtahan, Tom Newcomb, David Nowak, Joel Ouaknine, Ata Parashkevov, David
Park, Sriram Rajamani, Joy Reed, Mike Reed, Jakob Rehof, Bill Rounds, Peter
Ryan, Jeff Sanders, Bryan Scattergood, Steve Schneider, Brian Scott, Karen Seidel,
Jane Sinclair, Antti Valmari, David Walker, Wang Xu, Jim Woodcock, Ben Worrell,
Zhenzhong Wu, Lars Wulf, Jay Yantchev, Irfan Zakiuddin and Zhou Chao Chen.
Many of them will recognize specific influences their work has had on my book. A
few of these contributions are referred to in individual chapters.

I would also like thank all those who told me about errors and typos in the
original edition.

Special thanks are due to the present and former staff of Formal Systems
(some of whom are listed above) for their work in developing FDR, and latterly
ProBE. The remarkable capabilities of FDR transformed my view of CSP and made
me realize that writing this book had become essential. Bryan Scattergood was
chiefly responsible for both the design and the implementation of the ASCII version
of CSP used on these and other tools. I am grateful to him for writing Appendix B
on this version of the language. The passage of years since 1997 has only emphasised
the amazing job he did in designing CSPM , and the huge expressive power of the
embedded functional language. Ranko Lazić has both provided most of the results
on data independence (see Section 15.2.2), and did (in 2000) most of the work in
presenting it in this edition.

Many of the people mentioned above have read through drafts of my book
and pointed out errors and obscurities, as have various students. The quality of

xvi Preface

the text has been greatly helped by this. I have had valuable assistance from Jim
Davies in my use of LATEX.

My work on CSP has benefited from funding from several bodies over the
years, including EPSRC, DRA, ESPRIT, industry and the US Office of Naval Re-
search. I am particularly grateful to Ralph Wachter from the last of these, without
whom most of the research on CSP tools would not have happened, and who has
specifically supported this book and the associated web site.

This book could never have been written without the support of my wife
Coby. She read through hundreds of pages of text on a topic entirely foreign to
her, expertly pointing out errors in spelling and style. More importantly, she put
up with me writing it.

Internet edition

The version here was extensively updated by me in 2000, with the addition of some
new material (in particular a new section for Chapter 15). Various errors have also
been corrected, but please continue to inform me of any more.

A great deal more interesting work has been done on CSP since 1997 than
this version of the book reports. Much of that appears, or is referenced, in papers
which can be downloaded from my web site or from those of other current and
former members of the Oxford Concurrency group such as Gavin Lowe, Christie
Bolton and Ranko Lazić. As I write this I anticipate the imminent publication (in
LNCS) of the proceedings of the BCS FACS meeting in July last year on “25 years
of CSP”. This will provide an excellent snapshot of much recent work on CSP. I
have given a brief description of some of this extra work in paragraphs marked 2005,
mainly in the notes sections at the ends of chapters. These contain a few citations
but do not attempt to cover the whole literature of interest.

If anyone reading this has any feedback on any sort of book – either following
on from (part of) this one or something completely different – that you would like
to see written on CSP, please let me know.

Bill Roscoe
April 2005

Chapter 0

Introduction

CSP is a notation for describing concurrent systems (i.e., ones where there is more
than one process existing at a time) whose component processes interact with each
other by communication. Simultaneously, CSP is a collection of mathematical mod-
els and reasoning methods which help us understand and use this notation. In this
chapter we discuss the reasons for needing a calculus like CSP and some of the
historical background to its development.

0.1 Background

Parallel computers are starting to become common, thanks to developing technol-
ogy and our seemingly insatiable demands for computing power. They provide the
most obvious examples of concurrent systems, which can be characterized as sys-
tems where there are a number of different activities being carried out at the same
time. But there are others: at one extreme we have loosely coupled networks of
workstations, perhaps sharing some common file-server; and at the other we have
single VLSI circuits, which are built from many subcomponents which will often do
things concurrently. What all examples have in common is a number of separate
components which need to communicate with each other. The theory of concur-
rency is about the study of such communicating systems and applies equally to all
these examples and more. Though the motivation and most of the examples we see
are drawn from areas related to computers and VLSI, other examples can be found
in many fields.

CSP was designed to be a notation and theory for describing and analyzing
systems whose primary interest arises from the ways in which different compo-
nents interact at the level of communication. To understand this point, consider
the design of what most programmers would probably think of first when paral-

2 Introduction

lelism is mentioned, namely parallel supercomputers and the programs that run on
them. These computers are usually designed (though the details vary widely) so
that parallel programming is as easy as possible, often by enforcing highly stylized
communication which takes place in time to a global clock that also keeps the var-
ious parallel processing threads in step with each other. Though the design of the
parallel programs that run on these machines – structuring computations so that
calculations may be done in parallel and so that transfers of information required
fit the model provided by the computer – is an extremely important subject, it is
not what CSP or this book is about. For what is interesting there is understanding
the structure of the problem or algorithm, not the concurrent behaviour (the clock
and regimented communication having removed almost all interest here).

In short, we are developing a notation and calculus to help us understand
interaction. Typically the interactions will be between the components of a concur-
rent system, but sometimes they will be between a computer and external human
users. The primary applications will be areas where the main interest lies in the
structure and consequences of interactions. These include aspects of VLSI design,
communications protocols, real-time control systems, scheduling, computer security,
fault tolerance, database and cache consistency, and telecommunications systems.
Case studies from most of these can be found in this book: see the table of contents.

Concurrent systems are more difficult to understand than sequential ones for
various reasons. Perhaps the most obvious is that, whereas a sequential program is
only ‘at’ one line at a time, in a concurrent system all the different components are in
(more or less) independent states. It is necessary to understand which combinations
of states can arise and the consequences of each. This same observation means
that there simply are more states to worry about in parallel code, because the
total number of states grows exponentially (with the number of components) rather
than linearly (in the length of code) as in sequential code. Aside from this state
explosion there are a number of more specific misbehaviours which all create their
own difficulties and which any theory for analyzing concurrent systems must be able
to model.

Nondeterminism

A system exhibits nondeterminism if two different copies of it may behave differently
when given exactly the same inputs. Parallel systems often behave in this way
because of contention for communication: if there are three subprocesses P ,Q and
R where P and Q are competing to be the first to communicate with R, which in
turn bases its future behaviour upon which wins the race, then the whole system
may veer one way or the other in a manner that is uncontrollable and unobservable
from the outside.

0.1 Background 3

Nondeterministic systems are in principle untestable, since however many
times one of them behaves correctly in development with a given set of data, it
is impossible to be sure that it will still do so in the field (probably in subtly
different conditions which might influence the way a nondeterministic decision is
taken). Only by formal understanding and reasoning can one hope to establish
any property of such a system. One property we might be able to prove of a given
process is that it is deterministic (i.e., will always behave the same way when offered
a given sequence of communications), and thus amenable to testing.

Deadlock

A concurrent system is deadlocked if no component can make any progress, generally
because each is waiting for communication with others. The most famous example
of a deadlocked system is the ‘five dining philosophers’, where the five philosophers
are seated at a round table with a single fork between each pair (there is a picture
of them on page 61). But each philosopher requires both neighbouring forks to eat,
so if, as in the picture, all get hungry simultaneously and pick up their left-hand
fork then they deadlock and starve to death. Even though this example is anthro-
pomorphic, it actually captures one of the major causes of real deadlocks, namely
competition for resources. There are numerous others, however, and deadlock (par-
ticularly nondeterministic deadlock) remains one of the most common and feared
ills in parallel systems.

Livelock

All programmers are familiar with programs that go into infinite loops, never to
interact with their environments again. In addition to the usual causes of this type
of behaviour – properly called divergence, where a program performs an infinite
unbroken sequence of internal actions – parallel systems can livelock. This occurs
when a network communicates infinitely internally without any component com-
municating externally. As far as the user is concerned, a livelocked system looks
similar to a deadlocked one, though perhaps worse since the user may be able to
observe the presence of internal activity and so hope eternally that some output
will emerge eventually. Operationally and, as it turns out, theoretically, the two
phenomena are very different.

The above begin to show why it is essential to have both a good under-
standing of the way concurrent systems behave and practical methods for analyzing
them. On encountering a language like CSP for the first time, many people ask
why they have to study a new body of theory, and new specification/verification
techniques, rather than just learning another programming language. The reason
is that, unfortunately, mathematical models and software engineering techniques

4 Introduction

developed for sequential systems are usually inadequate for modelling the subtleties
of concurrency so we have to develop these things alongside the language.

0.2 Perspective

As we indicated above, a system is said to exhibit concurrency when there can be
several processes or subtasks making progress at the same time. These subtasks
might be running on separate processors, or might be time-sharing on a single
one. The crucial thing which makes concurrent systems different from sequential
ones is the fact that their subprocesses communicate with each other. So while a
sequential program can be thought of as progressing through its code a line at a
time – usually with no external influences on its control-flow – in a concurrent system
each component is at its own line, and without relying on a precise knowledge of the
implementation we cannot know what sequence of states the system will go through.
Since the different components are influencing each other, the complexities of the
possible interactions are mind-boggling. The history of concurrency consists both
of the construction of languages and concepts to make this complexity manageable,
and the development of theories for describing and reasoning about interacting
processes.

CSP has its origins in the mid 1970s, a time when the main practical problems
driving work on concurrency arose out of areas such as multi-tasking and operating
system design. The main problems in those areas are ones of maintaining an illusion
of simultaneous execution in an environment where there are scarce resources. The
nature of these systems frequently makes them ideally suited to the model of a
concurrent system where all processes are able (at least potentially) to see the
whole of memory, and where access to scarce resources (such as a peripheral) is
controlled by semaphores. (A process seeks a semaphore by executing a claim, or
P , operation, and after its need is over releases it with a V operation. The system
must enforce the property that only one process ‘has’ the semaphore at a time. This
is one solution to the so-called mutual exclusion problem.)

Perhaps the most superficially attractive feature of shared-variable concur-
rency is that it is hardly necessary to change a programming language to accom-
modate it. A piece of code writes to, or reads from, a shared variable in very much
the same way as it would do with a private one. The concurrency is thus, from
the point of view of a sequential program component, in some senses implicit. As
with many things, the shared variable model of concurrency has its advantages and
disadvantages. The main disadvantage from the point of view of modelling gen-
eral interacting systems is that the communications between components, which
are plainly vitally important, happen too implicitly. This effect also shows up when
it comes to mathematical reasoning about system behaviour: when it is not made

0.2 Perspective 5

explicit in a program’s semantics when it receives communications, one has to allow
for the effects of any communication at any time.

In recent years, of course, the emphasis on parallel programming has moved
to the situation where one is distributing a single task over a number of separate
processors. If done wrongly, the communications between these can represent a real
bottleneck, and certainly an unrestricted shared variable model can cause problems
in this way. One of the most interesting developments to overcome this has been
the BSP (Bulk Synchronous Parallelism) model [76, 130] in which the processors
are synchronized by the beat of a relatively infrequent drum and where the commu-
nication/processing trade-off is carefully managed. The BSP model is appropriate
for large parallel computations of numerical problems and similar; it does not give
any insight into the way parallel systems interact at a low level. When you need
this, a model in which the communications between processors are the essence of
process behaviour is required. If you were developing a parallel system on which to
run BSP programs, you could benefit from using a communication-based model at
several different levels.

In his 1978 paper [54], C.A.R. Hoare introduced, with the language CSP
(Communicating Sequential Processes), the concept of a system of processes, each
with its own private set of variables, interacting only by sending messages to each
other via handshaken communication. That language was, at least in appearance,
very different from the one studied in this book. In many respects it was like the
language occam [57, 60] which was later to evolve from CSP, but it differed from
occam in one or two significant ways:

• Parallelism was only allowed into the program at the highest syntactic level.
Thus the name Communicating Sequential Processes was appropriate in a
far more literal way than with subsequent versions of CSP.

• One process communicated with another by name, as if there were a single
channel from each process to every other. In occam, processes communicate
by named channels, so that a given pair might have none or many between
them.

The first version of CSP was the starting point for a large proportion of the
work on concurrency that has gone on since. Many researchers have continued to
use it in its original form, and others have built upon its ideas to develop their own
languages and notations.

The great majority of these languages have been notations for describing and
reasoning about purely communicating systems: the computations internal to the
component processes’ state (variables, assignments, etc.) being forgotten about.
They have come to be known as process algebras. The first of these were Milner’s

6 Introduction

CCS [80, 82] and Hoare’s second version of CSP, the one this book is about. It
is somewhat confusing that both of Hoare’s notations have the same name and
acronym, since in all but the deepest sense they have little in common. Henceforth,
for us, CSP will mean the second notation. Process algebra notations and theories
of concurrency are useful because they bring the problems of concurrency into sharp
focus. Using them it is possible to address the problems that arise, both at the high
level of constructing theories of concurrency, and at the lower level of specifying and
designing individual systems, without worrying about other issues. The purpose of
this book is to describe the CSP notation and to help the reader to understand it
and, especially, to use it in practical circumstances.

The design of process algebras and the building of theories around them has
proved an immensely popular field over the past two decades. Concurrency proves
to be an intellectually fascinating subject and there are many subtle distinctions
which one can make, both at the level of choice of language constructs and in the
subtleties of the theories used to model them. From a practical point of view the
resulting tower of Babel has been unfortunate, since it has both created confusion
and meant that perhaps less effort than ought to have been the case has been
devoted to the practical use of these methods. It has obscured the fact that often
the differences between the approaches were, to an outsider, insignificant.

Much of this work has, of course, strongly influenced the development of
CSP and the theories which underlie it. This applies both to the untimed version
of CSP, where one deliberately abstracts from the precise times when events occur,
and to Timed CSP, where these times are recorded and used. Untimed theories tend
to have the advantages of relative simplicity and abstraction, and are appropriate
for many real circumstances. Indeed, the handshaken communication of CSP is to
some extent a way of making precise timing of less concern, since, if one end of the
communication is ready before the other, it will wait. Probably for these reasons
the study of untimed theories generally preceded that of the timed ones. The timed
ones are needed because, as we will see later on, one sometimes needs to rely upon
timing details for the correctness of a system. This might either be at the level of
overall (externally visible) behaviour, or for some internal reason. The realization
of this, and the increasing maturity of the untimed theories, have led to a growing
number of people working on real-time theories since the mid 1980s.

There are a number of reasons why it can be advantageous to combine timed
and untimed reasoning. The major ones are listed below.

• Since timed reasoning is more detailed and complex than untimed, it is useful
to be able to localize timed analysis to the parts of the system which really
depend on it.

• In many cases proving a timed specification can be factored into proving a

0.3 Tools 7

complex untimed one and a simple timed property. This is attractive for the
same reasons as above.

• We might well want to develop a system meeting an untimed specification
before refining it to meet detailed timing constraints.

There have been two distinct approaches to introducing time into CSP, and
fortunately the above advantages are available in both. The first, usually known as
Timed CSP (see, for example, [29, 31, 98, 99]), uses a continuous model of time and
has a mathematical theory quite distinct to the untimed version. To do it justice
would require more space than could reasonably be made available in this volume,
and therefore we do not cover it. A complementary text by S.A. Schneider, based
primarily round Timed CSP, is in preparation at the time of writing.

The continuous model of time, while elegant, makes the construction of auto-
mated tools very much harder. It was primarily for this reason that the author
proposes (in Chapter 14) an alternative in which a timed interpretation is placed
on the ‘untimed’ language. This represents the passage of time by the regular
occurrence of a specific event (tock) and had the immediate advantage that the
untimed tools were applicable. While less profound than Timed CSP, it does, for
the time being at least, seem more practical. It has been used frequently in industrial
applications of FDR.

0.3 Tools

For a long time CSP was an algebra that was reasoned about only manually. This
certainly had a strong influence on the sort of examples people worked on – the
lack of automated assistance led to a concentration on small, elegant examples that
demonstrated theoretical niceties rather than practical problems.

In the last few years there has been an explosion of interest in the develop-
ment of automated proof tools for CSP and similar languages. The chief proof and
analytic tool for CSP at present is called FDR (standing for Failures/Divergences
Refinement, a name which will be explained in Section 3.3), whose existence has
led to a revolution in the way CSP is used. To a lesser extent it has also influenced
the way CSP is modelled mathematically and the presentation of its models.

A number of other tools, with similar external functionality though based on
very different algorithms, have been or are being developed. FDR appears to be the
most powerful (for most purposes) and complete at the time of writing. Because
of this, and because the author has played a leading role in its development and
is therefore more familiar with it than other tools, this book is, so far as the use
of tools is concerned, centred chiefly on FDR. Many of the examples and exercises
have been designed so they can be ‘run’ on it.

8 Introduction

Equally useful from the point of view of learning about the language are
simulators and animators which allow the human user to experiment with CSP
processes: interacting with them in reality instead of having to imagine doing so.
The difference between this sort of tool and FDR is that simulations do not prove
results about processes, merely providing a form of implementation that allows
experimentation. At the time of writing the most capable such tool appears to be
ProBE (used by the author in a preliminary version and due to be released later in
1997).

The above are general-purpose tools, in that they deal with more-or-less any
program and desired property which you want to investigate. More specific tools are
customized to perform analyses of restricted classes of system (such as protocols)
or to check for specific conditions such as deadlock.

These and other tool developments have led to a restructuring and standard-
ization of the CSP notation itself. The fact that the tools have allowed so many
more practical-size examples to be developed has certainly influenced our percep-
tion of the relative importance and, too, uses of various parts of the language,
especially the parts which are at the level of describing data and operations over it
(for building individual communications, and constructing a process’s state). The
presentation in this book has been influenced by this experience and is based on
the standardized syntax with the important difference that (at the time of writing)
the machine-readable syntax is ASCII, and the textual appearance of various con-
structs therefore differs from the more elegantly typeset versions which appear here
in print. The ASCII syntax is given in an appendix and is used in Chapter 15 (Case
Studies).

On past experience it is reasonable to expect that the range and power of
tools will increase markedly over the next few years. Thus a snap-shot from mid
1997 would soon get out of date. It is hoped to keep the web site associated with
this book (see Preface) as up-to-date as possible on developments and to include
appropriate references and demonstrations there.

It is only really since the advent of tools that CSP has been used to a sig-
nificant extent for the development and analysis of practical and industrial-scale
examples.

0.4 What is a communication?

CSP is a calculus for studying processes which interact with each other and their
environment by means of communication. The most fundamental object in CSP is
therefore a communication event. These events are assumed to be drawn from a
set Σ (the Greek capital letter ‘Sigma’) which contains all possible communications

0.4 What is a communication? 9

for processes in the universe under consideration. Think of a communication as
a transaction or synchronization between two or more processes rather than as
necessarily being the transmission of data one way. A few possible events in very
different examples of CSP descriptions are given below.

• In a railway system where the trains and signal boxes are communicating,
a typical event might be a request to move onto a segment of track, the
granting or refusing of permission for this, or the actual movement.

• If trying to model the interaction between a customer and a shop, we could
either model a transaction as a single event, so that 〈A,X ,Y 〉 might mean A
buys X for £Y, or break it up into several (offer, acceptance, money, change,
etc.). The choice of which of these two approaches to follow would depend
on taste as well as the reason for writing the CSP description.

• The insertion of an electronic mail message into a system, the various internal
transmissions of the message as it makes its way to its destination, and its
final receipt would all be events in a description of a distributed network.
Note that the user is probably not interested in the internal events, and so
would probably like to be able to ignore, or abstract away their presence.

• If we were using CSP to describe the behaviour of VLSI circuits, an event
might be a clock tick, seen by a large number of parallel communications,
or the transmission of a word of data, or (at a lower level) the switching of
some gate or transistor.

More than one component in a system may have to co-operate in the per-
formance of an event, and the ‘real’ phenomenon modelled by the event might take
some time. In CSP we assume firstly that an event only happens when all its
participants are prepared to execute it (this is what is called handshaken communi-
cation), and secondly that the abstract event is instantaneous. The instantaneous
event can be thought of as happening at the moment when it becomes inevitable
because all its participants have agreed to execute it. These two related abstrac-
tions constitute perhaps the most fundamental steps in describing a system using
CSP.

The only things that the environment can observe about a process are the
events which the process communicates with it. The interaction between the envi-
ronment and a process takes the same form as that between two processes: events
only happen when both sides agree.

One of the fundamental features of CSP is that it can serve as a notation
for writing programs which are close to implementation, as a way of constructing
specifications which may be remote from implementation, and as a calculus for

10 Introduction

reasoning about both of these things – and often comparing the two. For this
reason it contains a number of operators which would either be hard to implement
in a truly parallel system, or which represent some ‘bad’ forms of behaviour, thus
making them unlikely candidates for use in programs as such. The reason for having
the bad forms of behaviour (deadlock, divergence and nondeterminism) represented
explicitly and cleanly is to enable us to reason about them, hopefully proving them
absent in practical examples.

Part I

A foundation course in CSP

11

Chapter 1

Fundamental concepts

A CSP process is completely described by the way it can communicate with its
external environment. In constructing a process we first have to decide on an
alphabet of communication events – the set of all events that the process (and any
other related processes) might use. The choice of this alphabet is perhaps the
most important modelling decision that is made when we are trying to represent a
real system in CSP. The choice of these actions determines both the level of detail
or abstraction in the final specification, and also whether it is possible to get a
reasonable result at all. But this will only really become clear once we have a grasp
of the basic notation and start to look at some examples, though some guidance is
given in Section 0.4. So let us assume for now that the alphabet Σ of all events has
been established.

The fundamental assumptions about communications in CSP are these:

• They are instantaneous: we abstract the real time intervals the performance
of events takes into single moments – conceptually the moments when the
event becomes inevitable.

• They only occur when both the process and its environment allow them; but
at any moment when the process and its environment do agree on an event
then it (or some other event) must happen.

CSP is about setting up and reasoning about processes that interact with
their environments using this model of communication. Ultimately, of course, we
will want to set up parallel systems of processes that communicate with each other,
but in this chapter we will meet a basic collection of operators that allow us to create
processes that simply describe (internally sequential) patterns of communication.

14 Fundamental concepts

1.1 Fundamental operators

1.1.1 Prefixing

The simplest CSP process of them all is the one which can do nothing. It is written
STOP and never communicates.

Given an event a in Σ and a process P , a → P is the process which is initially
willing to communicate a and will wait indefinitely for this a to happen. After a it
behaves like P . Thus

up → down → up → down → STOP

will communicate the cycle up, down twice before stopping. This operation on
processes (turning P into a → P) is known as prefixing.

Clearly STOP and prefixing, together, allow us to describe just the processes
that make a fixed, finite sequence of communications before stopping.

1.1.2 Recursion

If we want to use a version of the process above which, instead of quickly stopping,
can go on performing up, down indefinitely, we can use recursion. Two different
processes which achieve this effect are defined by the equations

P1 = up → down → P1

P2 = up → down → up → down → P2

The idea is that any use of the recursively defined process’s name (P1 or P2)
on the right-hand side of the equations means exactly the same as the whole. It
should be intuitively clear that any process satisfying either of these equations has
the desired behaviour. The form of a recursive definition by a single equation is
that an identifier representing the process being defined is at the left-hand side, and
a process term, probably involving the identifier, is on the right. (If the identifier
does not appear then the recursion is not really a recursion at all and simply defines
the identifier on the left to be the process on the right.) We can draw a picture
illustrating the behaviour of P1 and P2: see Figure 1.1

Instead of defining one process by a single equation we can define a number
simultaneously by a mutual recursion. For example, if we set

Pu = up → Pd

Pd = down → Pu

1.1 Fundamental operators 15

updown

P1

down down

up

up

P2

Figure 1.1: The behaviour of P1 and P2.

then Pu should behave in just the same way as P1 and P2 defined earlier. The
mutual recursions we meet later will be more interesting!

Most of the recursions in this book will be written in this equational style,
but sometimes it is useful to have a way of writing down a recursive term without
having to give it a name and a separate line. The single recursion P = F (P)
(where F (P) is any CSP term involving P) defines exactly the same process as the
‘nameless’ term μP .F (P). (μ is the Greek letter ‘mu’.) Thus

up → (μ p.down → up → p)

defines yet another process alternating up’s and down ’s.

We have seen quite a few ways of defining recursive processes with all our
examples having very similar behaviour – invariably rather dull since we still can
only create processes whose sequence of communications is completely fixed. In fact
all the theories we explain in this book will allow us to prove that the processes P1,
P2 and Pu are equal. But that is a subject for later.

1.1.3 Guarded alternative

It is still only possible to define processes with a single thread of behaviour: all we
can do so far is to define processes which execute a fixed finite or infinite sequence
of actions. CSP provides a few ways of describing processes which offer a choice of
actions to their environment. They are largely interchangeable from the point of
view of what they can express, each being included because it has its distinct uses
in programming.

The simplest of them takes a list of distinct initial actions paired with pro-
cesses and extends the prefix operator by letting the environment choose any one
of the events, with the subsequent behaviour being the corresponding process.

(a1 → P1 | . . . | an → Pn)

16 Fundamental concepts

updown

a

ab

b
Q

P

STOP

UandD

up down

STOP

Figure 1.2: The behaviours of two processes with choice.

can do any of the events a1, . . . , an on its first step and, if the event chosen is ar ,
subsequently behaves like Pr . This construct is called guarded alternative. The
process

UandD = (up → down → STOP | down → up → STOP)

can do the two events up and down in either order.

Combining this operator with recursion, it is now possible to define some
complex behaviours. As a relatively simple example, consider the processes

P = (a → P | b → Q)

Q = (a → P | b → STOP)

where P will accept any sequence of a’s and b’s except that it stops if given two
consecutive b’s. Indeed, it should not be hard to see that any deterministic finite
state machine – a finite collection of states, each of which has a finite set of actions
available and the next state depends deterministically on which of this set occurs
(i.e., only one possible state per action) – can be encoded using this operator and
mutual recursion with finitely many equations. The behaviours of this P and of
UandD are illustrated in Figure 1.2

Combining this construct with an infinite mutual recursion which defines one
process COUNTn for every natural number n ∈ N we can define a system of counter
processes as follows:

COUNT 0 = up → COUNT1

COUNTn = (up → COUNTn+1

| down → COUNTn−1) (n > 0)

1.1 Fundamental operators 17

down

up up up

down down

COUNT0

COUNT COUNT COUNT321

Figure 1.3: The behaviour of COUNTn .

COUNTn is the process which will communicate any sequence of up’s and down ’s,
as long as there have never been n + 1 more down ’s than up’s. These are not,
of course, finite state machines: there are infinitely many fundamentally different
states that any one of the COUNTn processes can pass through. The distinction
between finite-state and non-finite-state CSP processes is extremely important for
model checking, the term usually used for state exploration tools such as FDR (see
Section 1.4), since that method relies on being able to visit every state. Of course
the pictures of these processes are also infinite – see Figure 1.3.

If A ⊆ Σ is any set of events and, for each x ∈ A, we have defined a process
P(x), then

?x : A→ P(x)

defines the process which accepts any element a of A and then behaves like the
appropriate P(a). This construct is known as prefix choice for obvious reasons.
Clearly it generalizes the guarded alternative construction, since any guarded al-
ternative can be recast in this form, but if A is infinite the reverse is not true. It
strictly generalizes it in cases where A is infinite. ?x : {} → P(x) means the same
as STOP and ?x : {a} → P(x) means the same as a → P(a).

This operator tends to be used in cases where the dependency of P(x) upon
x is mainly through its use of the identifier x in constructing subsequent commu-
nications, in constructing the index of a mutual recursion, or similar. Thus we can
write a process which simply repeats every communication which is sent to it:

REPEAT = ?x : Σ → x → REPEAT

or one which behaves like one of the counters defined above depending on what its
first communication is:

Initialize = ?n : N → COUNTn

18 Fundamental concepts

In many situations it is useful to have an alphabet Σ which contains com-
pound objects put together by an infix dot. So if c is the name of a ‘channel’ and T is
the type of object communicated down it, we would have c.T = {c.x | x ∈ T} ⊆ Σ.
It is natural to think of processes inputting and outputting values of type T over
c: an inputting process would typically be able to communicate any element of c.T
and an outputting process would only be able to communicate one. Rather than
write the input in the form ?y : c.T → P(y), where the uses of y in P(y) have to
extract x from c.x , it is more elegant to use the ‘pattern matching’ form

c?x : T → P ′(x)

where the definition of P ′ is probably slightly simpler than that of P because it can
refer to the value x input along c directly rather than having to recover it from a
compound object. For example, the process COPY , which inputs elements of T on
channel left and outputs them on channel right is defined

COPY = left?x : T → right !x → COPY

It is the simplest example of a buffer process: one which faithfully transfers the
input sequence on one channel to its outputs on another.

Where we want to allow any communication over channel c, the set T can
be omitted: c?x → P(x) means the same as c?x : T → P(x) where T is the type of
c. In cases like this, one frequently writes the ‘outputs’ using an exclamation mark
c!x for symmetry or clarity, but this is usually a synonym for c.x . (The only cases
where this does not apply arise where a communication is more highly structured
than we have seen here and has both ‘input’ and ‘output’ components – see page
27 where this subject is discussed further.) So, where T is understood, we might
write

COPY = left?x → right !x → COPY

It is important to remember that, even though this syntax allows us to model
input and output over channels, the fundamental CSP model of communication still
applies: neither an input nor an output can occur until the environment is willing
to allow it.

We broaden the guarded alternative operator to encompass arguments of the
form c?x : T → P(x) as well as ones guarded by single events. For now we will
assume, as an extension of the earlier assumption of disjointness, that all of the
events and input channels used in the guards are distinct and that none of the
single events belongs to more than one of the input channels.

For example, we can define a buffer process which, unlike COPY , does not
insist upon outputting one thing before inputting the next. If T is the type of

1.1 Fundamental operators 19

objects being input and output, and left .T ∪ right .T ⊆ Σ, we can define a process
B∞

s for every s ∈ T ∗ (the set of finite sequences of elements of T) as follows:

B∞
〈〉 = left?x : T → B∞

〈x〉

B∞
s 〈̂y〉 = (left?x : T → B∞

〈x 〉̂ s 〈̂y〉
| right !y → B∞

s)

So B∞
s is the buffer presently containing the sequence s , and B∞

〈〉 is the initially
empty one. Notice the basic similarity between this recursive definition and the ones
(particularly COUNT) seen earlier. This tail recursive style, particularly when each
recursive call is guarded by exactly one communication (one-step tail recursion)
shows the state space of a process extremely clearly. This style of definition is
important both in presenting CSP specifications and in verification techniques.

The use of sequence notation should be self-explanatory here. We will, how-
ever, discuss the language of sequences in more detail in Section 1.3.

The example B∞ above illustrates two important and related aspects of CSP
style that have also been seen in earlier examples: the uses of parameterized mutual
recursions and of identifiers representing ‘data’ values. The value of a parameterized
recursion such as this one or COUNT is that it allows the succinct presentation of a
large (and even, as in both these cases, infinite) set of processes. We will think of the
parameters as representing, in some sense, the state of such a process at the points
of recursive call. In particular, even though the recursive call may be within the
scope of an identifier x , this identifier cannot influence the value of the call unless it
appears within one of the parameters. A parameterized process can have any fixed
number of parameters, which can be numbers, events, tuples, sets, sequences etc.,
though they may not be processes (or tuples etc. that contain processes).

The parameters can be written as subscripts (as in B∞
s above), superscripts

(e.g., R(a,b)) or as ‘functional arguments’ (e.g., R(n, x)). The first two of these
were the traditional style before the advent of machine-readable CSP, which only
accepts the third. There is no formal difference between the different positions, the
choice being up to the aesthetic taste of the programmer. Often, in more complex
examples, they are combined.

The identifiers used for input (i.e., those following ‘?’) are the second main
contributor to process state. Each time an input is made it has the effect of creating
a new binding to the identifier, whose scope is the process it enables (i.e., in c?x → P
and (c?x → P | d → Q) it is P). Both these identifiers and the ones introduced as
parameters can be used freely in creating events and parameters, and in deciding
conditionals (see later). They cannot, however, be assigned to: you should think of
CSP as a declarative language in its use of identifiers. CSP ‘programs’ have a great
deal in common with ones in a functional language such as Haskell.

20 Fundamental concepts

Example 1.1.1 (cash-point machine) Anyone who has read Hoare’s book will

be familiar with his use of vending machines as examples of CSP descriptions. This

type of example is useful because it models a form of interaction with which the

reader can identify – placing himself or herself in the role of one process communi-

cating in parallel with another.

Cash-point machines (or Automated Teller Machines – ATMs) provide a

related example where, because of the increased value of transactions and the need

for different machines to co-operate with each other and with central databases,

there is perhaps better reason to be interested in formal specification. It is also a

good example later when we come to look at real time, since there are actually a

good many real-time constraints on the operation of these machines.

At various points through this chapter and the rest of this book we will use

examples drawn from this world to illustrate CSP constructs and ideas. For the

moment we will only attempt to describe the interface between the machine and

the customer.

We will have to imagine that the set Σ of all communications contains events

such as in.c and out .c for all cards c ∈ CARD , pin .p for all possible PIN numbers p,

and req .n, dispense .n and refuse for all n drawn from possible withdrawal amounts

(the set of which we denote by WA). In general we will simply assume that Σ
contains all events which are used in our process descriptions.

We first describe a rather simple machine which goes through cycles of ac-

cepting any card, requiring its PIN number, and servicing one request for withdrawal

which is always successful, before returning the card to the customer.

ATM 1 = in?c : CARD → pin .fpin (c)→ req?n : WA→
dispense!n → out .c → ATM 1

Here fpin(c) is the function which determines the correct PIN number of card c. The

set of all PIN numbers will be written PIN . It may appear from this description that

we are assuming that the customer never makes a mistake with his PIN number.

But this is not the case: what we are saying is (i) that the machine does not allow

the customer to proceed with his request until he has inserted the right number and

(ii) that we do not deem a ‘handshaken’ communication to have taken place until

the customer has inserted this number. Incorrect numbers are not modelled in this

treatment: they can be thought of in terms of one partner trying out successive

communications until he finds one which is not refused.

This illustrates one of the most important principles which one should bear in

mind when making a CSP abstraction of a system, whether a ‘human’ one like this,

a parallel machine, or a VLSI chip. This is that we should understand clearly when

an event or communication has taken place, but that it is often possible to abstract

1.1 Fundamental operators 21

several apparent events (here the cycles of inserting numbers and acceptance or

rejection) into a single one. Clearly in this case both parties can clearly tell when

the communication has actually taken place – a PIN number has been entered

and accepted – which is perhaps the most important fact making this a legitimate

abstraction.

Despite these observations the model, in particular the abstraction surround-

ing the PIN number, is not ideal in the sense that it describes a system we probably

would not want. The chief difficulty surrounding the PIN number insertion is that

a customer who had forgotten his number would be able to ‘deadlock’ the system

entirely with his card inside. In fact we will, in later examples, refine this single

synchronization into multiple entry and acceptance/rejection phases. Later, when

we deal with time, we will be able to model further features that there might be in

the interface, such as a time-out (if no response is received within a set amount of

time, the ATM will act accordingly). (End of example)

Exercise 1.1.1 A bank account is a process into which money can be deposited and

from which it can be withdrawn. Define first a simple account ACCT 0 which has events

deposit and withdraw , and which is always prepared to communicate either.

Exercise 1.1.2 Now extend the alphabet to include open and close. ACCT 1 behaves

like ACCT 0 except that it allows no event before it has been opened, and allows no further

event after it has been closed (and is always prepared to accept close while open). You

might find it helpful to define a process OPEN representing an open account.

Exercise 1.1.3 ACCT 0 and ACCT 1 have no concept of a balance. Introduce a

parameter representing the balance of an OPEN account. The alphabet is open and close

as before, deposit .N and withdraw .N (which have now become channels indicating the

amount of the deposit or withdrawal) plus balance .Z (Z is the set of positive and negative

integers), a channel that can be used to find out the current balance. An account has

zero balance when opened, and may only be closed when it has a zero balance. Define

processes ACCT 2 and ACCT 3 which (respectively) allow any withdrawal and only those

which would not overdraw the account (make the balance negative).

Exercise 1.1.4 Figure 1.4 shows the street map of a small town. Roads with arrows

on are one-way. Define a mutually recursive set of CSP processes, one for each labelled

corner, describing the ways traffic can move starting from each one. The alphabet is

{north , south , east ,west}, an action only being available when it is possible to move in the

appropriate direction, and then having the effect of moving the traveller to the next label.

Exercise 1.1.5 Define a process SUM with two channels of integers: in and sum . It

is always prepared to input (any integer) on in and to output on sum. The value appearing

on sum is the sum of all the values input so far on in. Modify your process so that it

can also output (on separate channels prod and last) the product of all the inputs and the

most recent input.

22 Fundamental concepts

A B

G

E

C

D

F

N

S

W E

Figure 1.4: A town plan.

1.1.4 Further choice operators

External choice

The various ways of defining a choice of events set out in the last section all set
out as part of the operator what the choice of initial events will be. In particular,
in guarded alternatives such as (a → P | b → Q), the a and b are an integral part
of the operator even though it is tempting to think that this process is a choice
between the processes a → P and b → Q . From the point of view of possible
implementations, the explicitness of the guarded alternative has many advantages1

but from an algebraic standpoint and also for generality it is advantageous to have
a choice operator which provides a simple choice between processes; this is what we
will now meet.

P � Q is a process which offers the environment the choice of the first events
of P and of Q and then behaves accordingly. This means that if the first event
chosen is one from P only, then P � Q behaves like P , while if one is chosen
from Q it behaves like Q . Thus (a → P) � (b → Q) means exactly the same
as (a → P | b → Q). This generalizes totally: any guarded alternative of the
sorts described in the last section is equivalent to the process that is obtained by
replacing all of the |’s of the alternative operator by �’s.2 Therefore we can regard
� as strictly generalizing guarded alternative: for that reason we will henceforth
tend to use only � even in cases where the other would have been sufficient. (In
fact, in ordinary use it is rare to find a use of � which could not have been presented

1Note that guarded alternative is provided in occam.
2This transformation is trivial textually, but less so syntactically since the prefixes move from

being part of the operator to become part of the processes being combined, and also we are moving

from a single operator of arbitrary ‘arity’ to the repeated use of the binary operator �. The fact

that � is associative (see later) means that the order of this composition is irrelevant.

1.1 Fundamental operators 23

as a guarded alternative, at least if one, as in occam, extends the notation of a
guard to include conditionals.)

The discussion above leaves out one important case that does not arise
with guarded alternatives: the possibility that P and Q might have initial events
in common so that there is no clear prescription as to which route is followed
when one of these is chosen. We define it to be ambiguous: if we have written
a program with an overlapping choice we should not mind which route is taken
and the implementation may choose either. Thus, after the initial a, the pro-
cess (a → a → STOP) � (a → b → STOP) is free to offer a or b at its
choice but is not obliged to offer both. It is thus a rather different process to
a → ((a → STOP) � (b → STOP)) which is obliged to offer the choice of a and b.
This is the first example we have met of a nondeterministic process: one which is
allowed to make internal decisions which affect the way it looks to its environment.

We will later find other examples of how nondeterminism can arise from
natural constructions, more fundamentally – and inevitably – than this one.

A deterministic process is one where the range of events offered to the envi-
ronment depends only on things it has seen (i.e., the sequence of communications
so far). In other words, it is formally nondeterministic when some internal decision
can lead to uncertainty about what will be offered. The distinction between de-
terministic and nondeterministic behaviour is an important one, and we will later
(Section 3.3) be able to specify it exactly.

Nondeterministic choice

Since nondeterminism does appear in CSP whether we like it or not, it is necessary
to be able to reason about it cleanly. Therefore, even though they are not constructs
one would be likely to use in any program written for execution in the usual sense,
CSP contains two closely related ways of presenting the nondeterministic choice of
processes. These are

P 	 Q and 	 S

where P and Q are processes, and S is a non-empty set of processes. The first of
these is a process which can behave like either P or Q , the second is one that can
behave like any member of S .

Clearly we can represent 	 S for finite S using 	. The case where S is
infinite leads to a number of difficulties in modelling since (obviously) it introduces
infinite, or unbounded, nondeterminism. It turns out that this is somewhat harder
to cope with than finite nondeterminism, so we will sometimes have to exclude it
from consideration. Apart from the explicit operator 	 S there are several other

24 Fundamental concepts

operators we will meet later which can introduce unbounded nondeterminism. We
will mention this in each case where it can arise, and the precautions necessary to
avoid it.

It is important to appreciate the difference between P � Q and P 	 Q .
The process (a → STOP) � (b → STOP) is obliged to communicate a or b if
offered only one of them, whereas (a → STOP) 	 (b → STOP) may reject either.
It is only obliged to communicate if the environment offers both a and b. In the
first case, the choice of what happens is in the hands of the environment, in the
second it is in the hands of the process. Some authors call these two forms of
choice external and internal nondeterminism respectively, but we prefer to think of
‘external nondeterminism’ as ‘environmental choice’ and not to confuse it with a
form of nondeterminism.

The process P can be used in any place where P 	 Q would work, since
there is nothing we can do to stop P 	 Q behaving like P every time anyway. If
R is such that R = R 	 P we say that P is more deterministic than R, or that it
refines R. Since (P 	 Q) 	 P = P 	 Q for any P and Q , it follows that P is,
as one would expect, always more deterministic than P 	 Q . This gives the basic
notion of when one CSP process is ‘better’ than another, and forms the basis of the
most important partial orders over CSP models. When P 	 R = R we will write

R
 P

The concept of refinement will turn out to be exceptionally important.

Example 1.1.2 (nondeterministic atm) From the point of view of the user of

our cash-point machine, it will probably be nondeterministic whether his request

for a withdrawal is accepted or not. We could therefore remodel his view of it as

follows:

ATM 2 = in?c : CARD → pin .fpin (c)→ req?n : WA→
((dispense .n → out .c → ATM 2)
	 (refuse → (ATM 2 	 out .c → ATM 2)))

Notice that it is also nondeterministic from the point of view of the user whether

he gets his card back after a refusal.

Even if the machine’s decision is entirely deterministic given the information

it can see (such as how much money it has, the state of the network connecting

it to central machines and the health of the customer’s account) this does not

reduce the validity of the above model. For the customer cannot know most of this

information and chooses not to include the rest of it in modelling this interface. He

has introduced an abstraction into the model and is paying for the simple model

with some nondeterminism.

1.1 Fundamental operators 25

Abstraction is another important idea of which we will see much more later,

especially Chapter 12. (End of example)

Conditional choice

Since we allow state identifiers into CSP processes through input and process para-
meters, a further form of choice is needed: conditional choice based on the value of
a boolean expression. In the informal style of presenting CSP there is no need to
be very prescriptive about how these choices are written down,3 though obviously
a tighter syntax will be required when we consider machine-readable CSP. However
a choice is written down, it must give a clear decision about which process the
construct represents for any legitimate value of the state identifiers in scope, and
only depend on these.

Conditionals can thus be presented as if ... then ... else ... constructs (as
they are in the machine-readable syntax), as case statements, or in the following
syntax which elegantly reduces the conditional to an algebraic operator: P<I b>I Q
means exactly the same as if b then P else Q . Because it fits in well with the rest
of CSP notation, we will tend to quote this last version when discussing or using
conditionals. It is also legitimate to use conditionals in computing sub-process
objects such as events. Thus the two processes

ABS 1 = left?x → right !((−x)<I x < 0>I x)→ ABS 1

ABS 2 = left?x → ((right !(−x)→ ABS 2)
<I x < 0>I (right !x → ABS 2))

are equivalent: both input numbers and output the absolute values.

The use of conditionals can obviously reduce the number of cases of a para-
meterized mutual recursion that have to be treated separately to one (simply re-
placing each case by one clause in a conditional), but they can, used judiciously,
frequently give a substantial simplification as well. Consider, for example, a two-
dimensional version of our COUNT process which now represents a counter on a
chess board. It will have two parameters, both restricted to the range 0 ≤ i ≤ 7.
One is changed by the events {up, down}, the other by {left , right}. There are no
less than nine separate cases to be considered if we were to follow the style (used
for COUNT earlier) of dealing with the different possible initial events one by one:
see Figure 1.5. Fortunately these all reduce to a single one with the simple use of

3Indeed, in many presentations of CSP they seem to be considered so informal that they are

not described as part of the language.

26 Fundamental concepts

Figure 1.5: The nine case different sets of initial events in Counter(i , j).

conditionals:

Counter(n,m) = (down → Counter(n − 1,m))<I n > 0>I STOP
� (up → Counter(n + 1,m))<I n < 7>I STOP
� (left → Counter(n,m − 1))<I m > 0>I STOP
� (right → Counter(n,m + 1))<I m < 7>I STOP

Note that the availability of each event has been defined by a conditional,
where the process produced when the event is not available is STOP , which of
course makes no contribution to the initial choices available.4

Multi-part events: extending the notation of channels

Thus far all events we have used have been atomic (such as up and down) or have
comprised a channel name plus one ‘data’ component (such as left .3). In general we
allow events that have been constructed out of any finite number of parts using the
infix dot ‘.’ (which is assumed to be associative). In written CSP it is a convention,
which is enforced as a rule in machine-readable CSP5 (see Appendix B) that a

4This style of coding in CSP is essentially the same as the use of boolean guards on commu-

nications in occam alternatives. We could, of course, explicitly extend the guarded alternative

in CSP to include a boolean component, but since the above style is possible there is little point

from a formal point of view. The machine-readable form understood by FDR does include such a

shorthand: b & P abbreviates if b then P else STOP.
5In machine-readable CSP all channels have to be declared explicitly

1.1 Fundamental operators 27

channel consists of an identifier (its name or tag) plus a finite (perhaps empty)
sequence of data types, and that Σ then consists of all events of the form

c.x1. . . . xn

where c is such a name, T1, . . . ,Tn is its sequence of types, and xi ∈ Ti for each i .

The most common use for communications with more than two parts is when
we want to set up what is effectively an array of channels for communication in
a parallel array where the processes are probably similarly indexed. Thus if we
had processes indexed P(i) forming a one-dimensional array, we might well have a
channel of type N.N.T where T is a data type that these processes want to send to
each other. If c were such a channel, then c.i .j .x might represent the transmission
of value x from P(i) to P(j). We will see many examples like this once we have
introduced parallel operators.

They can also, however, be used to achieve multiple data transfers in a single
action. This can even be in several directions at once, since the input (?) and output
(!) modes of communication can be mixed in a multi-part communication. Thus

c?x : A!e → P

represents a process whose first step allows all communications of the form {c.a.b |
a ∈ A} where b is the value of the expression e. The identifier x is then, of course,
bound to the relevant member of a in the body of P . The advent of machine-
readable CSP and FDR has proved the usefulness of this type of construct, and has
led to the adoption of conventions to deal with various cases that can arise. One
of these shows the subtle distinction between the use of the infix dot ‘.’ and the
output symbol ! in communications. For example, if d is a channel of type A.B .C .D
then if the communication d?x .y!z .t appears in a process definition it is equivalent
to d?x?y!z !t because an infix dot following a ? is taken to be part of a pattern
matched by the input. Thus one ? can bind multiple identifiers until overridden
by a following !. None of the examples in this book uses this or any other related
convention – in the rare examples where more than one data component follows
a ? we will follow the good practice of using only ? or ! as appropriate for each
successive one – but further details of them can be found in Appendix B and [39].

One very useful notation first introduced in machine-readable CSP, which
we will use freely, allows us to turn any set of channels and partially defined events
into the corresponding events. This is the {| c1, c2 |} notation which forms the
appropriate set of events from one or more channels: it is formally defined as follows.
If c has type T1.T2 . . .Tn as above, 0 ≤ k ≤ n and ai ∈ Ti for 1 ≤ i ≤ k , then

events(c.a1 . . . ak) = {c.a1 . . . ak .bk+1 . . . bn | bk+1 ∈ Tk+1, . . . , bn ∈ Tn}

28 Fundamental concepts

is the set of events which can be formed as extensions of c.a1 . . . ak . We can then
define

{| e1, . . . , er |} = events(e1) ∪ . . . ∪ events(er)

Exercise 1.1.6 Extend the definition of COUNTn so that it also has the events up5,

up10, down5 and down10 which change the value in the register by the obvious amounts,

and are only possible when they do not take the value below zero.

Exercise 1.1.7 A change-giving machine which takes in £1 coins and gives change

in 5, 10 and 20 pence coins. It should have the following events: in£1, out5p, out10p,

out20p. Define versions with the following behaviours:

(a) CMA gives the environment the choice of how it wants the change, and if an extra

£1 is inserted while it still has a non-zero balance it increases the amount of change

available accordingly.

(b) CMB behaves like CMA except that it will only accept a further £1 if its balance

is less than 20p.

(c) CMC is allowed to choose any correct combination of change nondeterministically,

only allowing the insertion of £1 when it has zero balance.

Exercise 1.1.8 COPY represents a one-place buffer and B∞
〈〉 represents an unbounded

one. These are just two examples of processes representing communication media for trans-

mitting information from channel left to channel right . Describe ones with the following

behaviours (except for the last one, their output streams must always copy the input ones

without loss, and preserving order):

(a) FCOPY behaves like COPY except that it is allowed to input a second item when

it already contains one, but if it does it breaks (STOP).

(b) DELAY can hold up to two items, but cannot output the first one unless it is full.

Thus its outputs are (after the initial input) always one or two behind its inputs,

unlike the case with COPY where they are always zero or one behind.

(c) BUFF 〈〉 is a buffer that cannot be guaranteed to accept an input except when

empty, but neither can it be guaranteed not to accept one. When non-empty, it

never refuses to output the next item due.

(d) LEAKY behaves like COPY except that it loses every third item.

Exercise 1.1.9 Redesign the process ATM 1 so that the action of accepting a PIN

number is broken into the successive input of up to three numbers (any PIN numbers),

with a correct or incorrect one being rewarded with ok or wrong respectively. After ok it

carries on in the same way as the original ATM 1, and after the third wrong it reverts to

the initial state (without returning the card).

1.2 Algebra 29

1.1.5 A few important processes

There are a few processes with very basic behaviour that it is useful to have standard
names for. We have already met STOP , the process that does nothing at all. Two
more are

RUNA = ?x : A→ RUNA

the process which, for a set of events A ⊆ Σ, can always communicate any member
of A desired by the environment, and

ChaosA = STOP 	 (?x : A→ ChaosA)

which can always choose to communicate or reject any member of A. Evidently
Chaos{} and RUN {} are both equivalent to STOP . If no alphabet is specified for
one of these processes (RUN or Chaos) then we understand it (the alphabet) to be
the whole of Σ. Clearly ChaosA is refined by both STOP and RUNA.

Two other important constants (div and SKIP) will be introduced later
(respectively Sections 3.1 and 6.1) once the concepts they involve have been estab-
lished.

1.2 Algebra

One of our primary ways of understanding CSP will be to develop a set of algebraic
laws which the operators satisfy. An algebraic law is the statement that two ex-
pressions, involving some operators and identifiers representing arbitrary processes
(and perhaps other things such as events) are equal. By ‘equal’, we mean that the
two sides are essentially the same: for CSP this means that their communicating
behaviours are indistinguishable by the environment.

Everyone with the most basic knowledge of arithmetic or set theory is familiar
with the sort of algebra we are now talking about. There are a number of basic
patterns that many laws conform to; the following are a few familiar examples
illustrating these:

x + y = y + x a commutative, or symmetry law
x × y = y × x ditto
x ∪ y = y ∪ x ditto

(x + y) + z = x + (y + z) associativity
(x + y) × z = (x × z) + (y × z) (right) distributive law

0 + x = x unit law (0 is a left unit of +)
{} ∩ x = {} zero law ({} is a left zero of ∩)
x ∪ x = x idempotence

30 Fundamental concepts

We will find all of these patterns and more amongst the laws of CSP. Let
us now consider what laws ought to relate the CSP operators we have met so far:
prefixing, external choice, nondeterministic choice, and conditionals.

We would expect the choice between P and itself to be the same as P , the
choice between P and Q the same as that between Q and P , and the choice between
three processes P , Q and R to be the same however bracketed. And this will all
apply whether we are talking about internal (nondeterministic) choice or external
choice. In other words, these properties all hold whether the environment or the
process gets to choose which path is chosen. Thus there are idempotence, symmetry
and associative laws for both � and 	:

P � P = P 〈�-idem〉 (1.1)

P 	 P = P 〈	-idem〉 (1.2)

P � Q = Q � P 〈�-sym〉 (1.3)

P 	 Q = Q 	 P 〈	-sym〉 (1.4)

P � (Q � R) = (P � Q) � R 〈�-assoc〉 (1.5)

P 	 (Q 	 R) = (P 	 Q) 	 R 〈	-assoc〉 (1.6)

These three laws (idempotence, symmetry and associativity) are just what
is needed to ensure that the nondeterministic choice operator over sets, 	S , makes
sense (see Exercise 1.2.5). For what we mean by this (for finite S = {P1, . . . ,Pn})
must be the same as P1 	 . . . 	 Pn , and since sets are oblivious to the repetition
and order of their elements, we need 	 to be idempotent (ignoring repetitions),
symmetric (ignoring order) and associative (so that bracketing is not required).
Clearly the operator 	S has laws that we could write down too, but these would
not follow such conventional forms as it is not an ordinary binary operator. We will
always feel at liberty to rewrite 	{P1, . . . ,Pn} as

P1 	 . . . 	 Pn

and similar without formal recourse to laws.

Notice that each law has been given a name and a number to help us refer
to it later.

1.2 Algebra 31

If we have any operator or construct F (·) which, in any ‘run’ takes at most
one copy of its argument, then it is natural to expect that F (·) will be distributive,
in that

F (P 	 Q) = F (P) 	 F (Q)

F (S) = 	{F (P) | P ∈ S}

(i.e., the operator distributes over 	 and distributes through). In the first of
these, this is because the argument on the left-hand side can act like P or like Q ,
so the effect of running F (P 	 Q) must be either like running F (P) or like running
F (Q). Since that is precisely the set of options open to F (P) 	 F (Q), the two
sides are equal. The second is just the same argument applied to an arbitrary,
rather than two-way, choice. All of the operators, other than recursion, which we
have described so far fall into this category. The distributive laws for some of the
constructs seen to date are:

P � (Q 	 R) = (P � Q) 	 (P � R) 〈�-dist〉 (1.7)

P �	S = 	{P � Q | Q ∈ S} 〈�-Dist〉 (1.8)

a → (P 	 Q) = (a → P) 	 (a → Q) 〈prefix-dist〉 (1.9)

a →	S = 	{a → Q | Q ∈ S} 〈prefix-Dist〉 (1.10)

?x : A→ (P 	 Q) = (?x : A→ P) 	 (?x : A→ Q) 〈input-dist〉 (1.11)

?x : A→	S = 	{?x : A→ Q | Q ∈ S} 〈input-Dist〉 (1.12)

Note that there is a pair for each. In fact, of course, the second of each pair implies
the other. An operator that distributes over 	 S will be called fully distributive,
whereas one that distributes over 	 will be called finitely distributive. In future,
we will generally only quote one of each pair of distributive laws explicitly, to save
space. It may be assumed that they both hold if either does, except in the rare cases
(always explicitly flagged) of operators that are finitely but not fully distributive.

You should, in general, expect an operator F (P) to be distributive unless it
has the chance, in a single run, to compare two different copies of P . If it can make
such a comparison then F (P 	 Q) may be different from F (P) 	 F (Q) because

32 Fundamental concepts

the two copies it compares may be different (one P and one Q) whereas in the
second case they must be the same (whichever they are). This is why recursion is
not distributive. We only have to consider a simple example like

μ p.((a → p) 	 (b → p)) and (μ p.a → p) 	 (μ p.b → p)

where the left-hand side can perform any sequence of a’s and b’s (at its own choice)
while the right-hand side has to be consistent: once it has communicated one a it
must keep on doing a’s.

〈�-dist〉 is actually only one of the two distributive laws for � over 	. The
other one (the right distributive law) follows from this one and 〈�-sym〉. There are
also (left and right) distributive laws for 	 over itself – provable from the existing
set of laws for 	 (see Exercise 1.2.1 below).

There is a further law relating the two forms of choice whose motivation is
much more subtle. Consider the process P 	 (Q � R). It may either behave like P
or offer the choice between Q and R. Now consider

(P 	 Q) � (P 	 R)

a process which the distributive laws of � can expand to

(P � P) 	 (P � R) 	 (Q � P) 	 (Q � R)

The first of these four equals P by 〈�-idem〉. It follows that the first and last
alternatives provide all the options of the first process. Every behaviour of the
second and third is possible for one of the other two: every set of events they reject
initially is also rejected by P (for they offer the choice of the first actions of P and
another process), and every subsequent behaviour belongs to one of P , Q and R.
We therefore assert that these two processes are equal – in other words, 	 distributes
over �.

P 	 (Q � R) = (P 	 Q) � (P 	 R) 〈	-�-dist〉 (1.13)

The following is the chief law relating prefixing and external choice. It says
that if we give the environment the choice between processes offering A and B , then
we get a process offering A ∪ B whose subsequent behaviour depends on which of
A and B the first event belongs to:

(?x : A→ P) � (?x : B → Q) = ?x : A ∪ B → ((P 	 Q)
<I x ∈ A ∩ B>I
(P<I x ∈ A>I Q))

〈�-step〉 (1.14)

1.2 Algebra 33

We have called this a step law because it allows us to compute the first-step be-
haviour of the combination (i.e., the selection of initial actions plus the process
that succeeds each action) from the first step behaviour of the processes we are
combining.6

STOP is the process that offers no choice of initial actions. This can of
course be written as the prefix choice over an empty set:

STOP = ?x : {} → P 〈STOP -step〉 (1.15)

It is an immediate consequence of the last two laws that

STOP � (?x : A→ P) = ?x : A→ P

Of course we would expect that the external choice of any process with STOP would
have no effect. This gives us our first unit law:

STOP � P = P 〈�-unit〉 (1.16)

(There is no need for a right unit law as well as this one, since it is easily inferred
from this one and the symmetry law 〈�-sym〉.)

Conditional choice is idempotent and distributive:

P<I b>I P = P 〈<I ·>I -idem〉 (1.17)

(P 	 Q)<I b>I R = (P<I b>I R) 	 (Q<I b>I R) 〈<I ·>I -dist-l〉 (1.18)

R<I b>I (P 	 Q) = (R<I b>I P) 	 (R<I b>I Q) 〈<I ·>I -dist-r〉 (1.19)

Left and right distributive laws are required here because conditional choice is not
symmetric.

The conditional behaviour is brought out by the following pair of laws:

P<I true>I Q = P 〈<I true>I -id〉 (1.20)

P<I false>I Q = Q 〈<I false>I -id〉 (1.21)

6From here on, in quoting laws about prefixed processes, we will usually refer only to the form

?x : A → P . The others, namely a → P and c?x : A → P (and the more complex forms for

multi-part events discussed above) can be transformed into this form easily, and so quoting a lot

of extra laws to deal with them would serve no particular purpose.

34 Fundamental concepts

There are other laws in which conditional choice interacts with boolean op-
erators on the condition(s), but we do not attempt to enumerate them here (though
see the exercises below). One interesting class of laws is that almost all operators
distribute over this form of choice as well as over 	. The only ones that do not are
ones (in particular prefix choice) that may modify the bindings of identifiers used
in the boolean condition. An example of a law that does hold is

P � (Q<I b>I R) = (P � Q)<I b>I (P � R) 〈<I ·>I -�-dist〉 (1.22)

while the failure of this distribution in the presence of binding constructs is illus-
trated by

?x : N →?x : N → (P<I x is even>I Q) =
?x : N → ((?x : N → P)<I x is even>I (?x : N → Q))

since the distribution of <I x is even>I through the inner prefix choice results in x
being bound to the first input rather than the second.

The fundamental law of recursion is that a recursively defined process satisfies
the equation defining it. Thus the law is (in the case of equational definitions) just
a part of the program. For the μ form of recursion this law is

μ p.P = P [μ p.P/p] 〈μ-unwind〉 (1.23)

where the notation Q [R/p] means the substitution of the process R for all free (i.e.,
not bound by some lower-level recursion) occurrences of the process identifier p.

We have already noted that recursion fails to be distributive.

Laws of the sort seen in this section serve several functions: they provide a
useful way of gaining understanding and intuition about the intended meaning of
constructs, they can (as we will see later) be useful in proofs about CSP processes,
and finally, if presented and analyzed highly systematically, they can be shown to
completely define the meaning, or semantics of language constructs (in a sense we
are not yet in a position to appreciate but which is fully explained in Chapter 11).
Whenever we introduce a new operator in later chapters, we will usually use some
of its laws to help explain how it behaves.

Exercise 1.2.1 Using the laws quoted in the text for �, prove that it distributes over

itself (i.e., that P � (Q � R) = (P � Q) � (P � R)).

Exercise 1.2.2 Suggest some laws for 	 S and how it relates to �.

Exercise 1.2.3 Write down the left and right distributive laws of ·<I b>I · through 	.

1.3 The traces model and traces refinement 35

Exercise 1.2.4 Use 〈�-step〉 and other laws given above to prove that

(?x : A → P) � (?x : A → Q) = (?x : A → P) � (?x : A → Q)

Exercise 1.2.5 Suppose we try to extend the binary operator ⊕ (e.g. �) to finite

non-empty sets by defining

⊕
{P1, . . . ,Pn} = P1 ⊕ (P2 ⊕ . . . (Pn−1 ⊕ Pn) . . .)

Show that this makes sense (i.e., the value of
⊕

S is independent of the way S is written

down) only if ⊕ is idempotent, symmetric and associative. For example, it must be

idempotent because {P ,P} = {P}, and hence P ⊕ P =
⊕

{P ,P} =
⊕

{P} = P .

In this case prove that
⊕

(A ∪B) = (
⊕

A) ⊕ (
⊕

B) for any non-empty A and B .

What additional algebraic property must ⊕ have to make
⊕

{} well defined in such

a way that this union law remains true? [Hint: � has this property but � does not.] What

is then the value of
⊕

{}?

Exercise 1.2.6 Complete the following laws of the conditional construct by filling in

the blank(s) (. . .) in each

(a) P<I¬b>I Q = . . .<I b>I . . .

(b) P<I b>I (Q<I b ∧ c>I R) = . . .<I b>I R

(c) (P<I c>I Q)<I b>I R = . . .<I c>I . . .

1.3 The traces model and traces refinement

Imagine you are interacting with a CSP process. The most basic record you might
make of what happens is to write down the trace of events that occur: the sequence
of communications between you (the environment) and the process. In general, a
trace might be finite or infinite: finite either because the observation was terminated
or because the process and environment reach a point where they cannot agree on
any event, infinite when the observation goes on for ever and infinitely many events
are transacted.

There are two basic levels of detail at which we might record traces: either
we write down the events that occur in order or we write them down with the exact
times when they happen. The choice of which of these is picked selects between the
two main ways of looking at CSP. The version of CSP covered in this book is untimed
CSP, where only the order of events matters. The more detailed version, Timed CSP,
includes the time of each event in traces. A trace thus becomes a sequence of event/
time pairs (with the times increasing, of course). The basic principle of untimed
CSP is that, while the relative order of what processes communicate does matter

36 Fundamental concepts

(and can be used to distinguish and specify them), the exact timing of events does
not. (We will see a way of building a different model of time into ‘untimed’ CSP in
Chapter 14. References to work on Timed CSP can be found in Section 14.8.)

It is natural to model an untimed CSP process by the set of all traces it can
perform. It turns out that recording only finite traces is sufficient in the majority
of cases – after all, if u is an infinite trace then all its finite prefixes (initial subse-
quences) are finite traces – and for the time being we will do this. In Section 8.3.2
and Chapter 10 we will see the subtle distinctions infinite traces can make in some
cases – though at some cost in terms of theoretical difficulty.

1.3.1 Working out traces(P)

For any process P , we define traces(P) to be the set of all its finite traces – members
of Σ∗, the set of finite sequences of events. For example:

• traces(STOP) = {〈〉} – the only trace of the process that can perform no
event is the empty trace;

• traces(a → b → STOP) = {〈〉, 〈a〉, 〈a, b〉} – this process may have commu-
nicated nothing yet, performed an a only, or an a and a b;

• traces((a → STOP) � (b → STOP)) = {〈〉, 〈a〉, 〈b〉} – here there is a choice
of first event, so there is more than one trace of length 1;

• traces(μ p.((a → p) � (b → STOP))) = {〈a〉n , 〈a〉n 〈̂b〉 | n ∈ N} – this
process can perform as many a’s as its environment likes, followed by a b
after which there can be no further communication.

Note the use of finite sequence notation here: 〈a1, a2, . . . , an〉 is the sequence
containing a1, a2 to an in that order. Unlike sets, the order of members of a sequence
does matter, as does the number of times an element is repeated. Thus 〈a, a, b〉,
〈a, b〉 and 〈b, a〉 are all different. 〈〉 denotes the empty sequence. If s and t are two
finite sequences, then s t̂ is their concatenation: the members of s followed by those
of t : for example 〈a, b〉̂ 〈b, a〉 = 〈a, b, b, a〉. If s is a finite sequence and n ∈ N,
then sn means the n-fold concatenation of s : s0 = 〈〉 and sn+1 = (sn)̂ s . If s is
an initial subsequence, or prefix of t , in that there is a (possibly empty) sequence
w with t = s ŵ , then we write s ≤ t . We will meet more sequence notation later
when it is required.

For any process P , traces(P) will always have the following properties:

• traces(P) is non-empty: it always contains the empty trace 〈〉;
• traces(P) is prefix closed: if s t̂ is a trace then at some earlier time during

the recording of this, the trace was s .

1.3 The traces model and traces refinement 37

There are two important things we can do with traces(P): give a meaning,
or semantics, to the CSP notation, and specify the behaviour required of processes.
The set of all non-empty, prefix-closed subsets of Σ∗ is called the traces model –
the set of all possible representations of processes using traces. It is written T and
is the first – and simplest – of a number of models for CSP processes we will be
meeting in this book. The formal definitions of the rest of them can be found in
Part II.

Hopefully, given the earlier explanations of what the various constructs of
CSP ‘meant’, the example sets of traces are all obviously correct in the sense that
they are the only possible sets of traces that the various processes might have. We
can, in fact, calculate the trace-set of any CSP process by means of a set of simple
rules – for in every case we can work out what the traces of a compound process
(such as a → P or P � Q) are in terms of those of its components (P and Q). Thus
the traces of any process can be calculated by following its syntactic construction.

The rules for the prefixing and choice constructs are all very easy:

1. traces(STOP) = {〈〉}
2. traces(a → P) = {〈〉}∪{〈a 〉̂ s | s ∈ traces(P)} – this process has either done

nothing, or its first event was a followed by a trace of P .

3. traces(?x : A → P) = {〈〉} ∪ {〈a 〉̂ s | a ∈ A ∧ s ∈ traces(P [a/x])} – this
is similar except that the initial event is now chosen from the set A and
the subsequent behaviour depends on which is picked: P [a/x] means the
substitution of the value a for all free occurrences of the identifier x .

4. traces(c?x : A → P) = {〈〉} ∪ {〈c.a 〉̂ s | a ∈ A ∧ s ∈ traces(P [a/x])} – the
same except for the use of the channel name.

5. traces(P � Q) = traces(P) ∪ traces(Q) – this process offers the traces of P
and those of Q .

6. traces(P 	 Q) = traces(P) ∪ traces(Q) – since this process can behave like
either P or Q , its traces are those of P and those of Q .

7. traces(S) =
⋃
{traces(P) | P ∈ S} for any non-empty set S of processes.

8. traces(P<I b>I Q) = traces(P) if b evaluates to true; and traces(Q) if b eval-
uates to false .7

7Technical note: The treatment of identifiers representing input values and process parameters,

and appearing in boolean expressions, is very lightweight here. This treatment implicitly assumes

that the only terms for which we want to compute traces(P) are those with no free identifiers –

so that for example any boolean expression must evaluate to true or false. The advantage of

this approach is that it frees us from the extra notation that would be needed to deal with the

more general case, but there is certainly no reason why we could not deal with processes with free

identifiers as ‘first class objects’ if desired.

38 Fundamental concepts

The traces of a guarded alternative can be computed by simply re-writing it
as an external choice (i.e., replacing all |’s by �’s).

Notice that the traces of internal and external choice are indistinguishable.
What this should suggest to you is that traces(P) does not give a complete de-
scription of P , since we certainly want to be able to tell P � Q and P 	 Q apart.
We will see the solution to this problem later, but its existence should not prevent
you from realizing that knowledge of its traces provides a great deal of information
about a process.

The final construct we need to deal with is recursion. Think first about
a single, non-parameterized, recursion p = Q (or equivalently μ p.Q , where Q is
any process expression possibly involving the identifier p). This means the process
which behaves like Q when the whole recursively defined object is substituted for
the process identifier p in its body: Q [μ p.Q/p] as in the law 〈μ-unwind〉. The way
traces have been calculated through the other constructs means that a term, like
Q , with a free process identifier p, represents a function F from sets of traces to
sets of traces: if p has set of traces X , then Q has traces F (X). For example, if
Q is a → p, F (X) = {〈〉} ∪ {〈a 〉̂ s | s ∈ X }. traces(μ p.Q) should be a set X that
solves the equation X = F (X).

Now it turns out that the functions F over T that can arise from CSP
process descriptions always have a least fixed point in the sense that X = F (X) and
X ⊆ Y whenever Y = F (Y) – this least fixed point always being the appropriate
value to pick for the recursion. Two separate mathematical theories can be used
to demonstrate the existence of these fixed points – but we will leave the details of
these till Chapter 8 and Appendix A.

The case of parameterized and other mutual recursions is little different,
though the greater generality makes it somewhat harder to formulate. In this case
we have a definition for a collection of processes, where the definition of each may
invoke any or all of the others. This defines what we might term a vector of process
names (where, in the case of a parameterized family, the parameter value is part of
the name, meaning that there are as many names as there are parameter values)
to be equal to a vector of process expressions. The problem of determining the
trace-set of one of these mutually defined processes then comes down to solving an
equation X = F (X) where X is a vector of trace-sets – one for each process name
as above – and F (·) is now a function which both takes and delivers a vector of
trace-sets. For example, in the mutual recursion

P = (a → P) � (b → Q)
Q = (c → Q) � (b → P)

all the vectors have length 2 – one component corresponding to each of P and Q .
Given a vector X = 〈XP ,XQ 〉, the function F produces a vector, 〈YP ,YQ〉 say,

1.3 The traces model and traces refinement 39

where

• YP = {〈〉}∪{〈a 〉̂ s | s ∈ XP}∪{〈b〉̂ s | s ∈ XQ} i.e., the result of substituting
X into the recursive definition of P , and

• YQ = {〈〉}∪{〈c〉̂ s | s ∈ XQ}∪{〈b〉̂ s | s ∈ XP} i.e., the result of substituting
X into the recursive definition of Q .

In the case of COUNT , the vectors would be infinite – with one component for each
natural number. B∞ will also produce infinite vectors, but this time there is one
component for each finite sequence of the type being transmitted.

The extraction of fixed points is mathematically the same whether the func-
tions are on single trace-sets or on vectors. The only difference is that the intended
process value in the case of a mutual recursion will be one of the components of the
fixed point vector, rather than the fixed point itself.

All of the recursions we have seen to date (and almost all recursions one
meets in practice) have a property that makes them easier to understand – and
reason about. They are guarded, meaning that each recursive call comes after (i.e.,
is prefixed by) a communication that is introduced by the recursive definition8

rather than being exposed immediately. Examples of non-guarded recursions are
μ p.p (perhaps the archetypal one), μ p.p � (a → p), and the parameterized mutual
recursion (over the natural numbers)9

P(n) = (a → P(1))<I n = 1>I P((3n + 1) div 2<I n odd>I n div 2)

The point about a guarded recursion is that the first-step behaviour does not
depend at all on a recursive call, and when a recursive call is reached, the first step
of its behaviour, in turn, can be computed without any deeper calls, and so on. In
other words, we are guaranteed to have communicated at least n events before a
recursive call is made at depth n.

1.3.2 Traces and laws

In Section 1.2 we introduced the notion of equality between processes provable
by a series of laws. One can have two quite different processes, textually, which

8This definition will be modified later to take account of language constructs we have not met

yet.
9The interesting thing about this particular example is that it is not known whether or not the

series (of parameters) generated by an arbitrary starting value will always reach 1, so in fact we

do not know whether all the components of this recursion will always be able to communicate an

a. Of course not nearly this amount of subtlety is required to give unguarded mutual recursions!

40 Fundamental concepts

are provably equal by a series of these laws. Whatever the text of a process, the
previous section gives us a recipe for computing its set of traces. We should realize
that these two theories have to be squared with each other, since it would be a
ridiculous situation if there were two processes, provably equal in the algebra, that
turned out to have different trace-sets.

Of course this is not so, and all the laws quoted are easily shown to be valid
in the sense that the traces of the processes on the left- and right-hand sides are
always the same. For example, since the traces of P � Q and P 	 Q are both
given by union, the trace-validity of their idempotence, symmetry and associative
laws follow directly from the same properties of set-theoretic union (∪). Since 	
and � are indistinguishable from each other in traces, their distributive laws over
each other are equally simple, for example

traces(P 	 (Q � R)) = traces(P) ∪ (traces(Q) ∪ traces(R))

= (traces(P) ∪ traces(Q))
∪ (traces(P) ∪ traces(R))

= traces((P 	 Q) � (P 	 R))

On the other hand, since there are distinctions we wish to make between
processes that we know are not made by traces, we would expect that there are
processes P and Q such that traces(P) = traces(Q) (which we can abbreviate
P =T Q) but such that P = Q is not provable using the laws. This is indeed so, as
our investigations of more refined models in later chapters will show.

Clearly the validity of the various laws with respect to traces means we can
prove the equality of traces(P) and traces(Q) by transforming P to Q by a series of
laws. The rather limited set of operators we have seen to date means that the range
of interesting examples of this phenomenon we can discuss yet is rather limited.
However, there is one further proof rule which greatly extends what is possible: the
principle of unique fixed points for guarded recursions.

Unique fixed points

If Z = F (Z) is the fixed-point equation generated by any guarded recursion (single,
parameterized or mutual) for trace-sets and Y is a process (or vector of processes)
whose trace-sets satisfies this equation, then X =T Y where X is the process (or
vector) defined by the recursion. In other words, the equation has precisely one
solution over10 T or the appropriate space of vectors over T . This rule is often

10IMPORTANT: though the UFP rule is stated here in terms of the traces model T , because

this is the only model we have seen so far, it applies equally to all models of CSP to be found in

this book except for some introduced in Chapter 10.

1.3 The traces model and traces refinement 41

abbreviated UFP; theoretical justification of this rule will have to wait until we
have developed the mathematics of fixed points.

For example, recalling the first two recursive processes we defined:

P1 = up → down → P1

P2 = up → down → up → down → P2

We know, by unwinding the first of these definitions twice, that

P1 = up → down → up → down → P1 (†)

Thus it satisfies the equation defining P2. Since P2 is guarded we can deduce
that P1 =T P2 – in other words, traces(P1) is a solution to an equation with only
one solution, namely traces(P2). Of course it was obvious that these two processes
are equivalent, but it is nice to be able to prove this!

In applying this rule in future we will not usually explicitly extract the trace-
sets of the process we are claiming is a fixed point. Instead, we will just apply laws
to demonstrate, as in (†) above, that the syntactic process solves the recursive
definition.

Most interesting examples of the UFP rule seem to derive from mutual recur-
sions, where we set up a vector Y that satisfies some mutual recursion X = F (X).
Indeed, the mutual recursion is usually in the form of a one-step tail recursion (pre-
cisely one event before each recursive call). The thing to concentrate on is how
these vectors Y are constructed to model the state spaces that these tail recursions
so clearly describe.

As an easy but otherwise typical example, suppose our COUNT process were
extended so that the parameter now ranges over all the integers Z rather than just
the non-negative ones:

ZCOUNTn = up → ZCOUNTn+1 � down → ZCOUNTn−1

The striking thing about this example, when you think about it, is that the value
of the parameter n actually has no effect at all on the behaviour of ZCOUNTn :
whatever its value, this process can communicate any sequence of up’s and down ’s.
This might lead us to believe it was equal to the process

AROUND = up → AROUND � down → AROUND

and indeed we can use the UFP rule to prove AROUND =T ZCOUNTn for all
n. Let A be the vector of processes with structure matching the ZCOUNT recur-
sion (i.e., it has one component for each n ∈ Z) where every component equals

42 Fundamental concepts

AROUND. This is a natural choice since we conjecture that every ZCOUNTn

equals AROUND. Applying the function FZC of the ZCOUNT recursion to this
vector we get another whose nth component is

FZC (A)n = up → An+1 � down → An−1

= up → AROUND � down → AROUND

= AROUND

= An

(where the second line follows by definition of A and the third by definition of
AROUND). Thus A is indeed a fixed point of FZC , proving our little result.

The basic principle at work here is that, in order to prove that some process P
(in this case AROUND) is equivalent to a component of the tail recursion X = F (X)
(in this case ZCOUNT) you should work out what states P goes through as it
evolves. Assuming it is possible to do so, you should then form a hypothesis about
which of these states each component of X matches up with. In our case there
is only one state of P , and all the components of ZCOUNT match up with it.
You then form the vector Y by replacing each component of X by the state of P
conjectured to be equivalent, and then try to prove that this creates a solution to
the tail recursion: if you can do this, you have completed the proof.

Both in the text and the exercises, there will be a number of examples fol-
lowing basically this argument through the rest of Part I (see, for example, pages
59, 87 and 148, and Exercises 2.3.3 and 6.3.1).

Exercise 1.3.1 Prove the validity in traces of the laws 〈prefix-dist〉 (1.9) and 〈�-step〉
(1.14).

Exercise 1.3.2 Recall the processes P1, and Pu and Pd from Section 1.1.2. Prove

that Pu =T P1 by the method above. [Hint: show that a vector consisting of P1 and one

other process is a fixed point of the 〈Pu ,Pd〉 recursion.]

Exercise 1.3.3 Use laws and the UFP rule to prove that

ChaosA � RUNA =T ChaosA

for any alphabet A.

1.3.3 Specification and refinement

Traces are not just a dry and abstract model of processes to help us decide equality,
but give a very usable language in specification. A specification is some condition

1.3 The traces model and traces refinement 43

that we wish a given process to satisfy. Since a CSP process is, by assumption,
characterized completely by its communicating behaviour, it is obviously the case
that we will be able to formulate many specifications in terms of traces(P). In
fact, most trace specifications one meets in practice are what we term behavioural
specifications: the stipulation that each s ∈ traces(P) meets some condition R(s).
This is termed a behavioural specification because what we are doing is ‘lifting’
the specification R on the individual recorded behaviours (i.e., traces) to the whole
process.

There are two different approaches to behavioural specifications and their
verification. The first (which is that adopted in Hoare’s book, where you can find
many more details than here) is to leave R explicitly as a specification of traces
(generally using the special identifier tr to range over arbitrary traces of P). Then

P satR(tr) means ∀ tr ∈ traces(P).R(tr)

This is meaningful however R is constructed, though usually it is expressed in
predicate logic using trace notation.

In order to be able to express this sort of property it is useful to extend our
range of trace notation:

• If s is a finite sequence, #s denotes the length of s (i.e., number of members).

• If s ∈ Σ∗ and A ⊆ Σ then s � A means the sequence s restricted to A: the
sequence whose members are those of s which are in A. 〈〉 � A = 〈〉 and
(s 〈̂a〉) � A = (s � A)̂ 〈a〉 if a ∈ A, s � A otherwise.

• If s ∈ Σ∗ then s ↓ c can mean two things depending on what c is. If c
is an event in Σ then it means the number of times c appears in s (i.e.,
#(s � {c})), while if c is a channel name (associated with a non-trivial data
type) it means the sequence of values (without the label c) that have been
communicated along c in s . For example

〈c.1, d .1, c.2, c.3, e.4〉 ↓ c = 〈1, 2, 3〉

The following are some examples of specifications describing various features
of some of the processes we have already met.

• The various processes in Section 1.1.2 all satisfy the condition:

tr ↓ down ≤ tr ↓ up ≤ tr ↓ down + 1 (‡)

which states that they have never communicated more down ’s than up’s, and
neither do they fall more than one behind.

44 Fundamental concepts

• The specification of COUNTn is similar but less restrictive:

tr ↓ down ≤ tr ↓ up + n

• B∞
〈〉 and COPY both satisfy the basic buffer specification:

tr ↓ right ≤ tr ↓ left

(noting that here ≤ means prefix and the things to its left and right are
sequences of values). This is in fact the strongest specification that B∞

〈〉
meets, but COPY meets further ones.

Hoare gives a set of proof rules for establishing facts of the form P satR(tr) –
essentially a re-coding into logic of the rules we have already seen for computing
traces(P). The following rules cover the operators we have seen to date (bearing in
mind the known equivalences between forms of prefixing).

STOP sat(tr = 〈〉)

∀ a ∈ A.P(a) satRa(tr)
?a : A→ P sat(tr = 〈〉 ∨ ∃ a ∈ A. ∃ tr ′. tr = 〈a 〉̂ tr ′ ∧Ra(tr ′))

P satR(tr) ∧Q satR(tr)
P � Q satR(tr)

P satR(tr) ∧Q satR(tr)
P 	 Q satR(tr)

P satR(tr) ∧ ∀ tr .R(tr)⇒ R′(tr)
P satR′(tr)

P satR(tr) ∧ P satR′(tr)
P satR(tr) ∧ R′(tr)

The most interesting is that relating to recursion, and in fact Hoare’s rule can
usefully (and validly) be generalized in two ways: his assumption that the recursion
is guarded is not necessary for this style of proof (though it is in many similar
proof rules, some of which we will see later), and we can give a version for mutual
recursion by attaching one proposed specification to each component of the vector
of processes being defined.

Proof rule for recursion Suppose X = F (X) is the fixed point equation for

(vectors of) trace-sets resulting from some recursive definition, and that X is the

(least) fixed point which it defines. Let Λ be the indexing set of the vectors, so that

X = 〈Xλ | λ ∈ Λ〉. Suppose that for each λ there is a specification Rλ such that

1.3 The traces model and traces refinement 45

• STOP satRλ(tr) for all λ ∈ Λ, and

• ∀λ ∈ Λ.Yλ satRλ(tr)⇒ ∀λ ∈ Λ.F (Y)λ satRλ(tr)

then Xλ satRλ(tr) for all λ ∈ Λ.

Paraphrasing this: we attach a specification Rλ to each component of the
mutual recursion, and providing all of these are satisfied by STOP and, on the as-
sumption that they all hold of recursive calls they hold of the body of the recursion,
then we can infer they hold of the actual process(es) defined by the recursion. This
rule is formally justified in Section 9.2.

The above can be used to prove that the COUNT processes meet the vector
of specifications quoted for them above and, provided one can come up with appro-
priate specifications for the B∞

s processes for s = 〈〉, one can prove that B∞
〈〉 meets

its specification.

The most curious feature of this is the role played by STOP . It does not
seem a very useful process and yet its satisfying R is a precondition to the above rule
(and Hoare’s). At first sight it seems unlikely that many useful specifications will
be met by STOP , but in fact any behavioural trace specification which is satisfied
by any process at all is satisfied by STOP . For traces(STOP) = {〈〉} ⊆ traces(P)
for any P , and so if all the traces of P satisfy R, so do all those of STOP .

This shows precisely the limitation of trace specifications: while they can say
that a process P cannot do anything stupid, they cannot force it to do anything at
all. For this reason they are often termed safety or partial correctness conditions,
while liveness or total correctness conditions are ones that additionally force a pro-
cess to be able to do things. In later chapters we will develop models that allow us
to build liveness specifications.

In order to satisfy ‘satR(tr)’ a process’s traces must be a subset of the traces
which R allows. In fact, most of the example specifications given above have the
property that the target process has the largest possible set of traces of any process
satisfying it. This can be expressed in several different, but equivalent, ways (where
P is the process and R the trace condition):

• P =T 	{Q | Q satR(tr)} or, in other words, P is trace-equivalent to the
nondeterministic choice over all processes meeting the specification.

• Q satR(tr)⇒ traces(Q) ⊆ traces(P)

• traces(P) = {s | ∀ t ≤ s .R(t)} the largest prefix-closed set of traces satisfying
R. (It is worth noting that the set of traces satisfying each of the trace
specifications on page 43 above is not prefix closed. For example, the trace
〈down , up〉 satisfies the specification (‡) there, but since the prefix 〈down〉

46 Fundamental concepts

does not, the longer trace is not possible for a process all of whose traces
satisfy (‡).)

Remember we defined that Q refines P , written P
 Q if P = Q 	 P .
Interpreted over the traces model, this leads to the slightly weaker concept of
traces refinement

P
T Q ≡ P =T Q 	 P ≡ traces(Q) ⊆ traces(P)

The above properties demonstrate that, for any satisfiable behavioural trace speci-
fication R there is always a process PR (given by the formula in the first, and whose
traces are the expression in the third) that is the most nondeterministic satisfying
R and such that

Q satR(tr)⇔ PR
T Q

Let us say that PR is the characteristic process of R. In other words, satisfaction
(sat) can be replaced by deciding refinement against a suitably chosen process.

For example, B∞
〈〉 is the (characteristic process of the) trace specification of

a buffer, and a process will trace-refine it if, and only if, it meets the trace-based
buffer specification. Thus COPY �T B∞

〈〉 , and all but the last of your answers to
Exercise 1.1.8 should have the same property. (Here, we are taking the liberty of
writing P �T Q as the equivalent of Q
T P . We will do this for all order relations
in future without comment, as the need arises.)

Which approach one prefers – abstract or process-based specification – will
depend on both personal taste and, to some extent, the example being considered.
Perhaps the major hurdle to overcome in adopting the latter is grasping the idea
that a CSP process can be a specification as well as a model of an implementation.
Of course, ideally, one should cultivate the ability to move backwards and forwards
between the two approaches.

There are some major advantages in identifying each specification with the
most nondeterministic process satisfying it.

• As we will see, this is the form in which the proof tool FDR codes specifica-
tions and allows them to be mechanically verified or refuted.

• Refinement has many properties that can be exploited, for example it is
transitive:

P
 Q ∧Q
 T ⇒ P
 T

1.3 The traces model and traces refinement 47

and monotone: if C [·] is any process context, namely a process definition
with a slot to put a process in, then

P
 Q ⇒ C [P]
 C [Q]

If C [Q] is a process definition with component Q , with an overall target
specification S , we might be able to factor the proof of S
 C [Q] into two
parts. First, find a specification P such that S
 C [P]. Second, prove
P
 Q , which implies thanks to monotonicity that C [P]
 C [Q]. Transitiv-
ity then gives S
 C [Q]. This software engineering technique is known as
compositional development.
Note how the identification of processes and specifications allowed us to con-
sider the object C [P], which we might read as ‘C [Q], on the assumption that
the process Q satisfies the specification P ’.

• It allows one to move gradually from specification to implementation, using
the transitivity property quoted above, creating a series of processes

Spec
 P1
 . . .
 Pn
 Impl

where the first is the specification, and each is created by refining the previous
one till an acceptable implementation is reached. This is known as stepwise
refinement.

It is worth noting that, since the refinement P
 Q is expressible as the
equality P 	 Q = P , it makes sense to try to prove it algebraically. Recall Exercise
1.3.3.

Of course, the limitations of trace specification discussed earlier still apply
here. It is worth noting that STOP �T P and RUN
T P for all processes P .

From here on this text will tend to emphasize the refinement-based approach
to formulating and proving specifications. And while we will still sometimes for-
mulate specifications abstractly in terms of traces and other behaviours we will see
later, we will usually look to refinement-based (often automated) proofs based on
their characteristic processes. Therefore we will not give any of the sat rules for the
further operators and models we introduce later in this book; the interested reader
can, of course, find many of them in Hoare’s text.

1.3.4 Afters and initials

If P is any process, initials(P) (abbreviated P0 in some publications on CSP) is
the set of all its initial events

initials(P) = {a | 〈a〉 ∈ traces(P)}

48 Fundamental concepts

This set is often used in specifications and other definitions.

For example, initials(STOP) = {} and initials(?x : A→ P(x)) = A.

If s ∈ traces(P) then P/s (pronounced ‘P after s ’) represents the behaviour
of P after the trace s is complete. Over the traces model, P/s can be computed

traces(P/s) = {t | s t̂ ∈ traces(P)}

This operator should not be thought of as an ordinary part of the CSP
language, rather as a notation for discussing behaviour of processes in fairly abstract
contexts, to represent the behaviour of P on the assumption that s has occurred.
The best reason for not including it as an operator you could use in programs is
that it is not implementable in a conventional sense: the process

(STOP 	 a → a → STOP)/〈a〉

is equivalent to a → STOP , but no reasonable implementation acting on the non-
deterministic choice here can force it to do anything.

Over the traces model it is true that

P =T ?x : initials(P) → P/〈x 〉

but we will find that this is not true over more discriminating models.

Exercise 1.3.4 (a) Let N ≥ 0. Give a trace specification for a process with events

a, b and c which states that the difference between the number of a’s and the total number

of b’s and c’s is at most N .

(b) Now find a CSP definition of a process DN for which this is the strongest spec-

ification. [Hint: give a parameterized recursion whose parameter is the present difference.]

D0 is equivalent to a well-known simple process: what is it and why?

(c) What traces refinements hold between the DN?

Exercise 1.3.5 Give the strongest trace specification satisfied by COPY = left?x →
right !x → COPY . Use the proof rules for sat given above to prove that COPY meets it.

Exercise 1.3.6 See Exercise 1.1.7. Give a trace specification that a machine with

events {in£1, out5p, out10p, out20p} has never given out more money than it has received.

1.4 Tools

There are two types of tool available at the time of writing which will help the
reader learn the ideas of this chapter: animators and refinement checkers.

1.4 Tools 49

With an animator such as ProBE you can write an arbitrary process de-
scription and interact with it much as described in the text. In other words, you can
play at being ‘the environment’. In fact, an animator may give you various options
about how much control you want over the process (i.e., how much you want to be
automatic) and, in particular, will give you the option of controlling the process
more precisely than the real environment could. For example, if you like, it will let
you make all its internal decisions: an internal choice P 	 Q will be implemented
as a process which can take an invisible τ (tau) action to each of P and Q . If
you decide to take control over the τ actions, then you have the power to resolve
the nondeterministic choices and can thus explore whichever avenue you desire. τ

actions will be discussed properly in Chapter 3. In essence, an animator allows you
to explore the transition picture of your process, like the simple examples shown in
Figures 1.1 and 1.2.

Both ProBE and FDR work by loading in scripts : files of definitions (of
processes and functions, etc., used within the process code). You then select pro-
cesses defined within the current script to animate or prove things about. A file
containing all the important examples in this chapter can be found on the web site
associated with this book (see the Preface). You are, naturally, encouraged to try
out your solutions to exercises on the tools. They must, of course, be written in
the machine-readable (ASCII) version of CSP that these tools use. Full details of
this version can be found in Appendix B. In this version, events and channels are
written very much as in this chapter, but must all be declared.

Of the constructs defined in this chapter, two are not supported in the
machine-readable version because their effects can easily be achieved in other ways.
These are guarded alternative (a → P | . . . | z → Q) and the form of prefix choice
without a channel name preceding the ‘?’: one can write c?x, c.n?x:T, etc., but
there is no direct equivalent of ?x : A → P . Both of these can be written in terms
of the external choice operator (written [] rather than �): the case of guarded
choice has already been discussed in the text, and the prefix choice above can be
written [] a:A @ a -> P which is the literal translation of �a∈A a → P . |~| (the
machine-readable version of) and several other operators we will meet later also
have indexed forms like this.

The machine-readable version of conditional is if..then..else.. rather
than P<I b>I Q . Process parameters are written in ‘argument’ style P(a,b,...,z).
Look at the demonstration files for examples of all these things and more.

The alphabet Σ of all events is written Events in machine-readable CSP.

You will quickly appreciate the difference, once you have used them, between
animators and refinement checkers like FDR. FDR does not let you interact with
a process, rather it allows you to check assertions about them and will explore
all of the states of a process necessary to verify these. It only shows you specific

50 Fundamental concepts

behaviours when you debug failures of refinement.

The checks for FDR to perform can be pre-loaded into FDR by including
lines such as

assert Spec [T= Imp

in the scripts you write for it. (This represents the check of process Imp trace-
refining process Spec.) Note that it gives you a choice of modes and models for
checks; the only thing we are in a position to understand yet is trace checks in the
refinement mode.

Finite-state machines

Thanks to the existence of infinite types it is all too easy to write process descrip-
tions, such as COUNT 0 and B∞

〈〉 which have infinitely many states. Since FDR
works by expanding the state spaces of processes it will not terminate if asked to
do much with one of these. There is nothing to stop you applying an animator to
an infinite-state process, though obviously you will never be able to explore all of
one of these!

One can usually get round this problem by restricting the range of the offend-
ing parameter(s) to that which will be encountered in the example being considered.
Examples of this can be found in this chapter’s demonstration file, and we have al-
ready seen one: the process Counter(n,m) restricts both its parameters to the
range {0, 1, . . . , 7} and thus has 64 states.

This restriction is most often annoying at the specification end of refinement,
since it is sometimes the case that we would (as with buffers) like to have an
infinite-state specification, since this is what best represents our requirements. All
one can do at the time of writing is to choose a finite-state specification which
we know refines the ‘real’ one (for example, the specification that a process is a
buffer with capacity no greater than 5) and prove it. It is likely that future releases
of the tool will be able to handle some infinite-state specifications (though not
implementations), but you should always expect this to be less efficient.

You will, after using the tool, get a feel for the sizes of process it can handle
comfortably. As a guide, with the syntax you have seen so far, the current version
of FDR will deal comfortably with a few hundred states to a few thousand states.
(This number will increase vastly as we meet the syntax of parallelism.)

Chapter 2

Parallel operators

All the processes defined so far have, at least in their obvious executions, only one
thread of action. The whole idea of concurrency is to be able to reason about systems
where there are a number of processes with independent control, interacting where
necessary. In this chapter we see how to add operators which model this within our
framework.

2.1 Synchronous parallel

We have already set down the principle that processes interact by agreeing, or
handshaking, on communications. The simplest form of the CSP parallel operator
insists that processes agree on all actions that occur. It is written P ‖ Q . For
example, if a ∈ Σ, then

(a → REPEAT) ‖ REPEAT

will have the same behaviour (except, perhaps, for precise timing details that we
choose to ignore) as μ p.a → p. We can see this by following through how this
combination works. Recall that

REPEAT = ?x : Σ → x → REPEAT

Since both sides have to agree on all events, it is clear that the only possible first
event is a, and this indeed is a possible event for the right-hand process. The copy
of REPEAT on the right-hand side then forces the second event to be an a, which
is accepted by REPEAT on the left-hand side, forcing the third event to be a also,
and so on for ever.

52 Parallel operators

Perhaps the clearest description of this parallel operator is contained in the
following law:

?x : A→ P ‖?x : B → Q = ?x : A ∩ B → (P ‖ Q) 〈‖-step〉 (2.1)

‖ is also symmetric, associative and distributive. We do not quote these laws ex-
plicitly here since they will be subsumed later into laws for generalizations of ‖.

Turning parallel processes into sequential ones

It is important to realize that CSP makes no fundamental distinction between ‘par-
allel’ and ‘sequential’ processes. There are just processes, and you can use any
operator on any process. Indeed, any parallel CSP process is equivalent to sequen-
tial processes with the same pattern of communications.

The law 〈‖-step〉 (together with the other properties listed above, and the
laws quoted in the previous chapter) can be used for this transformation. For
example, if

P = (a → a → STOP) � (b → STOP)
Q = (a → STOP) � (c → a → STOP)

these laws prove P ‖ Q = a → STOP .

When the component processes are recursively defined, the algebraic laws
alone will probably not be enough. In this case we use a combination of laws and
the UFP rule: the parallel combination is expanded until we have a guarded expres-
sion for it and every other parallel combination discovered during the exploration.
Consider, for example, the combination

(a → REPEAT) ‖ REPEAT

discussed earlier:

= (a → REPEAT) ‖ (?x : Σ → x → REPEAT)
= a → (REPEAT ‖ (a → REPEAT))

The underlining here indicates the parallel expression we have uncovered behind
the guard a. Now we could use the symmetry of ‖ to observe that this second
combination equals the original one, so that

(a → REPEAT) ‖ REPEAT = a → (a → REPEAT) ‖ REPEAT

showing that the process satisfies the guarded recursion P = a → P . Alternatively
(as would have been the only option if this example were not so symmetric) we

2.1 Synchronous parallel 53

could expand this second parallel combination in the same way that we did the
first, and would find

REPEAT ‖ (a → REPEAT) = a → (a → REPEAT) ‖ REPEAT

At this point we notice that the parallel combination reached here is one we have
seen before, so there is no need to expand it again (in general you should proceed by
expanding each combination you find until there is none you have not seen before).
We have thus expanded two processes and shown that they satisfy the guarded
mutual recursion

R = a → Q
Q = a → R

Depending on which route we have followed, this has proved via the UFP
rule that the parallel combination is trace equivalent to one of the processes P
and R above. Of course, the fact that P , Q and R are equivalent is itself an easy
consequence of the UFP rule.

When the processes in parallel depend on a parameter introduced by recur-
sion or input, it is likely that the family of processes uncovered by the exploration
will be another parameterized one. Some examples can be found in the exercises
below and in later sections.

Example 2.1.1 (customers and atm’s) A customer of one of our cash-point

machines might be described by the following expression.

CUST1 = in .card → pin?p : S → req.50→
dispense?x : {y ∈WA | y ≥ 50} → out .card → CUST1

He only has one card (card), after which he remembers his PIN number belongs to

the set S ⊆ PIN and so will try these numbers. He always expects to withdraw

£50, and get his card back. Notice that he is quite happy to accept more than £50

from the machine. Provided his memory is accurate and fpin (card) ∈ S , the parallel

combination ATM 1 ‖ CUST1 is equivalent to

μ q. in.card → pin .fpin(card)→ req.50 →
dispense.50→ out .card → q

Since we are insisting that both parties must agree on all communications

taking place in P ‖ Q , there is the unavoidable possibility that they might be unable

to agree (even when each process has some events it could have performed if it were

not forced to agree). This is illustrated by what happens when fpin(card) ∈ S , when

54 Parallel operators

the above combination becomes in.card → STOP . This is known as deadlock. We

discussed deadlock in general terms earlier, but this is the first proper example

we have come across of a deadlocking CSP network. Note that STOP behaves

just like a deadlocked process – one of its main roles in CSP is to provide a clean

representation of deadlock, just like 	 provides one of nondeterminism.

If we force CUST1 to use ATM 2 rather than ATM 1, then it will deadlock

as soon as the ATM decides to refuse a request – for this customer will not take no

for an answer. It is important here that the decision of whether to accept or refuse

a request is made by 	 (nondeterminism) rather than � (external choice), for the

latter would not have given rise to the deadlock. We can modify the customer to

accept refusals more gracefully.

CUST2 = in .card → pin?n : S → req .50→
((dispense?x : {y ∈ WA | y ≥ 50} → out .card → CUST2)

� (refuse → out .card → CUST2))

But this combination still deadlocks if the customer does not get his card back.

(Presumably the machine designer wants the customer to be deadlocked in this

circumstance!)

μ q. (in .card → pin .fpin(card)→ req.50→
((dispense .50→ out .card → q)
	 (refuse → (out .card → q) 	 STOP)))

(End of example)

The traces of P ‖ Q are easy to compute: since this process can perform an
action just when its two arguments can, it follows that

traces(P ‖ Q) = (traces(P)) ∩ (traces(Q))

It is worth noting that, even though this implies traces(P ‖ P) = traces(P),
the existence of nondeterminism (which we know is not described fully by traces)
makes it possible that P ‖ P will not behave like P : for both sides may make
different nondeterministic choices and so fail to agree on any communication. This
means ‖ is not idempotent. For example, if P = (a → STOP) 	 (b → STOP),
which cannot deadlock on its first step, then P ‖ P = P 	 STOP , which can. The
reasons for this are closely connected with our discussion of distributivity in Section
1.2: P ‖ P clearly requires two copies of P and so can compare them.

Exercise 2.1.1 How do COUNT0 ‖ COUNT3, COUNT 0 ‖ Counter (0, 0) and

COUNT0 ‖ REPEAT behave, where they are all as described in the previous chapter?

2.2 Alphabetized parallel 55

For each either find an existing process that behaves like the appropriate combination, or

define a new (sequential) process that does.

Prove trace equivalence in at least one case using the UFP rule.

Exercise 2.1.2 Construct a customer for ATM 2 who has two cards, and whose

reaction to refuse of the first card is to attempt to take money out with the second. He

should do this whether or not the machine is prepared to give him the first card back. Hint:

you might find it easier to solve the problem of how the customer deals with an arbitrary

list of cards (as a parameter to the process).

2.2 Alphabetized parallel

The more processes we combine using ‖, the more have to agree on every event.
This is not what we will usually want (though it is a theme we will expand on
in Section 2.5), and so we require a more general version of the parallel operator.
What we need to reflect is the truth that, when two processes P and Q are placed
in parallel, some of the communications of P are with Q , and some are not.

If X and Y are subsets of Σ, P X ‖Y Q is the combination where P is
allowed to communicate in the set X , which we will call its alphabet, Q is allowed
to communicate in its alphabet Y , and they must agree on events in the intersection
X ∩ Y . Thus P Σ‖Σ Q = P ‖ Q . So, for example,

(a → b → b → STOP) {a,b}‖{b,c} (b → c → b → STOP)

behaves like

a → b → c → b → STOP

since initially the only possible event is a (as the left-hand side blocks b); then both
sides agree on b; then the right-hand side blocks b so only c is possible and finally
they agree on b again. In most cases, as in this one, the alphabets of individual pro-
cesses composed in parallel will be the sets of events which they can communicate.
But they have to be given explicitly for a number of subtle reasons – for example,
we often give processes strictly larger alphabets than the sets of events they actually
use (frequently the process is then STOP). You should note that the same process
can be used in different parallel compositions with different alphabets.1

A pantomime horse has two actors in it: one playing the front and one the
back. You can think of it as a parallel composition of two processes showing that

1In allowing this we are giving a different presentation to that in Hoare’s book, where a process

has an intrinsic alphabet αP which makes the presentation of this particular parallel operator

easier. See Section 2.7 for more details of this difference.

56 Parallel operators

Figure 2.1: A parallel process.

the two halves have to co-operate on moving, but each has control of some other
activities.

Front F‖B Back

where F = {forward , backward ,nod ,neigh}
B = {forward , backward ,wag , kick}

If, in fact, Front will only nod the horse’s head until it has moved forwards, and
Back will only wag its tail until it has moved backwards:

Front = forward → Front ′

� nod → Front

Back = backward → Back ′

� wag → Back

then the composition will never move whatever the processes Front ′ and Back ′ are
(since they are never reached), but it will simply nod and wag for ever. It will be
equivalent to RUN {nod,wag}.

When P can perform any of the events A (being equivalent to a process of
the form ?x : A→ P ′) and Q can perform the events B (respectively ?x : B → Q ′),

2.2 Alphabetized parallel 57

then P X ‖Y Q can perform any of

C = (A ∩ (X �Y)) ∪ (B ∩ (Y �X)) ∪ (A ∩ B ∩ X ∩ Y)

The first component of this union are the events P can perform on its own (because
they are in X and not Y); similarly, the second are the events Q can do by itself.
The final component are the events which they can synchronize on: the ones that
they both can do and are in both their alphabets. The law expressing this is the
following

P X ‖Y Q = ?x : C → (P ′<I x ∈ X>I P

X ‖Y
Q ′<I x ∈ Y>I Q)

〈X ‖Y -step〉 (2.2)

where C is as above. X ‖Y is distributive, like most operators, over 	 and<I b>I . The
second of these can be used to give an alternative version of the above law:

P X ‖Y Q = ?x : C → ((P ′
X ‖Y Q ′)<I x ∈ X ∩ Y>I

(P ′
X ‖Y Q<I x ∈ X>I P X ‖Y Q ′))

All we have done here is to distribute the two conditionals in 〈X ‖Y -step〉 outside

X ‖Y and to discard the one of four cases (x ∈ X ∪ Y) that cannot arise.

The rest of its basic laws are given below. It has symmetry and associativity
laws that are slightly more complex than usual because of the alphabets.

P X ‖Y (Q 	 R) = (P X ‖Y Q) 	 (P X ‖Y R) 〈X ‖Y -dist〉 (2.3)

P X ‖Y Q = Q Y ‖X P 〈X ‖Y -sym〉 (2.4)

(P X ‖Y Q) X∪Y ‖Z R = P X ‖Y∪Z (Q Y ‖Z R) 〈X ‖Y -assoc〉 (2.5)

As the last of these begins to show, composing a large network using this
binary operator gets rather clumsy because of the bookkeeping required on the
alphabets. We therefore include a better, indexed notation for n-way parallel com-
position:

‖n

i=1
(Pi ,Xi) = P1 X1

‖X2∪...∪Xn
(. . . (Pn−1 Xn−1

‖Xn
Pn) . . .)

So, for example, if

COPY ′(c, d) = c?x : T → d .x → COPY ′(c, d)

58 Parallel operators

c c c c cc0 1 2 3 n-1 n

Figure 2.2: A simple chain connected in parallel.

and Xr = cr .T ∪ cr+1.T (with c0, c1, . . . , cn all being distinct) then

‖n−1

r=0
(COPY ′(cr , cr+1),Xr)

represents a chain of n one-place buffer processes. COPY ′(c0, c1) can input a
value on channel c0 without requiring the co-operation of any other process in the
network. This value is then communicated across the channels c1, . . . , cn−1 in turn
(each transfer requiring the agreement of the two processes involved) until it appears
at the far end and COPY ′(cn−1, cn) is able to output it without needing any other
process to agree. The network is shown in Figure 2.2. It is natural to think of the
channels c0 and cn as external, because they are only in the alphabet of one process
each, and the rest are internal.

The reason it is natural to think of the above network as a chain is because the
alphabets Xr = cr .T ∪ cr+1.T of the processes only have non-empty intersection –
corresponding to the possibility of communication between them – for consecutively
numbered cells. By appropriate choices of alphabets it is possible to construct
networks using ‖ which have any chosen finite graph structure. The graph with
one node per process and an edge between processes with non-empty intersection
of alphabets is termed the communication graph. One might be tempted to put
arrows on this graph to correspond to the direction of the channels, but this would
be a mistake: you should remember that communication in CSP is symmetric and
that channels are just a gloss on this.

Just as with the synchronous parallel operator, any system of sequential pro-
cesses put in parallel with X ‖Y can be expanded into a (usually recursive) sequential
one using the laws (predominantly 〈X ‖Y -step〉) and the UFP rule. Consider, for
example, the combination

COPY ′(a, b) {|a,b|}‖{|b,c|} COPY ′(b, c)

The initial events of the two processes are respectively {| a |} and {| b |} (since
they are both ready to input). The initial events of the combination are therefore
(showing the full calculation!)

({| a |} ∩ {| b |} ∩ {| a, b |} ∩ {| b, c |})
∪ ({| a |} ∩ ({| a, b |} � {| b, c |}))
∪ ({| b |} ∩ ({| b, c |} � {| a, b |}))

2.2 Alphabetized parallel 59

which reduces to {} ∪ {| a |} ∪ {} = {| a |} (i.e., there is no shared event possible
initially, no event possible for the right-hand process, but the left-hand one can
input). This is, of course, exactly what one would have expected.

Thus the original process (which we will name CC0) equals (by 〈X ‖Y -step〉)

a?x → ((b!x → COPY ′(a, b)) {|a,b|}‖{|b,c|} COPY ′(b, c))

Call the parallel combination here CC1(x) (the x is needed because it depends on
the input value). Now both processes can only perform shared (b) events, and agree
on one, so by another use of 〈X ‖Y -step〉 turns CC1(x) into

b!x → (COPY ′(a, b) {|a,b|}‖{|b,c|} c!x → COPY ′(b, c))

If we similarly call the parallel combination here CC2(x), we find that neither
process can perform any b action, but each can perform some of its own actions
independently. It equals

a?y → (b!y → COPY ′(a, b) {|a,b|}‖{|b,c|} c!x → COPY ′(b, c))
� c!x → (COPY ′(a, b) {|a,b|}‖{|b,c|} COPY ′(b, c))

which, naming the first parallel combination CC3(y, x), equals

a?y → CC3(y, x)
� c!x → CC0

In CC3(y, x), the left-hand process can only perform the shared event b!y, while
the right-hand one can only perform its own action c!x . It follows that this process
equals

c!x → ((b!y → COPY ′(a, b)) {|a,b|}‖{|b,c|} COPY ′(b, c))

which is c!x → CC1(y). Since there are no more parallel combinations to ex-
pand, the state exploration is complete and we have shown that the processes CC0,
CC1(x), CC2(x) and CC3(y, x) satisfy a guarded mutual recursion:

CC ′
0 = a?x → CC ′

1(x)
CC ′

1(x) = b!x → CC ′
2(x)

CC ′
2(x) = (c!x → CC ′

0) � (a?y → CC ′
3(y, x))

CC ′
3(y, x) = c!x → CC ′

1(y)

Thus these two systems are trace-equivalent by the UFP rule. A picture of this
system of states is in Figure 2.3 (the picture over-simplifies the values input and
output in that it does not allow you to reconstruct the relationship between the

60 Parallel operators

a?x

b.x

a?x

c.x

c.x

Figure 2.3: The states of two one-place buffers in parallel.

values going in and those going out). Clearly this simple example is already getting
a bit tedious to expand. Much larger examples are impractical by hand – fortu-
nately, however, tools like FDR are much better able to deal with the expansion
and bookkeeping than we are, and in fact a large part of what they do is precisely
this.

The traces of P X ‖Y Q are just those which combine a trace of P and a
trace of Q so that all communications in X ∩ Y are shared.

traces(P X ‖Y Q) = {s ∈ (X ∪Y)∗ | s � X ∈ traces(P)
∧ s � Y ∈ traces(Q)}

Example 2.2.1 (five dining philosophers) This is perhaps the best known of

all examples in this field: it has already been briefly described in the introduction.

As shown in Figure 2.4, five philosophers share a dining table at which they have

allotted seats. In order to eat (in the figure, from a tangled bowl of spaghetti in

the middle of the table!), a philosopher must pick up the forks on either side of him

or her but, as you see, there are only five forks. A philosopher who cannot pick up

one or other fork has to wait. We can model this story in various ways in CSP by

choosing different episodes of philosophers’ lives as events, but the essential things

from the point of view of interaction are when they pick up or put down their forks.

2.2 Alphabetized parallel 61

Figure 2.4: The five dining philosophers.

62 Parallel operators

In order to make sure no fork can be held by two philosophers at once, we also

require a process to represent each fork.

We will therefore describe two classes of process: PHILi and FORK i , in each

case for i ∈ {0, 1, 2, 3, 4}. The events of FORK i are

• picksup.i .i and picksup.i�1.i where � represents subtraction modulo 5 (with

⊕ being the corresponding addition operator). These respectively represent

FORK i being picked up by PHILi and PHILi	1.

• putsdown .i .i and putsdown.i�1.i , representing the fork being put down again.

FORK i = (picksup.i .i → putsdown .i .i → FORK i)
� (picksup.i�1.i → putsdown .i�1.i → FORK i)

The philosophers have these same events, plus some individual ones. What

turns out to be crucial in describing the philosophers is the order in which they pick

up their forks. There are various options: either left-hand one first, right-hand one

first, or some form of choice between the two. And of course different philosophers

might have different preferences. For simplicity, the following definition asserts that

each philosopher picks up the left fork first and puts it down last.

PHILi = thinks .i → sits.i → picksup.i .i →
picksup.i .i⊕1 → eats .i → putsdown.i .i⊕1 →
putsdown .i .i → getsup.i → PHILi

The complete system is then formed by putting all of these processes in

parallel, each having as its alphabet the set of events it can use. If AF i and

AP i are these sets for FORK i and PHILi respectively, the network is formed by

composing together the ten pairs

{(FORK i ,AF i), (PHILi ,AP i) | i ∈ {0, 1, 2, 3, 4}}

in parallel. The communication graph of the resultant network, with an edge be-

tween two processes if their alphabets have non-empty intersection, is shown in

Figure 2.5.

So how does this system behave? We have already noted that one philosopher

might have to wait for a neighbour to put down a fork. The greatest danger,

however, is that they might all get hungry at once and all manage to pick up their

left-hand fork (as is about to happen in Figure 2.4). For then none can make any

progress and the system is deadlocked. The philosophers starve to death. We will

return to this example in Chapter 13 when we study the subject of deadlock in

2.2 Alphabetized parallel 63

PHIL

PHIL

PHIL PHIL

PHIL

FORK

FORK

FORK

FORK FORK

0

0

4

4

3

3

2

2

1

1

Figure 2.5: The communication network of the dining philosophers.

more detail. Amongst other things, we will examine the impact of different choices

of fork-picking-up. (End of example)

As well as demonstrating the use of the parallel operator, this example also

illustrates uses of events we have not seen before. Like many networks we will see,

this one has numbers of processes which behave similarly except for the precise

events they use. Of course the easy way to define these is to use parameterization:

PHILi rather than PHIL0, . . . ,PHIL4 separately. Notice, however, that unlike pre-

vious parameterized recursions, these processes do not depend on each other: PHIL2

only makes recursive calls to PHIL2, for example. To create the arrays of events

that are needed to tie in with these arrays of processes, we use the channel notation

to create arrays of events as anticipated on page 27. Sometimes, as with the picksup
and putsdown events, we need a two-dimensional array (or even more).

One can mix the array and data-passing uses of channels. The best way of
implementing the chain of COPY ′ processes is to create an array of channels c
whose communications look like c.i !x or c.i?x . COPY ′(c.i , c.i + 1) would then be
equivalent to the process

COPY ′′(i) = c.i?x → c.i+1!x → COPY ′′(i)

Example 2.2.2 (cash-point machine with extended interface) The model

of ATM and customer given above using synchronous parallel only gives their com-

64 Parallel operators

mon interface. The new operator allows us to bring in the actions which they

perform by themselves or at other interfaces. This has already been seen in the

pantomime horse and dining philosopher examples.

We can, for example, bring in a component of an ATM’s state to represent

the amount of money it contains: it can always (except when full) be refilled when

not in use by a customer, but rejects requests for more money than it has in; the

customer spends nondeterministic amounts of money and goes back for more when

he has none left. The refill and spend events only belong to one of the two alphabets.

If the capacity of the machine is £N , and the customer makes withdrawals

of £M (where M < N), we need to define processes ATMref n and CUSTspendm

for each integer 0 ≤ n ≤ N and 0 ≤ m ≤ M . They are

ATMref n = ((refill → ATMref N)<I n < N>I STOP)
� (in?c : CARD → pin .fpin (c) → req?w : WA→

((dispense .w → out .c → ATMref n−w)
<I w ≤ n>I
(refuse → out .c → ATMref n)))

CUSTspend0 = in.card → pin?p : S → req.M →
((dispense?x : {y ∈ WA | y ≥ M } →

out .card → CUSTspendx)
� (refuse → out .card → CUSTspend0))

CUSTspendm = 	{spend .r → CUSTspendm−r | 1 ≤ r ≤ m}
(m > 0)

The alphabets of ATMref n and CUSTspendm are respectively X and Y ,

where

Z = in .CARD ∪ out .CARD ∪ pin .PIN ∪ req.WA
∪ dispense.WA ∪ {refuse}

X = Z ∪ {refill}
Y = Z ∪ spend .N

(Z represents the common communications of the two processes; the others are their

‘external’ actions.) The combination ATMref n X ‖Y CUSTspendm then represents

their interaction given initial capital £n and £m respectively. Note again that the

customer has no control over refilling and the machine has none over spending.

(End of example)

2.2 Alphabetized parallel 65

Exercise 2.2.1 Find pairs of actors (Front i ,Back i) (i = 1, 2, 3) for the pantomime

horse so that the overall behaviour is respectively (using the same alphabets for the parallel

composition as on page 56)

PH1 = neigh → forward → kick → backward → PH1

PH2 = forward → neigh → PH2

� backward → kick → PH2

PH3 = neigh → wag → forward → PH3

� wag → neigh → forward → PH3

Find a process with alphabet F ∪B which cannot be constructed in this way, and explain

why it is impossible.

Exercise 2.2.2 Let X = {a, b, c, d} and Y = {c, d}, and let

P = a → c → P

� b → d → P

Q = c → d → Q

What are the traces of P X ‖Y Q? Which of these traces are terminal, in the sense that

they are not prefixes of any other trace? What can you say about the behaviour of a

process after it has performed such a trace?

Exercise 2.2.3 Use the methods illustrated in this section to expand P X ‖Y Q to a

sequential process (where P and Q are as in the previous question). You should find some

states in this expansion equivalent to STOP – corresponding to deadlock. Compare these

states to the terminal traces.

Find a process R with alphabet Z = {a, b} such that R Z‖X (P X ‖Y Q) is

deadlock-free.

Exercise 2.2.4 Extend the definition of ATMref n by adding an additional pair of

channels with which it communicates with a central computer. After a customer has

requested a withdrawal the request is relayed by the ATM to the computer, which sends

one of three responses: OK , OD or retain . These indicate, respectively:

• Issue the money, if there is enough in the ATM.

• The request is too large for the balance, refuse it but give the card back.

• Refuse the request and retain the card.

Your ATM should now be a process defined without nondeterministic choice which, from

the customer’s perspective (since he or she cannot see these other interactions), looks just

like ATM 2.

Exercise 2.2.5 Formulate trace specifications of the following properties in the alpha-

bets of the examples to which they refer.

66 Parallel operators

(a) The numbers of times the pantomime horse has wagged its tail and neighed always

differ (in absolute value) by at most one.

(b) The number of cards handed back by the ATM is never greater than the number

inserted into it.

(c) Whenever PHILi eats, PHILi⊕1 is not holding any fork.

Find the characteristic process (over the respective alphabet) for each. How do you deal

with the events each system can do which are irrelevant to the specification? Which of

these is finite state? If any is infinite state can you suggest a stronger, finite-state one

which the appropriate network will still satisfy and which is as close in meaning to the

original as possible? Prove (either manually or using FDR or a similar tool) that each

holds of one or more of the systems we have already seen (in the first case in Exercise 2.2.1

(c)).

2.3 Interleaving

The parallel operators seen so far (‖ and X ‖Y) have the property that all partners
allowed to make a particular communication must synchronize on it for the event to
occur. The opposite is true of parallel composition by interleaving, written P ||| Q .
Here, the processes run completely independently of each other. Any event which
the combination communicates arose in precisely one of P and Q . If they could
both have communicated the same event then the choice of which one executed it
is nondeterministic, but only one did. The law governing this is the following: if
P = ?x : A→ P ′ and Q = ?x : B → Q ′ then

P ||| Q = ?x : A ∪ B → (P ′ ||| Q) 	 (P ||| Q ′)
<I x ∈ A ∩ B>I
(P ′ ||| Q)<I x ∈ A>I (P ||| Q ′)

〈|||-step〉 (2.6)

As one would expect, ||| is symmetric, associative and distributive.

P ||| Q = Q ||| P 〈|||-sym〉 (2.7)

(P ||| Q) ||| R = P ||| (Q ||| R) 〈|||-assoc〉 (2.8)

P ||| (Q 	 R) = (P ||| Q) 	 (P ||| R) 〈|||-dist〉 (2.9)

The process L1 = up → down → L1 keeps tr ↓ down (the number of down ’s
it has communicated to date) between tr ↓ up − 1 and tr ↓ up. By interleaving a

2.3 Interleaving 67

number of these we can increase this margin:

Ln = L1 ||| L1 ||| . . . ||| L1 n copies of L1

keeps tr ↓ down between tr ↓ up − n and tr ↓ up. Even though which of a number
of processes performs a given event is usually nondeterministic, the overall effect
here is actually deterministic.

Clearly Ln ||| Lm = Ln+m , whereas Ln ‖ Lm = Lmin{n,m}.

The combination of interleaving and recursion can allow us to describe com-
plex behaviours which would otherwise need infinite mutual recursions. For exam-
ple, we can simulate the infinite-state recursion COUNT by a single line

Ctr = up → (Ctr ||| down → STOP)

or, more subtly

Ctr ′ = up → (Ctr ′ ||| μP .down → up → P) or even

Ctr ′′ = up → (Ctr ′′ ||| down → Ctr ′′)

All of these behave the same as COUNT 0. In each case see if you can understand
why.

The above uses of ||| have all involved combinations of processes that use the
same events, creating nondeterminism about which side carries out an event. In
practice such uses, though clever when they work, are rather rare except for the
special case of an abstraction mechanism we will meet in Chapter 12. In creating
practical networks, it is usual to find processes which use disjoint sets of events
or perhaps soon come into a state where they do this. Think back to the five
dining philosophers: the five philosophers do not (in our model!) talk to each other,
and neither do the five forks. Therefore we can achieve exactly the same effect as
previously by first composing these two groups by interleaving:

FORKS = FORK 0 ||| FORK 1 ||| . . . ||| FORK 4

PHILS = PHIL0 ||| PHIL1 ||| . . . ||| PHIL4

and then, if AFS = AF0∪AF1∪AF2∪AF3∪AF4, we can form the complete system

FORKS AFS‖Σ PHILS

The traces of P ||| Q are just the interleavings of traces of P and Q . We
need to define an operator for producing the interleavings of a given pair of traces:

68 Parallel operators

this is defined recursively below

〈〉 ||| s = {s}
s ||| 〈〉 = {s}

〈a 〉̂ s ||| 〈b〉̂ t = {〈a 〉̂ u | u ∈ s ||| 〈b〉̂ t}
∪{〈b〉̂ u | u ∈ 〈a 〉̂ s ||| t}

Given this

traces(P ||| Q) =
⋃
{s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)}

Exercise 2.3.1 A bag is a process with channels left and right which behaves like a

buffer except that the order in which things come out is not necessarily that in which they

are put in. Use ||| and COPY to define a bag with capacity N . Explain your definition.

Now define an infinite capacity bag by following the style of recursion in the process Ctr

above.

Exercise 2.3.2 Prove that COUNT0 ||| COUNT0 is trace-equivalent to COUNT 0.

You should do this by calculating the sets of traces directly (bearing in mind what has

already been established about traces(COUNT 0)).

Exercise 2.3.3 Consider the following mutual recursion indexed by pairs of natural

numbers N × N:

CT2(n,m) = up → (CT2(n + 1, m) � CT2(n,m + 1))

� ((down → CT2(n − 1, m))<I n > 0>I STOP)

� ((down → CT2(n, m − 1))<I m > 0>I STOP)

Show that it is satisfied by the vectors 〈COUNTn+m | (n,m) ∈ N × N〉 and

〈COUNT n ||| COUNTm | (n,m) ∈ N × N〉

and deduce that COUNT n ||| COUNTm and COUNT n+m are trace-equivalent for all

(n,m) ∈ N × N.

If you look at this question carefully, you will see that it shows a way of using the

UFP rule to prove the equivalence to two systems where there is a many–one relation of

equivalence between the underlying state spaces.

Exercise 2.3.4 Suppose we need multiple cash-point machines to cope with increased

customer demand. Why is an interleaving of two or more of our existing machines (for

example ATM 2 ||| ATM 2) not a good idea?

Hint: think what might happen in this model when two customers are using them

simultaneously. How might you avoid this problem?

2.4 Generalized parallel 69

2.4 Generalized parallel

The effects of all the parallel operators we have seen so far, and more, can be
achieved with a single operator which, for whatever reason, has become the most
commonly used with FDR even though it does not appear in Hoare’s book. In
P X ‖Y Q , we decide which events are synchronized and which are not by looking
at X and Y . In the new operator, we simply give the interface: P ‖

X
Q is the

process where all events in X must be synchronized, and events outside X can
proceed independently. It is called generalized or interface parallel. We will always
have

P ||| Q = P ‖
{}

Q

and, provided P and Q never communicate outside X and Y ,

P X ‖Y Q = P ‖
X∩Y

Q

(The case when P or Q do not satisfy this condition is left as an exercise.)

In almost all cases one meets, this new operator just gives a different presen-
tation of something we could have written with X ‖Y . However, you should realize
there are new effects that could not have been achieved without it: if X is non-
empty but does not cover all events that can be used by P and by Q then P ‖

X
Q

acts a little bit like the alphabetized parallel and a little bit like P ||| Q . There
are some events that are synchronized and some which can ambiguously come from
either side. For example, COUNT 0 ‖

{up}
COUNT 0 is a process that will allow twice

as many down ’s as up’s, since the down events proceed independently.

If P = ?x : A → P ′ and Q = ?x : B → Q ′ then the initial events of P ‖
X

Q

are C = (X ∩ A ∩ B) ∪ (A �X) ∪ (B �X). The behaviour is shown by the following
step law, whose complexity reflects the operator’s generality: an event may now be
synchronized, unsynchronized but ambiguous, or from one side only

P ‖
X

Q = ?x : C → (P ′ ‖ Q ′)<I x ∈ X>I
(((P ′ ‖

X
Q) 	 (P ‖

X
Q ′))<I x ∈ A ∩ B>I

((P ′ ‖
X

Q)<I x ∈ A>I (P ‖
X

Q ′)))
〈‖
X

-step〉 (2.10)

It is symmetric and distributive:

P ‖
X

Q = Q ‖
X

P 〈‖
X

-sym〉 (2.11)

70 Parallel operators

P ‖
X

(Q 	 R) = (P ‖
X

Q) 	 (P ‖
X

R) 〈‖
X

-dist〉 (2.12)

It has the following weak (in that both interfaces are the same) associativity
property

P ‖
X

(Q ‖
X

R) = (P ‖
X

Q) ‖
X

R) 〈‖
X

-assoc〉 (2.13)

but the possibility, in P ‖
X

(Q ‖
Y

R), of X containing an event not in Y that Q

and R can both perform, makes it hard to construct a universally applicable and
elegant associative law.

The traces of P ‖
X

Q are simply combinations of traces of P and Q where

actions in X are shared and all others occur independently. As with the interleaving
operator, the best way to calculate the trace-set is in terms of an operator that maps
each pair of traces to the set of possible results (which is always empty when they
do not agree on X). The following clauses allow one to calculate s ‖

X
t (a set of

traces, like s ||| t) for all s , t ∈ Σ∗; below x denotes a typical member of X and y a
typical member of Σ �X .

2.5 Parallel composition as conjunction 71

s ‖
X

t = t ‖
X

s

〈〉 ‖
X
〈〉 = {〈〉}

〈〉 ‖
X
〈x 〉 = {}

〈〉 ‖
X
〈y〉 = {〈y〉}

〈x 〉̂ s ‖
X
〈y 〉̂ t = {〈y 〉̂ u | u ∈ 〈x 〉̂ s ‖

X
t}

〈x 〉̂ s ‖
X
〈x 〉̂ t = {〈x 〉̂ u | u ∈ s ‖

X
t}

〈x 〉̂ s ‖
X
〈x ′〉̂ t = {} if x = x ′

〈y 〉̂ s ‖
X
〈y ′ 〉̂ t = {〈y 〉̂ u | u ∈ s ‖

X
〈y ′ 〉̂ t}

∪ {〈y ′〉̂ u | u ∈ 〈y 〉̂ s ‖
X

t̂}

Given this, it is possible to define

traces(P ‖
X

Q) =
⋃
{s ‖

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)}

Exercise 2.4.1 If we do not assume that P and Q never communicate outside X and

Y , how can we express P X ‖Y Q in terms of ‖
Z
? [Hint: use STOP.]

Exercise 2.4.2 Describe the behaviours of the following processes; in each case find

a tail-recursive process equivalent to it.

(i) COPY ‖
{|left|}

COPY

(ii) COPY ‖
{|right|}

COPY

Exercise 2.4.3 Show that (P ||| Q) ‖ R and P ||| (Q ‖ R) need not be equivalent.

What does this tell you about the ‘law’

P ‖
X

(Q ‖
Y

R) =? (P ‖
X

Q) ‖
Y

R

2.5 Parallel composition as conjunction

The uses seen so far of the synchronized parallel operator ‖ and the alphabetized
one X ‖Y have all had broadly the intuition one would have expected of a parallel
operator, namely describing interactions between processes which might reasonably
be expected to run concurrently and communicate with each other. But they can

72 Parallel operators

be used in a rather different way in situations where we are using CSP more in
the manner of a specification language than as a method of describing systems as
implemented.

It turns out to be very difficult, even impractical, to implement handshaken
communication in anything like the generality implied by the CSP parallel oper-
ators, at least if a genuinely parallel implementation is required. In particular,
handshakes involving more than two parties come into this ‘impractical’ category.
Except in special circumstances, CSP descriptions which are intended to model the
construction of parallel systems tend to respect this restriction.

Multi-way handshaking is nevertheless an extremely useful construct in CSP:
it is used to build up specifications of intended behaviour (i.e., processes that are
probably going to be used on the left-hand side of a refinement check). For parallel
composition turns out to be equivalent to the conjunction (i.e. logical ‘and’) of
trace specifications. In this style of use, you should view parallel as belonging to
the category of CSP operators (for example) whose main role is in constructing
specifications rather than implementations.

Suppose Q is a process using only events from Y . In P Σ‖Y Q = P ‖
Y

Q ,

it can be thought of as adding to P , since every communication of P in Y must
be possible for Q . As P participates in all of the combination’s events, we can
think of Q ’s role as simply being to restrict P ’s behaviour. If P represents a trace
specification, then P Σ‖Y Q is a stronger one.

As a simple example, consider a robot which roams around the plane by mak-
ing movements in the four directions {N ,S ,E ,W }. It can also report its position.
If its initial co-ordinates are (0, 0), it becomes the process ROBOT 0,0 where

ROBOTn,m = position .(n,m) → ROBOTn,m

� N → ROBOTn+1,m

� S → ROBOTn−1,m

� E → ROBOTn,m+1

� W → ROBOTn,m−1

We can restrict the area it can roam over by placing it parallel with processes
stopping it entering forbidden areas. For example, if it is actually sitting on a rect-
angular table whose corners are {(0, 0), (n, 0), (n,m), (0,m)} then we can enforce
this either by putting it in parallel with four COUNT -like processes:

CT (E ,W)0 alphabet {E ,W }
CT (W ,E)m alphabet {E ,W }
CT (N ,S)0 alphabet {N ,S}
CT (S ,N)n alphabet {N ,S}

2.5 Parallel composition as conjunction 73

where

CT (a, b)0 = a → CT (a, b)1
CT (a, b)r = a → CT (a, b)r+1

� b → CT (a, b)r−1 if r > 0

or by using two processes (each imposing both limits in one dimension) or just one
(imposing all four limits). We could prevent it entering a specific square, (r , s), say,
by placing it in parallel with the following process with alphabet {N ,S ,E ,W }:

BLOCK (r , s)n,m =
(N → BLOCK (r , s)n+1,m)<I n = r−1 ∨m = s>I STOP
� (S → BLOCK (r , s)n−1,m)<I n = r+1 ∨m = s>I STOP
� (E → BLOCK (r , s)n,m−1)<I n = r ∨m = s+1>I STOP
� (W → BLOCK (r , s)n,m+1)<I n = r ∨m = s−1>I STOP

Note the use we have again made here of the conditional construct to reduce the
number of clauses. Clearly we can use as many of these as we like to ban any finite
region of space. Notice that BLOCK (0, 0) stops the robot from re-entering the
origin once it has left it – it cannot be prevented from being there initially!

Other things we could do would be to stop it doing more than K actions in
total say, representing its fuel capacity, or from communicating its position when
in specified areas.

One of the simplest and most useful examples of this style is the banning of
events: P Σ‖X STOP = P ‖

X
STOP is the process which behaves like P except

that events in X are banned.

This style of use of the parallel operator amounts to building up a complex
behaviour by adding together a number of simple constraints. Clearly the number
of participants in a given action in this example might get very large. But this
need not worry us since, as we already know, it is quite possible to have a parallel
process equivalent to a sequential one, and the eventual implementation of our
specification will almost certainly be very different from the combination of the
parallel constraints.

The exercises below illustrate this style well, and we will see further examples
at various points in this book, especially in Section 15.1.

Exercise 2.5.1 We can describe a bank as a process that simply opens and closes:

BANK = bank open → bank close → BANK

Interleave this with the process that records what day of the week it is:

DAYS = Monday → Tuesday → . . . → Sunday → DAYS

74 Parallel operators

P

A B

C

Figure 2.6: Some railway track (see Exercise 2.5.3).

Express the following as parallel constraints to this system:

(i) It opens no more than once per day.

(ii) It is always closed at midnight (when the day events occur).

(iii) It is never open on a Sunday.

(iv) It is always open at least two times per week.

Exercise 2.5.2 Put your solutions to the previous exercise and Exercise 1.1.3 in

parallel via interleaving. Impose the following constraints:

(i) An account can only be opened or closed when the bank is open.

(ii) Balance enquiries may not be made on Sundays.

Exercise 2.5.3 Figure 2.6 shows a section of a railway network. There are signals at

A,B ,C governing entry to the section, and points at P which connect the line from A to

either B or C . The alphabet is as follows:

signal .X .Y for X ∈ {A, B ,C} and Y ∈ {red , green} indicate the change of the signal at

X to colour Y

point .X for X ∈ {B ,C} represents the points being switched to connect A to X

enter .X .t for X ∈ {A,B ,C} and t ∈ Trains represents train t entering the section at

X

leave.X .t (X and t as above) represents t leaving at X .

Assume that initially all signals are red, the points connect A to B , and the track

is empty.

Give trace specifications for each of the following properties:

(i) Each signal alternates between turning green and red.

(ii) Only one signal can be green at any time.

(iii) The points alternate between the two directions.

2.6 Tools 75

(iv) The points only switch when all signals are red and there is no train on the track.

(v) A signal can only turn green when there is no train on the track.

(vi) The signals at B and C only turn green when the points are appropriately set.

Build a process that meets all of these specifications and which has, within reason,

all of the traces which they allow. Do this by building one or more processes for each

constraint and combining them appropriately in parallel.

The above specifications allow a train to enter against a red signal. Introduce an

extra event alarm which occurs (before anything else) if this happens, and modify your

process definition appropriately.

2.6 Tools

The last three binary parallel operators we have seen are supported in machine-
readable CSP. They are written as follows:

P X ‖Y Q is written P [X||Y] Q

P ||| Q is written P ||| Q

P ‖
X

Q is written P [|X|] Q

(P ‖ Q can easily be modelled using the others, for example P[|Events|] Q.)

Indexed versions are written as follows:

‖N

i=1
(Pi ,Ai) is written|| i:{1..N} @ [A(i)] P(i)

|||N
i=1

Pi is written||| i:{1..N} @ P(i)

‖
X

N

i=1

Pi is written[|X|] i:{1..N} @ P(i)

Note that the last of these assumes that all the Pi synchronize on the set X , and
that no other event is synchronized at all.

The addition of parallel operators has an enormous effect on the expressive
power of the language, in the sense that it becomes possible to describe many com-
plex and interesting systems concisely and naturally. One effect that is very notice-
able is the exponential state explosion that can, and frequently does, occur when
we put a lot of processes in parallel. If each Pi has just two states, then |||N

i=1
Pi

has 2N . Synchronizing events, as in ‖N

i=1
(Pi ,Ai), usually prevents the combination

reaching some arrangements of component states; it often leaves enough of them to
leave a lot of work.

76 Parallel operators

With an animator this state explosion only shows up if you seek to cover
all the states, but with a model checker2 you usually have to visit each reachable
state, and so it is common experience (one each reader who uses these techniques
will doubtless share) that the time and space taken for refinement checks frequently
increases exponentially with the size of a parallel system.

Overcoming this complexity barrier is a major active research topic at the
time of writing. It seems most unlikely that it can be got around for every parallel
combination and specification; the objective is to do so for as many classes of useful
problems as possible. We will discuss the techniques FDR uses at several later points
in this book, especially Section C.2, when we understand enough of the theory.

The existence of this barrier does not prevent one from modelling many
systems which are both non-trivial and practical without any attempt to get around
it at all other than by making the enumeration of states as efficient as possible in
both space and time, and sometimes careful coding of the CSP to avoid unnecessary
states. Thus at the time of writing FDR can, even on the author’s laptop computer,
deal entirely explicitly with combinations with order 107 states at several million
states per hour.

In order to achieve this efficiency, FDR uses very different techniques for
computing the state spaces of low-level processes (broadly speaking, ones definable
in the syntax introduced in Chapter 1) and high-level ones (broadly speaking, par-
allel combinations of low-level ones). When FDR says it is compiling a system it
is using relatively slow symbolic techniques for turning low-level components into
explicit state-machines. This does not enumerate the states of the entire system
(assuming it involves a high-level construct), but rather gives efficient rules for com-
puting the initial actions and next states of any combination of low-level states that
might arise.

A process structured as the parallel combination of reasonably-sized low-
level components will thus tend to be explored much more efficiently by FDR than
an equivalent one which is structured so that it is entirely compiled at low level.
Certainly one of the keys to the successful use of FDR is an understanding of this
fact and the division into high- and low-level syntax that lies behind it. This is
explained in more detail in Appendix C.

2Model checker is the name for the class of tools to which FDR belongs in a broad sense:

one can define a model checker as a tool which seeks to verify that a system which is defined

by transitions between (sometimes very large) finite sets of states satisfies some specification and

which performs the verification by traversing the entire state space. (This traversal might be one-

state-at-a-time or use some way of dealing with many at once.) In other classes of model checkers,

the specification is usually defined in a language other than that used for the implementation

(often a specially defined logic). What characterizes a refinement checker like FDR is that the

specification is another process in the same language.

2.7 Postscript: On alphabets 77

2.7 Postscript: On alphabets

The most significant difference between the version of CSP used in this book and
that in Hoare’s text is the treatment of alphabets. Hoare stipulates that every
process P has its own associated alphabet αP . One can think of the alphabet of a
process as representing its type. A process may only communicate events from its
alphabet, but there may be events in its alphabet which it can never communicate
and which do not even appear in its description. The presence of alphabets makes
the parallel operator more elegant, since by writing P ‖ Q we know immediately
that P has control over αP and Q has control over αQ , and so they interact in, and
must co-operate on, αP ∩αQ . This is in contrast with our version where alphabets
are given explicitly: P X ‖Y Q . Hoare makes a number of stipulations about the
alphabets of the processes that are composed together; most of the operators require
that all processes combined have the same alphabet and that the result is the same
again. Others, such as ‖ and hiding, have special rules. The CSP operators in the
alphabetized theory are thus polymorphic in a sense very close to the usual one.

The disadvantages of the alphabetized version of CSP are firstly the need
to give all processes alphabets (which can clutter definitions, especially recursions),
the occasional need for special language constructs to get the ‘typing’ right, and
additional theoretical complexity. The main manifestation of the last of these is the
need to construct separate mathematical models for every different alphabet where
we can get away with just one.

The choice of one version or the other is largely a matter of taste, though it
is certainly the case that the balance changes from application to application. We
do not regard this as an important issue, since everything done in one version of
CSP can be done in the other with trivial changes.

In this book we sometimes refer to the ‘alphabet’ of a process. This, in an
informal sense, means the same as Hoare’s, namely the set of communications it
might use. However, whenever we need such an alphabet to have semantic signifi-
cance (as in the set of events a P controls in a parallel combination), it has to be
defined and used explicitly.

78 Parallel operators

Chapter 3

Hiding and renaming

It is often useful either to remove certain actions from the view of the environment or
to apply mappings to a process’s events. In this chapter we introduce the operators
that allow us to do these things.

3.1 Hiding

Consider the parallel combination of COPY ′(cr , cr+1) processes we saw on page
58. We said there that it would be natural to think of c0 and cn as being external
channels, and the others as internal ones. If they really are internal then the fact
that we can still see the communications passing along them is unfortunate from
several points of view.

• Seeing these communications clutters up our picture of the process and makes
it impossible to show that this system behaves like an n-place buffer imple-
mented some other way. We should not have to see unnecessary internal
details of a system.

• By leaving the internal communications visible we are leaving open the possi-
bility that another process might be put in parallel with the currently defined
network, with some of these internal events in its alphabet. Thus, it would
be able to stop these events from happening. In this case, and in many like it,
we would expect ‘internal’ communications such as these to proceed without
requiring further control from outside.

Both of these difficulties can be avoided by hiding the internal events, making them
invisible to and uncontrollable by the environment.

80 Hiding and renaming

Given any process P and any set of events X , the process P \ X behaves
like P except that the events from X have been internalized in this way. If we want
to hide a single event or channel a then we will sometimes write P \ a rather than
P \ {a} or P \ {| a |}.

Thus, if we want to hide all the communication between a pair of parallel
processes we would write (P X ‖Y Q) \ (X ∩ Y) or (P ‖

Z
Q) \ Z . This creates

point-to-point, invisible communication, which is arguably closest to the ‘natural’
parallel operator of implementations such as occam. In specifying a real parallel
communicating system, rather than one devised as a specification where the parallel
operator takes the role of conjunction as described in Section 2.5, one almost always
uses a combination of the parallel and hiding operators.1 The natural view of the
chain of buffers would be

(‖n−1

r=0
(COPY ′(cr , cr+1), {| cr , cr+1 |})) \ ({| c1, . . . , cn−1 |})

The only communications visible in this system are its inputs and outputs,
namely {| c0, cn |}. Since we are no longer seeing the internal workings, we can
potentially prove this equivalent to a totally different one which might have differ-
ent internal channels or none at all, or to another CSP description intended as a
specification.

Perhaps the easiest way of understanding the effect of the hiding operator
is to see how it transforms the picture of a process’s transitions. We saw a few of
these in previous chapters (Figures 1.1, 1.2, etc.). Any process can be given such a
transition system, which provides a much less abstract view of how it behaves than
its set of traces2. The shape of the transition system remains exactly the same, but
hidden actions are transformed into invisible actions, which we label τ (the Greek
letter ‘tau’). An example is shown in Figure 3.1. Invisible (or internal) actions
are to be thought of as ones which (a) do not contribute to the trace, because the
environment cannot see them and (b) the process can perform by itself. τ is a
special event that is never in Σ.

Since it is a unary (one-place) rather than binary operator (on processes),
the only one of the ‘usual’ sorts of algebraic laws that apply to it is the distributive
law. There is a rich collection of laws, nevertheless, of which the following are a
few:

(P 	 Q) \ X = (P \ X) 	 (Q \ X) 〈hide-dist〉 (3.1)

1Some other process algebras, notably CCS, combine parallel and hiding into a single operator:

they do not factor the ‘natural’ operator into two parts like CSP.
2A complete set of recipes for deriving these transition systems is given in Chapter 7, where it

is the method of presenting the operational semantics of CSP.

3.1 Hiding 81

a

a
a

b

b

b

b

b

b

τ

τ
τ

\{a} =

Figure 3.1: The effects of hiding on a transition system.

(P \ Y) \ X = (P \ X) \ Y 〈hide-sym〉 (3.2)

(P \ Y) \ X = P \ (X ∪Y) 〈hide-combine〉 (3.3)

P \ {} = P 〈null hiding〉 (3.4)

(a → P) \ X =
{

P \ X if a ∈ X
a → (P \ X) if a ∈ X

〈hide-step 1〉 (3.5)

The second of these is an easy consequence of the third. The final law above shows
the hiding actually happening: the a disappears when it is an element of X . Note
that this shows that a process whose only initial action is a single τ is equivalent
to whatever state follows the τ .

This is not a full ‘step’ law, in the sense we have already used to describe
other operators, since that requires the process to have an arbitrary set of initial
actions. The full version is more complex because it has to deal with what happens
when (i) there is a choice of hidden actions and (ii) there is a choice between hidden
and visible actions. Rather than writing down the whole law immediately let us
look at each of these two situations separately.

(a → P � b → Q) \ {a, b}

has two hidden actions possible. Now only one happens, and we cannot be sure
which, so in fact this equates to (P \ {a, b}) 	 (Q \ {a, b}). This creates the

82 Hiding and renaming

first principle we are looking for here: when there is more than one hidden action
possible, it is nondeterministic which occurs. And in fact the usual3 way of creating
a transition picture of the process P 	 Q is by creating one whose initial state has
two τ actions: one to P and one to Q .

It is tempting to think that we should either give hidden actions the ability
to exclude visible ones from the same choice – because the hidden action occurs as
soon as it is possible – or perhaps the reverse. In fact, neither of these views is
consistent with what we already know. Consider the process

(a → P � b → Q) \ b

(the same as above except that only one of the two events is hidden). If either the
unhidden or the hidden event were preferred, this would equal

a → P \ b or Q \ b

which, if we then hid a, would in either case give a different answer from hiding
{a, b} together, in contradiction to the law 〈hide-combine〉. Thus both the hidden
and unhidden actions must remain possible. The right way to think about how this
type of process behaves is that as soon as an internal action becomes available then
something must happen, but it might be a visible action rather than a hidden one.
Unless we do manage to get a visible communication, a hidden one must occur. The
right answer to what the above process equals turns out to be

((a → (P \ b)) 	 STOP) � (Q \ b)

We must get the options of Q \ b if we wait long enough, but may also get the
chance of the a if we are quick enough. The principle underlying this is that, in a
choice between visible and hidden actions, we may get the chance of communicating
one of the visible ones, but given a long enough wait, one of the hidden ones must
occur. It is perhaps easiest to understand this by considering transition pictures
like Figure 3.2.

The combination (P 	 STOP) � Q arises frequently in theoretical work on
CSP because of this phenomenon with hiding. It is convenient to introduce an extra,
asymmetric choice operator to represent it directly: P � Q . This can be thought
of as a ‘time-out’ or ‘sliding choice’ operator in which, as above, the options of P
are offered for a short time before it opts to behave like Q . For obvious reasons the
representation of a time-out is very imperfect in a model without time – we will see
how to make them more realistic in Chapter 14. There is no need to quote P � Q ’s

3This is exactly how FDR and ProBE represent nondeterministic choice, as previously described

in Section 1.4.

3.1 Hiding 83

P\b Q\b

τa

Figure 3.2: Hiding creating a ‘time-out’.

algebraic laws, etc., formally because they can all be derived from those of 	, �

and STOP . See Exercise 3.1.6, for example.

The complete step law for hiding is given below:

(?x : A→ P) \ X =⎧⎪⎪⎨
⎪⎪⎩

?x : A→ (P \ X) if A ∩ X = {}

(?x : (A �X)→ (P \ X))
�	{(P [a/x]) \ X | a ∈ A ∩ X } if A ∩ X = {}

〈hide-step〉 (3.6)

It should be noticed that this ‘step’ law is unlike all of the ones we have seen before,
in that, while it obviously uses one step of the process it is applied to, it does not
necessarily give us the first visible action of the result. Of course this is perfectly
natural with a hiding operator, but it does mean that one might never come to a
conclusion from it about what the initial actions of P \ X are: just think what
would happen if you were to apply it to (μ p.a → p) \ a.

Notice that in the buffer example above we hid all the internal communica-
tions at once, at the outermost level, where we could have combined the cells in
steps hiding the internal channels as we go. This is represented by the complex
expression

((. . . (COPY ′(c0, c1) {|c0,c1|}‖{|c1,c2|} COPY ′(c1, c2)) \ {| c1 |} . . .)

{|c0,cn−1|}‖{|cn−1,cn |} COPY ′(cn−1, cn)) \ {| cn−1 |}

(We will see a much more convenient way of writing this down in Section 4.1.)
Provided that moving the hiding does not influence the number of processes that
have to agree on an action, it should not matter whether we hide that action at an

84 Hiding and renaming

inner or an outer level of a parallel combination. Thus, we can expect

(P X ‖Y Q) \ Z = (P \ Z ∩ X) X ‖Y (Q \ Z ∩ Y)
provided X ∩ Y ∩ Z = {} 〈hide-X ‖Y -dist〉 (3.7)

(P ‖
X

Q) \ Z = (P \ Z) ‖
X

(Q \ Z)

provided X ∩ Z = {}
〈hide-‖

X
-dist〉 (3.8)

These laws are helpful in understanding how a network put together with
parallel and hiding operators behaves: we can move all the hiding to the outermost
level so we can ‘see’ all of the communications in the network at once before applying
a single hiding operator to get rid of the ones we don’t want to see. As we will see
in later chapters, these laws are vital in support of reasoning about deadlock, and
are crucial in advanced model-checking techniques.

Hiding can remove other details aside from communications between part-
ners. For example, we might want to conceal the spending of CUSTspend and the
refilling of ATMref in order to concentrate on their common interface.

CUSTspendr \ spend .N

can be expected to behave exactly like CUST2, while ATMref r \ refill behaves
like an implementation of ATM 2: it is strictly more deterministic because it never
swallows the card. It is nevertheless nondeterministic, even though ATMref r is
deterministic, because since we cannot see when the machine is being refilled, we get
imperfect knowledge of when a request for funds is refused. Notice how this hiding of
details actually invisible to the customer makes the ATM exhibit nondeterminism,
just as he or she observes. We will study the process of abstracting like this from a
subset of a process’s events in Chapter 12.

Hiding is the most common source of nondeterminism in CSP descriptions.
It often shows up in real systems where one parallel partner has to arbitrate between
two others. For example, we know that the process

P = a → c → STOP � b → d → STOP

offers the environment the choice between a and b, with subsequent behaviour
depending on which option is chosen. If we give it the alphabet X = {a, b, c, d} of
all events it can perform, then simply putting it in parallel with processes which
choose a and b respectively does not change the way it looks to the outside world:

N = P X ‖{a,b} (a → STOP {a}‖{b} b → STOP)

3.1 Hiding 85

N can be expected to behave in the same way as P . If, however, we ‘complete’
the parallel composition by hiding the internal events N \ {a, b} then we introduce
nondeterminism. The result will behave like

(c → STOP) 	 (d → STOP)

This type of behaviour is what makes nondeterminism an inevitable constituent of
any theory describing concurrency where arbitration is present in some form.

If we had allowed our ATM to be refilled when full, or the customer to spend
a zero sum, then the hiding above would have introduced divergence, which is the
possibility of a process entering into an infinite sequence of internal actions. For
then the ATM would allow an infinite sequence of hidden refill actions without
ever interacting with the user, and the customer could perform an infinite number
of hidden spend .0’s. Clearly a process which is diverging is useless, and arguably
more useless than STOP , since we can never detect by the lack of internal activity
that a diverging state will never do anything. A common source of divergence in
CSP occurs in parallel networks with internal communications hidden, where the
processes can communicate infinitely with each other without ever communicating
externally. This is sometimes termed ‘livelock’ or ‘infinite internal chatter’.

On the same principle that led us to introduce an operator for nondetermin-
ism (i.e., that it is useful to have a clean representation of it) we will use a special
symbol for a divergent process: div is the process that does nothing but diverge.4

The only way of introducing divergence except through hiding and the symbol div
is by ill-formed recursions. The simplest recursive definition of them all, μ p.p is
an example: clearly evaluating it will lead to an infinite unwinding without getting
anywhere. Divergence plays an important role in the mathematical modelling of
CSP, so we will meet div frequently in later chapters.

Particular care has to be exercised in dealing with infinite hiding, i.e., P \ X
for infinite sets of events X . For it can introduce unbounded nondeterminism in just
the same way as the unconstrained use of	. That this is so is readily demonstrated:
if S = {Pλ | λ ∈ Λ} for a set of events Λ chosen to be disjoint from those which the
Pλ themselves can communicate, then clearly

	S = (?λ : Λ→ Pλ) \ Λ

4In Hoare’s text, the process CHAOS is assumed to be able to diverge as well as everything

else it can do, and there is no special representation for a simply diverging process. We distinguish

the special process div because it represents an important concept and, as we will see in later

chapters, different mathematical theories of CSP treat it in widely varying ways. For us, Chaos

is not a divergent process and is in every model equivalent to its definition on page 29.

86 Hiding and renaming

The traces of P \ X are very easy to compute: if we define s \ X , for any
trace s , to be s � (Σ �X), then

traces(P \ X) = {s \ X | s ∈ traces(P)}

Hiding versus constructiveness

It must be pointed out that the very useful notion of a guarded recursion fits
uneasily with hiding. For the meaning of ‘guarded’ is that information – in the
sense of communications – is added by a recursion. Another (and, in general, more
accurate) term we can use is ‘constructive’. Hiding deletes events: consider the
recursion

P = a → (P \ a)

which, according to our earlier definition, is guarded because the recursive call
is prefixed by an event. The problem is that communications are deleted by the
hiding, so that what the recursion gives with one hand it takes away with the other.
In fact this recursion does not have a unique fixed point over the traces model T :
if S is any member of T at all (possibly able to communicate events other than a),
then

{〈〉} ∪ {〈a 〉̂ (s \ a) | s ∈ S}

is a solution to the fixed point equation we get from the recursion. The least and
natural solution is, of course, {〈〉, 〈a〉}. After the trace 〈a〉 we would expect that
this process would diverge, since it would perform a sequence of increasingly deeply
hidden a’s. Our intuition, therefore, is that this P = a → div.

This behaviour forces us to add a caveat to the definition of guardedness:
no recursion in which the hiding operator is applied (directly or indirectly) to a
recursive call should be considered guarded (at least, without a careful analysis
based on mathematical models).

Of course, this restriction applies equally to the derived operators we will
meet later that use hiding in their definition. In a few cases it is possible to assert
that recursions involving hiding are constructive, but to do this we will have to
understand the mathematics of constructiveness a great deal better: see an example
on page 108 and Sections 8.2 and 9.2 for some of the theory.

It is easy to think that the above restriction prevents us from applying the
UFP rule to any process involving hiding: this is not so, it is only the recursion to
which the rule is applied that has to be constructive. A good example is the process

3.1 Hiding 87

we get when we hide the internal channel of the combination we studied in the last
chapter:

(COPY ′(a, b) {|a,b|}‖{|b,c|} COPY ′(b, c)) \ {| b |}

Now of course we already know that the process inside the hiding is equivalent to
CC ′

0, where

CC ′
0 = a?x → CC ′

1(x)

CC ′
1(x) = b!x → CC ′

2(x)

CC ′
2(x) = (c!x → CC ′

0) � (a?y → CC ′
3(y, x))

CC ′
3(y, x) = c!x → CC ′

1(y)

When we hide {| b |} in this we find (applying 〈hide-step〉) that

CC ′
0 \ b = a?x → CC ′

1(x) \ b

CC ′
1(x) \ b = CC ′

2(x) \ b

CC ′
2(x) \ b = (c!x → CC ′

0 \ b) � (a?y → CC ′
3(y, x) \ b)

CC ′
3(y, x) \ b = c!x → CC ′

1(y) \ b

which is not (applying the usual trick of replacing each term on the left-hand side
by a new recursive variable) guarded. However, the above equations imply trivially
that CC ′

0 \ b, CC ′
1(x) \ b and CC ′

3(y, x) \ b satisfy the recursive definition

B2
0 = a?x → B2

1 (x)

B2
1 (x) = a?y → B2

2 (y, x)
� c!x → B2

0

B2
2 (y, x) = c!x → B2

1 (y)

which is guarded. (Note that B2
0 , B2

1 (x) and B2
2 (x , y) respectively denote a two-

place buffer with nothing in, with x in and with x and y in.) So we have shown that
our original processes satisfy this guarded recursion and therefore equal its unique
fixed point. It is quite irrelevant that the definition of the original processes involved
hiding. There was, we should point out, no need to go through the intermediate
step of discovering the C ′ recursion: it would have been just as good to prove that
a vector of parallel/hiding combinations satisfy the B2 recursion.

Note that what we actually proved here was that the parallel combination of
two one-place buffers, placed in parallel with the middle channel hidden, behaves
like a two-place buffer – clearly something we would expect.

88 Hiding and renaming

Exercise 3.1.1 Take the dining philosophers network from pages 62 and 67 with the

picksup and putsdown events hidden (after the entire network has been combined). Can

this system still deadlock? Do you think hiding can ever affect deadlock? Think carefully

and write down your conclusions – we will later develop theories that will answer this

question definitively.

Exercise 3.1.2 If P = (a → P) � (b → a → P), we would expect that P \ b is

equivalent to μ p.a → p. Use 〈hide-step〉 (3.6) and the laws of choice to show that

P \ b = a → (P \ b)

and hence that this equivalence is true by the UFP rule. Make sure you understand why

the rule is valid here when it was invalid on the very similar equation P = a → (P \ a).

Exercise 3.1.3 If P = a?x → b!x → b!x → P then it is possible to find a process Q

such that

(P {|a,b|}‖{|b,c|} Q) \ {| b |} =T COPY ′(a, c)

(i.e., a one-place buffer). Find Q and use the UFP rule to prove the equivalence.

Exercise 3.1.4 Give a CSP expression defining the process equivalent to the one on

the left-hand side of Figure 3.1. Use the step law and laws about the choice operators to

prove that the hidden process P \ {a} satisfies the equation

P \ {a} = b → (STOP � b → P \ {a})

Exercise 3.1.5 Use 〈�-�-dist〉, 〈�-dist〉 and other standard laws to prove that

(Q � R) � STOP = (Q � R) � Q � R � STOP and hence

(P � Q � R) � P = (P � Q � R) � (P � Q) � P

Exercise 3.1.6 Prove, using the laws set out in Section 1.2, that � is distributive in

each argument and is associative. Hint: for associativity, use the result of the previous

exercise.

Can you find any other laws it satisfies (perhaps in relation to other operators)?

3.2 Renaming and alphabet transformations

In the previous section we saw how to remove certain events from sight. A less
drastic effect is achieved by renaming, which means applying a map that changes
which (visible) member of Σ a process is performing.

While one can imagine that the alphabet transformation thus accomplished
might change through the life of a process – perhaps event a maps to b if it appears

3.2 Renaming and alphabet transformations 89

before the 12th event and to c later – in practice we rarely want to do this. Thus,
our renaming operators apply the same transformation throughout a process’s life:
in this section we see three increasingly general ways of doing this.5

3.2.1 Injective functions

Suppose P is a CSP process and f : Σ → Σ is an injective, or 1–1, function (simply
meaning that f (x) = f (y) implies x = y) from Σ to itself. f can be a partial
function provided its domain contains every event possible for P . Then f [P] is
the process which can communicate f (a) whenever P can communicate a. The
communications of P have been renamed, or equivalently P has been subjected to
an alphabet transformation. The transition system of f [P] is that of P with the
function f applied to the arcs.

All of this works whether f is injective or not. The reason why we want to
distinguish this case is because it is both simpler to understand and is used most
often in CSP descriptions of real systems. The point is that, in this case, f [P] works
exactly like P except for the names of its events. (The sense in which this is not
true when f is not 1–1 will be seen later.)

If f is the function that swaps the events down and up, then f [COUNT 0]
will behave like a counter through the negative numbers, since it will never allow
any more up’s than down ’s.

If g is a function that maps (for any x ∈ T) left .x to a.x and right .x to b.x
then g[COPY] is the same as the parameterized process COPY ′(a, b) (assuming,
of course, that left , right , a and b are all channels of type T). One could similarly
devise a renaming that would map a single FORK i from the dining philosophers
to any other FORK j , and likewise for the philosopher processes. In each case this
is possible because, except for the names of their events, the target process always
behaves identically to the original: evidently no renaming could make FORK i into
PHILi !

Thus, renaming is an alternative to parameterization as a way of creating
many similar processes to put into a network. Which method is better depends on
the example and the taste of the programmer.

One form of renaming that is useful when we want to create copies of a process
with entirely disjoint alphabets is process naming. If the compound event a.x is in
Σ for each event communicable by P , then a.P is the process which communicates
a.x whenever P communicates x . The renaming function here is clear, but this
form of use is sufficiently common that the shorthand a.P is commonly used. If

5In Section 14.4.1 we will see how the variable renaming can be constructed by combining

constant renaming with other constructs; see also Exercise 3.2.5 below.

90 Hiding and renaming

a1, a2, . . . , an are distinct names, we can get n copies of P running independently
in parallel by naming them:

‖n

r=1
(ar .P , ar .X) or equivalently |||n

r=1
ar .P

where X is whatever alphabet is natural for P and a.X = {a.x | x ∈ X }. Since
these processes have disjoint alphabets they do not interact at all. If either the
environment or another process wants to communicate with one of them it has to
select the one by name, since the communications all include the given name.

Since injective renaming leaves the behaviour of a process unchanged except
for the names of actions, it has an extremely rich set of laws – too many to write
down conveniently! Essentially it distributes over all operators. We will give a list
of laws that apply to any sort of renaming later, but three that apply specifically
to this one are

f [P ‖
X

Q] = f [P] ‖
f (X)

f [Q] if f is 1–1 〈f [·]-‖
X

-dist〉 (3.9)

f [P X ‖Y Q] = f [P] f (X)‖f (Y) f [Q] if f is 1–1 〈f [·]-X ‖Y -dist〉 (3.10)

f [P \ X] = f [P] \ f (X) if f is 1–1 〈f [·]-hide-sym〉 (3.11)

The third of these is frequently used, in combination with the following, to change
the name of hidden actions. This might be done to prevent a clash of names for the
subsequent application of other laws. An example may be found in Section 13.7.

f [P \ X] = P \ X if f (y) = y for all y ∈ Σ �X 〈f [·]-hide-null〉 (3.12)

3.2.2 Non-injective functions

The most common use of renaming f [P] when f is not injective on the events of
P is when we want to forget about some level of detail in a process. Consider a
splitting process which accepts inputs on channel in and, depending on what the
input is, sends it either to out1 or to out2.

SPLIT = in?x : T →
((out1.x → SPLIT)<I x ∈ S>I (out2.x → SPLIT))

For some purposes the composition of messages may be unimportant. If we forget
that detail by using the renaming function forget which remembers only the channel

3.2 Renaming and alphabet transformations 91

name, the process forget [SPLIT] we get is equivalent to SPLIT ′, where

SPLIT ′ = in → (out1→ SPLIT ′ 	 out2 → SPLIT ′)

This has introduced nondeterminism because we have deliberately forgotten the
information which allowed us to know whether out1 or out2 occurs. Though this
might appear a retrograde step, this type of abstraction is frequently beneficial, for

• it allows us to demonstrate that some aspect of the correctness of the system
does not depend on precisely how decisions are made, and

• in cases where this is true the details of decision making frequently clutter
proofs.

Several examples of this type of abstraction in deadlock analysis can be found later,
on pages 358 and 374, for example.

Non-injective renaming becomes more dangerous when the alphabet trans-
formation f in use maps an infinite set of events to a single one (i.e., f is not
finite-to-one). This, like 	S for infinite S , and P \ X for infinite X , is a construct
which can introduce unbounded nondeterminism.

3.2.3 Relational renaming

Various treatments of CSP have included a second sort of renaming, using inverse
functions: f −1[P] can communicate a whenever P can communicate f (a). This is
equivalent in expressive power to the direct image renaming we have seen already
when f is 1–1, but it can produce some interesting effects when f is many-to-one.
For a single event in P can be transformed into the choice between many different
ones – though all leading to the same place. What we will now describe here is a
more general form of renaming that encompasses both direct and inverse functions,
and at the same time corresponds most closely to the notation for renaming used
in machine-readable CSP.

A function can be thought of as a set of ordered pairs: (x , y) is in the set
if f (x) = y. A set of pairs is a function if no x is mapped to more than one y. A
relation on the other hand, is any set of ordered pairs, with no restriction as to how
many things a given object can be related to. If (x , y) ∈ R we write x R y. If R is
a relation, its domain and range are respectively

dom(R) = {x | ∃ y.x R y}
ran(R) = {y | ∃ x .x R y}

The composition of two relations R ◦ S is

{(x , z) | ∃ y.x R y ∧ y S z}

92 Hiding and renaming

(confusingly, because of a clash of conventions, this is the opposite way round to
the way composition of functions works). The relational image R(x) of x under R
is {y | x R y}.

If R is a relation whose domain includes all the events of P , then P [[R]] is
the process that can perform each event in R(a) whenever P can perform a. If R
is a function then this is identical to the renaming R[P]. If f is a function then
its inverse f −1 is the relation {(y, x) | (x , y) ∈ f }. The operator f −1[P] is then
identical to P [[f −1]]. For example, if D is the relation which relates a to both itself
and b, then

(a → STOP)[[D]] = (a → STOP) � (b → STOP)

If U is the universal relation Σ × Σ, then P [[U]] = RUN if and only if the
divergence-free process P is deadlock-free.

The following laws, etc., are thus all true (suitably translated from the forms
below) for the functional form of renaming. Renaming distributes over both choice
operators:

(P 	 Q)[[R]] = P [[R]] 	 Q [[R]] 〈[[R]]-dist〉 (3.13)

(P � Q)[[R]] = P [[R]] � Q [[R]] 〈[[R]]-�-dist〉 (3.14)

If the initials of P ′ are A, then those of P ′[[R]] are R(A) = {y | ∃ x ∈ A. (x , y) ∈ R}:

(?x : A→ P)[[R]] = ?y : R(A)→	{(P [z/x])[[R]] | z ∈ A ∧ z R y} 〈[[R]]-step〉 (3.15)

This shows that renaming can introduce nondeterminism when more than one
event in A maps under R to the same thing. This cannot happen when R is either
an injective function or f −1 for any function: in these cases the nondeterministic
choice is over a set of one process – no choice at all – as there is then only ever one
z such that z R y.

Renaming by one relation and then another is equivalent to renaming by the
composition of these relations:

(P [[R]])[[R′]] = P [[R ◦ R′]] 〈[[R]]-combine〉 (3.16)

This law is one reason why relations are written on the right of a process rather than
(as with functions) on the left. It implies the following law for functional renaming,
where the opposite sense of composition is used

f [g[P]] = (f ◦ g)[P] 〈f [·]-combine〉 (3.17)

3.2 Renaming and alphabet transformations 93

Renaming in this most general form is such a powerful operator that most of
the useful distribution laws that held for 1–1 renaming are no longer true. (In most
cases versions can be found, but these tend to come with an unfortunately complex
set of side conditions.)

The traces of P [[R]] are just the images of those of P under the obvious
extension of R to traces:

〈a1, . . . an〉R∗〈b1, . . . , bm〉 ⇔ n = m ∧ ∀ i ≤ n.aiR bi

traces(P [[R]]) = {t | ∃ s ∈ traces(P).s R∗t}

A good way of defining relations for use as alphabet transformations is to
use a notation like substitution: we can write P [[a/b]] to mean that the event or
channel b in P is replaced by a. (Note that all others remain the same – including
any a that is already there.) To modify more than one thing, or to send one thing
to more than one place, we write something like

P [[a, b/b, a]] or P [[b, c/a, a]]

Note that the first of these swaps a and b and the second maps a to both b and c.

One-to-many renaming as a magic wand

Relational renaming gives us the ability to create a process that will offer several
alternatives in place of a single event. On first encountering this possibility one
is inclined to wonder what purpose it might serve, particularly since the result of
performing any of these alternatives is exactly the same. However there are two
important uses for it that one tends to meet in practice.

The first is as an aid to creating processes that treat large numbers of events
in the same way. Typically these are specification processes or simple components
of larger systems. For example you can define a process in which members of the
sets A and B of events alternate by defining one μ p.a → b → p alternate, and
then renaming a and b (respectively) to all members of A and B . One could define
ChaosA as

(μ p.((a → p) 	 STOP))[[x/a | x ∈ A]]

By using this style it is sometimes possible to achieve greater clarity than without
(since evidently any use in this style could be replaced by a prefix choice), and in
some cases it results in a more efficient implementation for FDR.

The second use is rather more interesting, not least since it produces results
that do not seem possible using any other CSP construct. That is to create, in effect,

94 Hiding and renaming

a renaming operator that maps each event only to a single target, but one which
varies with more than just the input event. Thus we might rename the event apple
to either Cox or Braeburn depending on what has gone before it. This is achieved
by first renaming the event to all its targets, and then designing a regulator process
that is put in parallel with the resulting process and which selects which of the new
events happens on each trace. For example, if Adam and Eve prefer the different
varieties here we might define

Reg = Braeburn → Reg
� Adam → Reg
� Eve → Reg ′

Reg ′ = Braeburn → Reg ′

� Adam → Reg
� Eve → Reg ′

The construct

P [[Adam ,Eve/apple, apple]] ‖
{Adam,Eve,Braeburn,Cox}

Reg

creates a process that will do one or other of Braeburn and Cox whenever P would
have done apple .

All sorts of weird and wonderful effects can be achieved with variations on
this theme, such as hiding every other event a process does, or just the first one.
Certainly when trying to achieve something unusual in CSP, it is one of the first
things the author usually tries, and indeed we will see several indispensible uses of
this idea in later chapters.

Exercise 3.2.1 Recall that COPY = left?x → right !x → COPY . Suppose we

want, instead, a process CELLf which inputs values v on channel left and immediately

outputs f (v) on right . Find an appropriate alphabet transformation gf so that CELLf =

gf [COPY]. Under what conditions is gf injective?

Exercise 3.2.2 Use an alphabet transformation to connect the output channel of

COPY to the input channel of CELLf and vice-versa (i.e., there are two processes running

in parallel). How does this process behave? How does it behave if COPY is replaced by

right !x → COPY ?

Add an extra channel in to COPY so that the resulting process can be initialized

along this channel and thereafter behaves as before, so achieving the effect of the second

case in the last paragraph for any x .

Exercise 3.2.3 Find renaming relations Ri which, applied to the process COUNT 0,

achieve the following effects:

3.3 A basic guide to failures and divergences 95

(i) A process with events a, b and c, where the number of c’s is always less than or

equal to the total of the a’s and b’s.

(ii) A process that can always communicate either up or down.

(iii) A process that has the same traces as COUNT0 but may nondeterministically

sometimes refuse to communicate down when COUNT0 would have accepted it.

Exercise 3.2.4 Find examples to show that the laws for distributing injective renam-

ing over hiding and general parallel composition do not work when the function f is not

injective.

What weaker restrictions on the renamings could you make so that these laws

become valid again? You might find thinking about the laws for distributing hiding over

parallel helpful here.

Exercise 3.2.5 Remember the possibility quoted at the start of this section of map-

ping a to b if it is before the 12th event and to c thereafter. Use a combination of a

relational renaming and parallel composition with a process you define to achieve this

effect. (Assume that the process P does not itself use events b and c.)

Exercise 3.2.6 Show how to hide the odd-numbered communications that a process

performs, and how to hide just the first communication it performs. (Assume that the

alphabet of your process is contained in A, and that Σ contains a disjoint set of events A′

that are in natural correspondence with A via a �→ a ′.)

3.3 A basic guide to failures and divergences

Though we knew this well enough already, our exposure to nondeterminism and
divergence in this chapter has shown that traces alone give a far from complete
picture of the way a process behaves. Whether or not you intend to study the
details of how these phenomena are modelled in detail – this is done in Chapter 8 –
you should at least gain a basic understanding of the two main tools that are used,
in addition to traces.

Traces tell us about what a process can do, but nothing about what it must
do. The processes μ p.a → p and (μ p.a → p) 	 STOP have the same traces, even
though the second is allowed to do nothing at all no matter what we offer it. In
order to distinguish these processes we need to record not only what a process can
do, but also what it can refuse to do. A refusal set is a set of events that a process
can fail to accept anything from however long it is offered. (It is not enough for it
simply to be refused for a finite time.) refusals(P) is the set of P ’s initial refusals.

In fact, we need to know not only what P can refuse to do after the empty
trace, but also what it can refuse after any of its traces. A failure is a pair (s ,X),

96 Hiding and renaming

where s ∈ traces(P) and X ∈ refusals(P/s). (Recall that P/s represents process P
after the trace s .) failures(P) is the set of all P ’s failures.

One can calculate the failures of a process P in exactly the same way as we
have already shown how to calculate the traces of P : by induction on P ’s syntax.
For details of this you should see Chapter 8. But they can be calculated just as
easily from the transition diagram of a process: you simply collect together all of
the routes through this diagram which (ignoring τ ’s) result in a given trace. If the
node you end up at is stable – i.e., has no τ action leading out of it – then it gives
rise to a failure, since it can (and must) refuse all actions which do not lead out of
it. On the other hand, a node with one or more τ ’s (an unstable node) does not
give rise to a refusal since the internal action will eventually happen: as we cannot
sit at this node for ever it cannot give rise to a refusal. In other words, we have
to wait for the τ ’s to run out before we get refusals. In Figure 3.3 we see how to
calculate the failures of a few simple processes in this way. Assuming the alphabet
is {a, b, c}, each stable node is labelled with its maximal refusal. (If a node can
refuse X , then it can clearly refuse Y ⊆ X .)

P1 is (a → b → STOP) � (b → a → STOP) (or equivalently (a → STOP) |||
(b → STOP)). It has a deterministic transition system (as it has no τ ’s, and
no ambiguous branching on any visible actions). It follows that there is a
unique path through the tree for any trace. Thus, there will be just one max-
imal refusal for any trace s : the complement of initials(P/s). Examples of
this process’s failures are (〈〉, {}), (〈〉, {c}), (〈a〉, {a, c}) and (〈b, a〉, {a, b, c}).

P2 shows how internal actions can introduce nondeterminism. It could have
arisen as ((c → a → STOP) � (b → c → STOP)) \ c. Its initial refusals are
the subsets of {b, c} but it can also accept b initially. Its complete failures
are

{(〈〉,X) | X ⊆ {b, c}} ∪ {(〈a〉,X), (〈b〉,X) | X ⊆ {a, b, c}}

P3 could be (a → STOP) 	 (b → STOP). It has two initial τ ’s to choose from.
Its initial refusals are {X | {a, b} ⊆ X }. It can refuse either a or b separately
but must accept something if {a, b} is offered. Notice how this is different
from the initial behaviours of both P1 (which must accept either) and P2

(which must accept a), even though all three have exactly the same initial
events possible.

P4 which could be (c → a → STOP) � (c → b → STOP) shows how ambiguous
branching on a visible action can lead to nondeterminism. Its refusals after
the trace 〈c〉 are {X | {a, b} ⊆ X }. The similarity to the initial refusals of
P3 is no accident: we know this process is equivalent to c → (a → STOP 	
b → STOP) and the equality simply reflects this fact.

3.3 A basic guide to failures and divergences 97

a

a

b

b

bτ

τa

τ τ

a b

{c}

{b,c}

{a,c}

{a,b}

P P

PP

1 2

3 4

c c

a b

{a,c}

{a,b,c} {a,b,c}

{a,b,c}{a,b,c}

{b,c}

{b,c}{a,c}

{a,b,c} {a,b,c}

{a,b,c} {a,b,c}

{b,c}

Figure 3.3: The refusal sets of some transition systems.

98 Hiding and renaming

One process failures-refines another: P
F Q if and only if

traces(P) ⊇ traces(Q) and failures(P) ⊇ failures(Q)

or, in other words, if every trace s of Q is possible for P and every refusal after this
trace is possible for P . Q can neither accept an event nor refuse one unless P does.
Among the processes of Figure 3.3, P2 and P3 are trace equivalent and both trace-
refine P1. The only failures refinement that holds is that P2 refines P3. Make sure
you understand why this is. We can define two processes to be failures-equivalent
(=F) if each failures-refines the other.

Failures allow us to distinguish between internal and external choice, some-
thing we could not do with traces alone. This is shown by the examples in Figure
3.3, but comes across more clearly when we consider the failures of

Q1 = (a → STOP) � (b → STOP) and

Q2 = (a → STOP) 	 (b → STOP)

If Σ = {a, b}, the only refusal on 〈〉 of the first of these processes is {}: the only time
it will not communicate is if it is offered nothing at all! Q2 can additionally refuse
{a} and {b}, but cannot refuse {a, b} since whichever way the nondeterministic
choice is resolved it has to accept one or the other. On the other hand, the process

Q3 = STOP 	 ((a → STOP) � (b → STOP))

can refuse any set of events, because it can behave like STOP . In general, a process
can deadlock if, and only if, it can refuse the whole of Σ. The failures specification
of deadlock freedom is thus that, for all traces s , (s , Σ) ∈ failures(P).

Full calculation of the failures of Q1, Q2 and Q3 would reveal that

Q3
F Q2
F Q1

Failures refinement gets very close to the natural notion of what refinement
‘ought’ to mean for CSP processes. The only real problem comes from the phe-
nomenon of divergence that we noticed earlier in this chapter. A diverging process
such as (μ p.a → p) \ a is neither doing anything useful nor is it refusing anything
in the sense discussed above. The only really satisfactory way of dealing with diver-
gence is to record the set of traces on which a process can diverge. We can calculate
this from one of our transition systems, since divergence here is simply an infinite
path of τ ’s (if this graph is finite, this implies the existence of a τ -loop: a path of
τ ’s from a node back to itself).

When we look into the mathematical theory of how divergences are calcu-
lated, it turns out that seeing accurately what a process can do after it has already

3.3 A basic guide to failures and divergences 99

been able to diverge is very difficult, and not really worth the effort.6 (This can
happen, for example, if a process has a nondeterministic choice between diverging
or doing something else.) For once we take a process up to the point where it can
diverge, there is no way we can rely on it doing anything. Therefore, the standard
mathematical model of CSP, the failures/divergences model, takes the decision that
any two processes that can diverge immediately (whatever else they can do) are (i)
equivalent and (ii) completely useless. Specifically, once a process can diverge, we
assume (whether it is true or not) that it can then perform any trace, refuse any-
thing, and always diverge on any later trace. divergences(P) thus contains not only
the traces s on which P can diverge, but also all extensions s t̂ of such traces. We
also need extended, strict sets of traces and failures when working with divergences:

traces⊥(P) = traces(P) ∪ divergences(P)
failures⊥(P) = failures(P) ∪ {(s ,X) | s ∈ divergences(P)}

You can think of the second of these as saying that a process which is diverging is,
in effect, refusing everything. The representation of a process P in this model is

(failures⊥(P), divergences(P))

This can either be extracted from the transition graph by simply recording which
behaviours it can perform, as in Figure 3.3, or via clauses like those seen earlier
for traces(P). The latter can be found in Section 8.3, as can further details of
the model, but for now it is quite sufficient for you to think primarily in terms
of the former. That is, after all, essentially how FDR works out the failures and
divergences of a process. Your main aim in reading this section should, perhaps, be
to understand what failures and divergence are, so that you know what it means
when FDR does the calculations involving them for you.

Because of the closure under divergence, over this model any process that
can diverge immediately (i.e., without any visible communication) is equivalent to
div, no matter what else it may also be able to do.

One process failures/divergences-refines another, written P
FD Q (or just
P
 Q when the context is clear), if and only if

failures⊥(P) ⊇ failures⊥(Q) ∧ divergences(P) ⊇ divergences(Q)

(it turns out that this implies the corresponding relation for traces, so there is no
need to include that clause). div is the least refined process under
FD : div
FD P
for all P .

6On the other hand, the traces model and a refinement of it we will be meeting in Section 8.4,

the stable failures model, allow one to see beyond any divergence by ignoring divergence altogether.

100 Hiding and renaming

The corresponding notion =FD of equivalence in the failures/divergences
model is the standard notion of equivalence for CSP processes over most of the
literature.7

Even though almost all of the correct processes one ever writes are divergence-
free, we often need to be able to demonstrate that this is indeed so for ones we have
constructed. This is why we need to go to the trouble of including divergence in
our model of refinement: if it were not there, we would have no way of telling if a
process could diverge or not.

It is only when we know the failures and divergences of a process that we
can definitively tell whether it is deterministic or not. A process P is defined to
be deterministic if, and only if, divergences(P) = {} and s 〈̂a〉 ∈ traces(P) ⇒
(s , {a}) ∈ failures(P). In other words, it cannot diverge, and never has the choice
of both accepting and refusing any action. It turns out that the deterministic
processes are exactly the maximal ones under
FD – the processes that have no
proper refinements. P
FD Q means, rather precisely, that Q is more deterministic
than P . Of the processes in Figure 3.3, only P1 is deterministic (as any process
with a deterministic transition system is, though the reverse is not true). We will
study the class of deterministic processes further in Part II of this book, especially
in Section 9.1. The unique fixed point (UFP) rule is valid with respect to both
failures and failures/divergences equivalence.

Failures and divergences in specifications

These three levels of refinement – traces, failures, and failures/divergences – are
what FDR allows you to check. Indeed, FDR stands for Failures/Divergences Re-
finement.

The two new modes of refinement
F and
FD allow us to formulate stronger
specifications of processes than are possible with traces refinement, since you can
now make assertions about what a process can refuse and when it can diverge as
well as what traces it can perform. Just as with trace specifications, they can
be formulated either as behavioural specifications or, directly, as their characteris-
tic processes. Thus deadlock freedom (either as a failures or failures/divergences
specification) becomes the behavioural specification

∀ s .(s , Σ) ∈ failures(P) or ref = Σ

In other words, P can never refuse all events; so there is always something it can do.
The right-hand form extends the convention seen on page 43, that tr represents an
arbitrary trace, to the assumption that (tr , ref) is an arbitrary failure (i.e., tr and

7Though one needs to be careful with unboundedly nondeterministic ones.

3.4 Tools 101

ref are respectively identifiers used to represent a trace and a refusal within a logical
expression which thus becomes a predicate on failures). tr does not appear in the
above simply because this specification is independent of traces. The characteristic
process of the above deadlock specification is DFΣ, where

DFA = 	{a → DFA | a ∈ A}

DFΣ is, of course, the most nondeterministic deadlock-free process for, just
as over the traces model, the characteristic process of any behavioural specification
is equivalent to the nondeterministic choice of all processes that meet it. In similar
vein, the most nondeterministic divergence-free process (in the failures/divergences
model) is Chaos .

A specification can be extremely abstract like the above, can be highly spe-
cific and attempt to define all the behaviour of one’s implementation – for example
if Q is a deterministic process such as B2

0 on page 87 then Q
FD P is equivalent
to P =FD Q and so P must be a complete description of intended functional be-
haviour – or can be somewhere in between. A good example of the latter is the
buffer specification which we will study in Section 5.1.

Divergence checking is a more complex activity than the rest of what FDR
does in its ‘checking’ phase, and therefore
FD checks are slower. In practice we
often know that processes are divergence-free for independent reasons. The most
common use of failures checks is for proving full refinements P
FD Q for processes
P and Q that are already known (or are assumed) to be divergence-free. Indeed,
at the time of writing, the author almost always structures a substantial failures/
divergences check this way. We will see some more sophisticated circumstances
where one has to check
F rather than
FD in later chapters.

Exercise 3.3.1 What failures/divergences refinements hold between the following

processes: div, Chaos{a,b}, Chaos{a}, DF {a,b}, RUN {a,b}, RUN {a}, STOP , a → div and

a → STOP? Which of them are deterministic?

Exercise 3.3.2 Formulate a behavioural failures specification (using the variables tr

and ref as discussed above) which asserts that a process must always accept the event a

if the number of a’s in tr is less than that of b’s in tr . What is the characteristic process

(i) on the assumption that Σ = {a, b} and (ii) on the assumption that it is larger?

3.4 Tools

The notation for hiding in machine-readable CSP is almost exactly the same as we
have used already: P\X, where X must be a set of events. While it is often convenient
to have X a single event or channel, or a set of channels, in written text, you must

102 Hiding and renaming

convert it to the proper type for running. This is made easier by the {|a,b|}

notation, which corresponds to the notation {| a, b |} we have already defined.

There is only one way of writing renaming, which (apart from the precise
way it is written) is a simple extension of the ‘substitution’ style renaming we saw
at the end of the section: you create a relation by using variations on the notation

P[[b <- a, d <- c]]

This relation maps b to a, d to c and leaves all other events alone. a,b,c,d can be
simple events or channel names. If you want to map one event to many (as in inverse
function renaming) this can be done by using the same event on the left-hand side
of <- more than once: P[[a <- a, a <- b]] ‘shadows’ each a with the alternative
of a b. More sophisticated forms of this notation exist, in which the renamed pairs
are generated rather than explicitly listed: see Appendix B.

Process naming in the a.P style is not defined in machine-readable CSP at
the time of writing. The reasons for this, which are connected with the type-theory
of channels, are discussed on page 114 (in connection with the main application of
process naming), together with how to get around this restriction.

Chapter 4

Piping and enslavement

In the previous chapter we pointed out that the most natural model of a real parallel
system is probably to have a collection of processes synchronizing pairwise on their
communications, and with these internal communications hidden. In this chapter
we see two operators which model common ways in which such systems are put
together. They are both derived operators, in the sense that they are both built
out of – and can thus be thought of as abbreviations for – other ones.

4.1 Piping

A common and simple form of parallel composition is pipelining: taking a sequence
of processes which input on one channel and output on another, and connecting
them in sequence, the outputs of the rth process being fed into the inputs of the
(r+1)th. We have already seen one example of this, namely the chain of COPY
processes.

If it has been decided to use this form of network and furthermore to hide
the internal communications, then the careful assignment of distinct labels to the
individual channels can be a little tiresome. The piping or chaining operator >>

provides a more convenient way of creating such systems. It assumes that the
processes have all been defined so that their input channels are all called left and
their output channels are all called right .1 If we combine two or more of them
together then it is natural that the input and output channels of the whole should
retain these names. Thus, P >> Q connects the right channel of P to the left channel
of Q and hides these internal communications. This leaves the left channel of P

1Of course the choice of this pair of names is somewhat arbitrary. Sometimes one sees in and

out used instead.

104 Piping and enslavement

and the right channel of Q visible externally.

We can now write the sequence of COPY processes with hidden internal
communication as

COPY >>COPY >> . . .>> COPY

where the input and output channels are now left and right rather than c0 and cn
of the previous example.

The piping operator can be expressed in terms of renaming, parallel and
hiding: P >> Q =

(P [[right ,mid/mid, right]] {|left,mid|}‖{|mid,right |}

Q [[mid , left/left, mid]]) \ {| mid |}

where it is assumed left , right and the new channel name mid all have the same
type T . The reason for swapping the pairs (left ,mid) and (mid , right) rather than
simply using P [[mid/right]] and Q [[mid/left]] is to guard against the possibility that
P or Q might already have been able to communicate on the mid chosen. It makes
absolutely sure that the renamings we are using in this definition are 1–1.

Though this definition is actually symmetrical between left and right , the
piping operator is always used so that left is an ‘input’ channel (in the sense that
it accepts any element of {| left |} whenever it accepts any) and right is an ‘out-
put’ channel. In other words, communications usually take the forms ‘left?x ’ and
‘right !e’.

The piping operator is distributive in both its arguments (a fact that follows
from the distributivity of the operators used above to construct it) and associative.

(P 	 Q)>>R = (P >>R) 	 (Q >>R) 〈>>-dist-l〉 (4.1)

P >>(Q 	 R) = (P >>Q) 	 (P >>R) 〈>>-dist-r〉 (4.2)

(P >>Q)>>R = P >>(Q >> R) 〈>>-assoc〉 (4.3)

This last fact, which is so intuitively obvious that we have already taken advantage
of it without thinking in the COPY -chain, is actually rather subtle mathematically.2

In the left-hand side of the law, the communications between P and Q are hidden
before those between Q and R, and vice-versa on the right-hand side. It is intimately

2A number of mathematical models have been discarded because they failed this test!

4.1 Piping 105

tied up with the laws for interchanging parallel and hiding (〈hide-X ‖Y -dist〉 (3.7)

and 〈hide-‖
X

-dist〉 (3.8)).

There is also a range of laws for allowing us to compute the first-step be-
haviour of P >> Q in common cases. These special forms are more easily applicable
than coding the entire set into a single law: in all of these it is assumed that x is
not free in Q nor y in P .

left?x → P >> left?y → Q = left?x → (P >> left?y → Q) 〈>>-step 1〉 (4.4)

right !x → P >> right !y → Q = right !y → (right !x → P >>Q) 〈>>-step 2〉 (4.5)

right !x → P >> left?y → Q = P >> Q [x/y] 〈>>-step 3〉 (4.6)

left?x → P >> right !y → Q = left?x → (P >> right !y → Q)
� right !y → (left?x → P >>Q)

〈>>-step 4〉 (4.7)

The first two correspond to the situation where only the left- or right-hand sides
can move because the other is stuck waiting for it. The third is what happens when
each is willing to communicate across the hidden channel, and the final one shows
the choice that appears when both are able to talk externally.

We can see these in operation if we consider the process COPY >>COPY .
This equals

(left?x → right !x → COPY)>>

(left?y → right !y → COPY)

= left?x → ((right !x → COPY)>>

(left?y → right !y → COPY)) (〈>>-step 1〉)
= left?x → (COPY >>(right !x → COPY)) (〈>>-step 3〉)
= left?x → (left?y → right !y → COPY >>

(right !x → COPY))

= left?x → (right !x → (COPY >> COPY)
� left?y →
(right !y → COPY >> right !x → COPY)) (〈>>-step 4〉)

etc.

(By naming the various parallel terms, as we have done previously, this could have
been shown equivalent by this unfolding to a very similar mutual recursion that
essentially the same process was proved equivalent to in the previous chapter.)

106 Piping and enslavement

While the above laws deal with all the cases where the process at either end
of >> is able to communicate exactly one of input and output, and we have the
obvious cases of any input (left?x) and only one output (right !x) being possible,
it can of course happen that more complex situations arise. The following law
accounts for all of these cases: it is found by combining the step laws for parallel,
renaming and hiding (to the last of which it bears an obvious resemblance). If

P = (left?x : A→ P ′) � (right?x : B → P ′′)
Q = (left?y : C → Q ′) � (right?y : D → Q ′′)

(where any of A,B ,C ,D can be empty and, if not, A,C are likely to be the whole
of T and B ,D are probably singletons), and x , y are respectively not free in Q , P ,
then

P >>Q = (left?x : A→ (P ′ >>Q)) � (right?y : D → (P >>Q ′′))

<I B ∩ C = {}>I
(left?x : A→ (P ′ >>Q)) � (right?y : D → (P >>Q ′′))
� 	{P ′′[z/x] >>Q ′[z/y] | z ∈ B ∩ C}

〈>>-step〉 (4.8)

The traces of P >>Q are simple to compute: assuming, for a slight simplification,
P and Q only communicate in the set {| left , right |} they are3

traces(P >>Q) =
{u ∈ {| left , right |}∗ | ∃ s ∈ traces(P), t ∈ traces(Q).
∀ u ′ ≤ u. ∃ .s ′ ≤ s , t ′ ≤ t .

u ′ ↓ left = s ′ ↓ left ∧ s ′ ↓ right = t ′ ↓ left ∧ t ′ ↓ right = u ′ ↓ right}

Clearly this operator has its main uses modelling applications where infor-
mation is passed along a sequence of processes. For example,

ITER = left?(data , input)→ right !(data,F (data , input)) → ITER

is a process for performing one step of an iteration on some data. So if data is a
number and

F (d , x) =
(

x +
d
x

)
/2

then it carries one step of the Newton’s method approximation to a square root.
By piping N copies of ITER together we apply this number of iterations to each

3In the first edition of this book there was an error in this definition.

4.1 Piping 107

data and starting value:

ITER >> ITER >> . . . >> ITER

Of course there is no reason why all the processes have to perform the same task.

The other primary application of the piping operator is in the study of com-
munications mechanisms and protocols. A typical application here might be dealing
with a faulty communication channel, or simply one which uses a different repre-
sentation of information than the one we wish to deal with (encrypted, perhaps).
Suppose, therefore, that we wish to create a transparent channel of four-byte words
W , allowing a certain amount of buffering between two processes, when what we
are supplied with is an unreliable channel M of bytes Byte which might lose or cor-
rupt some proportion of its throughput. A good way of modelling this is to design
processes T and R (transmitter and receiver) such that

T >> M >> R

is a buffer of type W . A buffer is a process which, like COPY and B∞
〈〉 (page 19)

copies information from its input to its output, preserving order and without loss,
and such that it never refuses to output an item it contains and will not refuse to
input when empty. We will give a formal specification of this later (page 118).

The difficulty of defining T and R will depend on just how bad we allow
M to be. Our task might be made easier by splitting each of the processes into
two: T = T1 >>T2 and R = R2 >>R1 should be such that T2 >> M >>R2 is
a buffer of some type which it is easier to correct than W over the medium M
(probably Byte or bits {0, 1}) and T1 >> B >> R1 a is a buffer of type W whenever
B is one of the intermediate type. This modularization could be taken further by
dividing the problem into yet more layers. See Exercises 4.1.3 and 4.1.4 for details
of what the processes we have been discussing might look like. The idea of dividing
communications protocols into layers like this is of great practical importance since
it allows a separation of concerns (e.g., dealing with security, error correction, and
message structuring separately).

There is a natural relationship between the piping operator and buffers. It
will generally be true, for example, that P >> Q is a buffer if P and Q are. This
will be discussed more in the next chapter.

By combining >> with recursions, we can define dynamically expanding
chains of processes. For example, we can define an infinite-capacity buffer with
the same behaviour as B∞

〈〉 without using infinite mutual recursion, just as ||| al-
lowed us to do this with COUNT .

B+ = left?x → (B+ >> right !x → COPY)

108 Piping and enslavement

Since the definition of piping involves hiding, we are not trivially able to
assert that this recursion is constructive or guarded. In fact it is, and a formal
proof of this (for which we will need further mathematical machinery) follows the
pattern of the informal argument below.

A recursion P = F (P) is constructive if, in order to see n + 1 steps of the
behaviour of F (P), we need only explore n steps of the behaviour of P . In other
words, if P and P ′ are indistinguishable up to and including n communications,
then F (P) and F (P ′) are indistinguishable up to and including n + 1. Now the
initial input of the B+ recursion clearly gives one step of behaviour without referring
at all to the recursive call, so it will be enough to show that the process

B+ >> right !x → COPY

that follows it is non-destructive: has always communicated as many actions as
it has used of B+. But this is actually rather obvious, since every communication
of B+ is either visible (contributing to the length of the trace) or an output to
right !x → COPY . But this latter process has always output at least as many things
as it has input, so every communication of B+ that gets hidden is compensated for
by one of these outputs. For the mathematics underpinning this argument, see
Section 8.2.

Exercise 4.1.1 Show that if P and Q satisfy the trace specification of a buffer:

tr ∈ {| left , right |}∗ ∧ tr ↓ right ≤ tr ↓ left , then so does P >>Q .

Exercise 4.1.2 Newton’s method of approximating the square root of a positive num-

ber x is, starting with an arbitrary guess r0, to set rn+1 = (rn + x/rn)/2.

(i) Devise processes INIT and FINAL such that

INIT >> ITER >> ITER . . . >> ITER >>FINAL

inputs a number and outputs the N th iteration (there being N copies of the ITER

process defined earlier). Choose x/2 as the first guess at the square root.

(ii) Now, by using the pattern of recursion

P = left?(d , r) → ((right !r → P)<I b>I (I (d , x) >>P))

where you should specify what b and I are, create a system which iterates as many

times as it has to so that | r2 − x |< ε (ε is a small positive constant). What

happens if the second number input to this dynamic network takes less, the same,

or more iterations than the first?

4.2 Enslavement 109

Exercise 4.1.3 Devise processes T1 and R1 that unpack a word of four bytes into its

individual 32 bits, and pack them up again. Thus, T1 >> R1 should be a buffer for words,

though the internal channel should be passing bits. (The best way to represent a word is

as a sequence of 32 bits.)

Exercise 4.1.4 M is to be a model of an unreliable medium which transmits values

in the set {0, 1, 2}. It sometimes loses data, but must transmit at least one out of every

N . Define the processes Mi for i = 0, 1, . . . ,N−1, where Mi behaves like M0 except that

it may lose i values before being obliged to transmit one correctly. Which of these is the

appropriate definition of M ?

Now define processes T † and R† such that T † >>M >> R† is a buffer of type {0, 1},
and explain informally why your definition works. Hint: use the value 2 as a punctuation

mark between transmitted values, using sufficient repetition to ensure one of each block

gets through.

Harder : do the same thing when the type of the medium is only {0, 1}.

4.2 Enslavement

It is useful to have an operator representing the situation where one process acts
as the slave of another. The slave is only allowed to communicate with its master,
and all communications between master and slave are hidden. The general case of
this operation is written

P//Y Q

which means the same as (P Σ‖Y Q) \ Y . It is usual to use it in the case where the
slave has some name, m say, and the master’s communications with the slave are
just those with the name m in the same sense we saw it applied in process naming
earlier. This special form is written

P//m:Q

which means the same as P//Mm.Q where M is the set of all elements of Σ of the
form m.a.

As with >>, the laws and trace-set of P//Y Q can be deduced from those
of the operators it is built from. Just as >> is associative, meaning that we can
introduce and hide the internal communications in either order, enslavement satisfies
the following law, which one might term a symmetry principle: if Y ∩ Z = {} then

(P//Y Q)//ZR = (P//ZR)//Y Q 〈//-sym〉 (4.9)

110 Piping and enslavement

so, in particular, if m and n are distinct names then

(P//m:Q)//n:R = (P//n:R)//m:Q

Enslavement is, of course, distributive in each argument and, like >>, it is best in
most cases to divide the step law into a number of commonly-occurring cases rather
than dealing with the most general one all the time. These are left as an exercise.

One common use of enslavement is to represent one process providing a
computational service to another, analogous to a (remote) procedure call. For
example, if we were modelling a microprocessor, it might well be appropriate to
represent the floating-point unit (FPU) as a slave to the CPU. The FPU might
then be abstractly modelled by the process

FPU = fpreq?(data , op) → fpout !fpu(data, op) → FPU

where fpu is a function defining the appropriate result for each floating-point cal-
culation. In the combination CPU // fp:FPU the CPU would then send requests
to the FPU by a communication such as fp.fpreq !((a, b), +), and could then carry
out some more operations before it required the result of this combination, which
it could get by inputting fp.fpout?x .

If the designer required a higher MFLOP rate (i.e., floating point speed) than
was obtainable from this simple server, there are at least two approaches he could
take to get greater performance. One would simply be to provide more FPUs, so
that with two of them the combination might look like

(CPU // fp1:FPU)// fp2:FPU

Rather than provide two entirely separate boxes, he might prefer to split one into
several phases by pipelining, so that it is able to handle more than one operation at
a time. If there were three of these (perhaps denormalizing and aligning in FPU 1,
arithmetic in FPU 2 and normalizing, error detection and handling in FPU 3), the
FPU might then become something like

(FPU 1>> FPU 2 >>FPU 3)[[fpreq , fpout/left , right]]

and able to deal with three computations at once. This approach has the advantage
that it probably requires less extra silicon than providing three independent units,
but the disadvantages that one must always take the results in the order in which
the data was entered and that unless the three phases are well-balanced in the time
they take (probably not true in this case) the performance would not be so good.

Another use of enslavement is to provide a CSP process with access to a state
which can be assigned to, read from, or have other similar operations applied to it.

4.2 Enslavement 111

A slave process representing a simple variable might be written

VAR(x) = assign?y → VAR(y) � read !x → VAR(x)

The starting value of the variable could be dealt with by introducing a special error
value, or by making the initial state

	{VAR(x) | x ∈ T}

We can take this idea further and provide more complex data structures with
different operations. These can, of course, be represented as a non-parallel CSP
process with appropriate internal state. In the case of some dynamic structures
there are interesting ways of modelling them via a combination of enslavement and
recursion.

Example 4.2.1 (sets via enslavement) If we want to model a finite set to

which we can add elements, remove them, and test for membership, then this can

be done with the recursive process defined

SET = add?x → (Cx//m:SET)
� del?x → SET
� isin?x → no → SET , where

Cx = add?y → (Cx <I y = x>I m.add !y → Cx)
� del?y → (E<I y = x>I m.del !y → Cx)
� isin?y → (yes → Cx <I y = x>I

m.isin !y → m?a : {yes ,no} → a → Cx)

E = add?y → m.del !y → Cy

� del?y → m.del !y → E
� isin?y → m.isin !y → m?a : {yes ,no} → a → E

This works by holding the first object entered and storing the rest of the set in a

recursively called slave set. Cx represents one cell of the resultant network which

contains x , while E is one which is empty because the last thing it held has been

deleted. Notice that when E is refilled (which it is by the first new element to come

along) then the same element is deleted from E ’s slave. This is necessary to get the

system to work correctly – see if you can work out why.

The essential feature of this recursion is that it creates a network composed

of a lot of simple cells, each of which was generated by one recursive call and which

can in turn make similar recursive calls. In the case above the network is always

a chain (though rather different from the sort created by >> since it does all its

112 Piping and enslavement

external communication at one end), because each cell only has one potential slave.

If there are two then we get a binary tree, and so on.4 (End of example)

Using a similar strategy we can create an interesting version of the much-
used example of a counter, in which each cell either knows that it and its slave are
set to zero (and communicating the event iszero) or that its slave is set to exactly
one less than itself.

Zero// = up → (Succ//m:Zero//)
� iszero → Zero//

Succ = down → (m.iszero → NoSucc)
� m.down → Succ)

� up → m.up → Succ

NoSucc = iszero → NoSucc
� up → Succ

This is well-defined and is equivalent to the obvious sequential counter process with
the iszero event added to the zero state. An interesting variant can be found in
Section 8.2, where we study how fixed points of recursions like this evolve and can be
regarded as constructive despite the presence of hiding in the enslavement operator.

Example 4.2.2 (quicksort) Many divide-and-conquer algorithms can be imple-

mented as parallel CSP ‘programs’ using recursive enslavement. For example, the

following gives a version of quicksort.

Qsort = last → end → Qsort
� in?x → ((IN x//up:Qsort)//down :Qsort)

IN x = in?y → ((up.in!y → IN x)<I y > x>I (down .in !y → IN x))
� last → up.last → down .last → OUTAx

OUTAx = up.out?y → out !y → OUTAx

� up.end → out !x → OUTB

OUTB = down .out?y → out !y → OUTB
� down .end → end → X

X = last → end → X
� in?x → INx

4No network created using enslavement alone can be anything other than a tree – a connected

network with no cycles. We will find that trees play an important role in our discussion of deadlock

in Chapter 13.

4.2 Enslavement 113

Qsort takes a sequence of values on channel in, the end of which is signalled by last .
It then sorts these into descending order and outputs them on out , indicating the

end of the output phase by end . The first element of the input list is used as the

pivot for quicksort, which is applied recursively to the elements of the remainder

of the input which are respectively greater than, or less-than-or-equal-to, the pivot.

The state X is present so that the network can be re-used: see if you can understand

what happens when this occurs. (End of example)

Exercise 4.2.1 Create case-by-case step laws for (?x : A → P ′)//Y (?x : B → Q ′).

You should deal (at least) with the cases A ∩ Y = {} and A ⊆ Y ∧ (Y ∩ A ∩ B) �= {}.
What is the general step law (recalling 〈>>-step〉 (4.8))?

Exercise 4.2.2 Define a one-step tail recursion COUNT † that behaves equivalently

to Zero// and prove this equivalence using the UFP rule and the laws you defined in the

previous exercise. You can assume, if required, that the Zero// recursion is constructive.

Hint: the most elegant way to prove this equivalence is probably in two applications

of UFP. The first shows that a vector whose (n+1)th component is Succ//m : COUNT †
n

(you should define the 0th component) is equivalent to COUNT †. The second uses this

to justify an application of UFP to the Zero// recursion. It can also be done directly but

you then have to be careful with the fact that Zero// has many states corresponding to each

n ∈ N.

Exercise 4.2.3 Mergesort is another divide-and-conquer sorting algorithm. It works

by dividing the input list into two parts (as equal as possible in length), recursively sorting

these, and then merging the two sorted results into a single sorted list. Adapt the strategy

used above for quicksort, copying the recursive structure of a master and two slaves, to

give a CSP version of this.

Hints: split the input by sending odd- and even-numbered elements of the input,

respectively, to the two slaves. Be careful that your design does not diverge for an input

list of length 1.

Exercise 4.2.4 Produce a modified version of the process SET which does all of the

following.

(a) The elements are stored in increasing order: if a cell receives an add.x with x less

than its current value y , then y is pushed on and x retained.

(b) The invariant preserved by (a) is exploited when deciding whether to send a del or

isin message to the slave.

(c) It is possible for the element held by a slave to drop down into its immediate master

if the master has become empty (via a del or by doing this new function with its

own master).

(d) The set can always communicate on one of two new channels: least .x outputs the

least element from the set (the one held in the lowest cell) and removes it from the

set, and isempty can be communicated whenever it is empty.

114 Piping and enslavement

In what ways is this new version more efficient than the original? How would you convert

it into a process (externally) equivalent to the original?

4.3 Tools

The piping and enslavement operators are not directly supported by machine-
readable CSP. The reasons for this are both related to the way this version of
the notation treats its channels.

The problem with the piping operator is the way it gives special importance
to the two channels left and right . There is nothing wrong with that in itself, but
many (perhaps most) large examples of pipes will involve a series of processes

P1 >> P2 >> . . . >>Pn−1 >>Pn

where the interfaces do not all have the same type. (Consider, for example, the
layered protocol idea described on page 107.) In order to make sense of such an
example it is necessary to be able to think of the channels left and right as having
different types at different points in the program: for obvious reasons this clashes
with the type discipline which says that each channel is declared with a single type.

There is no problem with the enslavement operator P//XQ itself: it does not
mention any specific channel and it is easy to define in terms of other constructs
which are supported. The problem comes because this operator is most often used
(as it was in this chapter) in its ‘named slave’ form P//a : Q . Machine-readable CSP
presently insists that each channel comprises an atomic name and a type. Adding
an extra name onto the beginning of an event does not preserve this discipline.
It is easy to achieve the same effect of a named version of a process by using
parameterization and adding the name as a component of the type of each channel,
thus

B(n) = in.n?x -> out.n!x -> B(n)

[] halt.n -> STOP

might replace n.B , where

B = in?x → out !x → B
� halt → STOP

Since this is a significantly different style and it is easy to achieve the effect of
enslavement via other constructs, it was decided not to include it directly in the
machine-readable syntax.

4.3 Tools 115

One should also bear in mind that many of the most interesting examples of
the use of enslavement are dynamic networks (i.e., recursions through enslavement).
In their most natural forms these, being infinite state, will not work on FDR, though
it can be entertaining to apply an animator such as ProBE to them.

It is, in fact, straightforward to re-create any network that comes out of
a pen-and-paper use of >> and //. This can either be done with the standard
parallel, renaming and hiding operators (in much the same way as these operators
were derived in the first place) or using a recently-added construct specific to the
machine-readable language. If (a1,b1), (a2,b2), . . . , (an,bn) are pairs of channels
where the two in each pair have the same type, then

P [a1 <-> b1, a2 <-> b2, ... , an <-> bn] Q

puts P and Q in parallel, joining the given pairs of channels together (with left-
and right-hand ones of each pair being treated as a channel of P and Q respec-
tively) and hides the resulting communications. Thus we can, if P and Q are two
processes that do not communicate outside {| left , right |}, implement P >> Q as
P [right <-> left] Q.

Unlike >>, this is not an associative operator and therefore must be fully
bracketed. The main cases where it fails to associate are where the different uses of
it mention different but overlapping sets of channels. We can, for example, achieve
a result very close to enslavement: suppose P is a process with arrays of channels
call.i and return.i (for i ∈ {1, . . . ,n}) and that Slave is a process with channels
call’ and return’ designed to perform some subroutine. One can enslave n copies
of Slave to P by the construct

(...(P [call.1 <-> call’, return.1 <-> return’] Slave)

[call.2 <-> call’, return.2 <-> return’] Slave)

...

[call.n <-> call’, return.n <-> return’] Slave)

Note how the same channels of the various copies of Slave are attached to different
channels of P. Other bracketings of this would mean very different (and generally
nonsensical in this context) things.

There are also extensions to allow the pairs of tied channels to be defined by
a comprehension (as for sets and renamings, for example) and for combining a list
of processes under a replicated version of the operator.

The example files on the web site that illustrate this chapter use this new
construct.

116 Piping and enslavement

Chapter 5

Buffers and communication

We have already met buffer processes on numerous occasions. They are ones which
input data on one channel and output it in the same order on another. While
this may seem to be an extremely simple thing to achieve, you should bear in mind
that we might have to do so between two nodes of a complex and perhaps unreliable
network. Communications protocols are an extremely important application of CSP,
and it is almost certain that the appropriate specification for such a protocol will
either simply be that it is a buffer, or be closely related to this. For that reason,
and also because they provide an excellent example of how to build and reason
about a CSP specification, we will look in detail in this chapter at buffers, their
relationship to the piping operator >>, and discuss some of the more elementary
communications protocol topics.

5.1 Pipes and buffers

The trace specification of a buffer is that its alphabet is left .T ∪ right .T for some
type T , and that for any trace s , s ↓ right ≤ s ↓ left .1 This is as much as we can
usefully say with a trace specification. This does, like any trace specification, pass
some unlikely processes, such as

• STOP which never does anything

• μ p.left?x → p which accepts inputs, but never gives them back

1Invariably T will be the type of left and right so that, for example {| left |} = left .T . We will

use whichever of these notations is most appropriate in future discussions of buffers, though the

one on the left is problematic in cases where left and right may be used with different types in the

internal and external channels of a buffer constructed as a chain.

118 Buffers and communication

• μ p.left .0 → right .0→ p which transmits only 0’s

• STOP 	 COPY , which may behave perfectly, but may also deadlock.

All of these fall short, in one way or another, because they either may, or must,
refuse some communication we might reasonably expect a buffer to agree to. What
we need is to use a failures/divergences specification stating:

(i) All a buffer does is input on left and output on right . It correctly copies all
its inputs to its output channel, without loss or reordering.

(ii) Whenever it is empty (i.e., it has output everything it has input) then it
must accept any input.

(iii) Whenever it is non-empty, then it cannot refuse to output.

This can easily be translated into a specification in terms of failures and
divergences. Since a diverging process is not responding to its environment; whether
an input or output is expected of it, it is clear that we cannot allow a buffer to
diverge. We therefore stipulate that, for any buffer B , divergences(B) = {}. The
rest of the specification is then:

(i) s ∈ traces(B) ⇒ s ∈ (left .T ∪ right .T)∗ ∧ s ↓ right ≤ s ↓ left

(ii) (s ,X) ∈ failures(B) ∧ s ↓ right = s ↓ left ⇒ X ∩ left .T = {}
(iii) (s ,X) ∈ failures(B) ∧ s ↓ right < s ↓ left ⇒ right .T ⊆ X

These conditions simply translate the corresponding English clauses into mathemat-
ics. You should note, in particular, the statements that (ii) and (iii) make about the
refusal set X : (ii) asserts that X ∩ left .T = {}, or in other words there is no element
of left .T that the process can refuse; (iii), on the other hand, states right .T ⊆ X ,
a much weaker statement simply saying that there is some output available (if we
give it the opportunity to choose any output, it cannot refuse). This reflects the
asymmetry between input and output, for we expect the environment to choose
what happens on left , but the process to choose what is output on right . In fact,
of course, we can predict exactly which output will appear from (i) – if any output
other than what we would expect then the trace specification would fail. It would
have been equivalent to have stated the following in place of (iii), which ‘looks up’
the next output:

(iii)′ (s ,X) ∈ failures(B) ∧ (s ↓ right)̂ 〈a〉 ≤ s ↓ left ⇒ right .a ∈ X

Any behavioural specification based on failures will follow a pattern some-
what like the above, with a (possibly vacuous) condition on traces combined with

5.1 Pipes and buffers 119

various assertions about what the process may refuse after various classes of trace.
Newcomers to this field are frequently over-optimistic about how much one can de-
duce about the traces from what is stated about refusals. It is tempting to believe
that statements like (iii)′, which state that a particular thing must be offered, imply
that the next event will be that one. This is not so, and even if we were to state
that refusals(P/s) = {X | a ∈ X }, this would not imply that the next event is a –
for the process might be able to nondeterministically accept or refuse some other
b. The principle to follow here is that, if you want to limit what traces a process
can do, then you should do so with a trace specification like (i) above.

Examples of processes that satisfy the above specification are COPY and
B∞
〈〉 . Just as with behavioural trace specifications, any satisfiable behavioural fail-

ures or failures/divergences specification has a most nondeterministic process sat-
isfying it: 	 S , where S is the set of all processes meeting the specification. In
most practical cases this process can be expressed elegantly in CSP in a way that
reflects the structure of the specification. We have already seen the specifications
for deadlock freedom (DF) and divergence freedom (Chaos) amongst many others.

The characteristic process of the buffer specification is BUFF 〈〉 where

BUFF 〈〉 = left?x → BUFF 〈x〉

BUFF s 〈̂a〉 = ((left?x → BUFF 〈x 〉̂ s 〈̂a〉) 	 STOP)
� right !a → BUFF s

This, like B∞
〈〉 , keeps a record of its current contents. However, what it can refuse is

governed by the specification above: it cannot refuse to input when empty, but can
either accept or refuse an input when non-empty; it cannot refuse to output when
non-empty. In general, a process B is a buffer if, and only if, BUFF 〈〉
FD B .

Like B∞
〈〉 , BUFF 〈〉 is infinite state and therefore its usefulness for automated

checking is limited (see Section 5.4 for more details). If you are trying to establish
that a process B is a buffer by proving BUFF 〈〉
FD B with FDR, then if this is
possible there is (as B must certainly be finite state itself for this to be a reasonable
proposition) some limit N on the buffering capacity of B . If using a tool where it
is either impossible or inefficient to deal with infinite-state specifications, in order
to prove B is a buffer you can make an estimate of N , and attempt to prove
BUFFN

〈〉
FD B , where BUFFN
〈〉 is the most nondeterministic N -place buffer:

BUFFN
〈〉 = left?x → BUFFN

〈x〉

BUFFN
s 〈̂a〉 = (((left?x → BUFFN

〈x 〉̂ s 〈̂a〉) 	 STOP)
<I #s < N−1>I STOP)

� right !a → BUFFN
s

120 Buffers and communication

If the attempt to prove refinement fails this will be for one of two reasons: either
your estimate of N was too low, or B is not a buffer. You can tell which one of these
is the problem either by inspecting the counter-example behaviour provided by the
tool, or by checking against the following process, which we will call an N -place
weak buffer: it behaves like a buffer provided the environment does not over-fill it
(with more than N things) but breaks if this does happen

WBUFFN
〈〉 = left?x →WBUFFN

〈x〉

WBUFFN
s 〈̂a〉 = ((left?x → (WBUFFN

〈x 〉̂ s 〈̂a〉<I #s < N−1>I div))
	 STOP)
� right !a →WBUFFN

s

If your process refines WBUFFN
〈〉 this does not mean it is a buffer, but does

mean that the reason why it failed BUFFN
〈〉 was because it could take in more than

N things at once. The strategy should then be repeated with a larger value of N .

If your process fails to refine WBUFFN
〈〉 then it certainly is not a buffer. The

specifications WBUFFN
〈〉 and BUFFN

〈〉 have a ‘sandwiching’ effect on BUFF 〈〉: for
any N

WBUFFN
〈〉
FD WBUFFN+1

〈〉
FD . . .

FD BUFF 〈〉
FD

. . .
FD BUFFN+1
〈〉
FD BUFFN

〈〉

Furthermore, one can show that any finite-state process that refines BUFF 〈〉 will
refine BUFFN

〈〉 for sufficiently large N , and a finite-state process that fails to refine
BUFF 〈〉 will fail to refine WBUFFN

〈〉 for sufficiently large N .2

The piping operator >> is intimately connected with the buffer specification,
as is shown by the following buffer laws.

BL1. If P and Q are buffers, then so is P >>Q . Note that this statement is
equivalent to the fact that

BUFF 〈〉
FD BUFF 〈〉 >> BUFF 〈〉

since the (monotonic) properties of refinement mean that this single refine-
ment implies our law.

2This is in part because the process BUFF 〈〉 is the least upper bound of {WBUFFN
〈〉 | N ∈ N}.

See Chapter 8 and Appendix A for more details.

5.1 Pipes and buffers 121

BL2. If Q uses only the events left .T∪right .T , and P and P >>Q are both buffers,
then Q is a buffer. This law represents a kind of quotient result compared
with the product in BL1. It is also true on the other side, as shown by the
next law.

BL3. If P uses only the events left .T∪right .T , and Q and P >>Q are both buffers,
then P is a buffer.

BL4. If P >> Q is a buffer and x is not free in either P or Q , then the following
process is also a buffer:

left?x → (P >> right !x → Q)

This process makes an arbitrary input (as any buffer must as its first step),
and then behaves like the buffer P >>Q with the additional ability to output
what was input. While this result is a sometimes useful technical fact, the
next law, which is a kind of inverse to it, is the main analytic technique used
to prove that piped systems that are not entirely composed of smaller buffers,
are themselves buffers.

BL5. If x is free in neither P nor Q , which are such that

P >>Q �FD left?x → (P >> right !x → Q)

then P >>Q is a buffer. This is a sort of inductive principle which, very
loosely paraphrased, says: if what the process does at first is OK, and it
then refines an earlier view of itself, then everything it does is OK. Sometimes
when applying this law one finds that it is not general enough because P >>Q
evaluates to left?x → (P ′ >> right !x → Q ′) for some other processes P ′ and
Q ′ for which you suspect P ′ >>Q ′ is also a buffer. By doing this repeatedly
one might find a set {Pλ >>Qλ | λ ∈ Λ} of piped combinations and find
oneself using the following rather more complex generalization of BL5.

BL5′. If x is free in neither Pλ nor Qλ for any λ in Λ, a non-empty indexing set,
and for each λ ∈ Λ

Pλ >>Qλ �FD left?x →	{(Pλ >> right !x → Qλ) | λ ∈ Λ}

then each Pλ >>Qλ is a buffer.

The applications of BL1 are many and obvious: for example, it shows that any
chaining-together of any finite number of buffers using >> is still a buffer. BL2
and BL3 are more subtle properties. They might well be used in combination with
BL5: if that rule can show P >>Q is a buffer and we already know that one of P

122 Buffers and communication

and Q is, then so is the other by BL2 or BL3 (see Exercise 5.1.3). We will see an
application of BL4 a little later. But our main examples for this section will be on
the use of BL5 and BL5′, for these are both the most complex of the laws and the
ones that can establish the strongest-seeming results.

The form of BL1–BL3 ensures that all the visible uses of the channels left
and right have the same type. However, in BL4–BL5′, there is nothing to prevent
the internal channel of the pipe having a different type to the external one, and
indeed these laws are frequently used when this is the case. See Exercise 5.1.2, for
example.

As an extremely simple example of BL5, suppose T = N, the natural numbers
and that

P = left?x → right !(2× x)→ P
Q = left?x → right !(x/2)→ Q

then P >> Q is a buffer by BL5 because of the following simple calculation:

P >>Q = left?x → (right !(2× x)→ P >>Q) by 〈>>-step 1〉
= left?x → (P >> right !((2 × x)/2)→ Q) by 〈>>-step 3〉
= left?x → (P >> right !x → Q)

Example 5.1.1 (overcoming message corruption) For a larger example, sup-

pose we are faced with a communication medium E that corrupts occasional mes-

sages. We want to overcome these errors by constructing processes S and R such

that S >>E >>R is a buffer. To do this we have to make some sort of assumption

about how bad E is: our task would be impossible if it could corrupt any or all mes-

sages. Let us assume it can store only one message at a time, can corrupt at most

one out of any three consecutive messages and, for simplicity, that the messages

being passed are simple bits (0 or 1). We can build a CSP process that represents

the medium: namely the most nondeterministic one that satisfies our assumptions

about its behaviour. E = E0, where

5.1 Pipes and buffers 123

E0 = left?x → (right !x → E0 	 right !(1−x)→ E2)

En+1 = left?x → right !x → En for n = 0, 1

Here, En is the process that is obliged to transmit n values correctly before being

allowed to corrupt another. Notice that though E0 can corrupt the first bit it

receives, it does not have to, and only becomes obliged to transmit two properly

when it does in fact corrupt one. A process that reliably corrupted every third bit

would be much easier to overcome than this one. Notice that (as P 	Q
 P)

E0 = left?x → (right !x → E0 	 right !(1−x)→ E2)

 left?x → right !x → E0 = E1

and hence

E1 = left?x → right !x → E0
 left?x → right !x → E1 = E2

In other words, E0
 E1
 E2, which should not be very surprising given that the

only difference between these processes is how long they have to wait before being
allowed to corrupt a bit.

Notice how the fact that CSP can describe nondeterministic systems (having

the 	 operator) means we can describe system components over which we have no

control and which might be nondeterministic. While it would be a strange decision

to use operators like 	 in a process we are designing to build, having them is useful

in cases like this. What we are in fact doing is to use for E the specification we are

assuming it meets. Of course if, in reality, E fails to satisfy this specification then

any results you may have proved are invalidated.

The obvious technique for overcoming the sort of error displayed by this E is

to transmit each message three times through E and to take a majority vote. The

process descriptions for the sender and receiver process are

Smaj = left?x → right !x → right !x → right !x → Smaj

Rmaj = left?x → left?y → left?z → right !(x <I x = y>I z) → Rmaj

We can use BL5 to prove Smaj >>E >> Rmaj is a buffer using the decom-

position (Smaj >> E)>>Rmaj (i.e., the ‘P ’ of BL5 is Smaj >>E). Denote by Ra
maj ,

Ra,b
maj and Ra,b,c

maj the process Rmaj after inputting the values a, a and b, or a and

b and c respectively (in the given order). Smaj >>E >>Rmaj equals the following

124 Buffers and communication

series of processes, derived methodically using the step and distributive laws of >>.

left?x →
(((right !x → right !x → right !x → Smaj)
>> E0)>> Rmaj) by 〈>>-step 1〉 twice

= left?x →
((right !x → right !x → Smaj)
>>(right !x → E0 	 right !(1−x)→ E2)
>> Rmaj) by 〈>>-step 3〉

= left?x →
((right !x → right !x → Smaj)
>>((E0 >>Rx

maj) 	 (E2 >>R1−x
maj))) by 〈>>-step 3〉 and 〈>>-dist-l〉

= left?x →
(((right !x → right !x → Smaj)

>>(E0 >> Rx
maj))

	 ((right !x → right !x → Smaj)
>>(E2 >> R1−x

maj))) by distributivity

This represents its ‘state’ after the first of the triple communications has taken

place. Similar derivations shows that after the second communication it is

left?x →
(((right !x → Smaj)>>(E0 >> Rx ,x

maj))
	 ((right !x → Smaj)>>(E2 >>Rx ,1−x

maj)))
	 ((right !x → right !x → Smaj)>>(E1 >>R1−x ,x

maj)))

and that when all three communications are taken account of it is equivalent to

left?x →
((Smaj >>(E0 >>Rx ,x ,x

maj))
	 (Smaj >>(E2 >>Rx ,x ,1−x

maj))
	 (Smaj >>(E1 >>Rx ,1−x ,x

maj))
	 (Smaj >>(E0 >>R1−x ,x ,x

maj)))

Since Rx ,x ,x
maj , Rx ,x ,1−x

maj , Rx ,1−x ,x
maj and R1−x ,x ,x

maj all equal right !x → Rmaj , distribu-

tivity implies this equals

left?x → (Smaj >>(E0 	 E2 	 E1 	 E0)>> right !x → Rmaj)

which, since E0
 E1
 E2, equals

left?x → (Smaj >> E0 >> right !x → Rmaj)

5.1 Pipes and buffers 125

which is exactly what is required to prove our result using BL5. (End of example)

In the above example we took advantage of the properties of 	 and refinement
to convert what was rather a complex expression for the ‘final’ state – we were left
with the possibility of any one of E0, E1 and E2 in the middle – into what we
wanted for the basic form of BL5. The more complex second form BL5′ exists for
cases where we are not so lucky and where the states our system gets into after
transmitting the first communication cannot be reconciled into the original one. It
can be applied both in cases where the choice is nondeterministic, as above, or in
cases where the system simply goes through an evolutionary cycle. As an example
of the latter, consider the following.

Example 5.1.2 (parity bits) A pair of processes IP and CP , again transmitting

bits, insert an extra parity bit after each group of 8, and respectively check and

discard this bit. We might describe these processes as follows: IP = IP(0, 0) and

CP = CP(0, 0) where

IP(b,n) = left?x → right !x → IP(b ⊕ x ,n + 1) for n < 8

= right !b → IP(0, 0) for n = 8

CP(b,n) = left?x → right !x → CP(b ⊕ x ,n + 1) for n < 8

= left .b → CP(0, 0) for n = 8

Note that the combination will deadlock if CP is offered the wrong parity bit at

any stage.

To prove that IP >>CP is a buffer, it is necessary to consider all the pairs

{IP(b,n)>>CP(b,n) | b ∈ {0, 1},n ∈ {0, 1, . . . , 8}}

If n < 8, it is easy to show that

IP(b,n)>> CP(b,n) = left?x → (IP(b ⊕ x ,n + 1)>>

right !x → CP(b ⊕ x ,n + 1))

while IP(b, 8)>> CP(b, 8) = IP(0, 0)>>CP(0, 0) which in turn equals

left?x → (IP(x , 1)>> right !x → CP(x , 1))

It follows trivially that, for each b and n ≤ 8,

IP(b,n)>> CP(b,n) � left?x →
	{IP(b′,m)>> right !x → CP(b′,m) |

b′ ∈ {0, 1},m ∈ {0, 1, . . . , 8}}

126 Buffers and communication

which is what is needed to show that each of these combinations is a buffer by BL5′.

(End of example)

Applying BL5′ has much in common with applying the UFP rule: you need
to identify the set of states the system under consideration can go through, and
show that each of them behaves properly. In the present case each state is a pair
of processes (P ,Q) (corresponding to P >>Q): the way the right-hand side of the
rule separates these makes this very important. You should note that it is possible
to have P ,Q ,P ′,Q ′ such that

P >>Q = P ′ >>Q ′, but

left?x → (P >> right !x → Q) = left?x → (P ′ >> right !x → Q ′)

Examples are P = Q = COPY , P ′ = right !0→ COPY , Q ′ = left?x → COPY .

Fixed-point induction

The following principle – which we will call fixed-point induction – can be used to
prove that a recursive definition meets a specification. It has similarities both with
laws BL5 and BL5′ above, and also with the principle of unique fixed points. As
with both of these, we can state a simple version for a single process, and a more
involved one for vectors of processes defined by mutual recursion.

Fixed-point induction (single recursion)
3 If P = F (P) is any recursive def-

inition such that either it is guarded/constructive or it defines a divergence-free

process, and Q is such that Q
FD F (Q), then we may conclude Q
FD P . In the

cases of
F and
T this principle holds without the need to assume the either/or

condition of the recursion.

Note that, since F is always monotone, Q
 F (Q) is equivalent to the
statement

Q
 P =⇒ Q
 F (P)

‘if P satisfies (the specification) Q , then so does F (P)’.

For example, if F (BUFF 〈〉) �FD BUFF 〈〉 for a well-behaved function F (·),
then the process defined by P = F (P) is a buffer. Consider the process

B+ = left?x → (B+ >> right !x → COPY)

defined in the previous chapter. If we accept the argument given there that this
recursion is constructive, then fixed-point induction and our buffer laws easily prove
it to be a buffer. Suppose P is a buffer, then

3For the proof that this and similar rules are valid, see Section 9.2.

5.1 Pipes and buffers 127

• P >>COPY is a buffer by BL1, which implies

• left?x → (P >> right !x → COPY) is a buffer by BL4.

• This proves what is required for fixed-point induction; we can infer that B+

is a buffer.

Fixed-point induction (mutual recursion) If P = F (P) is any recursive

definition of a vector of processes which, as above, is either guarded/constructive

or makes each component divergence-free, with indexing set Λ, and Q is such that

Qλ
FD F (Q)λ for all λ ∈ Λ, then we may conclude that Qλ
FD Pλ for all λ ∈ Λ.

Again, in the cases of
F and
T this principle holds without the need to assume

one of the definedness conditions of the recursion.

As an example of this rule in action, consider the mutual recursive process
B∞
〈〉 defined in Section 1.1.3. We asserted earlier that this is a buffer, a claim that

can now easily be justified. We prove that

B∞
s � BUFF s for all finite sequences s .

To do this (since the B∞ recursion is guarded) it is sufficient to prove that

BUFF
 F (BUFF)

where F is the function of the B∞ recursion. This is verified by examining the
definition of BUFF , copied here from page 119

BUFF 〈〉 = left?x → BUFF 〈x〉

BUFF s 〈̂a〉 = ((left?x → BUFF 〈x 〉̂ s 〈̂a〉) 	 STOP)
� right !a → BUFF s

Since removing nondeterministic options leads to a refinement, we can conclude
that taking away the underlined option above leads to the inference that

BUFF 〈〉
 left?x → BUFF 〈x〉

BUFF s 〈̂a〉
 (left?x → BUFF 〈x 〉̂ s 〈̂a〉)
� right !a → BUFF s

which is precisely what was required (since the right-hand side is F (BUFF)).

It should be emphasized that fixed-point induction is a very general technique
and is certainly not just restricted to proving things are buffers.

Exercise 5.1.1 Re-formulate the buffer specification in terms of the variables tr and

ref (as used in Exercise 3.3.2).

128 Buffers and communication

Exercise 5.1.2 Take your answer to Exercise 4.1.3 and prove that it works. This is

probably an application of BL5.

Exercise 5.1.3 Show, using the buffer laws, that if

B >> COPY = left?x → (B >> right !x → COPY)

then B is a buffer.

Now show that B+ >> COPY satisfies the recursive definition of B+ and deduce

that B+ = B+ >>COPY . Thus complete an alternative proof that B+ is a buffer.

Exercise 5.1.4 A buffer works on the FIFO (first in, first out) principle. A stack, on

the other hand, is LIFO (last in, first out): when non-empty, it will output the object it

contains that was most recently input. Give a failures specification of a stack in the same

style as that of a buffer: like a buffer it should not be able to reject input when empty or

to refuse to output when non-empty. Hint: you might find it helpful to define the concept

of a stack trace recursively, based on the principle that whenever a stack outputs, the value

output was input as the first member of a final subsequence (suffix) s of the trace containing

equal numbers of inputs and outputs, and where s without its first and last elements is itself

a stack trace.

Show that COPY is a stack as well as a buffer. Are there any other processes

satisfying both specifications?

Exercise 5.1.5 Implement an infinite stack using the enslavement-based recursive

scheme used for the SET recursion. It is easiest to do this using an isempty event in a

similar way. Since the stack specification does not allow such an event, it must be banned

at the outermost level of the recursion only by parallel composition with STOP . Thus,

your result should look like

STACK ′ ‖
{isempty}

STOP where STACK ′ is recursively defined.

Do the same thing without the isempty event: you should end up with a program

that is no longer but perhaps a little more subtle. You might or might not find it helps here

to think about how one might eliminate the iszero event from the process Zero// defined

on page 112.

Exercise 5.1.6 A bag is a process that behaves in the same general way as buffers

and stacks, except that it can always output any object it contains (rather than being

restricted to FIFO or LIFO, for example). Give a failures specification of a bag, and show

it is refined by those for buffers and stacks. Hint: you will find it helpful to construct or

assume a function bag(t) that maps a sequence t ∈ T ∗ to the bag or multiset of elements

in it: the order of t is lost in bag(t) but the multiplicity of elements is retained. There are

obvious analogues of the usual set-theoretic operations over bags.

5.2 Buffer tolerance 129

Exercise 5.1.7 If P1 and P2 are (i) buffers, (ii) stacks and (iii) bags, which of the

following compositions must have the same property? (a) P1 ||| P2, (b) P1 >>P2, and

(c) P1 ‖
{|left,right|}

P2. Give brief reasons for your answers.

Exercise 5.1.8 Suggest analogues of BL1–BL5 for bags using ||| rather than >>.

Which of them do you think is true?

Exercise 5.1.9 Suppose μ p.F (p) is a constructive recursion and it is conjectured that

F (P) is deadlock-free whenever P is. What refinement check is necessary to establish this

fact? Why would this prove that the recursive process is deadlock-free?

Exercise 5.1.10 Consider the two different combinations of COPY with itself un-

der the generalized parallel operator considered in Exercise 2.4.2. These can be chained

together in two ways: prove that one is a buffer and show that the other is not.

5.2 Buffer tolerance

Consider the effect of placing a buffer on a channel connecting two CSP processes. It
makes sense to do this on any channel which is used for communicating information
one way, though it may very well alter the behaviour of the overall system even in
this case: for example a buffer placed on the internal channel in COPY >>COPY
will still be a buffer (as is easily proved by BL1) but with increased capacity. This is
a relatively subtle effect which one probably would not mind in most circumstances,
but (i) clearly it should not be allowed in any context where we are relying on a
buffer capacity of two or less and (ii) there are other examples where inserting a
buffer in this way would have a much more significant effect.

The extent to which a given channel is buffer tolerant is a measure of whether,
and how much, it relies on the CSP model of handshaken communication. It is
frequently desirable to make any channel that has to operate over a long distance
buffer tolerant since implementing the flow-control necessary to avoid introducing
some buffering can be expensive.

A given channel may be buffer tolerant in an absolute sense, meaning that
the semantics of the overall process does not change at all, or more likely, relative to
some overall specification. Thus, COPY >>COPY is buffer tolerant relative to the
specification of being a buffer! Sometimes a channel may be tolerant of buffering
up to some given limit or of any finite buffer but not infinite capacity ones.

In the COPY >>COPY example any buffer which is placed on the internal
channels can clearly become full however large it is. Other examples, however, only
use a fixed finite quantity of buffering no matter how much is provided. You can
characterize such behaviour by testing whether one of the weak buffer processes

130 Buffers and communication

WBUFFn
〈〉 can safely be placed on the channel (the parameter n, of course, captur-

ing the maximum amount of buffering ever used). If more than n buffer places were
ever used, this experiment would produce a divergent process. For an example of
this type of behaviour, see Exercise 5.2.2.

It is easier to understand the concept of buffer tolerance than to provide
general criteria under which it is true. Usually it is possible, with experience, to
get a feel for whether a given system has this property: specific instances, at least
for small buffer sizes, can often be checked using tools like FDR.

The type of circumstances in which it does and does not tend to hold are
well illustrated by attempting to generalize the COPY >>COPY example to the
following general rule. It would be very convenient if the following plausible ‘buffer
law’ were true:

If P >>R and Q are both buffers, with the type of Q matching the ‘internal’
type of P >> R, then P >>Q >>R is also a buffer.

Unfortunately, this is not universally valid because of the possibility that R
might input selectively from P . As a simple example, suppose COPY 2 and COPY 3

are respectively defined over the types T2 = {0, 1} and T3 = {0, 1, 2}. Then setting

P = COPY 2 � (right !2 → STOP)
Q = COPY 3

R = COPY 2

gives a counter-example to the above (the internal type being T3): R has the good
sense to reject the offer of 2 in the combination P >>R, which therefore behaves
exactly like COPY 2 >> COPY 2. Putting Q in the middle, however, allows P to
make its fatal output and deadlock. If we take away the possibility of R controlling
what P outputs to it, the law becomes true:

BL6. Suppose P >> R is a buffer, where the internal type is T (i.e., the type
communicated by right in P and left in R), and that

(a) Q is a buffer of type T ,
(b) if s 〈̂left .x 〉 ∈ traces(R) and y ∈ T , then s 〈̂left .y〉 ∈ traces(R), and
(c) if (s ,X) ∈ failures(R) then {| right |} ⊆ X ⇒ left .T ∩ X = {},

then P >> Q >>R is a buffer.

The side conditions (b) and (c) here avoid the possibility that we are relying on in-
fluence passing backwards (via handshaking) along the channel in question in order
to get the original system to work. They will automatically be satisfied provided

5.2 Buffer tolerance 131

R is deadlock-free and the only way it can communicate on left is by unrestricted
input. Influence of this sort more or less excludes the possibility of buffer tolerance
in any example. When looking to see whether there is such influence, you should
bear mind that it can be much more subtle than in the COPY 2/COPY 3 example
above, especially when there are other communication routes between the processes
connected by the channel in question: see Exercise 5.2.1. (Needless to say, buffer
tolerance makes sense over a much wider range of ways of connecting channels than
just the >> operator.)

Notice how BL6 supports the concept of a layered protocol discussed on
page 107. If we have designed some pairs of processes (Ti ,Ri) such that each
Ti >>Ri (i > 0) is a buffer, and it can be shown that T0 >>M >>R0 is a buffer for
some communication medium M , then BL6 and induction imply that

Tn >>Tn−1 >> . . . >>T1 >>T0 >>M >>R0 >>R1 >> . . . >>Rn−1 >>Rn

is one too, provided the Ri satisfy the no-selective-input criteria of BL6 and the
types match up in the obvious way.

Exercise 5.2.1 (a) We can define a pair of processes that alternately use two chan-

nels to communicate as follows:

Divide = left?x → mid .1!x → Divide′

Divide ′ = left?x → mid .2!x → Divide

Merge = mid?n?x → right !x → Merge

DandM = (Divide ‖
{|mid|}

Merge) \ {| mid |}

Plainly DandM acts as a two-place buffer: you can prove this easily with BL5′ if you

interpret mid as a single channel and note that the above combination is then equivalent

to

Divide[[right/mid]] >> Merge [[left/mid]]

Do this and hence show that DandM is (relative to the buffer specification) tolerant of

buffer of type {| mid |}.

(b) What would happen if we were to re-interpret mid as an array of two separate

channels and place buffers on each? Show clearly why the result need not be a buffer.

(c) Replace Merge with another process with the same alphabet so that the new

system is still a two-place buffer but is tolerant of separate buffers on mid .1 and mid .2.

132 Buffers and communication

Exercise 5.2.2 The following processes carry messages alternately between two users:

SwapL = leftin?x → to!x → SwapL′

SwapL′ = fro?x → leftout !x → SwapL

SwapR = to?x → rightout !x → SwapR′

SwapR′ = rightin?x → fro!x → SwapR

LandR = (SwapL ‖
{|to, fro|}

SwapR) \ {| to, fro |}

Find a sequential process that LandR is equivalent to, and show that a copy of WBUFF 1
〈〉

can be inserted onto both the internal channels without changing this value.

By adapting this example, find a pair of processes connected by a pair of chan-

nels, one in each direction, that implement a buffer which is tolerant of the insertion of

WBUFF1
〈〉 onto both channels.

How does your answer to Exercise 5.2.1 (c) react to having this weak buffer inserted

onto either or both channels?

Exercise 5.2.3 Show that if a channel is tolerant of WBUFFn
〈〉 then it is tolerant of

WBUFFn+1
〈〉 (relative to any behavioural specification). Find an example of a system that

is tolerant of WBUFF 2
〈〉 but not of WBUFF 1

〈〉.

5.3 The alternating bit protocol

Earlier in this chapter we saw how to overcome the corruption of at most one in
every three messages. It is similarly possible (though harder, particularly in the
case where the ‘messages’ are just bits: see Exercise 4.1.4) to overcome bounded
loss, duplication or even a combination of all three together. By ‘similarly’ here, we
mean that the overall system maintains the structure S >>E >>R.

In practical terms the sort of techniques used in these cases probably only
make sense in cases where very low level information (i.e., bits or little more) is
being transmitted, almost certainly between hardware components. Since there is
only a one-way passage of information there is no way R can let S know that a
particular message has got through, and so S must put as much redundancy into
the transmission of every message as is necessary to overcome the worst assumed
behaviour of the communication medium.

There are more advanced techniques that can be used in cases where larger
and more structured values can be passed as messages, and particularly where it is
possible to implement an acknowledgement channel (albeit faulty in the same sense
as the forward channel) back from R to S . When this channel cannot be imple-
mented (or is impractical because of time delay – for example with the transmission

5.3 The alternating bit protocol 133

S

C1

C2

R�

� �

�

� �

in

a b

out

d c

Figure 5.1: The process structure of the alternating bit protocol.

delay, due to the finite speed of light, back from a remote space probe) the appro-
priate technology is a branch of mathematics called error correcting codes which is
beyond the scope of this book but which allows one to get the same sort of error
correction under corruption as was illustrated earlier, only with much greater effi-
ciency. For various values of (n, k , d) (for example (23, 12, 3)) one can find ways of
coding a k -bit message into n > k bits in such a way that the result can be decoded
even after up to e bits are corrupted. See [90] for a comprehensive introduction to
this subject.

When we can implement the acknowledgement channel there are a number of
protocols that can be used to exploit it. It is usual to restrict attention in that case to
a medium that can lose messages, or perhaps duplicate them, but cannot corrupt
them. This is, like so much else, an abstraction of what is really implemented:
it is likely that the protocols we are looking at are built on top of mechanisms
for inserting checksum-like information into messages and rejecting (i.e., ‘losing’)
messages which fail the corresponding tests when delivered.

We might want to implement a buffer between two distant points but only
have unreliable channels available. By this, we mean error-prone channels that can
lose or duplicate as many messages as they wish – though not an infinite consecutive
sequence – but preserve the value and order of those they do transmit. There are a
number of protocols available to overcome this sort of error, the simplest of which
is known as the alternating bit protocol (ABP). In fact, there are (as we will see in
this and later chapters, where we will frequently use it as an example to illustrate
new ideas) a number of variants of this protocol, but the basic idea is the same in
all of them. The structure of the network used is shown in Figure 5.1, where the
two error-prone channels are C1 and C2.

The basic idea is to add an extra bit to each message sent along the leaky
channels which alternates between 0 and 1. The sending process sends multiple
copies of each message until it is acknowledged. As soon as the receiving process
gets a new message it sends repeated acknowledgements of it until the next message
arrives. The two ends can always spot a new message or acknowledgement because

134 Buffers and communication

of the alternating bit.

This is usually described using real-time features such as time-outs (for de-
ciding when to re-send messages and acknowledgements; we will return to this in
Section 14.5), but in fact with a little care it is possible to construct a version whose
correctness is independent of timing details. Below we present sender (S) and re-
ceiver (R) processes which can readily be proved to work, in the sense that if C1
and C2 behave as described above, then the complete system behaves like a reliable
buffer.

Very general error-prone channel processes are described by the following,
where no limit is placed on the number of losses or duplications:

C (in, out) = in?x → C ′(in, out , x)

C ′(in, out , x) = out !x → C (in, out) (correct transmission)
	 out !x → C ′(in, out , x) (potential duplication)
	 C (in, out) (loss of message)

With the channels implied by Figure 5.1, we get C1 = C (a, b) and C2 = C (c, d).

This sort of erroneous medium may lose as many messages as it likes, and
repeat any message as often as it wishes. While we can reasonably hope to create
a system using such media which works as long as they do not commit an infinite
unbroken series of errors (so that only finitely many messages actually get through
in an infinite time), any such system will inevitably be subject to divergence caused
by infinite message loss or repetition. One can easily change the definition so that
at least one correct action is performed every N as follows:

CN (in, out , r) = in?x → C ′(in, out , x , r)

C ′
N (in, out , x , 0) = out !x → CN (in, out ,N)

C ′
N (in, out , x , r) = out !x → CN (in, out ,N) if r > 0

	 out !x → C ′
N (in, out , x , r − 1)

	 CN (in, out , r − 1)

While this definition looks (and is!) very similar to that of E0 in the previous
section, there is the significant difference that this time we are designing a protocol
that works independently of which N is chosen. The only function the limit N
actually performs should be to prevent divergences. In Chapters 10 and 12 we will
meet techniques that allow us to assume what we really want here, namely that
neither of the medium processes ever commits an infinite sequence of errors.

The sender and receiver processes are now defined as follows: S = S (0) and

5.3 The alternating bit protocol 135

R = R(0) ‖
{|b,c|}

Q , where for s ∈ {0, 1} and x in the set of messages:

S (s) = in?x → S ′(s , x)

S ′(s , x) = a.s .x → S ′(s , x)
�d .s → S (1−s)
�d .(1−s)→ S ′(s , x)

R(s) = b.s?x → out !x → R(1−s)
�b.(1−s)?x → R(s)
�c!(1−s)→ R(s)

If we were simply to set R = R(0) then the system could diverge even when
C1 and C2 were error-free, because it could get stuck communicating over C1 or
C2 exclusively. (For example, the transmission of some message might happen
infinitely without it ever getting acknowledged.) Therefore we have introduced
the extra process Q , with alphabet {| b, c |}, in parallel with it to ensure it is
sufficiently well-behaved to avoid these types of divergence. Because of the way
the two processes are combined in parallel, its effect is to restrict R(0)’s possible
behaviours. Q is any process that is always either willing to perform any input
on b or any output on c (or both) but which will not allow an infinite sequence of
communications on one channel to the exclusion of the other (a fairness condition).
The most obvious such Q is μ q.b?x → c?x → q, which makes the two channels of
R alternate. This illustrates a use of the parallel operator to impose constraints,
and is related to the discussion in Section 2.5 about the use of parallel operators as
conjunction over trace specifications.

There is no implication that R would be implemented as a parallel process –
we would refine the parallel combination into a sequential one. (One satisfactory
sequential R, equivalent to the parallel composition of R(0) and the alternating
process above, is one that accepts messages on b and sends appropriate acknowl-
edgements on c in strict alternation.)

We will argue the correctness of this protocol informally but sufficiently rig-
orously that it should be clear how a formal proof would go. Let ABP denote the
composition of S , C1, C2 and R (with R being any version well-behaved in the
sense described above and C1 and C2 being of the form that avoids the simple
infinite-error divergences).

Livelock is impossible because of the introduction of Q and because neither
C1 nor C2 commits an infinite series of errors. The latter means that each of C1
and C2 eventually transmits any message that is input to it repeatedly, and that
provided they are not blocked from outputting they will eventually accept any input
they are offered. In short, since any divergence clearly involves an infinite number

136 Buffers and communication

of communications by either C1 or C2, infinitely many messages must (in the
divergence) be either getting through from S to R or vice-versa. But R can neither
receive infinitely many messages without transmitting one, nor send infinitely many
without receiving one. We can therefore conclude that R both sends and receives
infinitely many messages in the divergence and (by the properties of C1 and C2)
so does S – all this in a sequence where neither S nor R communicates externally.
It easily follows from the definition of S that all the messages from S to R are
repetitions of s .x for some fixed bit s and packet x . The fact that R ignores these
(as it must, for it does not generate any external communication) means it must be
in state 1− s and therefore that the acknowledgements it is sending back are all s .
But, of course, since these are received by S they would necessarily interrupt the
transmission of the s .x ’s. Thus the system cannot diverge.

Nor can it deadlock. We will study deadlock in much more depth in Chapter
13 (and see Exercise 13.2.1), but the basic argument for this system rests on the fact
that, except when it can communicate externally (which certainly precludes dead-
lock), S will always both accept any incoming communication on d and be willing
to output on a. Hence neither C1 nor C2 can be waiting for S in a deadlock state,
and it follows they are both waiting for R. But unless R is willing to communicate
externally it can always communicate with C1 or C2, so one (at least) of the two
requests coming into it is accepted, meaning that the system is not deadlocked. Be-
cause it can neither deadlock nor diverge, it follows that, whatever state it reaches,
it always eventually comes into a stable state where all it can do is to communicate
externally (input on left , output on right or perhaps both).

In order to study the transmission of messages it is easiest to consider the
sequences of messages on a, b, c and d in which any message following another
with the same tag bit is removed, as are any initial messages on c and d with tag
bit 1. Call these stripped sequences a, b, c and d . The structures of the processes
involved then imply the following facts:

• C1 implies that #a ≥ #b: the stripping process clearly removes any dupli-
cation.

• R implies that #b ≥ #c: R can only change the bit it outputs along c in
response to a change in the input bit on b. It only initiates the first member
of c in response to the first 0 in b.

• C2 implies that #c ≥ #d .

• S implies that #d ≥ #a − 1: S can only change the bit it outputs along a
in response to a change in the input bit on d .

5.3 The alternating bit protocol 137

We can piece all of these together to get

#a ≥ #b ≥ #c ≥ #d ≥ #a − 1

or, in other words, these four sequences are, in length, all within one of each other.
From this it is implied that C1 must, at each moment, have transmitted at least
one of each equal-bit block of outputs sent by S except perhaps the current one (for
it to have completely lost one would imply that #b is at least two less than #a).
This, the structure of S , and the fact that R outputs a member of each block it
receives on right , imply that each trace s of the protocol satisfies

s ↓ right ≤ s ↓ left and #(s ↓ left) ≤ #(s ↓ right) + 1

or, in other words,

COPY
T ABP

The facts that ABP is deadlock- and divergence-free, and clearly never se-
lects between its inputs, combine with this to imply that it is failures/divergences
equivalent to COPY .

It can be shown fairly easily by modifying the above arguments that ABP
is tolerant of any finite buffer on its internal channels. Placing an infinite buffer on
one or more of them could lead to divergence.

The alternating bit protocol is too simple and inefficient to be used much
in practice. The ideas it uses are, however, to be found in many that are. The
interested reader can find some more advanced protocols both in the example files
on the web site accompanying this book and in texts such as [25].

Exercise 5.3.1 Assume that R is the version of the receiver in which received messages

and acknowledgements alternate. Estimate the worst-case performance of the resulting

ABP when C1 and C2 are each obliged to commit no more than N consecutive errors

(in terms of internal communications per message transmitted). Can you improve this by

modifying R? Would the answer to this last question be changed if C1 and C2 lost the

ability to duplicate messages (retaining the possibility of loss)?

Exercise 5.3.2 The version of the protocol in the text leaves S free to send and

receive messages arbitrarily, but restricts R to behave ‘fairly’. What would happen (i) if

these roles were reversed and (ii) if they were both restricted to be fair?

138 Buffers and communication

5.4 Tools

It is usually much easier to analyze and prove things about the sort of systems we
have seen in this chapter using a mechanical tool like FDR rather than by hand.
The examples we have dealt with here are extremely simple compared to those
that can be handled mechanically. Notice that laws like BL5 and BL5′ essentially
work by enumerating the states of a chained system, and it is certainly true that
computers do this sort of work better than humans.

As with the work in the previous chapter, the absence of direct support for >>

in the machine-readable version of CSP means that the ‘plumbing’ of such networks
has to be done in other ways such as the P[c <-> d]Q construct.

You should bear in mind, though, that current tools can only prove things
about specific processes, and then only ones that are finite state.4 Thus, we cannot
use FDR to prove laws like BL1–BL6 and cannot directly prove that B+ (an infinite-
state process) is a buffer. Nor can it prove general buffer tolerance except where
some WBUFF n

〈〉 works. Remember, however, that it may be required that the
specification be finite state also, implying the need to use some of the restricted or
approximate specifications discussed in the first section of this chapter.

An exception to the rule that one can only prove things about finite state
implementations arises from fixed-point induction. The point is that, even though
the process defined by a recursion P = F (P) (like that of B+) may be infinite state,
it is quite likely that F (Q) will be finite state if Q is. Thus, if the characteristic
process of the specification Q we are trying to prove of P is finite state, the main
proof obligation of fixed-point induction, namely

Q
 F (Q)

is likely to be something one can verify automatically.

For example, one can prove for any chosen N (that is small enough to allow
FDR to deal with the resultant state spaces) that B+ satisfies any of the weak
buffer specifications WBUFFN

〈〉 . You cannot ask the same question about the full
specification BUFF 〈〉 because the resulting right-hand side is infinite state. An
attempt to prove any of the finite buffer specifications BUFFN

〈〉 will fail because B+

does not satisfy these (but it would nevertheless be interesting to reassure yourself
that this is so by attempting the checks).

4With the version of FDR available at the time of writing it is not possible to have an infinite-

state process like BUFF 〈〉 as a specification. It is likely that future versions will be able to deal

with these, by exploring only those parts of the specification that are necessary – employing lazy

exploration and normalization. It will therefore be possible to prove that a finite-state process is a

buffer without guessing its maximum size. However, this is likely to carry a performance penalty

so it will probably remain a good idea to keep most specifications finite state.

5.5 Notes (2005) 139

It is an obvious limitation on this type of tool that they cannot take the step
from proving that B+ satisfies WBUFFN

〈〉 for any chosen N to proving it is true for
all N . (This comes under the category of ‘general results’ that are unobtainable as
discussed above.)

It is worth while pointing out one category of ‘general results’ that are ob-
tainable using finite-state checking which tends to be particularly relevant to com-
munications protocols. This relates to the notion of ‘data-independence’. Many
of the process definitions in this chapter were, or could have been, defined so that
they transmitted data values taken from a completely arbitrary type. These values
are input and passed around and manipulated uninspected within the program:
the nature of the underlying data type is completely irrelevant to the operation of
the program. It is frequently possible to infer results about how such a program
behaves for general types based on their behaviour for very small ones (often size
one or two). This concept is developed, together with two case studies, in Section
15.2.

5.5 Notes (2005)

Over the past year the author has worked a great deal on buffer tolerance and now
have far more results than are presented here. This work should appear on my
website during the first half of 2005.

Some interesting finitary methods for checking if a finite-state process P is
a buffer have recently come to light. One class of methods can be found in [112].

Say a process with one output and one input channel is output determinis-
tic if, after any trace s , it cannot both offer and refuse any output action o, and
furthermore it has at most one output event possible after s . A finitary characteri-
sation of being a buffer (taken from the work on buffer tolerance discussed above)
is that our P is a buffer if and only if both

• COPY >> P is output deterministic, and

• COPY = P ‖
Σ

COPY ∗, where

COPY ∗ = (left?x → right !x → COPY ∗) � right?x → STOP

In essence the first of these conditions checks that the output depends monotonically
on the stream of inputs; the second checks that the correct things, and only the
correct things, come out.

140 Buffers and communication

Chapter 6

Termination and sequential
composition

6.1 What is termination?

In many programming languages there is a sequential composition operator: P ; Q
runs P until it terminates and then runs Q . In CSP we would expect to see all of
P ’s communications until it terminates, and for it then to behave like Q . There
is no conceptual problem with this provided we understand just what termination
means.

So far we have come across two sorts of process which can communicate no
more: on the one hand, a deadlocked process such as STOP or a deadlocked parallel
network; on the other, the divergent process div. Neither of these can be said to
have terminated successfully, since both represent error states. Indeed, divergence is
in principle undetectable in a finite time in general, as a result of the unsolvability
of the halting problem. It is natural to want to associate P ; Q with a form of
termination which happens positively rather than by default.

The process which terminates immediately will be written SKIP . We will
think of the act of terminating as producing the special event � (usually pronounced
‘tick’). Thus, SKIP can be identified with the process �→ STOP . You can think
of a process communicating � as saying ‘I have terminated successfully’. The
identification of termination with an event is often convenient, but the analogy
should not be taken too far – for example, � is always the final event a process
performs. � is not (in this presentation of CSP) a member of Σ – emphasizing that
it is very special. It is not permitted to introduce � directly: SKIP is the only
way it arises; for example the syntax � → STOP used above is illegal because it
mentions �. Σ� will denote the extended alphabet Σ ∪ {�}

Thus SKIP ; P = P for all P , since all SKIP does is terminate successfully
and pass control over to P . In contrast, STOP ; P = STOP , since STOP does not

142 Termination and sequential composition

terminate, merely come to an ungraceful halt. Similarly div; P = div. Notice that
the � of the SKIP in SKIP ; P is hidden from the environment – this simply means
that we cannot see where the join occurs from the outside, and means that we do
not confuse the occurrence of the first � with overall termination. Because of this
concealment parts of the theory of sequential composition bear some similarity to
that of hiding and, in particular, it turns the final � of the first process into a τ

(invisible action).

A formal tabulation of the laws of these new constructs is delayed to a later
section. However, we would expect ; (sequential composition) to be associative and
distributive, and

(?x : A→ P); Q = ?x : A→ (P ; Q)

amongst other laws (noting that � cannot, by the assumptions above, be an element
of A).

This ‘law’ brings up an interesting point in the interpretation of ‘state’ iden-
tifiers in CSP processes, the identifiers that represent objects input or used in pa-
rameterized recursions such as COUNT or B∞. For consider the ‘identity’

(?x : A→ SKIP); x → STOP = ?x : A→ (SKIP ; (x → STOP))

In the right-hand side, it is quite clear that the second x must be the same event as
the first, while on the left-hand side this would require the value of x communicated
first to be remembered outside the prefix choice construct that introduced it, and
across the sequential composition ; . This raises the important question of how the
values and scopes of identifiers are to be interpreted. The real question we need to
resolve in order to decide this is whether CSP is an imperative language, where the
value of an identifier can be modified (and the input ?x : A is taken to modify an
existing value), or a declarative language, where it cannot. We take the declarative
view that a construct like ?x : A → P creates a new identifier called x to hold the
input value in P and that this value is not remembered once P has terminated,
since we have left x ’s scope. An identifier gets its value at the point where it is
declared and keeps the same value throughout that scope. If there are any other
identifiers called x created by input or otherwise within P , then these simply create
a hole in scope in the same way as in many programming languages. Thus, the final
x in the term

?x : A→ ((?x : A→ SKIP); (x → STOP))

will always be the one created by the first input.

It is this decision which allows us to identify all terminations with the single
event �, and also allows us to avoid the question of how an assignable state is shared

6.1 What is termination? 143

over a parallel construct. Note how this decision is consistent with the observation
made in the Introduction (Chapter 0) about process algebras discarding standard
programming language constructs such as assignment.

In conclusion, the law above is only valid if the term Q does not contain
an unbound (i.e., free) reference to an identifier called x . If it does, then it would
simply be necessary to change the name of the bound identifier so that it no longer
clashes with any free in Q .

In examples, sequential composition can be used to improve the modularity
of descriptions – allowing one to separate out different phases of behaviour. It
also permits us to express some definitions finitely which normally require infinite
mutual recursion. Recall the infinite mutual recursion defining COUNTn for n ∈ N.
There is a very clear sense in which this describes an infinite-state system, for all
the different values that n can take lead to essentially different COUNTn . We can
simulate this behaviour using sequential composition as follows:

ZERO = up → POS ; ZERO , where

POS = up → POS ; POS
� down → SKIP

The intuition here is that POS is a process that terminates as soon as it has com-
municated one more down ’s than up’s. Thus ZERO , which is intended to behave
like COUNT 0, initially only accepts an up, and returns to that state as soon as the
number of subsequent down ’s has brought the overall tally into balance.

We will prove this equivalence when we are equipped with enough laws.

Iteration

Now that we have a sequential composition operator it is natural to want ways
of repeating a process. The simplest repetition operator is infinite iteration: P*
means the repetition of P for ever with no way of escaping. This is not a construct
that makes sense in many programming languages, since in a standard language an
infinitely repeated program would simply send one’s computer into a useless loop
(divergence). In CSP, of course, a process is measured by what it communicates as
it goes along, so that the definition

P* = P ; P*

makes sense. For example, (a → SKIP)* is simply a process that communicates an
infinite sequence of a’s; it is indistinguishable from μ p.a → p. We can similarly
write

COPY = (left?x → right !x → SKIP)*

144 Termination and sequential composition

However, the declarative semantics of identifiers means that no information can be
‘remembered’ from an input in one P to a later one in P*. Thus a two-place buffer
cannot be written as neatly: the best we can do is to create a two-place temporary
buffer that terminates when emptied:

TB = left?x → TB ′(x)

TB ′(x) = right !x → SKIP
� left?y → right !x → TB ′(y)

IterBuff 2 = TB*

Because of the way the values x and y are intertwined in this definition, there
is no hope of writing TB or TB ′(x) as an iteration. To do so we would require an
external place to store values: see Exercise 6.1.2.

The declarative semantics also means that there can be no direct analogue
of a WHILE loop: this depends on being able to evaluate a boolean whose value
changes with the state of the process – something that makes no sense when an
identifier’s value does not change within its scope.

It would, however, be possible to define an analogue of a FOR loop: this
might be

FOR n = a, b DO P = SKIP<I a > b>I
P [a/n]; (FOR n = a + 1, b DO P)

since the identifier of this type of loop is declared in the construct itself. Indeed
many of the traditional inelegancies of imperative programming with FOR loops
(such as assigning to the loop identifier or changing the values of the bounds within
the body) become impossible in a declarative semantics. The FOR loop is not,
however, part of usual CSP syntax.

Exercise 6.1.1 Define a process PHOLE representing a pigeon-hole: it can commu-

nicate empty when empty, when it will also accept in?x and become full. When full it

can only accept out .x for the appropriate x , which empties it. You should give both a

definition as an ordinary recursion and one as Q* where Q contains no recursion.

Show that the two processes you have defined are equivalent.

Exercise 6.1.2 Find a process P such that the two-place buffer equals

(P*//{|in,out,empty|}PHOLE)

and P contains no form of recursion. [Hint: P should, on each of its cycles, communicate

first with its slave.]

6.2 Distributed termination 145

6.2 Distributed termination

Having introduced the concept of termination we have to understand how it relates
to the other CSP operators, and in particular the parallel operators. If we treated
� like any other event, then we would say that P X ‖Y Q has the following cases
for determining termination:

• If � ∈ X ∪ Y then it can never terminate.

• If � ∈ X �Y then it will terminate whenever P does.

• If � ∈ Y �X then it will terminate whenever Q does.

• If � ∈ X ∩ Y then it terminates when both P and Q do.

The middle two of these are somewhat problematic, for they leave behind the ques-
tion of what to do with the process which has not terminated. We might assert
that it is closed down by some powerful mechanism which, if we are really expecting
a distributed parallel implementation, seems to have to act instantaneously over a
distance. On the other hand, the other process might continue, creating the em-
barrassment of a system which communicates after ‘terminating’. Realizing that
termination is really something that the environment observes rather than controls,
the first case (and the non-terminating halves of the second and third) cannot real-
istically prevent the arguments from terminating, but can only fail to report this to
the outer environment. Given this observation, there is really no sensible use of the
first item (� ∈ X ∪ Y) above, since all that it can achieve is to turn what would
have been termination into deadlock.

The route we take is to assert that the final clause always holds implicitly:
there is no need to include � in the alphabets X or Y , for after all � is not a
member of Σ, but the combination P X ‖Y Q always behaves as though it were in
both. In other words, a parallel combination terminates when all of the combined
processes terminate. This is known as distributed termination. This reading makes
it sound as though the various processes have to synchronize on termination, as they
do on normal events in X ∩ Y . In fact the best way of thinking about distributed
termination is that all of the processes are allowed to terminate when they want
to, and that the overall combination terminates when the last one does. The fact
that termination is the last thing a process does means that these two views are
consistent with each other: in P X ‖Y Q , neither process can communicate after it
has terminated but the other has not.

If A is a set of events which we wish to communicate in any order and then
terminate, then this can be expressed

‖
a∈A

(a → SKIP , {a})

146 Termination and sequential composition

We will see in Section 13.2.2 that this method of combining communications can be
useful in avoiding deadlock.

The principle of distributed termination is extended to all other parallel
operators.1 The view that distributed termination means waiting for all processes
to terminate, rather than actively synchronizing �’s fits far better with the notion
that ||| has distributed termination.

The fact that � is being interpreted differently from other events – mainly
in its finality – means that we must protect it from confusion with other events.
This is helped by our assumption that � ∈ Σ, but we should explicitly mention
that � may not be hidden by the usual hiding operator, and nor may it be affected
by renaming. Any renaming affects only members of Σ, and implicitly maps � and
only � to �.

6.3 Laws

We will present two sections of laws: one which could be said to describe how SKIP
and sequential composition behave in themselves, while the other shows how they
interact with other (mainly parallel) operators.

Sequential composition is distributive and associative, and has unit SKIP .

(P 	 Q); R = (P ; R) 	 (Q ; R) 〈; -dist-l〉 (6.1)

P ; (Q 	 R) = (P ; Q) 	 (P ; R) 〈; -dist-r〉 (6.2)

P ; (Q ; R) = (P ; Q); R 〈; -assoc〉 (6.3)

SKIP ; P = P 〈; -unit-l〉 (6.4)

P ; SKIP = P 〈; -unit-r〉 (6.5)

The last of the above laws, though intuitively obvious, requires a good deal of care in
modelling to make it true. A consequence of this care is the next law, which at first
sight is far less obvious. Normally one would not write a process like P � SKIP ,2

1There are good arguments for doing something different with enslavement. We might think

that, when P terminates, P//X Q should terminate irrespective of Q ’s state. This would have

the disadvantage that enslavement would no longer be expressible in terms of other operators,

and would also (arguably) be an opportunity for untidy programming: insisting on distributed

termination of P//X Q essentially means that P has to tidy up after itself before it terminates.
2It looks so unnatural that Hoare banned it, something I am reluctant to do because (i) even

if it is banned, it is impractical to ban more elaborate processes that happen to equal it such as

(a → SKIP) \ {a} � Q and (ii) it is hard to make the algebraic semantics work without it.

6.3 Laws 147

since the concept of offering the environment the choice of the process terminating
or not is both strange in itself, and fits most uneasily with the principle that � is
something a process signals to say it has terminated. The best way to deal with
this process, given that we are forced to consider it, is

P � SKIP = P � SKIP 〈�-SKIP resolve〉 (6.6)

Remember that P � Q (equivalent to (P 	 STOP) � Q and Q 	 (P � Q)) is the
process that can choose to act like Q but can offer the initial choices of P . This
law says that any process that has the option to terminate may choose to do so and
there is nothing the environment can do to stop it: it is refined by SKIP .

It is not too hard to show the link between this law and 〈; -unit-r〉. If P =
(a → STOP) � SKIP meant one had the choice of a and � – so by offering
only a we could be sure that would be accepted and that the process would not
terminate – then P ; SKIP would behave differently from P (invalidating the law).
For, in P ; SKIP , the � from P is allowed to proceed without the agreement of the
environment, which cannot stop it happening. The effect of this composition would
be just like

((a → STOP) � (b → SKIP)) \ b

since the hidden b here is exactly like the � from P that gets hidden by ; . While
this process might accept a it need not.

When a process cannot offer an initial �, the situation about how it acts
under sequential composition is simple, we just get the law already discussed: pro-
vided x is not free in Q ,

(?x : A→ P); Q = ?x : A→ (P ; Q) 〈; -step〉 (6.7)

We need a law that extends this and 〈; -unit-l〉 to take account of processes
that can either terminate or offer other events. We can assume that such a process
has already had the law 〈�-SKIP resolve〉 applied to change this choice into the �

form. Thus the appropriate law is that, when x is not free in Q ,

((?x : A→ P) � SKIP); Q = (?x : A→ (P ; Q)) � Q 〈SKIP -; -step〉 (6.8)

Sequential composition has many left ‘zeros’: if P is any process that can
never terminate then P ; Q = P for any Q .

Since we are not allowed to hide or rename �, SKIP is unchanged by any
hiding or renaming construct.

SKIP \ X = SKIP 〈SKIP -hide-Id〉 (6.9)

148 Termination and sequential composition

SKIP [[R]] = SKIP 〈SKIP -[[R]]-Id〉 (6.10)

In order to deal with distributed termination, we need two extra laws for
each parallel construct: one to deal with the case when both operands are SKIP ,
and one to deal with the case where one of them is. The first group are remarkably
similar.

SKIP X ‖Y SKIP = SKIP 〈X ‖Y -termination〉 (6.11)

SKIP ‖
X

SKIP = SKIP 〈‖
X

-termination〉 (6.12)

SKIP >> SKIP = SKIP 〈>>-termination〉 (6.13)

SKIP//X SKIP = SKIP 〈//-termination〉 (6.14)

The other group reflect the differing modes of synchronization in the opera-
tors. Since the asymmetry of these operators makes the laws more numerous, and
in any case the required laws can be derived from the ones relating to the operators
out of which they are built, we omit the laws for X ‖Y , >> and //X here.

SKIP ‖
X

(?x : A→ P) = ?x : A �X → (SKIP ‖
X

P) 〈‖
X

-preterm〉 (6.15)

SKIP ||| P = P 〈|||-unit〉 (6.16)

Note the particularly simple law for interleaving – SKIP is the unit of |||.
As an application of the laws we will prove, by the principle of unique fixed

points, that the process ZERO defined earlier is equivalent to COUNT 0. To do this
we prove that the vector of processes 〈Zn | n ∈ N〉, defined

Z0 = ZERO and Zn+1 = POS ; Zn

(an inductive definition rather than a recursive one), has the property that Zn =
COUNTn for all n. We will demonstrate that Z is a fixed point of the constructive
recursion defining COUNT , proving this claim. Trivially Z0 = up → POS ; Z0 =

6.4 Effects on the traces model 149

up → Z1, and

Zn+1 = (up → POS ; POS
� down → SKIP); Zn

= (up → POS ; POS ; Zn)
� (down → SKIP ; Zn) by 〈; -step〉 etc.

= (up → POS ; POS ; Zn)
� (down → Zn) by 〈; -unit-l〉

= up → Zn+2

� down → Zn

Exercise 6.3.1 The recursive definition of POS and ZERO can be modified easily to

represent, instead, an unbounded stack process. The process Sx behaves like a temporary

stack containing (only) the value x (i.e., it can have any value pushed onto it, or x popped

off it) and terminates when all its contents are removed; while Empty is an empty stack

which never terminates.

Define an unbounded, tail recursive, stack process Stack 〈〉 as a parameterized re-

cursion very like B∞
s , which behaves like Empty . Prove Empty = Stack 〈〉, modelling your

proof on the one that ZERO is equivalent to COUNT0.

6.4 Effects on the traces model

The presence of the special object � in traces, subtly different from other events,
means that some of the traces definitions given up to this point have to be extended
to deal with �. In the traces model T we will now identify a process with a non-
empty, prefix-closed subset of

Σ∗� = Σ∗ ∪ {s 〈̂�〉 | s ∈ Σ∗}

simply reflecting our assumption that any � in a trace is final.

The earlier definitions of the traces of STOP , prefixing and prefix choice,
internal and external choice, hiding and synchronous parallel remain unaltered.
Obviously we need definitions for the two new constructs:

traces(SKIP) = {〈〉, 〈�〉}
traces(P ; Q) = (traces(P) ∩ Σ∗)

∪ {s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ traces(Q)}

Notice how the second of these conceals the � which terminates P and starts Q ,
leaving only any final � of Q visible.

150 Termination and sequential composition

The semantics of the various renaming operators only needs modifying to
make sure that �’s are preserved. Since both the functions and relations used are
purely over Σ, we need to extend the ‘liftings’ of these to traces to deal with �’s.
In each case this takes the obvious form, for example

f (〈a1, . . . , an , �〉) = 〈f (a1), . . . , f (an), �〉

Most of the parallel operators have to be changed to reflect distributed ter-
mination. In alphabetized parallel we simply ‘add’ � to the alphabets of both
processes from the point of view of the definition:

traces(P X ‖Y Q) = {s ∈ (X ∪Y)∗� | s � (X ∪ {�}) ∈ traces(P)
∧ s � (Y ∪ {�}) ∈ traces(Q)}

while in the other two we extend the definitions of the underlying operators on
traces: if s , t ∈ Σ∗, then s ||| t and s ‖

X
t are as before, and

s ||| t 〈̂�〉 = {}
s ‖

X
t 〈̂�〉 = {}

s 〈̂�〉 ||| t 〈̂�〉 = {u 〈̂�〉 | u ∈ s ||| t}
s 〈̂�〉 ‖

X
t 〈̂�〉 = {u 〈̂�〉 | u ∈ s ‖

X
t}

The definitions of the process-level parallel operators then remain as before (using
the modified trace-level ones).

Exercise 6.4.1 Calculate the traces of the process

(a → SKIP ||| a → b → SKIP)*

Use the laws to find a tail-recursive process equivalent to it.

6.5 Effects on the failures/divergences model

The introduction of � means that we have to look carefully at what a process can
refuse (immediately) before and after this special event, and similarly at its effect
on possible divergence.

The easy part of this is what goes on after �: nothing. In the last section
we made the assumption that a process communicates nothing after � (since its
traces are in Σ∗�). It therefore makes sense to assume it refuses everything (i.e.,
Σ�) after any trace of the form s 〈̂�〉, and cannot diverge. We will make these
assumptions, with the modification that we allow divergence traces of the form

6.5 Effects on the failures/divergences model 151

s 〈̂�〉 provided they are implied by the assumption that all extensions of divergences
are divergences. What really matters, in fact, is that all processes look alike after
�, rather than the precise value we put them all equal to. The essential thing is
that once a process has terminated by communicating �, we should be free to turn
our attention elsewhere.3

We certainly want to distinguish between the processes SKIP and SKIP 	
STOP , even though they have the same traces. The first one certainly terminates
successfully, the second one only might. If we put them in sequence with a second
process P , the first one gives P , while the second might deadlock immediately
whatever P is. The obvious way to make this distinction is to include � in refusal
sets: then the failure (〈〉, {�}) belongs to SKIP 	 STOP (because it belongs to
STOP) but not SKIP , which cannot refuse to terminate. Thus, when recording
a process’s failures we will take note of when it can refuse to terminate as well as
other events.

It turns out, however, that � is not quite on a par with other potential mem-
bers of refusal sets (i.e., ones that are members of Σ). This is because, as discussed
earlier in this chapter, � is not something a process expects its environment to
agree to, it is simply a signal to the environment that it is terminating. Thus no
process will ever offer its environment the choice of � or events in Σ. In other
words, any process that can terminate must be able (on the appropriate trace) to
refuse every event other than �; if a process has the trace s 〈̂�〉, it has the failure
(s , Σ). This is discussed further in Chapters 7 and 8.

The unnatural process SKIP � Q – the subject of law 〈�-SKIP resolve〉
(6.6) – apparently offers its environment the choice of � and the initial events of Q ,
in contravention of the above principle. In fact, since the environment’s co-operation
is not required for the event �, this process can decide to terminate whatever the
environment. In other words, it can refuse all events other than � despite the way
it is built. For example, SKIP � a → STOP has failures

{(〈〉,X) | � ∈ X } ∪ {(〈a〉,X), (〈�〉,X) | X ⊆ Σ�}

You can view this as a consequence of 〈�-SKIP resolve〉, since this law proves the
above combination equivalent to

(SKIP � a → STOP) 	 SKIP

which can clearly refuse everything other than �.

3In some ways the best approach would be not to bother to include any refusals after a �.

The only problem with this (and the reason why we have not followed it) is that, since even a

divergence-free process’s traces would not then be the trace-components of its failures, a process

could not be represented by its failures and divergences: the termination traces (at least) would

have to be included as a separate component.

152 Termination and sequential composition

The precise way in which failures are extracted from a process’s transition
system, allowing for possible � actions, is described in Section 7.4.1. See Section 8.3
for full details of the way the failures/divergences semantics of processes composes,
including taking account of the SKIP � Q issue.

Part II

Theory

153

Chapter 7

Operational semantics

7.1 A survey of semantic approaches to CSP

There are at least three distinct ways of gaining a rigorous mathematical under-
standing of what a CSP program ‘means’. These are operational, denotational, and
algebraic semantics. We have already seen all of these in action:

• The operational semantics interprets programs as transition diagrams, with
visible and invisible actions for moving between various program states: we
have frequently used these to describe informally how processes (and oper-
ators over them) behave. Operational semantics, as the name suggests, are
relatively close to implementations: we might define an operational semantics
as a mathematical formalization of some implementation strategy.

• A denotational semantics maps a language into some abstract model in such a
way that the value (in the model) of any compound program is determinable
directly from the values of its immediate parts. Usually, denotational se-
mantics attempt to distance themselves from any specific implementation
strategy, describing the language at a level intended to capture the ‘inner
meaning’ of a program. There are several denotational semantics of CSP, all
based on things like traces, failures and divergences; the value of any program
just being some combination of its sets of these things.

• An algebraic semantics is defined by a set of algebraic laws like the ones
quoted for the various operators in this book. Instead of being derived theo-
rems (as they would be in a denotational semantics), the laws are the basic
axioms of an algebraic semantics, and process equivalence is defined in terms
of what equalities can be proved using them. In some ways it is reasonable

156 Operational semantics

to regard an algebraic semantics as the most abstract type (where ‘abstract’
is meant in its informal, rather than its formal, sense).

While any one of these flavours of semantics is enough to describe CSP, it is far
preferable to understand something of them all and how they complement each
other. This is why we have used all three, sometimes informally, to describe it in
the preceding chapters. For most people using CSP there is no need to delve deeply
into the sometimes difficult mathematics which underpins it, but for those who are
interested this chapter and the following four give formal expositions of the three
semantic styles, and show how they relate to each other.

Of these, the material in the rest of this chapter is probably the easiest for
a non-mathematician to follow and the most important for using existing tools.
Many of the ideas in it have already been seen in earlier chapters, at a lower level
of formality.

The main purpose of CSP is, of course, to describe communicating and in-
teracting processes. But in order to make it useful in practice we have added quite
a rich language of sub-process objects: anyone who has used FDR will realize that
CSP contains a functional programming language to describe and manipulate things
like events and process parameters. Of course, any complete semantics of the lan-
guage would have to take account of this other facet: in effect, we would need to give
this sublanguage a semantics too. But this would take a lot of extra space, taking
the focus off the main thing we want to do which is to understand the semantics of
communication, and is complex in its own right. Thus, just as in the rest of this
book we have focused on the main purpose of CSP, in this and the other chapters
on semantics we will deliberately ignore the details of how the calculation of sub-
process objects fits in.1 Therefore we will tend to ignore the detailed syntax and
evaluation of sub-process objects, just treating them as values. This ‘glossing-over’
is made a good deal less dangerous because we are assuming CSP has a declarative
(pure functional) semantics, meaning that values are never changed by assignment.
The only real problem occurs when the evaluation of a sub-process object fails to
terminate or produces some other sort of error. Error-handling is an important, if
occasionally irritating, part of the construction of any formal semantics, but in the
spirit of our simplified treatment of sub-process objects we will not deal with these
types of error in this book. These also are discussed in [126].

1Operational and denotational semantics taking these details into account can be found in

Scattergood’s thesis [126] and (in a more sophisticated form), in Lazić’s work [64, 68].

7.2 Transition systems and state machines 157

7.2 Transition systems and state machines

In Part I we frequently referred to the transition system of a process: a graph
showing the states it can go through and actions from Σ�,τ that it takes to get
from one to another. The operational semantics presented in this chapter is just a
formal way of computing these graphs. In this section we investigate the behaviour
of transition systems, whether or not derived from a process.

Formally speaking, a labelled transition system (LTS) is a set of nodes and,
for each event a in some set, a relation a−→ between nodes. It is a directed graph
with a label on each edge representing what happens when we take the action which
the edge represents. Most LTSs have a distinguished node n0 which is the one we
are assumed to start from.

The operational interpretation of an LTS is that, starting from any node
such as n0, the process state is always one of the nodes, and we make progress by
performing one of the actions possible (on outward-pointing edges) for that node.
This set of the initial actions of node P will be denoted P0. The only things that
matter are the actions each node has: if the nodes do carry some annotation then
this cannot be observed during a run.

In interpreting CSP we usually take the set of possible labels to be Σ�,τ =
Σ ∪ {�, τ}. Actions in Σ are visible to the external environment, and can only
happen with its co-operation. The special action τ cannot be seen from the outside
and happens automatically. Thus, if the process is in a state with no actions outside
Σ (a stable state) it might have to wait there for ever; when it is in an unstable state
(τ ∈ P0) we assume that some action must occur within a short time. (The event
that occurs may be visible or τ .)

�, as discussed in Chapter 6, is a special signal representing the successful
termination. It is – as we saw in Chapter 6 – different from other events, not least
because it is presumably always the last event that happens. It is certainly visible
to the environment, but it is better to think of it as an event that does not require
the environment’s co-operation: it is in one way like τ and in another like ordinary
members of Σ. A state P that has � ∈ P0 is not stable, because the environment
cannot prevent it from happening. (Note that the previous discussion of stable
states, in Section 3.3, was before we had met �.) We will be careful to give � this
intermediate interpretation, unlike most earlier works (where it has been treated
like a member of Σ).2

Where a state has a range of visible actions we assume, especially when the

2This means that a few of the operational semantic rules in this book are different from earlier

versions. Our more careful treatment of � is designed to make the law 〈; -unit-r〉 (6.5) (P ; SKIP =

P) true, which it is not if � is assumed to be like any other event. The implications of this decision

for the structure of failure-sets were discussed in Section 6.5.

158 Operational semantics

a b

a
a

a

ττ

τA

E

B D

C

Figure 7.1: Example of a labelled transition system.

state is stable, that the environment has a free choice of which (if any) of the events
(i.e., distinct labels) to choose. If there is more than one action with a given label
a, the environment has no control over which is followed if it chooses a. In other
words, this is a source of nondeterminism.

We assume that only finitely many actions (visible or invisible) can happen
in a finite time.

To explain these ideas we will consider two LTSs. The one shown in Figure
7.1 displays most of the possible types of behaviour without �.

• In state A, the environment has the choice of either a or b, and since this
is a stable state, nothing can happen until one of these is selected. The
process then moves into state B or D , this being determined by which event
is chosen.

• The only action available to state B is an internal one. Therefore the process
takes this action and moves to state C .

• In state C , there is only one event available, a, and the process must wait
until the environment communicates it. There are two possible states that
can then arise, and the environment has no control over which one the process
moves to.

• In state D , internal and external actions are both possible. The environment
might be able to communicate the a action, but cannot rely on this. It
can, however rely on the process moving to either A or C if this a does not
happen. As in the previous case, the environment has no control over which.

7.2 Transition systems and state machines 159

Ω

a

τ

τ

τ

B

C

D

E

A

Figure 7.2: A labelled transition system with � actions.

• State E has no actions: it is deadlocked. Once the process reaches this state
it is doomed to remain there for ever.

The one in Figure 7.2 enables us to see the effects of �. This transition system
follows the obvious convention that � is always the last event and leads to an end
state Ω. (If forced to interpret a transition system where this was not true we would
just ignore anything that could happen after �.)

• The easiest state to understand is A: the only thing it can do is terminate.
It behaves like the process SKIP .

• B can either terminate or perform the event a. Since it does not need the
environment’s co-operation to terminate, this is certain to happen unless the
environment quickly offers a, in which case either can happen (nondetermin-
istically).

• C either terminates or performs a τ , the choice being nondeterministic.

• D has a τ action to A, which gives it the ability to terminate. Indeed a τ

action to a state that can only terminate like A is always equivalent, from
the point of view of externally observable behaviour, to its having a � action
of its own. Either can be chosen, from any state that has it, independently
of the environment and leads to inevitable termination.
Even though the only visible action that can ever happen to a process in
state D is �, its behaviour is different from A since it can follow the τ action

160 Operational semantics

to E and become deadlocked. In other words, D can refuse to terminate
while A cannot.

An LTS can be finite or infinite (in terms of its set of nodes), and it is clearly
the case that only those parts reachable from a node n (via finite sequences of
actions) are relevant when we are describing the behaviour of n. In particular, we
will usually assume that all the nodes are reachable from the distinguished node n0.
A process is said to be finite state if it can be represented by a finite LTS.

An LTS is not – by itself – a very good way to describe a process if you
want to capture the essence of its behaviour, since there are many different ways
of representing what any reasonable person would agree is essentially the same
behaviour. For example, any LTS can be expanded into a special sort of LTS, a
synchronization tree, where there are no cycles and a unique route from the root to
every other node, in the manner illustrated in Figure 7.3. (The distinguished root
nodes are indicated by open circles.) But notice that even two synchronization trees
can easily represent the same behaviour, as all the original LTSs – and hence all
their different expansions – represent behaviours we might suspect are essentially
the same. If one does want to use operational semantics as a vehicle for deciding
process equivalence, some sort of theory is required which allows us to analyze which
process descriptions as an LTS represent the same behaviour.

In CSP, the main mode of deciding process equivalence is via failures, diver-
gences etc., which are not primarily based on transition systems, but some other
process algebras (most notably CCS) take the approach of defining the basic mean-
ing of a process to be an LTS and then deciding equivalence by developing a theory
of which LTSs are essentially the same. Thus, getting this analysis right can be
extremely important.

Many different equivalences over LTSs (and the nodes thereof) have been
proposed, most of which are specific to a given view, but the most fundamental
one is valid in them all (in the sense that if it defines two nodes to be equivalent
then so do the others). This is the notion of strong bisimulation, which takes the
view that the only thing we can detect about a given process state is what events
it can do, and that to be equivalent two processes must have the same set of events
available immediately, with these events leading to processes that are themselves
equivalent. Another way of looking at this is that no experiment which is based on
exploring the behaviour of two nodes by examining and performing available events
(including τ and � on an equal basis to all the others) can tell them apart.

Since the notion of weak bisimulation (a weaker notion of equivalence used
for CCS) is less relevant to CSP,3 we will usually drop the word ‘strong’.

3This is because weak bisimulation fails to make enough distinctions about divergent processes.

7.2 Transition systems and state machines 161

a
a

a

a

a

a

a

τ

τ

(i) (iii)(ii)

a

a a

a

a a

a a a a

a a a a a a a a

Figure 7.3: Unfolding LTSs to synchronization trees.

162 Operational semantics

B C

DE

F

G

A X

Y

Z

Figure 7.4: Bisimulation equivalence.

Definition If S is an LTS, the relation R on the set of nodes Ŝ of S is said to be
a (strong) bisimulation if, and only if, both the following hold:

∀n1,n2,m1 ∈ Ŝ . ∀ x ∈ Σ�,τ .

n1R n2 ∧ n1
x−→ m1 ⇒ ∃m2 ∈ Ŝ .n2

x−→ m2 ∧m1R m2

∀n1,n2,m2 ∈ Ŝ . ∀ x ∈ Σ�,τ .

n1R n2 ∧ n2
x−→ m2 ⇒ ∃m1 ∈ Ŝ .n1

x−→ m1 ∧m1 R m2

(Note that, though there is no requirement that a bisimulation is symmetric, the
above definition is symmetric so that R−1 is a bisimulation if R is.)

Two nodes in Ŝ are said to be bisimilar if there is any bisimulation which
relates them. It is a theorem (see Exercise 7.2.4) that the relation this defines on
the nodes of an LTS is itself a bisimulation: the maximal one. This is always an
equivalence relation: reflexive, symmetric and transitive – it partitions the nodes
into the sets whose members’ behaviours are indistinguishable from each other (see
Exercise 7.2.5).

Consider the systems in Figure 7.4, where for simplicity all the actions have
the same label (a, say). In the left-hand system, it should not come as a surprise
that E , F and G are all bisimilar, since none of them can perform any action at
all. All the others can perform the event a, and are therefore not bisimilar to these

7.2 Transition systems and state machines 163

three. This means that A cannot be bisimilar to any of B , C , D , as all of these
can become one of E , F , G after a and A cannot: the definition of bisimulation
states that if A is bisimilar to B then it must be able to move under a to something
bisimilar to E . On the other hand, all of B , C and D are bisimilar – each of them
can perform an a either to a member of the same set or to one of E , F , G. The
partition produced by the maximal bisimulation is shown in the figure.

It makes sense to say that two nodes in different LTSs (with the same under-
lying alphabet) are bisimilar, because we can embed the two systems in one larger
one (whose nodes are the union of disjoint copies of the nodes of the two we are
summing). In this sense all the nodes of both versions of systems (i) and (ii) of
Figure 7.3 are bisimilar. They are not, however, bisimilar to those in the right-hand
ones – since the latter can perform τ actions. This shows the chief weakness of
(strong) bisimulation as a technique for analyzing process behaviour: its inability
to distinguish between the different effects of visible and invisible actions.

Having found the maximal bisimulation on an LTS, we can produce another
LTS with one node for each equivalence class, and an action a from class C1 to class
C2 just when the nodes in C1 have a actions to C2 (they all will if and only if one
does). This factoring process is shown in Figure 7.4, with the system on the right
being the one derived from the one we have already examined. It is always the case
that the nodes of the new system are bisimilar to the members of the classes they
represent, and that no pair of the new system’s nodes are bisimilar (see Exercise
7.2.6).

Exercise 7.2.1 No pair of nodes in the LTS of Figure 7.1 are bisimilar. Prove this.

Exercise 7.2.2 Which pairs of nodes are bisimilar in the LTS shown in Figure 7.5?

Exercise 7.2.3 Draw an LTS describing a game of tennis between players A and

B , with the alphabet {point .A, point .B , game.A, game.B}. (The intention is that the

appropriate event game.X occurs when player X has won.) Recall that successive points

take either player through the scores 〈0, 15, 30, 40, game〉 except that the game is not won

if a player scores a point from 40-all (deuce), but rather goes to an ‘advantage’–‘deuce’

cycle until one player is two points ahead. Which scores are bisimilar?

Exercise 7.2.4 Let V be any LTS. We can define a function Ψ from P(V̂ × V̂) (the

relations on the nodes of V) to itself as follows: (n,m) ∈ Ψ(R) if and only if

∀n ′ ∈ Ŝ .∀ x ∈ Σ�,τ .

n
x−→ n ′ ⇒ ∃m ′ ∈ V̂ .m

x−→ m ′ ∧ n ′R m ′ and

∀m ′ ∈ Ŝ .∀ x ∈ Σ�,τ .

m
x−→ m ′ ⇒ ∃ n ′ ∈ V̂ .n

x−→ n ′ ∧ n ′R m ′

164 Operational semantics

B

C D E

F

G

H

a

aa

a
a

a

b

a

a

a

a

b

b

A

Figure 7.5: Which nodes are bisimilar (see Exercise 7.2.2)?

7.3 Firing rules for CSP 165

Show that Ψ is monotonic and that its pre-fixed points (i.e., relations R such that R ⊆
Ψ(R)) are precisely the bisimulations. Deduce from Tarski’s theorem (see Appendix A)

that there is a maximal bisimulation on V (i.e., one that contains all others) and that it

is a fixed point of Ψ.

Exercise 7.2.5 Show that the equality relation ‘=’ is a bisimulation, and that if R

and R′ are bisimulations then so is their relational composition R ◦ R′.

Deduce that the maximal bisimulation is an equivalence relation.

Exercise 7.2.6 Let S be any LTS, let ≡ be the maximal bisimulation over it, and

let S/≡ be the factored version of S described on page 163 and illustrated in Figure 7.4.

Show that if we form an LTS S+ consisting of separate copies of S and S/≡, then the

equivalence relation on Ŝ+ in which each equivalence class of S (i.e., a node of S/≡) is

deemed equivalent to each of its members and nothing else, is the maximal bisimulation

on S+.

7.3 Firing rules for CSP

The operational semantics of CSP treats the CSP language itself as a (large!) LTS.
It allows us to compute the initial events of any process, and what processes it
might become after each such event. By selecting one of these actions and repeating
the procedure, we can explore the state space of the process we started with. The
operational semantics gives a one-state-at-a-time recipe for computing the transition
system picture of any process.

It is now traditional to present operational semantics as a logical inference
system: we use this system to infer what the actions of a given process are. A
process has a given action if and only if that is deducible from the rules given.
There are separate rules for each CSP operator, to allow us to deduce what the
actions of a process are in terms of its top-level operator (often depending on the
actions of its syntactic parts).

The rules themselves are all simple, and correspond closely to our existing
intuition about the operators they relate to.

Because the process STOP has no actions, there are no inference rules for
it. It has no actions in the operational semantics because there is no possibility of
proving it has any.

SKIP , on the other hand, can perform the single action �, after which it
does nothing more.

SKIP �−→ Ω

166 Operational semantics

The fact that there is nothing above the horizontal bar here means that no as-
sumptions are required to infer the action described. The special process term Ω
(which we are adding to the language/LTS for convenience) is intended to denote
any process that already has terminated. The result state after a � action is never
important (its behaviour is never looked at) and it is sometimes helpful to have a
standardized way of representing the result of termination in the LTS of processes.

The main way communications are introduced into the operational semantics
is via the prefixing operation e → P . In general, e may be a complex object, perhaps
involving much computation to work out what it represents. There is a choice in
what to do about computations like this in an ‘operational’ semantics. Clearly a real
implementation would, in general, have to go through a procedure to work out this
and other types of sub-process objects. One could include these steps (as τ actions
or perhaps some other sort of invisible action) in the operational semantics, but this
would make them much more complex both to define and to analyze. In the spirit
of the discussion at the start of this chapter, we will ignore these computation steps
(taking the values as given) and concentrate only on ‘actions’ which arise directly
from CSP rather than from lower-level behaviour.

The prefix e may represent a range of possible communications and bind one
or more identifiers in P , as in the examples

?x : A→ P c?x?y → P c?x !e → P

This leads to one of the main decisions we have to make when constructing an
operational semantics for CSP (and many other languages): how do we deal with
the identifiers in programs that represent data values, other processes, etc.? For
it is clearly the case that the behaviour of a program with a free identifier (one
whose value is not created within the program itself) might depend on the value of
the identifier. The simple answer to this problem is to deal only with closed terms:
processes with no free identifiers. Using this it is possible to handle most of the
situations that can arise, making sure that each identifier has been substituted by
a concrete value by the time we need to know it. Because of its simplicity, this is
the approach we will take.

This simple approach does create some problems when handling some more
advanced aspects of CSP, which means that another style is preferable if one wishes
to give a complete operational semantics covering every nuance of the language.
This is to introduce the concept of an environment4: a mapping from identifiers to
the values (which might either be data or processes) they represent. Environments
are then added to the state space of the LTS we are defining with the operational

4This use of the word ‘environment’ has an entirely different meaning to the idea of an envi-

ronment that the process communicates with, discussed elsewhere.

7.3 Firing rules for CSP 167

semantics: instead of transitions being between processes, we now have transitions
between process/environment pairs. This alternative style makes very few differ-
ences to the individual semantic clauses except where a value is being looked up in
the environment. Full details can be found in [126].

To implement the simpler approach we will assume the existence of functions
comms and subs.

• comms(e) is the set of communications described by e. For example, d .3
represents {d .3} and c?x :A?y represents {c.a.b | a.b ∈ type(c), a ∈ A}.

• For a ∈ comms(e), subs(a, e,P) is the result of substituting the appropriate
part of a for each identifier in P bound by e. This equals P if there are no
identifiers bound (as when e is d .3). For example,

subs(c.1.2, c?x?y, d !x → P(x , y)) = d !1 → P(1, 2)

The transition rule for prefix is then easy to state:

e → P a−→ subs(a, e,P)
(a ∈ comms(e))

It says what we might expect: that the initial events of e → P are comms(e)
and that the process then moves into the state where the effects of any inputs in
the communication have been accounted for. Note the way the limitation on events
was introduced: via a side condition to the inference rule. A side condition simply
means that the deduction is only valid under the stated restriction.

This is the only transition rule for prefixing, which means that the only ac-
tions of the process e → P are those deducible from it. The initial actions of e → P
are thus independent of whatever P can or cannot do (in that initials(e → P) =
comms(e) and this process is always stable). There are only two other operators of
which this can be said. One of these is nondeterministic choice, which is modelled
by a choice of τ actions, one to each process we are choosing between:

P 	 Q τ−→ P P 	 Q τ−→ Q

This easily translates to the generalized notion of choice over a non-empty set of
processes:

	 S τ−→ P
(P ∈ S)

It is important to remember the restriction that S is non-empty since even though
the above rule makes sense, in itself, when S = {} the value of 	{} it predicts
does not (no value makes sense in the failures/divergences model for this object,

168 Operational semantics

since it would have to (i) be a unit for 	 in the sense that P 	 X = P for all P ,
and (ii) refine every process even though, as we will see in the next chapter, the
failures/divergences model does not have a greatest element).

The only other case where the initial actions are determined completely by
the operator itself is recursion. It is a good idea to introduce a τ action to represent
the ‘effort’ of unfolding a recursive definition via the following rule5

μ p.P τ−→ P [μ p.P/p]

This τ action never causes any harm, since the externally visible behaviour of any
process P is unchanged by the addition of an extra starting state with a τ action to
P . This process has no option but to take this invisible action and behave like P .
The τ action in recursion is there to avoid the difficulties caused by under-defined
recursions such as μ p.p and μ p.(p � Q). The most natural symptom of this type
of process is divergence, and this is exactly what the introduction of the τ achieves.
In fact, for well-constructed recursions, the τ is not really needed, though it still
makes the mathematical analysis of the operational semantics good deal easier.6

All the other operators have rules that allow us to deduce what actions a
process of the given form has from the actions of the sub-processes. Imagine that
the operators have some of their arguments ‘switched on’ and some ‘switched off’.
The former are the ones whose actions are immediately relevant, the latter the
ones which are not needed to deduce the first actions of the combination. (All the
arguments of the operators seen above are initially switched off.) This idea comes
across most clearly in the construct P ; Q (whose operational semantics can be
found below), where the first argument is switched on, but the second is not as its
actions do not become enabled until after the first has terminated.

Both the arguments of external choice (�) are switched on, since a visible
action of either must be allowed. Once an argument is switched on, it must be
allowed to perform any τ or � action it is capable of, since the argument’s envi-
ronment (in this case the operator) is, by assumption, incapable of stopping them.
There is, however, a difference between these two cases since a τ action is invisible

5The μ p.P style of recursion is the only one we will deal with in this operational semantics,

since a proper treatment of the more common style of using names in a script to represent (perhaps

parameterized, and perhaps mutual) recursive processes requires the introduction of environments.

The rule we are introducing here extends simply to that context: it is then the act of looking up

a process identifier that generates a τ .
6FDR does not introduce τ actions of this sort because the only effect they have on well-

constructed definitions is to increase the size of the state space. If you are using a tool where such

actions are not used, the result is likely to be that an attempt to use a recursion like μ p.p will

make the tool diverge. Thus, if you need to create a representation of div in such a tool where it

is not built in as primitive, it is necessary to use a term like (μ p.a → p) \ a or μ p.SKIP ; p.

7.3 Firing rules for CSP 169

to the operator, which means that there are always rules like the following

P τ−→ P ′

P � Q τ−→ P ′ � Q

Q τ−→ Q ′

P � Q τ−→ P � Q ′

which simply allow the τ to happen without otherwise affecting the process state.
(In some cases these rules are implied by more general ones.) These rules simply
promote the τ action of the arguments to τ actions of the whole process. On the
other hand, the � event is visible, so (as with other visible actions) the operator
can take notice and, for example, resolve a choice. With �, there is no difference in
how � and other visible events are handled:

P a−→ P ′

P � Q a−→ P ′
(a = τ)

Q a−→ Q ′

P � Q a−→ Q ′
(a = τ)

Of course, the place where � is most important is in the sequential composi-
tion operator ; . Here, the first operand is necessarily switched on, while the second
is not. In P ; Q , P is allowed to perform any action at all, and unless that action
is � it has no effect on the overall configuration.

P x−→ P ′

P ; Q x−→ P ′; Q
(x = �)

If P does perform �, indicating it is terminating, this simply starts up Q , with the
action itself being hidden from the outside – becoming τ .

∃P ′.P �−→ P ′

P ; Q τ−→ Q

It is semantically important that the second argument of ; and the process argument
of e → P are switched off, for if they were not, they would be allowed to perform any
τ actions so that if they could diverge, so could the overall process. And the process
STOP ; div could never get into a stable state even though it is supposed to be
equivalent to STOP . This shows that any argument which is switched on is always
one in which the operator is divergence-strict (i.e., maps immediately divergent
processes to immediately divergent processes). There is, of course, a considerable
interplay here between what is reasonable in the operational semantics and what is
possible in the denotational semantics.

The rules for hiding and renaming have much in common, since both simply
allow all the actions of the underlying process but change some of the names of the
events. Any event not being hidden retains its own name under \ B , but when this
event is � we need a separate rule to respect our convention that the result process

170 Operational semantics

is always then Ω.

P x−→ P ′

P \ B x−→ P ′ \ B
(x ∈ B ∪ {�}) P �−→ P ′

P \ B �−→ Ω

Events in B are, on the other hand, mapped to τ .

P a−→ P ′

P \ B τ−→ P ′ \ B
(a ∈ B)

Renaming has no effect on either τ or � actions:

P τ−→ P ′

P [[R]] τ−→ P ′[[R]]

P �−→ P ′

P [[R]] �−→ Ω

Other actions are simply acted on by the renaming:

P a−→ P ′

P [[R]] b−→ P ′[[R]]
(a R b)

We have seen a wide range of parallel operators, but they could all be ex-
pressed in terms of the operator ‖

X
, which takes two processes and enforces synchro-

nization on the set X ⊆ Σ. Because of this we will only give operational semantics
for ‖

X
– all the others being deducible. Since both the arguments are necessarily

switched on, we need rules to promote τ actions:

P τ−→ P ′

P ‖
X

Q τ−→ P ′ ‖
X

Q

Q τ−→ Q ′

P ‖
X

Q τ−→ P ‖
X

Q ′

There are three rules for ordinary visible events: two symmetric ones for a ∈ X

P a−→ P ′

P ‖
X

Q a−→ P ′ ‖
X

Q
(a ∈ Σ �X)

Q a−→ Q ′

P ‖
X

Q a−→ P ‖
X

Q ′
(a ∈ Σ �X)

and one to show a ∈ X requiring both participants to synchronize

P a−→ P ′ Q a−→ Q ′

P ‖
X

Q a−→ P ′ ‖
X

Q ′
(a ∈ X)

7.3 Firing rules for CSP 171

The handling of � events in the parallel operator7 requires care, because of
the following two facts:

• We decided earlier that this operator must have distributed termination: the
combination P ‖

X
Q terminates when both P and Q do.

• Since both arguments are switched on in P ‖
X

Q , the parallel operator can-

not prevent either P or Q terminating if it wants to. Thus, the left-hand
argument of SKIP ‖

X
Q can terminate even if Q cannot.

The way to handle this is for the parallel operator to communicate � when both
its arguments have – the intuition we developed when introducing the idea of dis-
tributed termination. The terminations of the two arguments are turned into τ ’s
much as in the first argument of P ; Q .

P �−→ P ′

P ‖
X

Q τ−→ Ω ‖
X

Q

Q �−→ Q ′

P ‖
X

Q τ−→ P ‖
X

Ω

Once one of its arguments has terminated and become Ω, all the rules above for ‖
X

still apply, bearing mind that Ω itself has no transitions (being basically equivalent
to STOP) so that P ‖

X
Ω can only do those of P ’s actions not in X . After the

second argument has terminated the composition will have become Ω ‖
X

Ω: it can

now terminate using the following rule.

Ω ‖
X

Ω �−→ Ω

That completes the operational semantics of the main operators of CSP. All
the other operators we have seen can have their operational semantics derived from
the ways they can be written in terms of the operators above. The only case this
produces an unnatural answer to is the time-out operator P � Q , defined as being
equivalent to (P 	 STOP) � Q . A better operational semantics is produced by
the following three rules, which more accurately refect our intuition about how this
operator works: allowing P to decide the choice with any visible action, but with the

7This is the only place where the operational semantics in this book differs significantly from

earlier operational semantics for CSP. Previous treatments have considered � to be an event that

the environment can refuse from a process, and therefore simply required synchronization on the

� event between the two processes. Some simply allowed the termination of one of either process

(especially under |||) to terminate the combination.

172 Operational semantics

τa

b

τ τ

b

b
b

P

a

Q
P Q

Figure 7.6: Operational semantics of P ′ � Q ′ and (P ′ 	 STOP) � Q ′.

certainty of a transition to Q if this does not happen. Since P is initially switched
on, we need to promote any τ it performs. (Since it is natural to expect Q to be
initially off, there is no need to do this for the second argument.)

P τ−→ P ′

P � Q τ−→ P ′ � Q

Any visible action from P decides the choice in its favour

P a−→ P ′

P � Q a−→ P ′
(a = τ)

while at any moment (as we have no way of modelling time directly in this semantics)
the combination can time out and become Q .

P � Q τ−→ Q

This definition always produces a process with the same traces, failures and diver-
gences as the derived definition but gives a much more natural transition diagram,
as is shown by Figure 7.6 which contrasts the operational semantics of P ′ � Q ′ with
those of (P ′ 	 STOP) � Q ′, where P ′ = a → P and Q ′ = b → Q .

Example 7.3.1 To show the operational semantics in action we will see how to

derive the transitions of a simple process, namely

COPY >>COPY =
(COPY [[right ,mid/mid , right]] ‖

{|mid|}
COPY [[left ,mid/mid , left]]) \ {| mid |}

where

COPY = μ p.left?x → right !x → p

7.3 Firing rules for CSP 173

and the type of the various channels is {0, 1}, meaning that we can assume

Σ = {left .x ,mid .x , right .x | x ∈ {0, 1}}

• Consider first the initial state P0 = COPY >> COPY . Since none of the

rules associated with the operators ‖
X

, \ B or renaming allows us to infer any

action not produced by an action of an argument process, the only initial

actions of P0 are those associated with progress by the two COPY processes.

These, in turn, can each perform only a τ action to become

COPY τ = left?x → right !x → COPY

This τ action is promoted by each of renaming, parallel (both arguments)

and hiding, so two τ actions are possible for P0, to the processes

P1 = COPY τ >>COPY
P2 = COPY >>COPY τ

• In P1, the second argument has exactly the same τ available as it did in P0

(because it was not used in the move to P1), so this can still be promoted to

a τ action from P1 to

P3 = COPY τ >>COPY τ

COPY τ has initial actions left .0 and left .1 leading respectively to the states

COPY (0) = right !0 → COPY
COPY (1) = right !1 → COPY

These are promoted unchanged by the renaming [[right ,mid/mid , right]]. They

are allowed by the parallel operator ‖
{|mid|}

because they do not belong to

{| mid |}, and by the hiding operator \ {| mid |}, so P1 has actions left .0
and left .1 to

P4(0) = COPY (0)>> COPY
P4(1) = COPY (1)>> COPY

• In P2, the first argument still has the same τ available as it did in P0, so

this can be promoted to a τ action from P2 to P3. The actions available to

the right-hand argument are the same ones ({| left |}) as were available to

the left-hand one in P1. This time they are promoted to mid actions by the

renaming operator, and prevented by the parallel operator since actions on

mid require a synchronization (which is not possible). Thus P2 only has the

single τ action.

174 Operational semantics

• In P3 = COPY τ >>COPY τ , the actions of the two arguments are obviously

the same. As in P1, the two left actions of the left-hand one are promoted

to actions with the same name leading to respectively

P5(0) = COPY (0)>> COPY τ

P5(1) = COPY (1)>> COPY τ

while the corresponding actions of the right-hand one are prevented as in P2.

• In P4(x), the right-hand argument only has a τ action available, which is

promoted by the rules to a τ action to P5(x). The left-hand argument has

only the action right .x , which is renamed to mid .x and prevented by the

parallel operator since the right-hand process cannot synchronize.

• The unique action of COPY (x) is promoted by renaming, in P5(x), to mid .x .

The two left actions of the right-hand argument are also promoted to mid .

This time synchronization is possible (under ‖
{|mid|}

) on the action mid .x ,

which becomes a τ action of the overall process because of the hiding oper-

ator. The resulting process is

P6(x) = COPY >>COPY (x)

• In P6(x), the left-hand process has a τ to COPY τ , which can be promoted

to a τ action to

P7(x) = COPY τ >>COPY (x)

and the right-hand one has the action right .x to COPY , which promotes to

the same action leading back to P0.

• In P7(x), the right-hand process can communicate right .x , which again pro-

motes to the same action, leading to COPY τ >>COPY , in other words, P1.

The left-hand process can communicate left .0 or left .1, which promote to the

same events and the overall state

P8(y, x) = COPY (y)>> COPY (x)

for the chosen y.

• The final state we have to consider is P8(y, x), where both components can

only output. The right-hand one’s right .x communication promotes to the

same action externally leading to P4(y). The reason why no more states

have to be considered is simply that all the states discovered during our

exploration have already been examined.

7.3 Firing rules for CSP 175

a P0 i P6(0)
b P1 j P6(1)
c P2 k P7(0)
d P3 l P7(1)
e P4(0) m P8(0, 0)
f P4(1) n P8(0, 1)
g P5(0) o P8(1, 0)
h P5(1) p P8(1, 1)

Table 7.1: States of Figure 7.7.

Taking account of all the variation in x and y, there are 16 states altogether in

the resulting LTS, which is shown in Figure 7.7. The states that the labels a–p
in the figure denote are shown in Table 7.1. You should compare the LTS derived

carefully here with the one, for essentially the same system, described in Figure 2.3

on page 60. The only differences are hiding the intermediate communications, the

presence of the τ actions produced by unfolding recursions, and the fact that we

have taken individual account of the values held in the buffer rather than showing

them symbolically. Evidently this creates considerably more complexity! (End of
example)

Exercise 7.3.1 Compute the LTSs resulting from evaluating the operational semantics

of the following processes:

(a) (a → b → STOP) � (c → d → STOP)

(b) ((a → b → STOP) � (c → d → STOP)) \ {a, c}
(c) (a → b → STOP) \ {a} � (c → d → STOP) \ {c}

Your answers to (b) and (c) should show rather different externally observed behaviour.

What is it about the rules for � that causes this?

Exercise 7.3.2 Draw the LTSs corresponding to the recursively defined processes

(a) (μ p.(a → SKIP) � (b → p)); (a → SKIP)

(b) μ p.(a → STOP) � ((b → STOP) � p)

(c) ZERO (see page 143)

Exercise 7.3.3 Give a set of rules for computing the operational semantics of P ||| Q ,

derived from those of ‖
X
. Describe the LTS resulting from the process

(a → b → SKIP) ||| (a → c → SKIP)

176 Operational semantics

τ τ

τ

τ τ

τ τ

τ τ

left.0

left.0

left.0

right.0

right.0

right.0

right.0

right.1

right.1

right.1right.1

left.1

left.1left.1

left.1left.0

a

b c

de f

g h

i j

k l

m n o p

τ

Figure 7.7: The full state space of COPY >> COPY .

7.4 Relationships with abstract models 177

Give a set of rules for the operational semantics of P >>Q directly, rather than going

through the series of inferences through renaming, parallel and hiding illustrated in the

example above.

7.4 Relationships with abstract models

7.4.1 Extracting failures and divergences

It was already pointed out in Section 3.3 that there are two quite separate ways to
work out a process’s traces, failures and divergences: either by using the inductive
semantic rules for piecing these together (and which we will be studying in the next
chapter), or by examining the process’s transition system.

It is easy to formalize the extraction of these values from an LTS C .

We first define two multi-step versions of the transition relation. The first just
allows us to glue a series of actions together into a single sequence. If P ,Q ∈ Ĉ and
s = 〈xi | 0 ≤ i < n〉 ∈ (Στ)∗� we say P s�−→ Q if there exist P0 = P ,P1, . . . ,Pn = Q
such that Pk

xk−→ Pk+1 for k ∈ {0, 1, . . . ,n − 1}.
This first version includes τ actions (invisible to environment) in the sequence

shown. The second ignores these τ ’s: for s ∈ Σ∗� we write P s=⇒ Q if there exists

s ′ ∈ (Στ)∗� such that P s′
�−→ Q and s ′ \ τ = s . The following properties of s=⇒ and

s�−→ are all obvious.

(a) P
〈〉

=⇒ P ∧ P
〈〉�−→ P

(b) P s=⇒ Q ∧Q t=⇒ R ⇒ P s t̂=⇒ R

(c) P s�−→ Q ∧Q t�−→ R ⇒ P s t̂�−→ R

(d) P s t̂=⇒ R ⇒ ∃Q .P s=⇒ Q ∧Q t=⇒ R

(e) P s t̂�−→ R ⇒ ∃Q .P s�−→ Q ∧Q t�−→ R

It is easy to extract the set of a node’s finite traces using the above relations:

traces(P) = {s ∈ Σ∗� | ∃Q .P s=⇒ Q}

Suppose C is a transition system and P ∈ Ĉ . We say P can diverge, written
P⇑, if there exist P0 = P ,P1,P2, . . . such that, for all n ∈ N, Pn

τ−→ Pn+1.

divergences(P) = {s t̂ | s ∈ Σ∗ ∧ t ∈ Σ∗� ∧ ∃Q .P s=⇒ Q ∧Q⇑}

Notice that we have said that s t̂ is a divergence trace whenever s is. This is a
reflection of the decision, discussed in Section 3.3, not to try to distinguish what can

178 Operational semantics

happen after possible divergence. It would, of course, be easy to avoid this here, but
it is much harder to get things right in the denotational semantics without it. Notice
that minimal divergences (i.e., ones with no proper prefix that is a divergence) do
not contain �. This is because we are not concerned with what a process does after
it terminates. Our inclusion of divergences of the form s 〈̂�〉, where s is one, is
simply a matter of taste.

In Section 3.3, we said that the only states that give rise to refusals are stable
ones, since a τ action might lead to anything, in particular to a state that accepts
an action from whatever set is on offer. Since then the notion of a stable state has
been complicated a little by the intermediate nature of �, and so, inevitably, are
the criteria for extracting refusals.

• A stable state (one without τ or � events) refuses any set of visible events
(perhaps including �) that does not intersect with the state’s initial actions.

• We are interpreting � as an event that cannot be resisted by the environment.
Thus any state with this event amongst its initial actions can decide to
terminate, plainly refusing all events other than �. So any state with a �
action (even such a state with τ actions) can be held to be able to refuse any
subset of Σ. To help understand this, remember the discussion of Figure 7.2,
where we commented that any state with a � action is equivalent, so far as
external observation is concerned, to one with a τ to state A (one with only
a � action). If we made this transformation, it would be this ‘A’ state that
introduces this refusal.

We can formally define P ref B (B ⊆ Σ�) if and only if either P is stable and
B ∩ P0 = {} or there is Q with P �−→ Q and B ⊆ Σ.

We can then extract the failures by combining this with the traces, taking
account of the convention that a process refuses anything after �.

failures(P) = {(s ,X) | ∃Q .P s=⇒ Q ∧Q ref X }
∪{(s 〈̂�〉,X) | ∃Q .P

s 〈̂�〉
=⇒ Q}

As we saw briefly in Chapter 3, and will study more in Section 8.3.1, it is
sometimes necessary to ignore details of what a process does after possible diver-
gence. Sets of traces and failures with post-divergence detail obscured are given by
the definitions

traces⊥(P) = traces(P) ∪ divergences(P)
failures⊥(P) = failures(P) ∪ {(s ,X) | s ∈ divergences(P)}

7.4 Relationships with abstract models 179

7.4.2 Infinite traces and infinite branching

There is one further important type of process behaviour that can be extracted from
LTSs in much the same way that we have seen done for finite traces, divergences
and failures. This is the infinite traces, the infinite sequences of communications
a process can engage in – an obvious extension of the idea of finite traces. The
notations u�−→ and u=⇒ can be extended to infinite u, though they now become
unary rather than binary relations on the nodes in an LTS:

• If u = 〈xi | i ∈ N〉 ∈ (Στ)ω (the set of infinite sequences of members of Στ),
we say that P u�−→ if there exist P0 = P ,P1,P2, . . . such that Pi

xi−→ Pi+1

for all i .

• If u ∈ Σω then P u=⇒ if and only if there exists u ′ ∈ (Στ)ω such that P u′
�−→

and u = u ′ \ τ .

�’s, being final, play no part in infinite traces. Note that not all u ′ ∈ (Στ)ω have
u ′ \ τ infinite – the others all have the form s 〈̂τ〉ω and give rise to divergences.

Infinite traces have more in common with divergences than with finite traces,
in the sense that both take an infinite amount of time to unfold and result from
the process performing infinitely many actions (in the case of divergence, all but
finitely many being τ ’s). This means that, as with the set of divergences, there is
no reasonable way to model, in the denotational semantics, what goes on in the
infinite traces after potential divergence. The set of infinite traces we extract from
an LTS therefore closes up after potential divergence, rather than offering a choice
of two functions as with finite traces and failures.

infinites(P) = {u | P u=⇒} ∪ {s û | s ∈ divergences(P) ∩ Σ∗ ∧ u ∈ Σω}

It makes a lot of sense, of course, to combine finite and infinite traces into a
single set

Traces(P) = traces⊥(P) ∪ infinites(P)

This set is, naturally, always prefix closed like traces(P) and traces⊥(P). Thus,
every finite prefix of an infinite trace is also in this set. Studying infinite traces only
conveys extra information about a process if the reverse of this can fail: if there can
be u not in infinites(P) all of whose finite prefixes are in Traces(P), for otherwise

Traces(P) = traces⊥(P)

where A = A ∪ {u ∈ Σω | {s | s < u} ⊆ A}. We will say that Traces(P) is closed
when this happens.

180 Operational semantics

There is a large and important class of LTSs where this identity always holds:
ones with the following property:

Definition The LTS C is said to be finitely branching if for all nodes P and each
x ∈ Σ�,τ , the set

{Q | P x−→ Q}

is finite.

This says that there are only finitely many nodes we can reach from a given
one under a single action. This means that, if we know what action or sequence
of actions have occurred, there is only finite uncertainty, or nondeterminism, about
what state the process has reached. If Σ is infinite, because the above condition
only restricts the size of the set that is reached after a single event, it is possible
that a node of a finitely-branching LTS might have infinitely many successors.

The proof that nodes in finitely-branching LTSs have closed Traces(P) is a
corollary of the following standard result, which we will want to use a number of
times in the mathematical analysis of CSP.

Theorem 1 (König’s lemma) Suppose Xi is, for each i ∈ N, a non-empty finite

set and that fi : Xi+1 → Xi is a (total) function. Then there is a sequence 〈xi | i ∈
N〉 such that xi ∈ Xi and fi(xi+1) = xi .

Proof We can compose the individual functions together to get, for r > s , func-
tions fr ,s : Xr → Xs :

fr ,s = fs ◦ . . . ◦ fr−1

Fix s in N. It is easy to see that fr ,s(Xr) is a decreasing series of subsets of
Xs for r > s (i.e., fr ,s (Xr) ⊇ fr+1,s (Xr+1) for all r), since

fr+1,s(Xr+1) = fr ,s(fr (Xr+1))
⊆ fr ,s(Xr)

But any decreasing sequence of finite sets must be eventually constant, and since
the members of the sequence are all non-empty we have that

X ∗
s =

⋂
r>s fr ,s(Xr)

is non-empty and equals fr ,s (Xr) for all sufficiently large r .

From this it follows that when we vary s , we have fs(X ∗
s+1) = X ∗

s . The X ∗
s ,

and the functions fs restricted to these sets, thus satisfy the assumptions of the
lemma and have the additional property that the restricted fs are onto.

7.4 Relationships with abstract models 181

X 0

f
1

X 1 X 2
X 3

f
2

f
3

Figure 7.8: The proof of König’s lemma.

Now simply pick x0 ∈ X ∗
0 , and for each s let xs+1 be any member of X ∗

s+1

such that fs(xs+1) = xs . This must exist by what we observed above.

Figure 7.8 illustrates a simple example of this proof. A few of the decreasing
subsets fr ,1(Xr) of X1 are illustrated. The elements in black are those which, on
the evidence before us, are candidates for the X ∗

r .

König’s lemma is often stated in graph-theoretic terms: a finitely-branching
tree with nodes at every (natural number) depth below a root r has an infinite path
from r . The sets Xi just become the nodes reachable in i steps from r , and the
functions fi map each node to the one from which it was reached.

We can now use this result to establish the result about finitely-branching
LTSs.

Theorem 2 If C is a finitely-branching LTS, and P ∈ Ĉ , then Traces(P) is closed.

Proof Let u ∈ Σω be such that {s ∈ Σ∗ | s < u} ⊆ traces⊥(P). We can assume
that none of these s ’s is in divergences(P), for then u ∈ infinites(P) by definition.
The proof works by applying König’s lemma to the nodes reachable from P on
traces that are prefixes of u. We can formally define sets and functions for the
lemma as follows:

• Xn = {(Q , s) | Q ∈ C ∧ s ∈ (Στ)n ∧ P s�−→ Q ∧ s \ τ < u}
• If (Q , s 〈̂x 〉) ∈ Xn+1 then there must be R ∈ C such that P s�−→ R and

R x−→ Q . Necessarily (R, s) ∈ Xn . Let fn(Q , s 〈̂x 〉) be any such (R, s) (R is
not necessarily unique, but this does not matter).

182 Operational semantics

a

a

a
a

a

a

a

a

a
a

τ

τ

τ

τ

Figure 7.9: The role of divergence in Theorem 2.

The sets Xn are all finite by induction on n, using the assumption that C is finitely
branching: if (Q , s) ∈ Xn , then the set of its successors in Xn+1 is contained in the
finite set

{(R, s 〈̂τ〉) | Q τ−→ R} ∪ {(R, s 〈̂a〉) | Q a−→ R}

where a is the unique element of Σ such that (s \ τ)̂ 〈a〉 < u. That the Xn are
all non-empty is an easy consequence of the assumption that s ∈ traces⊥(P) for all
s < u.

König’s lemma then gives a sequence (Pi , si) such that fi(Pi+1, si+1) =
(Pi , si). The structure of the Xi and the fi imply that there is an infinite se-
quence u ′ = 〈xi | i ∈ N〉 ∈ (Στ)ω such that si = 〈x0, . . . , xi−1〉 and Pi

xi−→ Pi+1.
The fact that si \ τ < u for all i implies u ′ \ τ ≤ u. In fact, u ′ \ τ = u since
otherwise (contrary to our assumption) a prefix of u is in divergences(P).

Figure 7.9 shows how a finitely nondeterministic system can (for the infinite
trace 〈a, a, a, . . .〉) depend on the divergence-closure of infinites(P) to make this
result true.

On the other hand, as soon as we allow infinite branching, the set of infinite
traces does convey important information. For example, consider the two systems

7.4 Relationships with abstract models 183

Figure 7.10: Infinite branching makes infinite traces significant. (All actions are a.)

in Figure 7.10: they clearly have the same sets of failures, divergences and finite
traces, but the one on the left has the infinite trace 〈a〉ω while the other does not.
We will study the consequences of distinctions like this, and the extra power infinite
traces give us for specifications, in Chapter 10.

The above result makes it important that we understand which CSP terms
produce finitely-branching operational semantics. Every one of the operators, if
applied to a term that already has infinite branching, is capable of producing infinite
branching itself. But fortunately only three operators are capable of introducing
infinite branching, or unbounded nondeterminism as it is often called.

• The choice operator 	 S clearly introduces infinite branching (of τ actions)
when S is infinite.

• If the set X is infinite, then P \ X can branch infinitely (on τ) even if P does
not. For example, the process Q = (?n : N → P(n)) \ N is operationally
equivalent to 	{P(n) \ N | n ∈ N}.

• If the relation R is such that {x | x R y} is infinite for any y, then the
renamed process P [[R]] can branch infinitely on y when P is finitely branching.
For example, the functional renaming f [Q] where f (n) = 0 for all n ∈ N

introduces infinite branching.

The last two of these can only happen when Σ is infinite, but there is no such
limitation on the first.

We could easily prove that avoiding these three things guarantees finite
branching. The proof comes in two parts:

• Show by structural induction8 that the initial actions of any CSP term not

8 Structural induction is a technique for proving properties of objects in syntactically-defined

184 Operational semantics

involving one of these three constructs are finitely branching.

• Show that if P does not involve them, and P x−→ Q , then neither does Q .

Exercise 7.4.1 Use your answer to Exercise 7.3.2 and the functions defined in this

section to determine traces(P), failures(P) and divergences(P) for each of the processes

refered to in that earlier exercise. Is any of them infinitely nondeterministic?

Exercise 7.4.2 Can ({COUNT n | n ∈ N}) \ down diverge? What are its failures?

7.5 Tools

The role of an animator like ProBE is to bring the operational semantics to life:
it will let you carry out the actions of a process as derived from the operational
semantics. It may well allow you to see how the rules of the operational semantics
have derived each action of a compound process from the actions of its parts.

You can use a tool like this both to help you understand the operational
semantics and to apply these semantics to allow you to experiment with complex
process definitions.

sets such as the set of all CSP terms CSP. It says that if you can prove a property R of each term

T of a syntax on the assumption that R holds of all the immediate subterms that T is built from

(e.g., assuming it holds of P and Q to prove it holds of P � Q) then it holds for all members of the

syntax. Over most programming languages one can justify this principle easily, because structural

induction is implied by ordinary mathematical induction over the size of programs. But a careful

examination of what we allow as CSP terms reveals this argument does not work here, since we

have infinite mutual recursion as well as the infinitary constructs 	S and ?x : A → P , meaning

that there are terms with no finite ‘size’ in the ordinary sense. Structural induction can still be

justified provided we assume that the syntax is well-founded, meaning that there is no infinite

sequence of terms each of which is a subterm of its predecessor. This means we cannot have terms

like

a1 → a2 → . . . → ai → . . .

actually in the language, though there is nothing wrong with achieving the same effect using an

infinite mutual recursion Pi = ai → Pi+1.

Well-foundedness corresponds to the natural assumption that the language generated by a syntax

is the smallest set of terms which is closed under all the constructs of the syntax. This leads to a

trivial proof of the principle of structural induction: the assumptions of that rule imply that the

set of terms in the language that satisfy R is itself closed under all the constructs, and therefore

contains the smallest set.

Readers with the necessary mathematical background might like to note that, in order to make

the infinitary syntax of CSP well defined, it is necessary to put some bound on the size of sets that

can have	 applied to them. This can be any infinite cardinal number κ, which can be chosen to

accommodate all the nondeterministic choices required for a given theory. (The necessity of this

bound is tied up with Russell’s paradox and the non-existence of a set of all sets.)

7.6 Notes 185

FDR is heavily dependent on the operational semantics. This is discussed in
Appendix C.

7.6 Notes

Historically, the operational semantics of CSP was created to give an alternative
view to the already existing denotational models rather than providing the intuition
in the original design as it has with some other process algebras such as CCS.

The style of presenting an operational semantics as an inference system
evolved at about the same time as CSP, the main influence being Plotkin’s notes
[94] which set out the general style used here. The operational semantics of CSP
first appeared in something like their present form in Brookes’s thesis [15], though
essentially the same semantics in LTSs using different notations (more remote from
Plotkin’s) were present in [18, 101]. In providing CSP with an operational semantics
of this form we were certainly heavily influenced by the earlier work on CCS, the
standard treatment of which is now [82].

The version in [15] did not use the τ -expansion rule for recursion unfolding.
This first seems to have appeared in print in [87], though it had certainly been in
use for several years by then. This rule is interesting because it shows up one of the
major differences between CSP and those other process algebras which, like CCS,
give semantic significance to a single τ action. If it were not the case that, for any
node P , another node Q whose only action is Q τ−→ P is equivalent to P , then the
unwinding rule would be much more controversial.

The semantics presented in this book differ from the earlier versions in the
way �, and hence the distributed termination of parallel constructs, are interpreted.

186 Operational semantics

Chapter 8

Denotational semantics

8.1 Introduction

CSP has been given a number of denotational semantics, mainly based on sets of
behaviours such as traces, failures and divergences. It is not necessary to under-
stand a lot of difficult mathematics to use the behaviours as a tool for describing
or specifying processes, especially when equipped with automated tools for evalu-
ating which behaviours a process has. Indeed, the sets of behaviours of processes
can equally and equivalently (thanks to congruence theorems) be extracted from
operational semantics. However, it is possible to gain a much deeper insight into
the language by investigating these notions of equivalence and the properties of the
models they generate. In this chapter we set out the main ideas and methods of
denotational semantics, or at least the ones important to CSP, and show how three
models for CSP each give an interesting semantics.

In building a denotational semantics – a function1 S[[·]] from a programming
language L into a mathematical model M – there are a number of things we must
always seek to do. The following paragraphs set out these aims.

Natural but abstract relationship between model and language

Ideally the construction ofM should have a close relationship to a natural language
for describing the ‘essence’ of programs in L. This makes it easier to devise and

1The special style of brackets [[·]] is commonly used in denotational semantics to separate pro-

gram syntax from abstract semantics. They have no formal significance, but give a useful visual

signal. In fact we will not generally use them when it comes to dealing with CSP except in places

where a clear distinction between syntax and semantics is vital.

188 Denotational semantics

justify the semantic clauses for the different operators and to use the semantic value
of a program as a vehicle for specifying properties of it.

Natural notion of process equivalence

The equivalence over process terms induced by the semantics should be a natural
one, in the sense that for all terms P and Q , S[[P]] = S[[Q]] if and only if P and Q
behave equivalently in some clearly defined sense. Depending on the way the model
is built this may be obvious, or it may be rather more subtle. One of the best ways
of demonstrating this is to identify a very few (rarely more than one or two) sim-
ple tests based on simple specifications (such as ‘does not immediately deadlock’,
‘does not immediately diverge’ or ‘does not have the trace 〈fail 〉’) which are uncon-
troversial reasons for deciding two processes are different, and then showing that
S[[P]] = S[[Q]] if and only if, for all process contexts C [·], C [P] and C [Q] satisfy
the same selection of these tests. If one can prove a result like this we say that the
semantics S[[·]] is fully abstract with respect to the chosen selection of properties.
We will study this idea in depth in the next chapter.

Model must be a congruence

The semantics has to be a congruence, in that for each operator ⊕ in the language,
it is possible to compute S[[P ⊕ Q]] in terms of S[[P]] and S[[Q]] (with obvious
modifications for non-binary operators). It is quite possible to propose what looks
like a good model for a language only to discover that this property fails for some
operator. For example, we might design a model for CSP in which a process was
modelled by (traces(P), deadlocks(P)), where deadlocks(P) is the set of traces on
which P can deadlock, as a simplification of the failures model. We would then find
it possible to give semantic clauses for deadlocks(P) for most CSP operators, for
example

deadlocks(STOP) = {〈〉}
deadlocks(a → P) = {〈a 〉̂ s | s ∈ deadlocks(P)}
deadlocks(P � Q) = ((deadlocks(P) ∪ deadlocks(Q)) ∩ {s | s = 〈〉})

∪ (deadlocks(P) ∩ deadlocks(Q))

deadlocks(P 	 Q) = deadlocks(P) ∪ deadlocks(Q)

deadlocks(P ; Q) = (deadlocks(P) ∩ Σ∗)
∪ {s t̂ | s 〈̂�〉 ∈ traces(P) ∧ t ∈ deadlocks(Q)}

8.1 Introduction 189

But this breaks down for parallel operators involving synchronization, such as ‖
X

.

If, for example

P = (a → P) 	 (b → P)

R = (a → R) � (b → R)

P and R have exactly the same sets of traces ({a, b}∗) and deadlock traces ({}).
But, while R ‖

{a,b}
R still cannot deadlock, the process P ‖

{a,b}
P can (on any trace)

because the left-hand P can opt only to accept a and the right-hand one can opt
only to accept b. Thus it is impossible, in general, to predict the semantics of S ‖

X
T

from those of processes S and T , so our proposed semantics is not a congruence
and must be rejected.

Fixed-point theory

Just as we need to be able to combine semantic values accurately under all of the
basic operators of our language, we also need to be able to compute the values
of recursively defined processes. While you can think of recursion as just another
operator that is applied to process terms (turning P into μ p.P), it is conceptually
a quite different thing to operators like a →, � and ‖

X
. What μ p.P represents is a

solution to the equation

A = P [A/p]

Since the denotational semantics is a congruence, the semantic value S[[P [A/p]]] is
a function of the value S[[A]], in the sense that if S[[A]] = S[[B]], then S[[P [A/p]]] =
S[[P [B/p]]]. Thus S[[μ p.P]] is a fixed point of this function. You can think of the
term P as a context in which the identifier p represents the process argument.

Giving a denotational semantics to recursively defined processes thus reduces
to finding fixed points of the functions fromM to itself that are generated by process
contexts. This means that every appropriate function over M must have a fixed
point – not something that is true for most mathematical structures. And, of course,
there may be more than one fixed point, in which case we have to make a rational
choice of which one to select.

Just as the semantics of recursion is stylistically very different from the se-
mantic clauses of more ordinary operators, so too are the methods available for
proving properties of recursively defined process. We need ways of proving proper-
ties of the objects extracted by whatever mechanism is chosen to pick fixed points.
Such proof methods, the main ones seen so far being the UFP rule and fixed-point

190 Denotational semantics

induction, are inevitably intimately tied up with whatever mathematical theory is
used to prove the existence of the fixed points.

In the later sections of this chapter we formalize several denotational seman-
tics for CSP and show how they meet the aims set out above.

Two different theories, partial orders (with Tarski’s theorem) and metric
spaces (with the contraction mapping theorem) for proving the existence of fixed
points are commonly used in denotational semantics. Both of these are used in CSP
and we use them widely in this and subsequent chapters. A tutorial introduction
to both can be found in Appendix A, and readers not familiar with one or both
should study that before continuing with the present chapter.

8.2 The traces model

We have already defined the traces model and the semantics of each individual
operator over it. T is the set of non-empty, prefix-closed subsets of Σ∗�. This,
as is shown in Section A.1.1, is a complete lattice under the refinement order
T

(which equates to reverse containment). But, since any complete lattice is also a
complete lattice when turned upside down, we actually have three different choices
of theories to get us the fixed points required for recursions: the two senses of the
order, or metric spaces. In this section we discover which of these is the right answer
by looking carefully at the properties of the model and the CSP operators over it.

It is instructive to examine the ways that the various operators are defined
over T . (Their definitions can be found in Section 1.3.1 and with later definitions
of operators.) In every case, it is possible to restructure them so that instead of
being functions from sets of traces to sets of traces, they are lifted in a natural
way from relations over traces. This is well illustrated by considering the sequential
composition operator P ; Q . We can derive its traces from two relations: one
(binary) between traces of P and output traces and one (ternary) between traces
of P , traces of Q and output traces. These are described

s [;]1u ⇔ s ∈ Σ∗ ∧ u = s
(s , t)[;]1,2u ⇔ ∃ s0.s = s0̂ 〈�〉 ∧ u = s0̂ t

Thus, we get one relation describing the overall behaviours that the first argument
can produce without the help of the second, and one describing the behaviours in
which both arguments are active. There are two further relations we might need
for a binary operator ⊕: [⊕]2 for the second argument acting alone and [⊕]• for the
set of behaviours that can be produced without either playing a part; but in the

8.2 The traces model 191

case of ‘;’ these are both empty. In general we then get

traces(P ⊕Q) = {u | ∃ s ∈ traces(P), t ∈ traces(Q).(s , t , u) ∈ [⊕]1,2}
∪ {u | ∃ s ∈ traces(P).(s , u) ∈ [⊕]1}
∪ {u | ∃ t ∈ traces(Q).(t , u) ∈ [⊕]2}
∪ [⊕]•

For a unary operator we similarly need two relations: one for behaviours involving
its argument and another for those that do not. The following give clauses for most
of the other main CSP operators. Where a relation is not specified it is empty.

[a →]• = {〈〉}
[a →]1 = {(s , 〈a 〉̂ s) | s ∈ Σ∗�}

[�]1,2 = {(s , 〈〉, s), (〈〉, s , s) | s ∈ Σ∗�}

[]• = {〈〉}
[]1 = {(s , s) | s ∈ Σ∗�}
[]2 = {(s , s) | s ∈ Σ∗�}

[‖
X

]1,2 = {(s , t , u) | u ∈ s ‖
X

t} where s ‖
X

t is as defined in Section 2.4 and

extended to deal with � on page 150.

[\ X]1 = {(s , s \ X) | s ∈ Σ∗�}

[[[R]]]1 = {(〈a1, . . . , an〉, 〈b1, . . . , bn〉), (〈a1, . . . , an , �〉, 〈b1, . . . , bn , �〉) |
∀ i .aiRbi}

It is interesting to note that the relations given above for 	 and � are different,
even though these operators are identical over trace sets. On one hand, this shows
that the choice of relations to achieve a given effect is not unique. On the other,
the precise forms chosen have been influenced by the very different operational
semantics of the two (see Section 7.3): in P 	 Q it is never the case that both P
and Q have ‘run’, while in P � Q they may both have executed internal actions
before the choice was resolved.

Perhaps the most important consequence of this relational representation is
that it automatically yields important structural results about the semantics.

Theorem 1 Any operator ⊕ over T definable as the lifting of a family of trace

relations is fully distributive in each of its arguments, in the sense that F (S) =

	{F (P) | P ∈ S} for each non-empty S (where F (·) represents any unary function

produced by fixing all arguments of ⊕ other than the one we are studying).

192 Denotational semantics

Proof Suppose first that ⊕ is unary. Then there are no other arguments to fix,
and so

F (S) = [⊕]• ∪ {u | ∃ s ∈
⋃

S .(s , u) ∈ [⊕]1}
= [⊕]• ∪

⋃
{{u | ∃ s ∈ P .(s , u) ∈ [⊕]1} | P ∈ S}

=
⋃
{[⊕]• ∪ {u | ∃ s ∈ P .(s , u) ∈ [⊕]1} | P ∈ S}

= 	{F (P) | P ∈ S}

the equality between the second and third lines following because S is non-empty.

If ⊕ were not unary then fixing all arguments but one means we can divide
the relations into those which involve the chosen one and those that do not, and
derive a unary and a binary relation to use in the above proof. For example, if we
are studying the first argument of a binary operator and fix the second argument
to be Q ∈ T then the cross-section F (P) = P ⊕Q gives relations

[⊕Q]• = [⊕]• ∪ {u | ∃ t ∈ Q .(t , u) ∈ [⊕]2}
[⊕Q]1 = [⊕]1 ∪ {(s , u) | ∃ t ∈ Q .(s , t , u) ∈ [⊕]1,2}

This completes the proof.

This gives another view of the distributive laws that hold of CSP operators
and also proves (i) that they are all monotonic with respect to the refinement order
and (ii) that under the subset order (i.e., the reverse of refinement) they are all
continuous. The former is because we know P
 Q is equivalent to P 	 Q = P ,
and so F (P) 	 F (Q) = F (P) for distributive F (·). The latter is because continuity
under that order is equivalent to distributivity over directed sets.

It is also informative to consider continuity in the other direction. Now, it
turns out, not all operators are continuous. An example that fails is hiding an
infinite set X = {a1, a2, . . .}, since, if we pick b ∈ X , the processes

Pn = STOP 	 	{ai → b → STOP | i ≥ n}

form an increasing sequence under
T with limit STOP . However, for every n,

Pn \ X = STOP 	 b → STOP

so that the limit of applying \ X to the sequence:

⊔
{Pn \ X | n ∈ N}

equals this value, which of course is not equal to STOP \ X .

The key to which operators are continuous lies in the relations that represent
them. The crucial feature of \ X (whether or not X is infinite, though it may not

8.2 The traces model 193

be empty) is that for any trace u not including a member of X , the set {s ∈ Σ∗� |
(s , u) ∈ [\ X]1} is infinite: if we are told that s ∈ traces(P \ X), there are infinitely
many potential reasons for this and as we go through an infinite refining sequence
of processes these reasons can disappear just as in the example above until there
are none left in the limit.

Except for hiding, the only relation described above that can have this in-
finitary property is the one for renaming P [[R]] when the R used is infinite-to-one
(i.e., it relates an infinite set of before-renaming events to a single after-renaming
one).

Consider, for example, the case of ;. The fact that there are two2 different
relations generating traces is irrelevant since if there were an infinity of different
reasons for a given trace, infinitely many of these would have to come from one
or other. [;]1 is obviously finitary since it is a subset of the identity relation –
each trace has at most one precursor here. [;]1,2 is more interesting since the trace
〈a1, . . . , an〉 has precursors

{(〈a1, . . . , ak , �〉, 〈ak+1, . . . , an〉) | k ∈ {0, . . . ,n}}

which, though always a finite set, grows in size with the length of trace.

Formally, we define an n-ary relation R to be finitary if, for all v in the
domain of its final component,

{(x1, . . . , xn−1) | (x1, . . . , xn−1, v) ∈ R} is finite

The following result shows the importance of these ideas to continuity.

Theorem 2 If⊕ is any operator of finite arity, which can be represented by a family

of relations all of which are finitary, then it is
T -continuous in each argument.

Proof The reduction of this problem to the case where ⊕ is unary is essentially
the same as in the previous proof, its finite arity being needed simply so that the
number of representing relations is also finite. So we will restrict out attention to
that case, so that ⊕ is generated by the relations [⊕]• and [⊕]1 where the latter is
finitary (there being no question that a unary relation like [⊕]• can fail to be). We
are therefore considering the function

F (P) = [⊕]• ∪ {u | ∃ s ∈ P .(s , u) ∈ [⊕]1}

2In the case of there being infinitely many relations, as there would be for	 S with S infinite,

this would be of concern if the ranges of the relations overlap.

194 Denotational semantics

To prove it is continuous it is sufficient (thanks to its known monotonicity) to show

F (
⊔

Δ)
T

⊔
{F (P) | P ∈ Δ}

or, equivalently,

F (
⋂

Δ) ⊇
⋂
{F (P) | P ∈ Δ}

for any directed Δ ⊆ T . So suppose u is a trace belonging to the right-hand side.
We can dispose of it immediately if u ∈ [⊕]• for it is then trivially in the left-hand
side; so we can assume u ∈ [⊕]•. If u did not belong to the left-hand side, it follows
that each member of the finite set

pre⊕(u) = {s | (s , u) ∈ [⊕]1}

is absent from
⋂

Δ. For each such s we can choose Ps ∈ Δ such that s ∈ Ps .
Finiteness and the fact that Δ is directed then implies that there is a P∗ ∈ Δ such
that Ps
T P∗ for all such s . Necessarily then, P∗ ∩ pre⊕(u) = {} and hence
u ∈ F (P∗) contradicting what we assumed above. This completes the proof.

This, of course, only proves continuity for each individual CSP operator. As
you will find in studying Appendix A, the composition of continuous (monotone)
operators is itself continuous (monotone), which means that the above result easily
yields the continuity of any expression built out of continuous operators. One
important point that is often forgotten about in this type of explanation is the
possibility of there being one recursion inside another, as in

μ p.(a → (μ q.p � b → q))

The fact here is that, in order to define the meaning of the μ p recursion, we have
to think of the inner recursion as a function of p (i.e., the fixed point varies with
p). Fortunately Lemma 8 (page 503) tells us that this causes no problems, but it is
important that you understand clearly why it is needed.

T can be given a metric structure based on the system of restriction functions

P ↓ n = {s ∈ P | #s ≤ n}

which are closely analogous to, and satisfy the same collection of properties as, the
family introduced in Section A.2 for individual traces. Following the same approach
set out there gives the distance function

d(P ,Q) = inf {2−n | P ↓ n = Q ↓ n}

8.2 The traces model 195

If the sequence

〈P0,P1,P2, . . .〉

satisfies Pn+1 ↓ n = Pn , then it is easy to see that P∗ =
⋃
{Pn | n ∈ N} satisfies

P∗ ↓ n = Pn . Thus T is (following the definitions in Section A.2) a complete
restriction space and so the metric is complete.

The restriction functions, and hence the complete metric structure, extend
easily to the product spaces used to reason about mutual recursions. If Λ is any
non-empty indexing set, we restrict a vector P ∈ T Λ componentwise:

(P ↓ n)λ = Pλ ↓ n

It is the metric/restriction structure which is at the heart of the theory
of guardedness/constructiveness that we first met in Chapter 1. For we can now
precisely define what it means for a function F to be constructive with respect to
T : for all processes P , Q and n ∈ N

P ↓ n = Q ↓ n ⇒ F (P) ↓ (n + 1) = F (Q) ↓ (n + 1)

As discussed in Section A.2, it is useful to define a corresponding concept of non-
destructive function:

P ↓ n = Q ↓ n ⇒ F (P) ↓ n = F (Q) ↓ n

As shown in there, a function is constructive if and only if it is a contraction
mapping with respect to the associated metric and is non-destructive when it is
non-expanding in the metric space.

This immediately means that a constructive function has a unique fixed point
(thus justifying the UFP rule for analyzing recursions that we have used frequently
through this book).

In Section 1.3.1 we declared that a recursion was ‘guarded’ if every recursive
call was directly or indirectly guarded by a communication, but when we met the
hiding operator in Section 3.1 we had to exclude recursions in which hiding was
used. Both of these steps are easily explained when we examine how the individ-
ual operators behave with respect to the restriction functions. The following result
summarizes the position and is easy to establish; combining it with the composi-
tional rules for constructive/non-destructive functions justifies the earlier claims.

Lemma 3 Each of the operators 	, �, ‖
X

, renaming and ; is non-destructive over T
in each argument. The prefix operators a → and ?x : A→ are constructive.

196 Denotational semantics

We could prove most of these in terms of the relational representations of
the operators: if an operator can be represented by relations that are all non-
destructive in the sense that the result trace of each tuple is never shorter than any
of the others, then it is easily shown to be non-destructive, and if the other traces
are always strictly shorter then it is constructive. The only relations amongst those
defined above that are not non-destructive are [\ X]1 (as one might expect) and
[;]1,2 which contains tuples like (〈a, �〉, 〈〉, 〈a〉). That ; is non-destructive despite
this observation follows because any trace that results from such a ‘destructive’
triple also results from [;]1 as the contribution of the second process to [;]1,2 must
be 〈〉 in such a case.

There are, as we saw in Chapter 4, useful classes of recursion that do in-
volve hiding because of the way they create dynamic networks using piping and
enslavement. It is possible to find ones that actually behave properly despite not
being constructive at all, but most can be shown constructive using careful analysis.
Recall the recursive definition of an infinite buffer:

B+ = left?x → (B+ >> right !x → COPY)

When we introduced this on page 108 we saw an informal argument for the com-
position (P >> right !x → COPY) being non-destructive as a function of P because
the process on the right of the >> is built so that it compensates for all the events
that get hidden. We now have the mathematics to analyze this situation, in clause
(a) of the following lemma, whose proof is left as an exercise.

Lemma 4 (a) If Q satisfies

s ∈ traces(Q) ⇒ #(s ↓ left) ≤ #(s ↓ right)

then the function F (P) = P >>Q is non-destructive.

(b) If Q satisfies

s ∈ traces(Q) ⇒ #(s ↓ right) ≤ #(s ↓ left)

then the function F (P) = Q >> P is non-destructive.

(c) If, for each s ∈ traces(Q) and i ∈ {1, . . . , k}, we have

#(s \ {| m1, . . . ,mk |}) ≥ #(s ↓ mi)

then the function F (P1, . . . ,Pk) = Q//m1:P1// . . . //mk :Pk is non-destructive in each

of its arguments.

8.2 The traces model 197

Where the metric fixed point theory works it is, by virtue of the uniqueness of
the fixed points it produces, certain to agree with those produced by both directions
of the partial order (which, of course, then agree with each other). Virtually all
well-behaved recursions fit within it, and in Section 9.2 we will see evidence that
all other well-behaved ones (ones not introducing divergence) force there to be a
unique fixed point. Nevertheless it is preferable to be in a position to interpret
badly-behaved ones too, such as the three set out below.

• Z0 = Z0

• Z1 = a → (Z1 \ {a})

• Z2 = (up → (AZ//u:Z2)) � (iszero → Z2), where

AZ = down → (u.iszero → AZ ′

� u.down → u.down → AZ)
� up → u.up → u.up → AZ

AZ ′ = iszero → AZ ′

� up → AZ

Z2 is an interesting recursion closely modelled on the enslavement version of
the counter process, seen on page 112, but which increments and decrements
its slave by two rather than one. This violates Lemma 4 (c) since it frequently
requires its slave to have communicated a longer trace than it has, and though
the well-behaved counter is a fixed point, it is not the only one. Others are
BCOUNT and PCOUNT , where

BCOUNT = iszero → BCOUNT
� up → (down → BCOUNT

� up → (up → STOP � down → STOP))

PCOUNT = iszero → PCOUNT
� up → (down → PCOUNT

� up → MANY)

MANY = down → MANY
� up → MANY

Both of these get confused when they reach the number 2 (which is the
point where the slave counter gets raised to the same level as the overall one,
leading to ill-definedness). BCOUNT reacts by deadlocking soon after, while
PCOUNT loses track and accepts any number of down events.

198 Denotational semantics

And we are in a position to interpret arbitrary CSP-defined recursions, for
we have both the
T and ⊆ orders. The only problem is to decide which, if either,
is the right one to use.

• If we identify a recursion with the least fixed point with respect to
T then
we have to accept that the simple formula

⊔∞
r=0 F r (⊥)

for the least fixed point does not always hold because F is not always contin-
uous. In this order, ⊥ is Σ∗�. The fixed point produced will always be the
one with as many traces as possible, consistent with its being a fixed point.
Essentially, with this choice, we start out with the assumption that all be-
haviours are possible for a recursively defined process, and the construction
of the fixed point is the determination of which of these traces are impossible
based solely on the information that it is a fixed point.

• If we identify a recursion with the ⊆-least fixed point then the above formula
(with ⊥ now being STOP = {〈〉}) will always hold and we will always get
the process with as few traces as possible. With this choice, the construction
of the fixed point establishes which traces are certainly in any fixed point.

Now, in fact, the operational semantics given in Chapter 7 gives precisely
the traces corresponding to the second choice (we will examine this fact further in
Section 9.4). The only reasons to pick the first option would be (i) if one were
proposing an alternative operational semantics in which some under-defined recur-
sion could produce some other trace and (ii) somehow to express our disapproval of
under-defined recursions by cluttering up their semantics with traces that may well
make the process fail some safety specification. The first of these seems unlikely to
the author, and the second really represents muddled thinking: in the traces model
we can only expect to reason about safety properties and it is not possible accu-
rately to model divergence (the natural way in which an under-defined recursion
such as any of the above manifests itself at the point where the under-definedness
‘bites’) without expressly including it in the model.

Therefore the correct choice for T is to identify every recursion μ p.F (p) with
its ⊆-least fixed point which, because of the continuity of all operators with respect
to this order, is just the set of all traces which some Fn(STOP) can perform. For
the examples Z0, Z1 and Z2 above these are respectively {〈〉}, {〈〉, 〈a〉} and the
traces of BCOUNT .

The identification of a diverging process like Z0 (or, indeed, a straightforward
example like (μ q.a → q) \ {a}, about which there is no ambiguity in the calculation
of the fixed point) with the most refined process of T is simply a reflection of the

8.3 The failures/divergences model 199

deficiencies of this model for reasoning about anything other than safety properties.
This is similar to the phenomenon that identifies the deadlocked process STOP
with the same value. As we will see in the next section, as soon as we model both
safety and liveness in the same model, there is no most refined process.

Exercise 8.2.1 Find sequences of processes of the form P0 �T P1 �T P2 �T . . .

illustrating failures of �T -continuity of (i) hiding a single event \ {a} and (ii) infinite-to-

one renaming.

Exercise 8.2.2 Prove that the relation [‖
X
]1,2 is finitary.

Exercise 8.2.3 Show that if a unary operator ⊕ satisfies (s, t) ∈ [⊕]1 ⇒ #t > #s,

then ⊕ is constructive.

Exercise 8.2.4 Prove Lemma 4 (c), and hence show that the Zero// recursion given

on page 112 is constructive.

Exercise 8.2.5 Suppose Σ is infinite. Use renaming to find a CSP-definable function

that is constructive but not continuous with respect to �T .

8.3 The failures/divergences model

8.3.1 Building the model

As we have already specified in Section 3.3, in the failures/divergences model each
process is modelled by the pair (failures⊥(P), divergences(P)), where, as formally
set out in Section 7.4.1,

• divergences(P) is the (extension-closed) set of traces s on which P can di-
verge, in the sense that an infinite unbroken sequence of τ actions can occur
after some s ′ ≤ s .

• failures⊥(P) consists of all stable failures (s ,X) (where s is a trace of P and
X is a set of actions P can refuse in some stable (unable to perform a τ or
�) state after s , or results from a state after s which can perform � and
X ⊆ Σ), together with all pairs of the form (s ,X) for s ∈ divergences(P).

This model has long been taken as the ‘standard’ equivalence for CSP, and with
good reason. It allows us to describe safety properties (via traces) and to assert
that a process must eventually accept some event from a set that is offered to it
(since stable refusal and divergence are the two ways it could avoid doing this, and
we can specify in this model that neither of these can happen). Although, as we will

200 Denotational semantics

see in Sections 8.4 and 10.1, it is possible to reason about either (stable) failures or
divergences in the absence of the other, neither alone provides a sufficiently complete
picture of how processes behave.

It is important to notice that if s is a trace that process P can perform then
certainly either P diverges after s or reaches a stable state or one that can perform
�. Thus, the failure (s , {}) always belongs to failures⊥(P), either because of the
closure under divergence or because any stable (or �) state obviously refuses the
empty set of events. It is, therefore, in general true that traces⊥(P) = {s | (s , {}) ∈
failures⊥(P)}, and we will use this identity without comment in what follows.

Recall that in the traces model we identified processes with non-empty, prefix-
closed sets of traces in Σ∗�. Similarly, in the failures/divergences model we need
a number of ‘healthiness’ conditions to identify which pairs of the form (F ,D)
(F ⊆ Σ∗� × P(Σ�) and D ⊆ Σ∗�) can reasonably be regarded as processes. We
formally define the model N to be the pairs P = (F ,D) of this form satisfying the
following (where s , t range over Σ∗� and X ,Y over P(Σ�)):

F1. traces⊥(P) = {t | (t ,X) ∈ F} is non-empty and prefix closed.

F2. (s ,X) ∈ F ∧Y ⊆ X =⇒ (s ,Y) ∈ F
This simply says that if a process can refuse the set X , then it can also refuse
any subset.

F3. (s ,X) ∈ F ∧ ∀ a ∈ Y .s 〈̂a〉 ∈ traces⊥(P) =⇒ (s ,X ∪ Y) ∈ F
This says that if P can refuse the set X of events in some state then that
same state must also refuse any set of events Y that the process can never
perform after s .

F4. s 〈̂�〉 ∈ traces⊥(P) =⇒ (s , Σ) ∈ F
This reflects the special role of the termination event/signal � (see Section
7.2) and says that if a process can terminate then it can refuse to do anything
but terminate.

D1. s ∈ D ∩Σ∗ ∧ t ∈ Σ∗� =⇒ s t̂ ∈ D
This ensures the extension-closure of divergences as discussed briefly above.

D2. s ∈ D =⇒ (s ,X) ∈ F
This adds all divergence-related failures to F .

D3. s 〈̂�〉 ∈ D =⇒ s ∈ D
The effect of this axiom is to ensure that we do not distinguish between
how processes behave after successful termination. Already obliged not to
communicate again (as � is always final) and therefore to refuse all events
(by F3), D3 states that the only way a trace s 〈̂�〉 can get into D is via
the implication in D1. Since � is a signal indicating termination, after that
event there is no possibility of the process carrying on and diverging.

8.3 The failures/divergences model 201

Our earlier assertion that the set of traces of any process is just the set
{s ∈ Σ∗� | (s , {}) ∈ F} is justified for any pair (F ,D) satisfying the above, because
of F2.

It is fairly easy to see that the abstraction functions defined in Section 7.4.1
for deducing (failures⊥(P), divergences(P)) for a member P of an LTS give a pair
satisfying the above. That these conditions cannot be strengthened any further is
demonstrated

(a) by the fact that, as demonstrated in Exercise 9.4.3, there is a member of an
LTS mapping to any pair (F ,D) that satisfies them, and

(b) by the facts that, under various sets of assumptions, it can be shown that
every member of N is the image of a CSP process: see Sections 9.3 and 10.2.

Recall that refinement is defined over this model by reverse containment:

(F ,D)
FD (F ′,D ′) ≡ F ⊇ F ′ ∧D ⊇ D ′

Any immediately divergent process such as div is identified with the bottom
element of N :

⊥N = (Σ∗� × P(Σ�), Σ∗�)

for notice that, thanks to conditions D1 and D2, 〈〉 ∈ divergences(P) implies that
all of these behaviours are present.

The greatest lower bound for any non-empty subset of N is just given by
componentwise union:

	S = (
⋃
{F | (F ,D) ∈ S},

⋃
{D | (F ,D) ∈ S})

which is naturally identified with the nondeterministic choice over S and easily
shown to be a member of N (see Exercise 8.3.3).

If s is a trace of P = (F ,D), then P/s (P after s) is the pair

({(t ,X) | (s t̂ ,X) ∈ F}, {t | s t̂ ∈ D})

which simply represents the possible behaviour of P after s has been observed.
Conditions D1 and D2 ensure that if s ∈ D∩Σ∗ then P/s = ⊥N . We can similarly
extract the initials and refusals of P from its failures/divergence representation:

initials(P) = {a ∈ Σ� | 〈a〉 ∈ traces⊥(P)}
refusals(P) = {X ⊆ Σ� | (〈〉,X) ∈ F}

202 Denotational semantics

Clearly ⊥N
FD P for all P , so this process is the least refined under
failures/divergences refinement. There is no single most refined process, unlike T
where STOP was most refined. It would have been worrying if there had been one,
since P
FD Q can be interpreted as saying that Q is more deterministic than P ,
and it is implausible for there to be a single most refined process in a model that
claims to provide a complete description of processes. If there were we could put
programmers out of a job and use it every time! The maximal processes of N are
those that cannot diverge and can only refuse those sets implied by condition F3.
These, satisfying the following

divergences(P) = {} ∧
∀ s , a.¬(s 〈̂a〉 ∈ traces⊥(P) ∧ (s , {a}) ∈ failures(P))

are the deterministic processes we met in Section 3.3. Let D denote the set of
deterministic processes. We will discuss these in Section 9.1, including showing
that they are, indeed, the maximal elements of N .

When Σ is finite, N is significantly easier to analyze and better-behaved.
The following result illustrates this.

Theorem 5 If Σ is finite then N is a complete partial order (cpo) under the

refinement order and the least upper bound of any directed set Δ of processes is

simply the componentwise intersection

P† = (F †,D†) = (
⋂
{F | (F ,D) ∈ Δ},

⋂
{D | (F ,D) ∈ Δ})

Proof To prove this we have to show that (F †,D†) satisfies all of F1–D3. All of
these other than F3, which is the only one actually requiring the directedness of Δ,
are straightforward, so we will concentrate on that one.

If (s ,X) and Y meet the conditions of F3 for the failure-set F †, we have to
show that (s ,X ∪ Y) ∈ F for every (F ,D) ∈ Δ as that would imply it is in the
intersection F †. Let us fix on a specific P0 = (F0,D0). As P varies over Δ, the set

initials(P/s) = {a | s 〈̂a〉 ∈ traces⊥(P)}

varies in such a way that

P
FD P ′ ⇒ initials(P/s) ⊇ initials(P ′/s)

As we are assuming Σ (and hence P(Σ�)) to be finite, it follows that the above sets
form a finite directed set under reverse containment, which means that there is a
P‡ = (F ‡,D‡) ∈ Δ such that it is minimum in the sense that (P‡/s)0 ⊆ (P/s)0 for

8.3 The failures/divergences model 203

all P ∈ Δ. Directedness of Δ also lets us assume that P‡ � P0 for if the one we pick
first does not satisfy this we may pick one which refines both the original and P0.
It follows easily that initials(P†/s) = initials(P‡/s) and so (s ,X ∪ Y) ∈ F ‡ ⊆ F0

as required.

The use of directed finite sets in this proof is essentially a re-working in rather
different language of the argument in Theorem 1 (König’s lemma). It is interesting
to compare them.

This proof depends crucially on the finiteness of Σ, for the result does not
hold when Σ is infinite. We should not be too surprised at this, since moving from
a finite to an infinite alphabet means that N contains processes that are funda-
mentally infinitely, or unboundedly, nondeterministic in the sense that they cannot
be represented by a finitely nondeterministic LTS or by CSP syntax without one
of the constructs (S for infinite S , infinite hiding and infinite-to-one renaming –
note that the last two of these can only exist in the context of infinite Σ) known
to introduce it. Since refinement is equated with the restriction of nondeterminis-
tic choice, if we start off (at some point in a process) with a finite range of options
then – as shown in the proof above – any directed set of refinements must eventually
settle down to a fixed non-empty subrange of these options, for a directed (under
reverse inclusion) set of non-empty finite sets always has non-empty intersection.
On the other hand, a similar directed set of infinite non-empty sets may have empty
intersection, the simplest example being, perhaps,

{{0, 1, 2, . . .}, {1, 2, 3, . . .}, {2, 3, 4, . . .}, . . . , {n,n + 1, . . .}, . . .}

This example can be translated directly to one showing that N is not a cpo
when Σ is infinite; assume we have identified a distinct element ai ∈ Σ for each
i ∈ N. Now let

Pn = 	{ai → STOP | i ≥ n}

Clearly Pn
FD Pn+1 for all n and (〈〉, Σ) ∈ failures⊥(Pn) for any n. If this
increasing sequence were to have an upper bound P†, it would have to have the
following properties:

• (〈〉, Σ) ∈ failures⊥(P†) because P† must refine the Pi , and

• traces(P†) = {〈〉} since every trace other than 〈〉 is absent from Pn for
sufficiently large n.

But these two properties are inconsistent because of condition F3.

204 Denotational semantics

This, of course, means that it is easier to justify the existence of fixed points
for recursive definitions when Σ is finite. A number of techniques3 have been de-
veloped for establishing their existence over the type of incomplete order caused
by considering unbounded nondeterminism. These can be used to show that any
CSP-definable function over N always has a least fixed point whether Σ is finite or
not.

Thus, the incompleteness arising from infinite alphabets is more a mathe-
matical inconvenience than a real problem. Nevertheless, the possibility of infinite
nondeterminism (whatever the size of Σ) does create a real difficulty with the ac-
curacy of N as we will see in the next section.

In order to extend the notions of constructiveness and non-destructiveness
to N we need to define restrictions P ↓ n with the same properties as those already
studied over T . Various definitions would work, but the following one is perhaps
the best since it identifies P ↓ n with the
FD -minimal process in the subset of N
we would wish to identify with P based on n-step behaviour. (F ,D) ↓ n = (F ′,D ′),
where

D ′ = D ∪ {s t̂ | (s , {}) ∈ F ∧ s ∈ Σn}
F ′ = F ∪ {(s ,X) | s ∈ D ′}

In other words, P ↓ n behaves exactly like P until exactly n events have occurred,
at which point it diverges unless it has already terminated.

Lemma 6 These functions form a restriction sequence satisfying the conditions laid

out on page 506, and furthermore

(i) For each P ∈ N , P =
⊔
{P ↓ n | n ∈ N}.

(ii) If Pn is a sequence of processes such that Pn+1 ↓ n = Pn for all n, then

P† =
⊔
{Pn | n ∈ N} exists and is such that P† ↓ n = Pn .

Hence the metric generated by these functions is complete.

3In this case it is possible to find a different and stronger partial order which is complete and

with respect to which the operators of CSP are all monotonic. This order asserts that P ≤ Q

only when divergences(Q) ⊆ divergences(P) and whenever s ∈ traces(P) �divergences(P) then

refusals(P/s) = refusals(Q/s) and initials(P/s) = initials(Q/s). Thus, non-divergent behaviour

of P cannot be ‘refined’ any further and the divergence-free processes are all maximal in the order.

For details of this order, the reader should consult [104]. We will see further applications of this

order in Section 9.2. Other techniques for proving the existence of fixed points, with more general

applicability, include comparison with the operational semantics [105] and the identification and

manipulation of a complete sub-order [5, 7]. We will discuss these further in Chapter 10.

8.3 The failures/divergences model 205

Exercise 8.3.1 List all the members of N whose traces are {〈〉, 〈a〉, 〈b〉}, and find a

CSP process corresponding to each.

Exercise 8.3.2 Axiom D3 states that any divergence must appear before successful

termination. Reformulate the model so that divergence-sets are now subsets of Σ∗ (i.e.,

do not contain �), in such a way that the new version is order-isomorphic to the original.

It is a somewhat arbitrary decision which version to choose. We have chosen the version

in which �’s can appear in divergences because it simplifies some operator definitions in

the next section slightly.

Exercise 8.3.3 Show that componentwise union of any non-empty subset S of N is

a member of N .

Find an example to show that the intersection of two members of N need not be

in the model. What can you say about the intersection of two processes with the same

traces?

Exercise 8.3.4 Prove Lemma 6 above (establishing that N is a complete restriction

space).

8.3.2 Calculating the semantics of processes

Throughout Part I we generally gave the trace semantics of each operator as we
introduced it. In this section we show how to calculate the failures/divergences se-
mantics in the same way, thereby giving the building blocks of another denotational
semantics.

The following clauses show how to calculate the failures and divergences of
combinations under a number of operators where the definitions are all fairly obvious
extensions of the corresponding traces definitions.

failures⊥(STOP) = {(〈〉,X) | X ⊆ Σ�}

divergences(STOP) = {}

failures⊥(SKIP) = {(〈〉,X) | X ⊆ Σ} ∪ {(〈�〉,X) | X ⊆ Σ�}

divergences(SKIP) = {}

failures⊥(a → P) = {(〈〉,X) | a ∈ X }
∪ {(〈a 〉̂ s ,X) | (s ,X) ∈ failures⊥(P)}

divergences(a → P) = {〈a 〉̂ s | s ∈ divergences(P)}

failures⊥(?x : A→ P) = {(〈〉,X) | X ∩A = {}}
∪ {(〈a 〉̂ s ,X) | a ∈ A∧

(s ,X) ∈ failures⊥(P [a/x])}

206 Denotational semantics

divergences(?x : A→ P) = {〈a 〉̂ s | a ∈ A ∧ s ∈ divergences(P [a/x])}
failures⊥(P 	 Q) = failures⊥(P) ∪ failures⊥(Q)

divergences(P 	 Q) = divergences(P) ∪ divergences(Q)

failures⊥(S) =
⋃
{failures⊥(P) | P ∈ S} for any non-empty set S ⊆ N

divergences(S) =
⋃
{divergences(P) | P ∈ S}

failures⊥(P<I b>I Q) =
{

failures⊥(P) if b evaluates to true
failures⊥(Q) if b evaluates to false

divergences(P<I b>I Q) =
{

divergences(P) if b evaluates to true
divergences(Q) if b evaluates to false

As one would expect, in this model we can distinguish P 	 Q from P � Q .
The difference is, that on 〈〉, P � Q cannot refuse a set of events just because P or
Q does, they both have to. The obvious definitions are

divergences(P � Q) = divergences(P) ∪ divergences(Q)

X failures⊥(P � Q) = {(〈〉,X) | (〈〉,X) ∈ failures⊥(P) ∩ failures⊥(Q)}
∪ {(s ,X) | (s ,X) ∈ failures⊥(P)

∪ failures⊥(Q) ∧ s = 〈〉}

The divergences clause is correct, but the failures one potentially breaches conditions
D2 and F4. D2 fails, for example, on div � a → STOP , since the above definitions
tell us that this process can diverge immediately but cannot refuse {a} after the
empty trace. Of course this process does not have the stable refusal {a}, but we have
to remember that failures⊥(P) does not just contain the stable failures. F4 fails
because in compositions like SKIP � a → P the definition does not take account
of the special status of �: we decided in Section 6.3 that SKIP � P had to be
specially interpreted, and this must be reflected in the semantics. We can correct
these two flaws by fairly obvious additions to the above definition

divergences(P � Q) = divergences(P) ∪ divergences(Q)

failures⊥(P � Q) = {(〈〉,X) | (〈〉,X) ∈ failures⊥(P) ∩ failures⊥(Q)}
∪ {(s ,X) | (s ,X) ∈ failures⊥(P)

∪ failures⊥(Q) ∧ s = 〈〉}
∪ {(〈〉,X) | 〈〉 ∈ divergences(P) ∪ divergences(Q)}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈�〉 ∈ traces⊥(P) ∪ traces⊥(Q)}

Several later definitions will need similar additions to preserve the divergence con-
ditions D1 and/or D2, but this is the only place the special treatment of F4 is
required.

8.3 The failures/divergences model 207

Since the parallel operators can all be defined in terms of the interface parallel
operator ‖

X
, we only have a formal need to give the definition for that one. P ‖

X
Q can

refuse an event in X when either P or Q can because they both have to participate
in it. On the other hand, since they can independently perform events outside X ,
these can only be refused when both P and Q do, much as on the empty trace in
P � Q . � is, for the purposes of calculating refusals, treated as though it were
in X because of distributed termination (Section 6.2; recall that this is built into
the definition of the trace-level parallel operator s ‖

X
t which produces the set of all

traces that could arise if P and Q respectively communicate s and t).

divergences(P ‖
X

Q) = {u v̂ | ∃ s ∈ traces⊥(P), t ∈ traces⊥(Q).

u ∈ (s ‖
X

t) ∩ Σ∗

∧ (s ∈ divergences(P) ∨ t ∈ divergences(Q))}
failures⊥(P ‖

X
Q) = {(u,Y ∪ Z) | Y � (X ∪ {�}) = Z � (X ∪ {�})

∧ ∃ s , t .(s ,Y) ∈ failures⊥(P)
∧ (t ,Z) ∈ failures⊥(Q)
∧ u ∈ s ‖

X
t}

∪ {(u,Y) | u ∈ divergences(P ‖
X

Q)}

The hiding operator is the most subtle and difficult one to deal with in
the failures/divergences model; this is because it turns visible actions into τ ’s and
thus (i) removes stable states and (ii) potentially introduces divergences. It is
straightforward to deal with the first of these difficulties once we observe that the
stable states of P \ X correspond precisely to stable states of P that cannot perform
any element of X , which is equivalent to saying that they can refuse the whole of
X . In general,

failures⊥(P \ X) = {(s \ X ,Y) | (s ,Y ∪ X) ∈ failures⊥(P)}
∪ {(s ,Y) | s ∈ divergences(P \ X)}

It is the second problem that presents the greater difficulty and which will
ultimately impose a bound on the accuracy of the semantics. Hiding introduces a
divergence in P \ X when P can perform an infinite consecutive sequence of events
in X . The difficulty we have is that our model only tells us about finite traces of P ,
not about infinite ones. Our only option is to try to infer what the infinite traces
are in terms of the information to hand. As we saw in Section 7.4.2, thanks to
König’s lemma, if P has a finitely-branching LTS as its operational semantics then
Traces(P) (P ’s finite and infinite traces traces⊥(P)∪infinites(P)) equals traces⊥(P)

208 Denotational semantics

(the closure which includes those infinite traces whose finite prefixes are all there).
In that case we therefore know that

divergences(P \ X) = {(s \ X)̂ t | s ∈ divergences(P)}
∪ {(u \ X)̂ t | u ∈ Σω ∧ (u \ X) finite

∧ ∀ s < u.s ∈ traces⊥(P)}

If P ’s LTS is not finitely branching then it simply is not possible to be sure
what the infinite traces are when we are told the finite ones, and therefore what the
divergences of P \ X are. The simplest example is provided by the two processes

A∗ = 	{An | n ∈ N} and
A∞ = AS 	 	{An | n ∈ N}

where A0 = STOP , An+1 = a → An and AS = a → AS . A∗ and A∞ have
identical representations in N , but clearly only one of them can actually perform
an infinite sequence of a’s and hence diverge when we hide {a}.

We must therefore conclude that it is not, in general, possible to determine
the correct value in N of P \ X from that of P when P is unboundedly nondeter-
ministic. In other words, N unfortunately fails to be a congruence for the full CSP
language, though it is when we forbid the operators that can introduce unbounded
nondeterminism. All we can do in the general case is to assert

divergences(P \ X) ⊆ {(s \ X)̂ t | s ∈ divergences(P)}
∪ {(u \ X)̂ t | u ∈ Σω ∧ (u \ X) finite

∧ ∀ s < u.s ∈ traces⊥(P)}

so that a denotational semantics that uses the right-hand side as its definition of
divergences(P \ X) will give a conservative approximation of the true value, in the
sense that the true value always refines it.

As we will see in Chapter 10, there is a straightforward solution to the prob-
lems we have just encountered, namely to include infinite traces explicitly in the
representation of a process. Given this, the author recommends the adoption of the
following principle:

N should be regarded as the standard model for giving semantics

to finitely nondeterministic CSP (that is, for processes not involving

infinite hiding, infinite-to-one renaming or infinite nondeterministic

choices). It should not be used for giving denotational semantics to

processes that do use these constructs.

8.3 The failures/divergences model 209

Before leaving this topic, it is worth considering briefly an example which
illustrates one of the arguments for including axioms D1 and D2 (the ones that
say that we do not attempt to distinguish behaviour after potential divergence).
Consider the process P0, where

Pn = b → Pn+1

� c → An

and the An are as above. Plainly P0 \ {b} (a process that uses no infinitely
nondeterministic construction) can diverge and so D1 and D2 force us to identify
it with ⊥N . If, however, we were tempted to use a version of the model without
D1 then the only divergence of P0 \ {b} would presumably be 〈〉. It would have, as
finite traces,

{〈〉} ∪ {〈c〉̂ 〈a〉n | n ∈ N}

in other words, all finite prefixes of 〈c, a, a, a, a, . . .〉, so that applying the above
definition of hiding would predict that (P0 \ {b}) \ {a} could diverge after 〈c〉. In
fact, it cannot, since P0 plainly cannot perform an infinite consecutive sequence of
a’s. Thus, discarding axiom D1 would lead us to a position where the semantics of
hiding is not even accurate for finitely nondeterministic CSP. What is, if anything,
more disturbing about this example is that the semantics would (correctly) not
predict that (P0 \ {a}) \ {b} could diverge after 〈c〉; this means that the standard
and obvious laws 〈hide-sym〉 (3.2) and 〈hide-combine〉 (3.3):

(P \ X) \ Y = (P \ Y) \ X = P \ (X ∪ Y)

would fail. The real problem we are encountering here is that even finitely-branching
LTSs can exhibit unbounded nondeterminism after potential divergence when we
take into account the invisibility of τ actions. As P0 \ {b} diverges it gives the
infinite choice of how many a’s follow any c. In Theorem 2, we did not prove that
an infinite trace was possible in a finitely branching LTS where every finite prefix
was possible, rather that either it was possible or a finite prefix was a divergence.
Note the similarity between the present example and Figure 7.9.

There are still two operators waiting to be given their failures/divergences
semantics. The first of these is renaming. This creates few problems, though we do
have to close up under D1 and D2 since not all traces may be in the image of the
renaming relation.

divergences(P [[R]]) = {s ′̂ t | ∃ s ∈ divergences(P) ∩Σ∗.s R s ′}
failures⊥(P [[R]]) = {(s ′,X) | ∃ s .s R s ′ ∧ (s ,R−1(X)) ∈ failures⊥(P)}

∪ {(s ,X) | s ∈ divergences(P [[R]])}

210 Denotational semantics

Here, R−1(X) = {a | ∃ a′ ∈ X .(a, a′) ∈ X } is the set of all events that map to X
under R. In the above we use R extended to traces and so that �R �, as previously
discussed.

If and when P terminates in P ; Q , the � signalled by P is hidden from the
environment since the overall process has not yet terminated. This means that it is
treated in essentially the same way for the calculation of failures as an event hidden
in P \ X . We do not get into the same trouble with divergence because there is
never more than one hidden � in any run of P ; Q .

divergences(P ; Q) = divergences(P) ∪
{s t̂ | s 〈̂�〉 ∈ traces⊥(P) ∧ t ∈ divergences(Q)}

failures⊥(P ; Q) = {(s ,X) | s ∈ Σ∗ ∧ (s ,X ∪ {�}) ∈ failures⊥(P)}
∪ {(s t̂ ,X) | s 〈̂�〉 ∈ traces⊥(P) ∧ (t ,X) ∈ failures⊥(Q)}
∪ {(s ,X) | s ∈ divergences(P ; Q)}

The properties of these operators over the refinement order are, as over T ,
largely viewable as consequences of the fact that they can be reformulated as rela-
tions over behaviours. Actually defining the relations is rather dull, since we now
have to worry about the interplay between two different types of behaviour as well
as the combinations of different arguments. For example, consider renaming P [[R]],
where we get a relation from failures to failures

{((s ,R−1(X)), (s ′,X)) | s R s ′}

one from divergences to divergences

{(s , s ′̂ t) | s ∈ Σ∗ ∧ s R s ′}

and one from divergences to failures

{(s , (s ′̂ t ,X)) | s R s ′ ∧ (s ∈ Σ∗ ∨ t = 〈〉)}

In every case except one this is possible, simply because each behaviour that
results from applying an operator is inferred from at most one behaviour from each
of the arguments. The exception is, of course, hiding because we had to infer the
presence of a hiding-induced divergence from an infinite set of traces. Thus, we
generally have to use a different type of argument when reasoning about hiding.

Lemma 7 Each of the operators other than \ X is fully distributive (and hence

monotonic) over N in every argument. \ X is not fully distributive but does satisfy

(P 	 Q) \ X = (P \ X) 	 (Q \ X) (which also implies monotonicity).

8.3 The failures/divergences model 211

Proof In every case except hiding, the distributivity follows from the existence
of a relational representation, as it did over T .

We should not be surprised at the failure of full (i.e., infinite) distributiv-
ity for \ X , because we have already noted that N loses accuracy for infinitely
nondeterministic processes. That it does fail can be seen from

({An | n ∈ N}) \ {a} =	{An \ {a} | n ∈ N}

where the An are as on page 208.

It is finitely distributive because if each finite prefix of the infinite trace u
is a trace of P 	 Q , then either infinitely many come from P or infinitely many
come from Q . Whichever of these happens, it then follows by prefix closure of
trace-sets that they all come from the chosen argument (though this does not, of
course, preclude the possibility that some or all of them might also come from the
other one).

We again have to decide on the semantics of recursion, in other words how
to extract fixed points. The status of the metric theory (of constructive recursions)
is exactly the same as over T , namely that it works for at least 99% of well-behaved
recursions one typically meets, and, when it does, it says that there was not really
a choice at all. Again, the only issue is what value to give to badly constructed
recursions such as those on page 197. Whether or not Σ is finite meaning that
N is complete, it can, as we discussed earlier, be shown that every CSP-definable
function has a least fixed point in the refinement order
FD .

It is, at first sight, by no means obvious that this will give the right answer
since we ended up choosing the opposite order in T – a choice we no longer have
since there is no least element of N under the subset or anti-refinement order. In
particular, it will definitely give us a different set of traces for most under-defined
recursions like μ p.p (mapped to {〈〉} in T and to ⊥N over N which has all traces).
The crucial point is the distinction between traces(P) (the value computed over T)
and traces⊥(P) (the traces of P ’s representation in N), since the latter includes
all extensions of divergent traces. Now the only thing (the operational semantics
of) μ p.p does is diverge, which accounts precisely for the difference here, and in
general, you can characterize an ill-defined recursion as being one where, after some
specified trace, the next step behaviour is not resolved no matter how often the
recursion is unwound. In other words, an ill-defined recursion is one where the
unwinding of the recursion creates a divergence, which means that the right value
for it (after the given trace) is ⊥N .

Recall that on page 198 we characterized the two possible choices of order
to use for computing least fixed points in terms of the existence of a proof that
a given behaviour was not in any fixed point (
) or had to be in any fixed point

212 Denotational semantics

(⊆). The latter works for T because all the behaviours recorded in the model occur
in a finite time, so some finite number of unwindings of a recursion are bound to
demonstrate their presence (if a given behaviour over the operational semantics
of a recursive process contains n actions, then its derivation never requires more
than n unwindings simply because each unwinding introduces a τ action). It would
not work for a behaviour that, like a divergence, takes an infinite amount of time
to appear. The proof-of-absence idea still makes sense, however. Consider the
recursion μ p.a → p: after unfolding this recursion n times we have a proof that
divergence can never begin before the trace 〈a〉n , so that for any finite trace there
is a proof of absence of divergence. A trace of μ p.F (p) will thus be considered a
divergence if there is no proof that it cannot be one. This always gives the right
answer because an infinitely unfolding recursion results in divergence (see Section
9.4 where these arguments are explored in more detail).

We might therefore suspect that a CSP model in which all behaviours reveal
themselves finitely will have a positive (⊆) fixed-point theory, whereas a model
which has some infinite observations like divergences will require the negative (
)
theory. Perhaps the most persuasive argument for the principle of ignoring post-
divergent behaviour (axioms D1 and D2) is that it makes this negative fixed-point
theory work.

The least fixed point of the under-defined counter recursion Z2 on page 197
is

Z2 = iszero → Z2

� up → Z ′
2

Z ′
2 = down → Z2

� up → ⊥N

which is exactly what you might expect operationally. After 〈up, up〉 the recursion
unfolds infinitely since as soon as one of the cells AZ reaches this point it promptly
drives its slave to exactly the same one, creating a divergence as this cascades down
the infinite master/slave chain. All three of the processes identified earlier as trace
fixed points of this recursion are actually failures/divergences fixed points as well.
All are maximal since they are deterministic; and, as we would expect, they all
refine the value Z2 defined above.

Since we are using the
 order for fixed points over N , it makes the question
of which operators are continuous with respect to that order more important4 than
over T . Since N is not even a cpo when Σ is infinite, we will only consider the case

4Except for making the fixed-point formula simpler and perhaps more believable, the difference

between monotonic and continuous has surprisingly little impact, given the importance that is

usually placed on continuity.

8.3 The failures/divergences model 213

when it is finite.

For operators represented as relations over behaviours, the continuity anal-
ysis closely parallels that over the refinement order over T , namely any operator
represented by finitary relations is automatically continuous thanks to essentially
the same proof as that seen on page 193. Our assumption that Σ is finite greatly
simplifies this analysis, since it means that the number of possible refusal sets at-
taching to a given trace is also finite. Thus any relational representation of an
operator that is finitary on traces is automatically finitary on failures.

Using this fact, and the observation that the relations which introduce di-
vergences/failures based on a divergent prefix are finitary because each trace only
has finitely many prefixes, it is straightforward to derive the following result.

Lemma 8 If Σ is finite, then each of the operators a → ·, �, 	, ‖
X

, ; and renaming

is continuous.

In fact, hiding (necessarily finite because of the restriction on Σ) is also
continuous under this assumption, though the proof is rather different. This is
interesting because it did not hold over T for the
 order; the difference lies in our
treatment of divergence. Close examination of the following proof, as well as the
behaviour over N of any example which demonstrates the lack of continuity over
T , reveals that any failure of continuity over T is masked by axioms D1 and D2.

Lemma 9 If Σ is finite, then the hiding operator \ X is continuous over N .

Proof The main components of the proof are as follows. Firstly, whenever P
is such that the set pre\X (P , t) = {s ∈ traces⊥(P) | s \ X ≤ t} is infinite, then
t ∈ divergences(P \ X) since by an application of König’s lemma very like that on
page 182 this set of traces must contain all the prefixes of some infinite trace.

Secondly, if Δ is a directed set of processes and t ∈
⋂
{divergences(P \ X) |

P ∈ Δ}, then t ∈ divergences(
⊔

Δ \ X), because if this were not so then (by the
last observation) we would have that

M = pre\X (
⊔

Δ, t)

is finite, and clearly contains no element of divergences(
⊔

Δ). Let

M ′ = {s 〈̂a〉 | s ∈ M ∧ s 〈̂a〉 \ X ≤ t} �M

the set of all extensions of elements of M by either an element of X , or the next
member of t , that are not themselves in M . For each s ∈ M there is certainly
Ps ∈ Δ such that s ∈ divergences(Ps), and for each s ∈ M ′ there is P ′

s ∈ Δ such

214 Denotational semantics

that s ∈ traces⊥(P ′
s). But M and M ′ are both finite sets, so following the usual

directed set argument yields a
FD upper bound P† ∈ Δ for all the Ps and P ′
s .

This must satisfy

pre\X (P†, t) = M

for if not there would be a prefix-minimal element s in pre\X (P†, t) �M . But
then s ∈ M ′, contradicting the construction of P†. Since plainly, then, we have
t ∈ divergences(P† \ X), this contradicts our original assumptions. We can thus
conclude that t ∈ divergences(

⊔
Δ \ X).

Thirdly and finally, when t ∈ divergences(
⊔

Δ \ X), the arguments in the
previous paragraphs show that sufficiently far through Δ the behaviour of the hiding
operator is effectively finitary. The proof that it preserves the limit of this Δ (for
trace t) then follows more-or-less the same pattern as those for operators with
finitary relational representations.

Thus every5 function definable in finitely nondeterministic CSP is continuous
over N for finite Σ.

The lists of operators that are constructive and non-destructive over N are
identical to those that applied over T .

Lemma 10 Each of the operators 	, �, ‖
X

, renaming and ; is non-destructive over

N in each argument. The prefix operators a → and ?x : A→ are constructive.

Again these facts are usually elementary consequences of relational represen-
tations, and the only one to be interesting is the left-hand side of sequencing (;)
because of the effective hiding of �. For this, the precise form of the restriction
operator P ↓ n is moderately important. If s is a trace of length n, then whether
s ∈ traces⊥(P) can be established by looking at P ↓ n, but the further details about
s , namely whether a pair (s ,X) ∈ failures⊥(P) or whether s ∈ divergences(P), can
only be established by looking at P ↓ (n + 1). This means that all failures and
divergences of P ; Q that can be created by P performing the trace s 〈̂�〉 have
depth, in this sense, of at least n + 1 (the length of s 〈̂�〉).

Exercise 8.3.5 (a) Prove carefully that N is closed under (i) the prefix operator

a → P and (ii) external choice P � Q . (For the model to be closed under an operation

means that, if the arguments to the operator belong to the model then so does the result.

Another way of stating this is to say that the operator is well-defined over the model.

5The properties of continuous operators detailed in Appendix A are needed to combine the

results about the basic operations into this general statement, in particular their closure under

composition.

8.4 The stable failures model 215

While it is plainly tedious to have to prove such results for all operators, they are clearly

a basic well-formedness check that has to be done either by someone or some theorem

prover!)

(b) Give direct proofs, for the same operators, that they are distributive (over �)

and continuous.

Exercise 8.3.6 Prove that the following laws are valid over N :

(a) 〈�-�-dist〉 (1.13)

(b) 〈|||-step〉 (2.6)

(c) 〈; -step〉 (6.7)

Exercise 8.3.7 Give relational representations of the following operators over N :

(a) Prefixing a → P .

(b) Nondeterministic choice P � Q

(c) External choice P � Q

In each case you will need relations to generate both failures and divergences; in the last

case the set of relations generating failures have to take account of divergences.

Exercise 8.3.8 Find expressions, in the style of those on page 205, for the failures

and divergences of P >> Q for any P and Q all of whose non-divergent traces lie in the set

{| left , right |}. (You can find an expression for the traces on page 106.)

Use this to prove BL1 (if P and Q are buffers, so is P >> Q). (All of the buffer laws

except BL5 and BL5′ can be proved fairly straightforwardly from the failures/divergences

semantics of >>. These other two require rather sophisticated versions of the recursion

induction rule.)

8.4 The stable failures model

The failures/divergences model gives us perhaps the most satisfactory representa-
tion of a process for deciding questions of liveness, since by excluding both diver-
gence and the stable refusal of a set of events we can guarantee that a member of the
set will eventually be accepted. It is possible to devise models which combine traces
either only with divergences or only with stable refusals, but it must be emphasized
that, in using either, one must appreciate the important information one is leaving
out. There is not much to say about the finite traces/divergences model, except
the obvious fact that the representation of any process can be found by dropping
the refusal components in the failures from its representation in N . The semantic
clauses for the CSP operators are similarly derived from those over N , noting that

216 Denotational semantics

since refusal (as opposed to trace and divergence) information never influences the
traces or divergences of any of the operators over N , there is no problem in comput-
ing the values accurately. This model, like N , uses the refinement order to compute
the values of recursions, and needs to adopt axioms like D1 and D2. It has the same
restriction to finitely nondeterministic CSP to make the semantics accurate.

The model in which we record traces and stable refusals (where ‘stable’ re-
fusals include the ones generated by states that can perform �, or, in other words,
the ones postulated by axiom F4) is more interesting for three reasons.

• Firstly, some authors have long considered the imposition of axioms D1 and
D2 on N unfortunate because they have an obscuring effect. It turns out
that by ignoring divergences completely one can, to some extent, satisfy their
desires.

• Secondly, the calculations required to determine if a process diverges are
significantly more costly than those for deciding other aspects of refinement.
Therefore it is advantageous if tools like FDR have a model they can use
that does not force the calculation of divergences.6

• Thirdly, it is sometimes advantageous to analyze a divergence-free process P
by placing it in a context C [P] in which it may diverge as the result of hiding
some set of actions. This only works when the traces and stable failures that
result are not obscured by D1 and D2.

The first thing to appreciate about only recording stable failures is that it
is by no means inevitable that every trace of a process has one: it may never
stop performing τ actions. Therefore, unlike the case with N , it is necessary
to record the traces separately, and so each process is represented as the pair
(traces(P), failures(P)) rather than just failures(P). The stable failures model, F ,
thus consists of those pairs (T ,F) (T ⊆ Σ∗� and F ⊆ Σ∗�×P(Σ�)) satisfying the
following healthiness conditions

T1. T is non-empty and prefix closed.

T2. (s ,X) ∈ F ⇒ s ∈ T

plus conditions F2, F3, and F4 (with T replacing traces⊥(P)) as for N . We need a
further condition which, like D3, serves to standardize how processes look after �:

T3. s 〈̂�〉 ∈ T ⇒ (s 〈̂�〉,X) ∈ F

6In most cases one will combine such a check with a proof of divergence freedom, from which

one can infer that refinement holds over N .

8.4 The stable failures model 217

All of these are obvious, given our previous discussions. The fact that they
are sufficient to characterize what processes look like will be shown in Section 9.3.
F has both top and bottom elements with respect to the refinement order

P
F Q ≡ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

The minimal, or least-defined process, is ⊥F = (Σ∗�, Σ∗�×P(Σ�)): as one would
expect, the process that can perform any behaviour within the domain under con-
sideration. The maximal process is a more surprising object, F = ({〈〉}, {}), which
satisfies all the axioms above. A little thought reveals that this represents the pro-
cess div which simply diverges immediately without the possibility to do anything
else. What has happened is that by omitting to model divergence, we have pushed
processes that do diverge (as opposed to other things) upwards under the refine-
ment order. Rather like the case with T (and the traces/divergences model, which
also has STOP as its maximal element), you should regard the existence of a top
element under refinement as a strong indication that the model only presents a
partial picture of processes.

As with T and N , any non-empty subset of F has a greatest lower bound
under
F given by componentwise union: 	S = (T+,F+), where

T+ =
⋃
{T | (T ,F) ∈ S}

F+ =
⋃
{F | (T ,F) ∈ S}

Since F is the greatest lower bound of the empty set, this means that every subset
has one, and hence (thanks to Lemma 1) we immediately get the following.

Theorem 11 F is a complete lattice under both the refinement order and the

subset order.

This is a much stronger result than with N , particularly since it applies
whether or not Σ is finite. The least upper bounds generated under the refinement
order are not always particularly intuitive, since this new model can and does create
its upper bounds for sets of processes that are inconsistent over N by introducing
behaviour like the top element F . Thus, the least upper bound of

{a → a → STOP , a → STOP}

is a → F = ({〈〉, 〈a〉}, {(〈〉,X) | a ∈ X }); the inconsistent behaviour after 〈a〉
being resolved to F .

Noticing that the first component of a process’s representation in F is its
representation in T , it follows:

218 Denotational semantics

• that the clauses for calculating that component of each operator are identical
to the corresponding clauses in T , and

• that to get the right value for recursively defined processes we should take
fixed points with respect to ⊆ rather than
. Note that the existence of the

F top, which is the bottom under ⊆, supports this, as does the simple form
of least upper bounds under ⊆.

The latter may seem surprising since it is the opposite to N , but the crucial distinc-
tion between F and N is that the former, like T , only records finitely observable
behaviours so (bearing in mind our discussions about the calculation of fixed points
over N) we neither need reverse-inclusion to allow infinite behaviours into fixed
points, nor have the special properties of divergence to make the reverse-inclusion
fixed point accurate.

As one might expect, the clauses for calculating the failures component are
essentially the same as those over N except that there is no need to close under
axioms D1 and D2.

failures(STOP) = {(〈〉,X) | X ⊆ Σ�}
failures(SKIP) = {(〈〉,X) | X ⊆ Σ} ∪ {(〈�〉,X) | S ⊆ Σ�}
failures(a → P) = {(〈〉,X) | a ∈ X }

∪ {(〈a 〉̂ s ,X) | (s ,X) ∈ failures(P)}

failures(?x : A→ P) = {(〈〉,X) | X ∩A = {}}
∪ {(〈a 〉̂ s ,X) | a ∈ A
∧ (s ,X) ∈ failures(P [a/x])}

failures(P 	 Q) = failures(P) ∪ failures(Q)

failures(S) =
⋃
{failures(P) | P ∈ S} for S a non-empty set of processes

failures(P<I b>I Q) =
{

failures(P) if b evaluates to true
failures(Q) if b evaluates to false

failures(P � Q) = {(〈〉,X) | (〈〉,X) ∈ failures(P) ∩ failures(Q)}
∪ {(s ,X) | (s ,X) ∈ failures(P) ∪ failures(Q) ∧ s = 〈〉}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈�〉 ∈ traces(P) ∪ traces(Q)}

failures(P ‖
X

Q) = {(u,Y ∪ Z) | Y �(X ∪ {�}) = Z �(X ∪ {�})
∧ ∃ s , t .(s ,Y) ∈ failures(P)
∧ (t ,Z) ∈ failures(Q)
∧ u ∈ s ‖

X
t}

failures(P \ X) = {(s \ X ,Y) | (s ,Y ∪X) ∈ failures(P)}

8.4 The stable failures model 219

failures(P [[R]]) = {(s ′,X) | ∃ s .s R s ′ ∧ (s ,R−1(X)) ∈ failures(P)}
failures(P ; Q) = {(s ,X) | s ∈ Σ∗ ∧ (s ,X ∪ {�}) ∈ failures(P)}

∪ {(s t̂ ,X) | s 〈̂�〉 ∈ traces(P) ∧ (t ,X) ∈ failures(Q)}

We have lost the clause that caused difficulty over N (namely the inference of
divergence under hiding), and all the operators thus have relational representations
that are simplifications of those for N . The arguments in Section 8.2 thus apply to
yield the following result.

Theorem 12 All CSP operators are monotonic and continuous over F with respect

to the subset order, and are fully distributive.

In some ways F is better thought of as a refinement of T than as an approx-
imation to N : equivalence of processes over F implies equivalence over T , whereas
no such relationship exists between N and F . It is, however, vital that we un-
derstand how a process’s representations in N and F are related. The following
paragraphs attempt to set this out.

• It is important to realize that, while you can sometimes tell from the shape of
a member of F that it must diverge after a trace (specifically, when there are
no failures associated with the trace), you can never infer that it must not.
In particular, any simply divergent process like div, μ p.p or μ p.SKIP ; p is
identified with F , and P 	 F = P for all P .

• This same example shows the type of process for which F gives more distinc-
tions than N : since P 	 div can diverge immediately it is identified with ⊥N
over N . In other words, F lets us see the details of behaviour after possible
divergence, whereas axioms D1 and D2 force us to obscure this in N .

• We previously noted that the denotational semantics for CSP over N is only
accurate for finitely nondeterministic processes. Since the problem which
caused that restriction does not arise over F , neither does the restriction.

• Since, for divergence-free processes, failures(P) = failures⊥(P), it follows
that the representations of such processes in the two models are congruent in
the obvious sense. It is this fact that leads to the most common use of F with
FDR, namely that if the processes Spec and Imp are known, or postulated,
to be divergence-free, then the refinement check Spec
F Imp is equivalent
to the less efficient Spec
FD Imp.

It is the fact that F lets us see past potential divergence that gives it some
uses which are more interesting than as a way of speeding up certain checks over N .

220 Denotational semantics

The first is in situations where divergence is difficult to exclude, and it is natural
to build a system which is correct in other respects before addressing it. Here it
may be natural to formulate and establish correctness conditions over F (dealing
with safety properties and stable refusals), before making some final refinement to
exclude divergence. (This is another application of the idea of stepwise refinement :
see page 47.) A good example of this is in dealing with communications protocols
which, like the Alternating Bit Protocol (Section 5.3), are designed to deal with
arbitrary message loss, and perhaps duplication. In our earlier presentation of that
protocol we built a model of the lossy communication medium which placed a fixed
bound on how many consecutive messages can be lost and how many times one
can be duplicated, using the processes CN (in, out) to model the channels. Even
though the protocol is designed to work for arbitrary but finite loss or duplication.
For any N , the above medium is obviously a refinement of the process C (in, out)
as defined on page 134 which can misbehave as much as it likes. An alternative and
equivalent definition of this is:

C (in, out) = in?x → C ′(in, out , x)

C ′(in, out , x) = out !x → C ′(in, out , x)
	 in?y → C ′(in, out , y)

If you replace the CN medium processes by C in the system, which we
can term ABPN , defined in Section 5.3 (constrained, as described there, to avoid
divergence in the absence of error), the result is a process ABP∞ that can diverge,
but which satisfies the specification COPY (i.e., a one-place buffer) over F :

COPY
F ABP∞

If checked on FDR, this will have substantially fewer states than does ABPN for
even small values of N .

This proves very cleanly that unless ABP∞ diverges, it does what we want.
The monotonic and transitive properties of refinement imply that this remains true
whenever the C∞ processes are replaced by refinements such as CN . So

(i) all that remains to be proved for such a refinement is divergence freedom,
and

(ii) it demonstrates that the only reason any limit is needed on the misbehaviour
of the medium processes in the ABP is to avoid divergence.

The steps we have gone through in the above argument are summarized
below, hopefully showing how it should be reworked for other examples.

8.4 The stable failures model 221

• First build a system ABP∞ such that

COPY
F ABP∞

• Then find a divergence-free ABP ′ such that

ABP∞
F ABP ′

(established in this case by properties of refinement)

• This allows us to infer that

COPY
FD ABP ′

The second distinctive use of F arises when we want to establish a property
of a divergence-free process P by analyzing not the process itself, but some context
C [P] which involves hiding and can therefore potentially introduce divergence. As
long as you are well aware of the existence of such divergences and what they
mean, they frequently do not represent an undesirable behaviour of the underlying
process P . Usually the context and hiding represent some mechanism whereby
events irrelevant to the specification can be abstracted away. Abstraction is a very
important subject, and Chapter 12 is devoted to it, including some uses of the idea
we are now investigating. We will therefore content ourselves with a simple but
important one here.

In Section 13.1.1 it is stated that a process P is deadlock-free if and only
if P \ X is, though the hiding can introduce divergence. Operationally, this is
clearly true since all we care about there for deadlock freedom is that each reachable
state has an action available: it does not matter what the name of the action is.
Nevertheless this result is not one of N , since in that model the introduction of
divergence results in the assumption of deadlock via D2. It is, however, true in F
and should therefore be regarded as a statement in that model. The most interesting
X to try in the above statement is Σ. No matter what P is, there are four possible
values for P \ Σ:

• F , indicating that P \ Σ must diverge, or in other words P can neither
deadlock nor terminate;

• ({〈〉}, {(〈〉,X) | X ⊆ Σ�}) (equivalent in F to STOP) indicating that P
cannot terminate, but can reach a deadlock state;

• SKIP , indicating that P can terminate and cannot deadlock before it has
done so (though since P \ Σ might diverge, this does not imply that it must
eventually terminate); and

222 Denotational semantics

• SKIP 	 STOP , meaning that P can deadlock and can terminate.

The statement ‘P is deadlock-free’ is thus equivalent to the assertion SKIP
F P \
Σ. In the majority of cases where there is no possibility of P terminating, this can
be replaced by F
F P \ Σ. Of course, this is curious since what we are in effect
doing here is stipulating that a process (P \ Σ) must diverge, so we have moved
a long way from the treatment of divergence over N . It is also of great practical
importance since in FDR one usually gets much better compression of processes
when events are hidden than without the hiding (see Section C.2).

The definition and theory of restriction operators over F are similar to those
over N : (T ,F) ↓ n = (T ′,F ′), where

T ′ = {s ∈ T | #s ≤ n}
F ′ = {(s ,X) ∈ F | #s < n ∨ (s = s ′̂ 〈�〉 ∧#s = n)}

P ↓ n thus contains all the traces of length ≤ n and, like with N , only identifies the
refusals of strictly shorter traces except for the special case dealing with condition
T3.

Exercise 8.4.1 Find an example of a process such that {s | (s,X) ∈ failures(P)} is

not prefix closed.

Exercise 8.4.2 Find a single CSP process which is mapped to the bottoms (under

�) of T , N and F by the respective semantics.

Exercise 8.4.3 Find the least upper bound in F of the processes

(a → STOP) � (b → STOP) and a → STOP

Find its representation in the model and a CSP expression with the given value.

Exercise 8.4.4 Suppose P is any process whose traces are contained in Σ∗ (i.e., it is

�-free). What can you say about the traces and failures of the process P ||| div?

Harder: Achieve the same effect for a process P that can terminate (though, if it helps,

you can assume there is a given a ∈ Σ that P never communicates).

8.5 Notes

The central role given to semantic models such as those seen in this chapter is the
thing that most characterizes the theoretical treatment of CSP in relation to those
of other process algebras. In a sense that will be made formal in the next chapter,
the CSP semantic models each define a congruence which is the coarsest possible

8.5 Notes 223

subject to some natural criterion. Other process algebras have found their own way
to capture failures-style equivalences, most notably the testing equivalences for CCS
described by Hennessy and de Nicola [32, 51].

The traces model of CSP was introduced by Hoare in [55]. This was refined
into the failures model developed by Hoare, the author and Brookes in [18]. That
model was basically N without the divergence component, and used the refinement
(reverse containment) order to compute fixed points: it identified μ p.p with Chaos .
That model failed to give a consistent model of divergent processes, leading, for
example, to the failure of a few of the basic laws. This was corrected with the
introduction of the divergences component in [101], [15] and [19].

The formulation of the model in this book is different in two ways from that
in these papers (the latter also being essentially the same one that Hoare used in
his text [56]). The first is that the early version either specified that all refusal
sets are finite (even over infinite Σ) or specified that an infinite refusal set was
present whenever all its finite subsets were (which was, of course, effectively the
same assumption). This was necessary to make the model a cpo under the refine-
ment order (corresponding to the observation we made on page 203 that N over
infinite Σ is incomplete). It meant that the model could not handle unboundedly
nondeterministic operators like infinite hiding at all. This assumption has been
dropped in this book because (i) the later development [104] of the strong order
referred to on page 204 means that we do not need N to be complete under

to get fixed points and (ii) the development of the infinite traces extension of N
that we will meet in Chapter 10 means that we can now unequivocally deal with
unbounded nondeterminism and it is nice to have the projection function from the
richer model cleanly defined. (Neither of the two equivalently powered restrictions
on refusal sets mentioned above makes any sense over the infinite traces model. So
to use them over N would leave us with a real problem when it came to deciding
which member of N was the image of a general member of the other model.)

The second change is in the handling of termination �. The early models
and CSP semantics did not special-case this nearly so much as we have done. The
consequences of this were that sequential composition did not have some desirable
properties such as P ; SKIP = P and that some semantics did not make all �’s
final. So axioms F4 and D3 are new here. It has long been recognized that the
treatment of termination in CSP was something of a compromise: the recent paper
[129] points out one problem with the old approach (as well as providing a most
interesting study of the automated proof of many theorems about CSP models and
semantics). See [1] for an alternative approach to representing termination in a
another process algebra.

The effects on the semantics and models of a move to an imperative (i.e., non-
declarative) view of process state can be seen in [102] (where occam is considered).

224 Denotational semantics

The primary effect is on the representation of termination, since a process now has
to be able to pass its state to its successors upon terminating.

The stable failures model F is a much more recent development. The author
has seen a number of attempts (generally unsuccessful) over the years at eliminating
the divergence-strictness of N . Characteristically this involved interpreting a diver-
gence as equivalent to a refusal of the whole alphabet, but discarding the axiom D1
which enforces extension-closure of divergence sets. That approach does not work
because it is hard to compute fixed points accurately and various standard laws are
invalidated. The idea of simply ignoring divergence was suggested to the author
in 1992 by Lalita Jategoankar and Albert Meyer, and the model F as described in
this book is a result of that conversation and subsequent collaboration between the
author and these two people. A very similar model was described by Valmari in
[132].

2005: Over the past few years there has been interest in a wider range of CSP
models. Christie Bolton showed how non-standard CSP-like equivalences could be
used for capturing notions such Z refinement. There has been more interest in the
refusal testing model of CSP [86] (based on [91]). New and interesting equivalences
[116] have just come to light (based on work by Rehof and Rajamani) in which a
process is modelled by its deadlock traces, its revivals (namely triples (s ,X , a) where
(s ,X) is a stable failure and a is an event that can be performed from the same state
where X is refused, and either traces or (strict) divergences.

Chapter 9

Analyzing the denotational models

In this chapter we look in a bit more detail at the structure of the denotational
models we saw in the previous chapter, especially that of N . The aim is to convey
somewhat deeper understanding of the models and how they represent CSP.

9.1 Deterministic processes

The deterministic processes D, (as a subset of N) are important both for practical
and theoretical reasons. The most obvious practical benefit from having a deter-
ministic process is that it is, in some sense, testable because its behaviours, when
used over and over again, do not vary unless it is given different external stimuli.
We will see in Section 12.4 that the concept can be applied in characterizing such
properties as information flow.

The full expressive power of N is required to judge whether or not a process
is deterministic. Practically no useful information can be obtained from the traces
model T , and the stable failures model F is inadequate because it does not model
divergence and will equate P 	 F with P whether P is deterministic or not. Of
course, for processes known to be divergence-free, one can1 test for determinism
in F since the representation is then effectively the same as the one in N . More
generally, we can define a process to be F -deterministic if its representation in F
satisfies the obvious condition:

t 〈̂a〉 ∈ traces(P)⇒ (t , {a}) ∈ failures(P))

This set of processes is closed under refinement and includes F . Since it does allow

1In practice it is usually better to test a process for divergence freedom and then (assuming

this works) for determinism over F .

226 Analyzing the denotational models

some usually undesirable processes, this condition is mainly of technical interest,
but it does have at least one practical use – see page 334.

We have already seen that members of D play a special role in N because, as
stated in Section 8.3.1, they are the maximal elements under the refinement order.
In this section we establish this and other important properties of D. We first show
that every member of D is maximal; the proof that they are the only maximal
elements will follow later.

Lemma 1 Every member of D is maximal (under
) in N .

Proof Suppose F are the failures of one member of D, and F ′ ⊆ F are the failures
of another process (we do not have to worry about divergences since deterministic
processes do not have any). We have to show that F ′ = F ; first we show traces(F) =
traces(F ′). If not, there is s 〈̂a〉 of minimal length in traces(F) � traces(F ′) (noting
that thanks to condition F1 the empty trace does not have this property); by this
minimality we have (s , {}) ∈ F ′, so by condition F3 of F ′ we then have (s , {a}) ∈ F ′;
but since F ′ ⊆ F we also have (s , {a}) ∈ F , contradicting determinism of F . Thus
the trace-sets are equal; it follows by F2 that if F = F ′ there is (s ,X) with X = {}
such that (s ,X) ∈ F �F ′. We know (s , {}) ∈ F ′; if a ∈ X then (s , {a}) ∈ F
by F2 and hence s 〈̂a〉 ∈ traces(F) by determinism. It follows that X ⊆ {a |
s 〈̂a〉 ∈ traces(F ′)} which together with condition F3 yields a contradiction to our
assumption that (s ,X) ∈ F ′.

A deterministic process is completely characterized by its traces, because
once we know initials(P/s) we know refusals(P/s). Not quite all members of T give
rise to a deterministic process, because of the special treatment of �: a deterministic
process that can decide to terminate immediately must do so, and so cannot offer
any other choices of event.

Lemma 2 The deterministic processes are in 1–1 correspondence with the subset

T d of T consisting of those members satisfying

s 〈̂�〉 ∈ P ⇒ ¬∃ a ∈ Σ.s 〈̂a〉 ∈ P

in the sense that traces⊥(P) ∈ T d for every P ∈ D, and there is exactly one such

P for every member of T d .

Proof The fact that traces⊥(P) ∈ T d is an immediate consequence of the axioms
of N : if s 〈̂�〉 and s 〈̂a〉 were both members of traces⊥(P) (for s ∈ Σ∗ and a ∈ Σ)
then (s , {a}) ∈ failures⊥(P) by axioms F4 and F2, in contradiction to determinacy
of P .

9.1 Deterministic processes 227

If Q ∈ T d , we have to find a member of D with this as its set of traces. This
is det(Q) = (F , {}), where

F = {(s ,X) | s ∈ Q ∧X ⊆ Σ� � {a | s 〈̂a〉 ∈ Q}}

It is easy to show that this has the required property. Since the failures in det(Q)
are precisely the ones implied by axiom F3 for the given set of traces, it follows that
any other process P ′ with the same set of traces satisfies P ′
 det(Q). Since we
know that deterministic processes are maximal, it follows that P ′ ∈ D, establishing
that det(Q) is the only one with the given set of traces.

Now, if P is any member of N , it is not hard to see that

P
 det({s ∈ traces⊥(P) | (s ′ < s ∧ s ′̂ 〈�〉 ∈ traces⊥(P)) ⇒ s = s ′̂ 〈�〉})

The set of traces on the right above are those of P which do not result as con-
tinuations of traces on which P could also terminate. Thus every process has a
deterministic refinement, and in particular we can easily deduce the following.

Lemma 3 If P is a
-maximal element of N , then P ∈ D.

When we introduced CSP operators in earlier chapters we often said either
that they could, or could not, introduce nondeterminism. This idea can now be
given a precise meaning: an operator can introduce nondeterminism just when it
can produce nondeterministic results when applied to member(s) of D. In each
case the result corresponds to the intuition we developed earlier: prefixing (a → ·)
and prefix choice (?x : A → ·) both preserve determinism, as do 1–1 renaming,
alphabetized parallel (P X ‖Y Q) and sequential composition (P ; Q). The last
of these holds because a deterministic P never has any alternative to the event
� when the latter is possible. The rest of the standard operators can introduce
nondeterminism:

• (a → STOP) � (a → a → STOP) is nondeterministic because the initials of
the two deterministic arguments are not disjoint. In general, if P and Q are
deterministic, � ∈ initials(P)∪initials(Q) and initials(P)∩initials(Q) = {},
then P � Q is deterministic.

• The nondeterministic choice operator 	 obviously introduces nondetermin-
ism!

• A non-injective renaming can introduce nondeterminism when it identifies
two visible actions from some state: for example, if f (a) = f (b) = a then

f ((a → STOP) � (b → b → STOP))

228 Analyzing the denotational models

is nondeterministic.

• A parallel operator that, for any event a, allows either argument to perform
a independently of the other, can introduce nondeterminism because when
we see a we cannot be sure which side it came from. Thus, for example,

(a → STOP) ||| (a → b → STOP)

is nondeterministic because, after the trace 〈a〉, the event b may be either
accepted or refused.

• Hiding introduces nondeterminism because it turns visible choices into inter-
nal actions, and can thus, amongst other things, emulate the behaviour of
	:

(
(a → c → STOP)
� (b → d → STOP)

)
\ {a, b} =

c → STOP
	 d → STOP

D is a closed subset of the metric space N , because whenever a process P
fails to be deterministic, there is some trace s which is either a divergence or, after
which, P has the choice of accepting or refusing some action a. Thus if n = #s + 1
then

Q ↓ n = P ↓ n ⇒ Q is nondeterministic

The rule of metric fixed-point induction, which we will meet shortly (page 233) can
then be applied to deduce the following result.

Lemma 4 If μ p.F (p) is a constructive recursion such that, whenever Q is deter-

ministic then so is F (Q), then the unique fixed point of F is also deterministic.

Furthermore, any constructive mutual recursion P = F (P) such that each

component of F (Q) is deterministic when all components of Q are, has all compo-

nents of its fixed point deterministic.

What this basically shows is that guarded recursion does not introduce non-
determinism. Thus, any process definition using only

• deterministic constant processes (such as STOP and SKIP),

• operators that preserve determinism,

• other operators in cases that do not introduce nondeterminism, and

• constructive recursions

9.1 Deterministic processes 229

τ τa a a

a

a

a

Figure 9.1: Two examples of ‘nondeterministic’ LTSs whose behaviour is determin-
istic.

is guaranteed to create a deterministic process.

The definition of determinism over N takes a broad view of a process, in the
sense that it looks at its set of observable behaviours rather than the way it evolves
operationally. It is easy to devise rules which ensure that a labelled transition
system behaves deterministically, and one such set follows. Except for the last
condition you can determine their truth or falsity by examining the transitions of
individual nodes.

• No node has multiple branching on any action (visible or invisible); thus
P x−→ Q and P x−→ Q ′ implies Q = Q ′.

• If a node P has a τ or � action, then it is the only action of P .

• There is no infinite sequence Pi of nodes such that Pi
τ−→ Pi+1.

The result of mapping any node of such a system to N is certain to be deterministic,
but the reverse is far from the truth. In other words, there are LTSs whose local
structure looks nondeterministic but which actually create processes that behave
deterministically. Trivial examples are shown in Figure 9.1. A much more complex
one is provided by communication protocols such as the Alternating Bit Protocol
(Section 5.3) in which the effects of a nondeterministic communication medium are
factored out by the way it is used, creating an overall deterministic effect. An
important application of this possibility will be found in Section 12.4.

So it is not possible to decide whether a process is deterministic or not just
by looking at the individual nodes of an LTS. There is an interesting algorithm
for deciding this question, however, which takes advantage of the maximality of
deterministic processes under refinement. This is set out below, both for its intrinsic
importance and because it helps to illustrate some of the other ideas in this section.

230 Analyzing the denotational models

Suppose we have a process P , presented as a finite-state LTS (V ,→,P0), and
we want to know whether or not it is deterministic. By (perhaps partially) exploring
the LTS we attempt to select a subsystem (V ′,→′,P0) (with the same root node)
representing a process P ′ which refines P and which meets the conditions quoted
above for being a deterministic LTS. This is done as follows:

• Initially we place P0 in V ′ and begin the search there.

• If we have to explore the node Q , then if it is stable (has no τ or � action)
we select for each action a ∈ initials(Q) a single node Q ′ such that Q a−→
Q ′, add this transition to the subsystem and add Q ′ to the search if it is
not already in V ′. This choice means that the initial actions of Q in the
subsystem are the same as they were in the original, but that all possibility
of nondeterminism arising from ambiguity has been removed.

• If a node Q is not stable then select a single τ or � action Q x−→ Q ′ and
make this action the only action of Q in the subsystem. This Q ′ is added to
the search if not already in V ′.

• If a loop of τ actions is thus encountered, we have discovered a divergence
and so can abandon the search since P is not deterministic.

This search will either eventually be abandoned because the last case arises, or
terminate because all the nodes added to V ′ have been explored. If it does terminate
then the subsystem it produces is deterministic by construction and the process
represented by each node refines the corresponding node in (V ,→,P0).

The algorithm above sometimes leaves a great many choices open about how
to resolve a process’s nondeterminism, meaning that from a given system (V ,→,P0)
it might choose many different subsystems, perhaps with large differences in size
and shape. This is illustrated in Figure 9.2, where two different selections (B and
C) are made from a process (A) that is, in fact, deterministic. Thus the existence
of these choices does not indicate that the original process P was nondeterministic.
What we can guarantee, in any case, is that we have a deterministic process P ′ such
that P
FD P ′.

If P is deterministic then P = P ′ (even though the transition systems repre-
senting these members of N may be very different) because deterministic processes
are maximal. If P is not deterministic then P = P ′ and hence P ′
FD P . Thus P is
deterministic if, and only if, P ′
FD P , something we can decide with a refinement
checker like FDR. Indeed, this is the method FDR uses to decide whether a process
is deterministic.

9.1 Deterministic processes 231

τ

a

b

τ

a

τ

A

B C

aaa

b

τ

a

a

a

b

τ

a

Figure 9.2: Two different ‘deterministic’ LTSs extracted from a ‘nondeterministic’
one.

232 Analyzing the denotational models

9.2 Analyzing fixed points

In this section we see how understanding the structure of semantic models allows
us to justify existing rules for proving properties of recursions and derive new rules.

At various points we have found it useful to be able to apply rules such
as fixed-point induction and UFP for inferring properties of processes. We have
already seen how UFP is justified using metric spaces, but have not proved the
fixed point induction rule set introduced in Section 5.1.

Fixed-point induction If P = F (P) is any recursive definition of a vector of

processes which is either constructive or makes each component divergence-free,

with indexing set Λ and Q ∈ NΛ is such that Qλ
FD F (Q)λ for all λ ∈ Λ, then

we may conclude that Qλ
FD Pλ for all λ ∈ Λ. In the cases of
F and
T

this principle holds without the need to assume the constructiveness or divergence-

freedom of the recursion.

The above is a good starting point for our discussion, since it is really a
combination of several results requiring quite different proofs. We will look at three
different approaches to fixed point analysis.

Order-theoretic analysis

Sometimes one can simply use the fact that a recursive process is identified with
the least fixed point of a monotonic function f in some cpo (M ,≤). The following
is a list of a few simple arguments which can often be applied. See Appendix A for
more discussion and their proofs.

• If x ≥ f (x) then μ f ≤ x .

• If x ≤ f (x) then f has some fixed point y (not necessarily the least) such
that x ≤ y.

• If μ f is maximal in M , then it is the unique fixed point.

An immediate application of the first of these is the proof of the fixed-point
induction rule for T and F . For there the refinement order is the reverse of the
one used to compute fixed points, so Q
 F (Q) is equivalent to Q ≥ F (Q). This
implies μF ≤ Q , which is equivalent to μF � Q , justifying the rule for these
models.

Metric methods

The Banach fixed point theorem, with its ability to force convergence to the unique
fixed point from any point in the underlying space, often makes it possible to achieve

9.2 Analyzing fixed points 233

more powerful results about constructive recursions than about general ones. In the
case of fixed-point induction, it allows us to formulate a rule which applies to a much
wider class of properties than that specified in the definition of the rule above.

Let X be any space with a family of restriction operators defined over it that
give a complete metric (a complete restriction space). In general, a predicate R(·)
on X (i.e., a function from X to {true, false}) can be thought of as a subset Y of X
(the members of X satisfying it). If Y is both closed (in the metric space) and non-
empty, then it is a complete metric subspace of X . If f : X → X is constructive,
and f (Y) ⊆ Y , then we can regard f as being a contraction map from Y to itself,
which implies that f has a fixed point in Y . But since f only has one fixed point
in the whole of X , it must be the same one. (See Exercises A.2.1 and A.2.2 for
another view of this.)

The subset Y is closed (see the Appendix) if and only if any x ∈ Y can be
seen not to be a member by some finite depth of the restriction process. This can
be paraphrased as follows:
Definition The predicate R(·) on the complete restriction space X is continuous
if, whenever ¬R(x), there exists n ∈ N such that, for all y ∈ X , y ↓ n = x ↓ n
implies ¬R(y).

The demonstration that the fixed point of f , under suitable assumptions,
belongs to Y then immediately implies the truth of the following rule:

Metric fixed-point induction Suppose R is a continuous, satisfiable (i.e., {x |
R(x)} is non-empty) predicate on the complete restriction space X . Then if the

constructive function f is inductive in the sense that, for all x ∈ X ,

R(x) ⇒ R(f (x))

then R(y), where y is the unique fixed point of f .

This justifies the ‘constructive’ case of the original fixed point rule, since, for
any Q ∈ NΛ the predicate

R(P ′) ≡ Q
FD P ′

is continuous. To see this, notice that if Q
FD P ′ there must be a λ ∈ Λ and a
behaviour of P ′

λ not belonging to Qλ; you can choose any n larger than the length of
this behaviour. Note that the predicate above is always satisfiable (being satisfied
by Q) and inductive by the assumptions of the rule and monotonicity.

Whereas the standard fixed-point induction rule only allows us to prove be-
havioural properties, the metric rule allows us to address properties that do not
have a characteristic process. This generalization is frequently unnecessary since
most properties one typically wants to prove are behavioural, but it does allow us
to deal with abstract specifications such as ‘deterministic’, as we saw on page 228.

234 Analyzing the denotational models

Exercise 9.2.1 Suppose R and f satisfy the conditions of the metric fixed-point

induction rule and that Q is the fixed point of f . Let P be any process satisfying R.

Prove by induction that f n(P) ↓ n = Q ↓ n, and hence use the definition of a continuous

predicate to show that R(Q) holds. (This gives a more direct proof of the validity of the

rule than the one which explicitly uses the properties of metric spaces.)

Exercise 9.2.2 Fixed-point induction, stated informally, might be ‘if a recursive pro-

cess meets some specification R on the assumptions that all recursive calls do, then it meets

the specification unconditionally’. There are, however, three conditions that are required

of the recursion/specification pair to make this valid: the specification must be satisfiable,

the specification must satisfy some continuity condition, and the recursion must satisfy

some well-formedness condition (such as being constructive).

The first of these is trivially necessary: without it, the rule would prove the pred-

icate ‘false’ true of any recursion! Find examples to show that the other two are needed

as well.

Exercise 9.2.3 Show that, over N , the predicates R1(P) ≡ P � Q , R2(P) ≡ P � Q

and R3(P) ≡ P = Q are all continuous when Q is any process. Show that R4(P) ≡ P �= Q

is only continuous if Q = Q ↓ n for some n.

Exercise 9.2.4

(a) Suppose that R is a continuous predicate and that G and G ′ are non-destructive

functions (all over one of the models T , N or F). Show that the predicates R(G(P))

and G(P) � G ′(P) are continuous.

(b) Hence show that if F is a constructive function, and H a subset of Σ, such that

P ||| RUNH ∈ D ⇒ F (P) ||| RUNH ∈ D

(remembering that D is the set of deterministic processes) then Q ||| RUNH ∈ D,

where Q is the fixed point of F . An important application of this result will become

apparent in Sections 12.4 and 12.6: we will find that the predicate being used here

can be read ‘P is secure’.

(c) Similarly show that the predicate on P

(P ‖
E

STOP) ||| RUN E � P ||| RUN E

is continuous. In Chapter 12 this predicate will be interpreted as ‘P is fault tolerant’:

see Sections 12.3 and 12.6.

The specifications quoted in parts (b) and (c) share with pure determinism the property

of not being behavioural specifications. You may like to convince yourself of this now, or

wait until studying them properly in Chapter 12.

9.2 Analyzing fixed points 235

The strong order on N

When we discovered in Section 8.3.1 that N over an infinite Σ is not a complete
partial order, it was stated in a footnote that you could use an alternative and
stronger order, which was complete, to calculate the fixed points. Given (i) that N
cannot model infinite nondeterminism properly, (ii) that infinite nondeterminism
is unnatural to avoid with infinite Σ (because of hiding) and (iii) that there is
no problem modelling these things in the infinite traces model that we will see in
Chapter 10, it can be argued that this application of the strong order is mainly of
academic interest. However, the existence of the order is worthy of note, particularly
since it both reveals much about how recursions converge to their fixed points in N
and allows us to prove, inter alia, the final part of the fixed-point induction rule.
Much more detail on the strong order, as well as proofs of results quoted in this
section, can be found in [104].

The strong order on N asserts that P ≤ Q only when divergences(Q) ⊆
divergences(P) and whenever s ∈ traces(P) � divergences(P) then refusals(P/s) =
refusals(Q/s) and initials(P/s) = initials(Q/s). Plainly P ≤ Q implies P
FD Q ,
because the only traces on which the two processes can differ are ones where P can
diverge and thus has all behaviours, though there are many cases where the reverse
does not hold. In a sense, this order takes the principles enshrined in axioms D1
and D2 to the extreme and says that not only is divergent behaviour undefined but
that it is the only behaviour that can be ‘refined’ in moving up the order. One
can replace any divergence with non-divergent behaviour, but cannot subsequently
alter the result. The following summarizes some results about ≤.

Lemma 5 (a) ≤ is a partial order on N which is stronger than
FD in the sense

that P ≤ Q ⇒ P
FD Q .

(b) ⊥N is the least element of N under ≤.

(c) If Δ is a ≤-directed set, then
⊔

≤ Δ exists; in this case
⊔

� Δ also exists

and the two are equal.

(d) The maximal elements of N under ≤ are precisely the divergence-free

processes.

The most curious feature of ≤ is that it turns out to be interchangeable with

FD for the purpose of calculating fixed points: all CSP operators are monotone, the
finitely nondeterministic ones are continuous, and each CSP-definable function has
identical least fixed points in the two orders. For details, see [104]. An immediate
consequence of this (using (d) above) is the following result:

Lemma 6 If P = F (P) is a CSP-defined recursion with indexing set Λ, and each

component of the least fixed point P is divergence-free, then it is the unique fixed

236 Analyzing the denotational models

point.

This extends the class of recursions where you can use the UFP rule to
essentially all well-behaved ones.

This lemma easily disposes of the last part of the fixed-point induction rule
in the case where Σ is finite, since if Q
FD F (Q) then F must have a fixed point
P ′ such that Q
FD P ′. Obviously it must be the unique fixed point.

The case where Σ is infinite is more difficult since we cannot argue that since
the set

{P ′ ∈ NΛ | Q
FD P ′}

is a cpo under
FD , and F preserves this set, there must be a fixed point in it –
for it is no longer complete.

It can still be justified, but (so far as the author is aware) only using argu-
ments based on topology. The predicate R(P ′) = Q
FD P ′ represents a closed
set with respect to the δ-topology defined in [104, 107]. Results in those papers es-
tablish the rule. These same two papers, especially the second, give a rather fuller
exposition of the mathematics and methods of fixed-point induction.

9.3 Full abstraction

The concept of full abstraction addresses the question of how good a semantics is
for a programming language. The definition is frequently divided into two aspects.

• The semantics S[[·]] should distinguish two programs P and Q if, and only
if, they are distinguished by some natural criterion. Usually this criterion is
the existence of some context such that one of C [P] and C [Q] passes, and
the other fails, some simple test.

• The model M being used should not contain large classes of elements that
are not in the image of S. Specifically, the aim is usually to show that the
expressible elements of the model are dense, in the sense that every element
is the limit of a directed set of expressible ones.

While the second of these is clearly a desirable aim in itself – the existence of
identifiable classes of inexpressible elements in a semantic model would seem to
imply a mis-match with the language – the main reason for incorporating it under
the heading of full abstraction is that it is frequently important in establishing the
first. For having classes of elements of M that are distinct from all expressible ones
can result in problems for program terms with free process identifiers because they

9.3 Full abstraction 237

might create functions only different on inexpressible values. We will study the two
aspects below.

Of necessity the constructions used in this section often get rather detailed.
The author hopes that even though some readers may not want to study all the
intricacies involved, they will try to understand what full abstraction is and what
the roles of the various constructions are.

Expressibility

Provided we take a reasonably liberal view of what the CSP language contains,
demonstrating the expressibility of the members of our semantic models usually
presents no problem.

The liberality referred to is in using rather non-constructive mathematical
objects to do things like index mutual recursions and use as input sets. Thus the
CSP we create here falls well outside the domain of ‘effective computability’. We
are thinking here of CSP as a mathematical language for describing communicating
processes rather than a programming language.

Proving an expressibility result like those that follow establishes that the
axioms (such as F1–F4 and D1–D3, in the case of N) used to define the model are
strong enough, because they do not allow anything to be considered a process which
should not be. Let us deal with each of our models in turn.

Traces model

If s is any trace in Σ∗�, it is straightforward to define a CSP process Ts which has
trace s and as few others as possible:

traces(Ts) = {t ∈ Σ∗� | t ≤ s}

This is done by giving Ts one of the forms

a1 → a2 → . . .→ ak → STOP and a1 → a2 → . . .→ ak−1 → SKIP

depending on whether s has last member �.

It follows that if S ∈ T , then S = traces({Ts | s ∈ S}) which means
that every member of T is represented by a CSP process, albeit one using a rather
artificial and infinitary nondeterministic choice construct.

We will term the process constructed above IntTS , because in some sense it
interprets the process S .

238 Analyzing the denotational models

Stable failures model

Suppose (T ,F) ∈ F . A similar, though slightly more involved, construction creates
a CSP process with this value.

The trace component T can be dealt with in much the same way as in T ,
except that we cannot use the simple Ts processes used above since they give rise
to stable failures that will not, in most cases, be appropriate. They need to be
adapted so that failures(Ts) contains nothing that is not implied by the presence
of s . In other words, we need to create processes T ′

s that are maximal under
F

subject to containing s . These are as below, bearing in mind that we can express
the value F as any simply divergent process.

T ′
〈〉 = F

T ′
〈�〉 = SKIP

T ′
〈a 〉̂ s = F � a → T ′

s (a = �)

The situation with the failures component is slightly trickier, since there is
usually no maximal process containing a failure (s ,X). For example, consider the
failure (〈a〉, {}) in the context of the processes a → STOP and a → a → STOP
discussed on page 217. They both have this failure, but they have no common
refinement that does.

It is necessary to concentrate on the failures which are complete in the sense
that axiom F3 does not add anything (i.e., (s ,X) such that {a ∈ Σ� | s 〈̂a〉 ∈ T} ⊆
X). The structure of the processes T ′

t 〈̂�〉 created above mean that we can assume
that s ∈ Σ∗ and that � ∈ X . (All other complete members of F are failures of
T ′

s 〈̂�〉.) For such (s ,X) we can define processes F(s,X) inductively as follows:

F(〈〉,X) = ?x : Σ �X → F
F(〈a 〉̂ s,X) = F � a → F(s,X)

Notice that the only failures of F(s,X) occur on trace s and are of subsets of X ,
and that its traces are all in T .

It is then always true that (T ,F) = (traces(S(T ,F)), failures(S(T ,F))),
where S(T ,F) is the following set of processes (noting that the first component is
always non-empty because T is):

{T ′
s | s ∈ T} ∪ {F(s,X) | (s ,X) ∈ F ∧ {a ∈ Σ | s 〈̂a〉 ∈ T} ⊆ X

∧ s ∈ Σ∗ ∧� ∈ X }

We will term this nondeterministic choice IntF(T ,F).

So, again, every element of F is expressible as the nondeterministic choice of
a rather artificially created set of processes.

9.3 Full abstraction 239

Standing back from the constructions used for T and F , and looking at just
how the processes we have constructed to model arbitrary elements of them actually
behave, is an excellent way of understanding the limitations of these models. After
all, these processes must be considered useless for any practical purpose! This will
be illustrated shortly.

The failures/divergences model

With T and F we were able to deal with each constituent behaviour very nearly
on an individual basis and form a process as a nondeterministic choice at the end.
This was possible largely because of judicious use of the
-top processes in the
two models (STOP and F), something that is not possible over N . The use of
an infinite nondeterministic choice operator would, in any case, be of questionable
taste over N since we have already seen that this model does not treat unbounded
nondeterminism accurately.

It turns out that, without	 and the other infinitely nondeterministic opera-
tors, it is impossible to model every member of N in CSP when Σ is infinite. There
are some patterns of refusal behaviour which are allowed by the model axioms that
cannot be created without infinite nondeterminism. In fact the only ones that can
be created with finite nondeterminism are ones where, for every trace s ,

refusals(P/s) = {X | ∃Y ∈ R.X ⊆ Y }

for some non-empty finite subset2 R of P(Σ�) (which can vary with s).

Therefore we will only deal with the case of finite Σ here. What we can then
do is to define a mutual recursion over the whole of N : in other words, we define
one process for each (F ,D) ∈ N .

IntN(F ,D) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⊥N if 〈〉 ∈ D , and otherwise

	({?x : Σ �X → IntN(F ,D)/〈x〉 |
X maximal in refusals(F ,D) ∧� ∈ X }

∪ {(SKIP<I (〈�〉, {}) ∈ F>I STOP)
�?x : initials(F ,D) �{�} → IntN(F ,D)/〈x〉})

2Obviously this condition has to be satisfied when Σ is finite, since then P(Σ�) is also finite.

We could, of course, have included the above property as an additional axiom for N . This would

have made it a cleaner model for finitely nondeterministic CSP at the expense of losing the ability

to model unboundedly nondeterministic CSP at all and making N ’s links with other models a

little more obscure.

The special properties of � and axiom F4 mean that not all such R produce an allowable set

of refusal sets.

240 Analyzing the denotational models

where ‘maximal’ means maximal under ⊆ (noting that any such refusal set is
complete in the sense described earlier that it includes all impossible events, and
that maximal refusals must be present because of our assumption that Σ is finite).
In the interest of brevity, the above definition uses the general nondeterministic
choice operator 	, but only over finite sets of processes where it could have been
replaced by the binary 	.

You can think of this curious recursion as an ‘interpreter’ of members of N
into CSP: at any stage the process’s state is (F ,D)/s , where (F ,D) is the initial
value of the process and s is the current trace. The recursion is constructive, which
leads to the following remarkable argument for its correctness. We can form a vector
IdN of processes, indexed byN itself (i.e., a member ofNN), in which each member
is mapped to itself. This vector is easily seen to be a fixed point of the recursion
and hence, by the UFP rule, equals 〈IntN(F ,D) | (F ,D) ∈ N〉, and so

(failures⊥(IntN(F ,D)), divergences(IntN(F ,D))) = (F ,D)

In contrast to the two models dealt with earlier, the processes IntN(F ,D) are
usually a reasonable reflection of how one would expect a process with the given
value to behave. As a simple example, consider the process P = a → P . If this
were interpreted in the three models and we then applied the three constructions
to the results, the processes obtained would behave as follows.

• IntTT gives a process which performs any number of a’s and then stops. It is
the same as the process A∗ seen on page 208.

• IntF(T ,F) gives a process which makes a choice, over all n, of offering n a’s
unstably in turn and then offering a again, stably, before finally simply di-
verging, and additionally has the option of offering any finite number of a’s
and never becoming stable (again, diverging after the last).

• IntN(F ,D) behaves identically to the original P , simply offering a’s stably for
ever.

Distinguishing processes

The second thing we have to do is find what criteria for distinguishing processes best
characterize each of our models. It is certainly reasonable to argue that the simple
construction of the models from process behaviours makes this unnecessary3: the

3The concept of full abstraction is more vital on semantics using models which have a more

sophisticated structure than simple sets of behaviours, frequently being applied to ones recursively

defined using domain theory. There are some languages, such as the typed λ-calculus, for which

it is famously difficult to find a fully abstract semantics.

9.3 Full abstraction 241

sets of behaviours are easy to understand and processes are identified if and only if
they have the same ones. But these criteria can be simplified yet further if we use
the full power of how full abstraction is formulated: P must equal Q if and only
if C [P] and C [Q] always (i.e., for all contexts C [·]) either both satisfy or both fail
the tests.

Hopefully the following arguments will help the reader to understand the
concept of full abstraction, as well as further exploring the expressive power of
CSP.

Traces model

Select any member of Σ. It is convenient to give it a suggestive name such as fail .
We can then formulate a simple test on processes: they fail it when they have the
trace 〈fail 〉 and pass it otherwise. Call this test T1.

Since T1 is formulated in terms of traces, and the traces model calculates
the traces of any CSP process accurately, it is obvious that if traces(P) = traces(Q)
then C [P] and C [Q] either both pass or both fail it. In order to establish that the
test is strong enough to distinguish all pairs of processes, we need to show that
whenever traces(P) = traces(Q) there is a context C [·] such that one of C [P] and
C [Q] passes, and the other fails, it. We can achieve this by finding, for any trace
s , a context CTs [·] such that CTs [P] fails T1 precisely when s ∈ traces(P). There
are various ways to do this; one is set out below.

• When s = s ′̂ 〈�〉, a simple context that does what we want is

CTs [V] = (V ‖
Σ

Ts) \ Σ; (fail → STOP)

where Ts is the same process used on page 237 in exploring expressibil-
ity. The point is that the process on the left-hand side of the sequential
composition can only terminate when V has completed the trace s .

• For s ∈ Σ∗, we can use the context

CTs [V] = ((V ‖
Σ

Ts)[[a/x | x ∈ Σ]] ‖
{a}

FAIL(#s)) \ {a}

where again Ts is as used for expressibility, a is any member of Σ distinct
from fail , and FAIL(m) is defined

FAIL(m) = (fail → STOP)<I m = 0>I (a → FAIL(m − 1))

This context, much as with the more obvious first case, works by only allowing
the trace s to occur in V and, like the first one, communicating fail only
when it is complete and its contents hidden.

242 Analyzing the denotational models

This establishes that the traces model is, indeed, fully abstract with respect
to the simple test chosen.

Stable failures model

One might expect the tests used for F to be a refinement of the method used above,
and in order to distinguish processes on the basis of refusals it is clearly necessary
that some aspect of the tests involves more than observing traces. We have two
types of behaviour to handle: traces and failures. It is possible to combine two
separate forms of test, one for each type, into one by disjoining them: let us define
test T2 to fail if a process either can communicate fail as its first action or deadlocks
immediately (i.e., stably refuses the whole of Σ�).

Clearly the semantics of CSP in F can accurately calculate whether any
process fails T2, and so all we have to do to establish full abstraction is to show
that if (T ,F) = (T ′,F ′) are the representations of processes P and Q then there
is a context that distinguishes them (with respect to T2).

Suppose first that T = T ′. Then the context we use is a slightly modified
version of the one used for T . For any trace s ∈ Σ∗�, let

CT ′
s [V] = CTs [V] ||| F

This has identical traces but, since it is never stable, will never fail T2 because
of deadlock. Thus CT ′

s [Q] fails T2 exactly when CTs [Q] fails T1, which is when
s ∈ traces(Q). This form of context thus allows us to distinguish two processes
with unequal trace sets.

We can thus assume that T = T ′ and F = F ′. So let s be a trace such that
refusals(P/s) = refusals(Q/s). It is easy to show that s is not of the form s ′̂ 〈�〉.

Without loss of generality we can assert there is a refusal set X such that

• (s ,X) ∈ F �F ′

• {a ∈ Σ | s 〈̂a〉 ∈ T} ⊆ X

• � ∈ X , because if s 〈̂�〉 ∈ T , then by F4 the sets of refusals of P and Q not
containing � are identical.

Consider the context

CF(s,X)[V] = ((V ; F) ‖
Σ

F(s,Σ� �X)) \ Σ

where F(t,Y) is the process used when investigating expressibility that has the
failures (t ,Y ′) for Y ′ ⊆ Y and no other. Since we are hiding the entire alphabet in

9.3 Full abstraction 243

a process that cannot terminate, there are only two possible values for CF(s,X)[V]:
 F or STOP , the latter being one that can deadlock and hence fail T2. CF(s,X)[P]
can fail T2 because P has the failure (s ,X), hence so does P ; F (using � ∈ X),
and so the parallel combination has the failure (s , Σ�). If CF(s,X)[Q] could fail it
then you can argue in reverse to show Q must have a failure (s ,X ′) for X ′ ⊇ X , but
it cannot by our assumptions and axiom F2. Thus contexts of the form CF(s,X)[V]
allow T2 to detect differences between failure-sets.

It is reasonable to hope that T2 might be simplified further to just testing
for immediate deadlock, but unfortunately the standard CSP language does not
allow us to construct contexts that are strong enough to tell differences between
trace-sets by this means. The problem is that if P and Q are two members of N ,
neither of which can either terminate or become stable (i.e., they both have the
form (T , {}) for T ⊆ Σ∗) then there is no context that can distinguish them on the
basis of deadlock. There is no way for P to make a significant contribution to the
behaviour of C [P], and for the context subsequently to become stable, for none of
the standard operators of CSP can ‘switch off’ P .

It is easy to add an operator to CSP which rectifies this situation: an in-
terrupt operator which allows one process Q to take over from another P . This is
easiest to understand for a specified event i being the signal for Q to start: P !i Q .
The semantics of this operator over F are:

traces(P !i Q) = traces(P)
∪ {s 〈̂i 〉̂ t | s ∈ traces(P) ∩ Σ∗ ∧ t ∈ traces(Q)}

failures(P !i Q) = {(s ,X) ∈ failures(P) | s ∈ Σ∗ ∧ i ∈ X }
∪ {(s ,X) | s 〈̂�〉 ∈ traces(P) ∧� ∈ X }
∪ {(s 〈̂�〉,X) | s 〈̂�〉 ∈ traces(P)}
∪ {(s 〈̂i 〉̂ t ,X) | s ∈ traces(P) ∩ Σ∗

∧ (t ,X) ∈ failures(Q)}

Given this operator, it is not too hard to devise a context that will allow
C [P] to deadlock immediately, precisely when P has a specified trace s ∈ Σ∗, and
to deal with traces of the form s 〈̂�〉 using sequential composition in a similar way.
This then leads quickly to the aimed-for full abstraction result. The details are left
as an exercise. See Exercise 9.3.2 for an investigation of a related result.

We can learn an important lesson from this: adding or removing constructs
from a language, even when the semantic model is unchanged, can greatly affect
full abstraction properties.

244 Analyzing the denotational models

Failures/divergences model

With N there seems to be no option but to use a disjunctive test in the same
spirit as T2. This is T3, which a process fails if it either immediately diverges or
immediately deadlocks. Following in the footsteps of the earlier models, to show
that T3 is strong enough we need to find a context to distinguish any pair P , P ′ of
different elements of N .

Let a be any member of Σ. For s ∈ Σ∗, then the context

CT ′′
s [V] = (V ‖

Σ
T ′′

s) \ Σ ||| (a → STOP)

can diverge immediately if and only if s ∈ traces⊥(V), where

T ′′
〈〉 = ⊥N

T ′′
〈b〉̂ s = b → T ′′

s

The role of the event a in this definition is to prevent the process deadlocking
immediately and thereby failing T3 in an unexpected way.

Thus, if P and P ′ differ in whether they have this trace, they can be distin-
guished. Traces of the form s ′̂ 〈�〉 can be dealt with similarly (see Exercise 9.3.1).
We can thus use T3 to distinguish P and P ′ if their trace-sets differ.

If s is a divergence of one process and not the other, then by D3 we can
assume s ∈ Σ∗. After replacing the process ⊥N by STOP in the definition of T ′′

s ,
we can use the same context as for traces, since the divergence that trips the test
then comes from V rather than T ′′

s .

So we can assume that our two processes have identical trace and divergence
sets, and (without loss of generality) (s ,X) ∈ failures⊥(P) � failures⊥(P ′). Clearly
no prefix of s is a divergence, and exactly as over F we can assume � ∈ X and that
X includes all impossible events. We use a context similar to that used for failures
over F , the important difference being that we have to use a different method to
avoid it deadlocking until the chosen failure is reached. It is built in two stages.

We have to deal separately with the cases X = {�} and X = {�}. In the
first case let

C(s,X)[V] = (V ‖ Ts 〈̂�〉); (a → STOP)

where again a is any member of Σ.

In the second case let a ∈ X �{�} and define AS = a → AS . The following
is a simplified version of the F(s,X) seen earlier:

F ′
(〈〉,X) = ?x : Σ �X → STOP

F ′
(〈b〉̂ s,X) = b → F ′

(s,X)

9.3 Full abstraction 245

Now define

C(s,X)[V] = (V ; AS) ‖
Σ

F ′
(s,Σ �X)

In either case C(s,X)[V] behaves as follows:

• Until it has completed s (or diverged in the process, something which will
not happen when s is not a divergence of V) its trace is always a prefix of s .

• It may or may not be able to deadlock on proper prefixes of s .

• On the complete trace s it can deadlock if, and only if, V has the refusal
(s ,X).

What we have to do is place this process in a context which generates an immediate
deadlock from any deadlock of the above after s , but not from any other trace, and
does not introduce a divergence. One way of doing this is

CFD(s,X)[V] = ((C(s,X)[V][[a, b/x , x | x ∈ Σ]]) ‖
{a,b}

W (#s)) \ {a}

where

W (0) = b → CS
W (n) = (a →W (n − 1)) � CS (n > 0)

CS = c → CS

and a, b, c are arbitrary members of Σ.

The process W (#s) keeps track of how many events C(s,X)[V] has per-
formed, and only allows it to deadlock the combination when this number is exactly
#s , meaning that C(s,X)[V] has actually performed s . (The double renaming of
events to both a and b, coupled with the structure of W (n), means that only events
from the trace s get hidden. Thus the behaviour of V up to trace s is brought for-
ward to the empty trace of the combination, but anything beyond is not. This use
of one-to-many renaming appears to be essential.4) It follows that CFD(s,X)[V]
fails T3 if and only if (s ,X) ∈ failures⊥(V).

CFD(s,X)[V] can then be used to distinguish P and P ′, as desired.

We can summarize the results of this section in the following result:

4The construction given here is a correction from that in the first edition, which did not use

the double renaming and which was wrong because it hid the events of a process accepting an

event from Σ �X as well as the ones in the trace leading up to it. The author is grateful to Antti

Valmari for pointing out this error.

246 Analyzing the denotational models

Theorem 7 (i) The traces (T) semantics of CSP is fully abstract with respect

to T1 (failed on the immediate occurrence of a chosen event).

(ii) The stable failures (F) semantics is fully abstract with respect to T2

(failed on immediate occurrence of a chosen event or immediate deadlock), and

with the addition of an interrupt operator this test can be weakened to immediate

deadlock.

(iii) The failures/divergences (N) semantics of finitely nondeterministic

CSP is fully abstract with respect to T3 (failed on the process immediately dead-

locking or diverging) provided Σ is finite.

Another consequence of full abstraction properties like these is that each
model generates the weakest congruence (i.e., identifies most processes) which allows
us to tell whether a process satisfies the relevant test. Thus T gives the weakest
congruence on CSP allowing us to tell whether a process has the trace 〈fail 〉, and
so on.

Exercise 9.3.1 Recall that the context CT ′′
s [·] is used to distinguish processes in N

on the basis of traces. The version defined on page 244 was only for s ∈ Σ∗. Find a

definition that works for traces of the form s 〈̂�〉.

Exercise 9.3.2 Notice that axiom T3 implies that all traces of the form s 〈̂�〉 are

traces of failures. The only semantic clause for standard CSP operators over F in which

the failures component depends on the input traces is P ; Q , in which only traces of this

form are used. Show that this means it is possible to give a semantics for CSP in a pure

stable failures model in which a process is represented only by failures(P) rather than

(traces(P), failures(P)).

(a) Show that axioms F2, F4 and a much weakened F3 (dealing only with two cases

that can occur in connection with �) suffice to create a model whose members

are exactly the failure-sets that arise in F . We no longer get the full version of

F3 because it relates refusal sets to successor traces, and by leaving out the trace

component it thus becomes impossible to include this particular ‘sanity check’.

(b) Prove that this model is fully abstract for the standard CSP language with respect

to the test for immediate deadlock.

(c) Find two processes that are identified over this new model but distinguished over

both T and F . What are the advantages of using F rather than the pure version?

Are there any disadvantages?

9.4 Relations with operational semantics

We have two methods of working out the representations of CSP processes in our
abstract models: either following the route of Chapter 7 and calculating the op-

9.4 Relations with operational semantics 247

erational semantics and then extracting behaviours via abstraction functions, or
that of Chapter 8 and doing it by directly using denotational semantics. There is a
claim implicit in this, namely that both ways calculate the same value. We are, in
other words, claiming that the operational semantics is congruent with each of the
denotational ones. This is something that needs to be proved, and in this section
we outline some of the methods that can be used to do this.

Firstly, one must remark that in order to keep the discussion clear we will
have to be a little more formal than hitherto about the distinctions between the
syntax of CSP and functions defined over it. The language of terms in CSP (i.e., the
set of well-formed terms in the language that may contain free process identifiers)
will be denoted CSP, and the closed terms (ones with no free identifiers) will be
denoted CSP. Naturally, when referring to a function like failures⊥(P) we will
have to make it clear which of the two supposedly equal values this is.

The operationally-based versions of these functions defined in Section 7.4.1
provide us with functions to the models from any LTS V : for each node σ of V

ΦT (σ) = traces(σ)
ΦF(σ) = (traces(σ), failures(σ))
ΦN (σ) = (failures⊥(σ), divergences(σ))

These can, of course, be used to compute one set of interpretations of CSP
from the LTS generated by the operational semantics. The second set are produced
by the denotational semantics given in Chapter 8: let us call these ST [[·]], SF [[·]] and
SN [[·]].

A variety of techniques have been used over the years to establish the equiv-
alence of pairs of these interpretations. Invariably the proofs have been by some
sort of structural induction over the syntax of a CSP program and come in three
parts: a series of lemmas dealing with basic operators other than recursion, a more
difficult argument to handle the recursive case, and overall ‘glue’ to put all these
pieces together. Presenting detailed arguments for each of the models here would
be much too long and complex, so we will concentrate on the simplest model, T ,
and indicate briefly at the end how things change for the others.

A CSP term can, in general, have free process identifiers. Even if we start
with a closed term (one with none), if we want to establish results about it by
structural induction we may well have to consider sub-terms which are not closed.
In proving congruence between an operational and a denotational semantics it is
therefore necessary to use notation capable of interpreting general terms5 and to

5As remarked previously (for example in Chapter 7), we have avoided doing this formally up to

now. This was because the gain in terms of completeness and making the semantics of recursion

tidier would have been outweighed by the notational and conceptual clutter.

248 Analyzing the denotational models

formulate our inductive congruence results accordingly.

It is mathematically superior to formulate each of the denotational semantics
with environments giving a binding of each free process identifier to an element of
the underlying semantic model. (This type of environment was previously discussed
on page 166.) Thus, we can define

EnvT = Ide → T

to be the set of T -environments, so that the type of the semantic function becomes

ST : CSP→ EnvT → T

and, for a process term P and environment ρ ∈ EnvT , ST [[P]]ρ is the value of P
when its free identifiers have the trace sets assigned to them by ρ. The reason why
it is superior is because, when we are faced with a recursive term such as μ p.P ,
we can present the function that P represents cleanly: in a given environment ρ it
maps α ∈ T to ST [[P]]ρ[α/p].

The natural operational semantic analogue of an environment is a substitu-
tion ξ that maps each identifier to a closed CSP term:

ξ ∈ Subst : Ide → CSP

ξ then converts any CSP term P into a closed one subst(P , ξ) by replacing each free
identifier p by ξ(p). The full statement of the congruence result is now that, for all
ξ ∈ Subst and all terms P ∈ CSP,

ΦT (subst(P , ξ)) = ST [[P]]ξ
T

where ξ
T

is the member of EnvT produced by applying ΦT to each component of
ξ:

ξ
T

(p) = ΦT (ξ(p))

It is this result we prove by structural induction over P (for all ξ simultaneously).

The claim is trivially true for all ‘base’ cases of the induction: P being either
a process identifier p or one of the constant processes STOP and SKIP .

The proof then follows the same pattern for each non-recursive operator.
Consider, for example, �. We can assume P and Q are two terms both satisfying
the claim for all ξ. We have

subst(P � Q , ξ) = (subst(P , ξ)) � (subst(Q , ξ)), and

ST [[P � Q]]ξ
T

= ST [[P]]ξ
T

�T ST [[Q]]ξ
T

9.4 Relations with operational semantics 249

where �T is the representation of this operator over T , in this case ∪ (union). Thus,
by induction, it is sufficient to prove that for any closed CSP terms R and S ,

ΦT (R � S) = ΦT (R) �T ΦT (S)

This result, and corresponding ones for all the other operators, can be proved
by analyzing how the operational semantics behaves. Specifically, in this case, it is
easy to show that, for any R and S ,

• If R
〈〉

=⇒ R′ and S
〈〉

=⇒ S ′ then R � S
〈〉

=⇒ R′ � S ′.

• If s = 〈〉 and either R s=⇒ T or S s=⇒ T then R � S s=⇒ T .

• The above are the only pairs (s ,V) such that R � S s=⇒ V .

This, of course, establishes what we want.

Now consider the case of a recursion μ p.P . What we have to show is that,
for any ξ, ΦT (subst(μ p.P , ξ)) is the least fixed point of the function Υ mapping
α ∈ T to ST [[P]](ξ

T
[α/p]). The inductive assumption makes it easy to show that it

is a fixed point. Let P ′ be the term in which all free identifiers of P other than p
have been substituted by ξ, so that subst(μ p.P , ξ) = μ p.P ′. Then

ΦT (subst(μ p.P , ξ)) = ΦT (μ p.P ′)
= ΦT (P ′[μ p.P ′/p]) (a)
= ΦT (subst(P , ξ[μ p.P ′/p])) (b)

= ST [[P]]ξ[μ p.P ′/p]
T

(c)
= ST [[P]](ξ

T
[ΦT (μ p.P ′)/p]) (d)

= Υ(ΦT (subst(μ p.P , ξ)))

(a) follows because of the operational semantics of recursion:

μ p.P ′ τ−→ P ′[μ p.P ′/p]

and because if A is a node of an LTS whose only action is A τ−→ B then ΦT (A) =
ΦT (B). (b) follows by definition of P ′, (c) comes by induction on the term P which
is simpler than μ p.P , and (d) by definition of ξ

T
.

Recall that, for T , we chose to identify recursions with the subset-least fixed
points of the associated functions, arguing that this was natural because all the
behaviours recorded in this model always appear finitely. To show that this was the
right decision, given the above argument, it is sufficient to show that every trace
of ΦT (subst(μ p.P , ξ)) belongs to Υn({〈〉}) for some n. (Containment in the other

250 Analyzing the denotational models

direction comes from the fact that ΦT (subst(μ p.P , ξ)) is a fixed point of Υ, and so
is greater than the least one.)

If s is such a trace then there must be some s ′ ∈ (Στ)∗� and Q such that

s ′ \ τ = s and subst(μ p.P , ξ) s′
�−→ Q . If N = #s ′, then during the derivation of

the behaviour s ′, the recursion cannot possibly be unfolded more than N times,
since every time it is unfolded a τ action is generated which must be present in s ′.
Consider the following two mutual recursions defining the processes p0 and q0.

pn = P ′[pn+1/p] n ∈ N

qn = P ′[qn+1/p] n ∈ {0, . . . ,N − 1}
qN = STOP

where P ′ is as above. The first of these clearly has exactly the same behaviour as
subst(μ p.P , ξ), in the sense that the operational semantics are exactly alike except
that the multiple names of the identifiers in the mutual version keeps track of how
many times the recursion has been unfolded. The process q0 behaves exactly like p0

until after the N th unfolding, which means that it has the behaviour s ′; this means
that s ∈ ΦT (q0).

On the other hand, ΦT (qN) = {〈〉}, ΦT (qN−1) = Υ({〈〉}) etc., until ΦT (q0) =
ΥN ({〈〉}), because ΦT (subst(P , ξ[Q/p])) = ST [[P]]ξ

T
[ΦT (Q)/p] for every closed

term Q . Hence s ∈ ΥN ({〈〉}), which is what we wanted to show.

This completes our sketch of the proof of congruence between the operational
semantics and the trace semantics. The proof for F goes through exactly the same
steps, except that one obviously has to keep track of failures as well as traces and
it is necessary to allow the q0 recursion to unfold N + 1 times rather than N .

With N there is little difference with the overall structure of the proof or
the cases for non-recursive operators. The recursive case is different because we
have to handle infinite behaviours (divergences) and use what is really the opposite
fixed point. We have to show that the effects of divergence lead to the operational
semantics mapping under ΦN to the
N -least fixed point, bearing in mind that
the same basic argument applied over T (page 249) shows that any recursive term
maps to a fixed point of the associated function.

Perhaps the easiest way of proving minimality uses König’s lemma (applicable
since we are in any case restricted to finitely nondeterministic CSP). For any trace
s ∈ Σ∗�, one shows that either the tree of states reachable from a process such as
R = subst(μ p.P , ξ) on prefixes of s is finite, or there is a divergence in the tree.
In the second case, axioms D1 and D2 mean that every behaviour on s gets into
ΦN (R), while in the first case you can limit the number N of times the recursion
has to be unfolded to be the depth of the finite tree, and then a similar argument

9.5 Notes 251

to that applied over T can be used to show that the operational and denotational
semantics must agree on behaviours that are prefixes of s .

Exercise 9.4.1 Prove that, for any closed term P , ΦT (P \ X) = ΦT (P) \T X .

Exercise 9.4.2 Repeat the previous exercise for (i) the stable failures model F and

(ii) the failures/divergences model N , the latter under the assumptions that the term P

is finitely nondeterministic and X is finite.

Exercise 9.4.3 The results on expressibility in Section 9.3 imply that, in each of the

cases considered, the function ΦM is surjective as a function from the closed CSP terms

CSP to the model M. Show that there is a transition system V on which the function ΦN

is surjective when Σ is infinite (i.e., the one case not dealt with by the previous remark).

9.5 Notes

The main properties of deterministic processes have been well known since failures-
type models were first developed [15, 18, 19, 101].

The results of Section 9.2 are derived mainly from [101, 104, 107]. The last
two of these contain the details omitted here of the purely topological approach to
CSP fixed-point induction.

The notion of full abstraction evolved in the 1970s and early 1980s: see
[79, 92] for example. The full abstraction result for N has been known for many
years: it is implicitly present in [51], for example (which also contains mush other
material on full abstraction). The full abstraction results for F , like the other results
about this model, arose from the collaboration between the author, Jategoankar and
Meyer, and are closely related to independent results of Valmari [132].

The first congruence proof between operational and denotational semantics
of CSP appears (rather briefly) in Olderog’s important paper [87] with Hoare. A
more complete presentation of a proof appears in [135] and [22]. The difficulty in
such proofs comes mainly from the radically different ways in which denotational
and operational semantics handle recursions. The above two references handle this
in different ways; the author later developed a further way of handling this (en-
compassing unbounded nondeterminism and discontinuous functions) in [105] – the
later is the style of proof he presently prefers.

2005: Some interesting results have been proved about the properties which
can be expressed by CSP refinement in its most general form:

F (P)
 G(P)

for F and G being CSP contexts [115, 112]. It turns out that the ones which can be
expressed by a natural class of contexts are exactly the properties which are closed

252 Analyzing the denotational models

in the usual metric space on the failures/divergences model provided the alphabet Σ
is finite. This can be viewed as a sort of higher-order full abstraction result.

Chapter 10

Infinite traces

We have seen (Section 8.3.2) that the failures/divergences model is deficient in the
way it models infinitely nondeterministic processes. The solution is to include the
set of a process’s infinite traces in the model. An infinite trace is a member of Σω ,
the sequences of the form 〈ai | i ∈ N〉. It represents a complete (i.e., throughout all
time) communication history of a process that neither pauses indefinitely without
communicating nor terminates.

In this chapter we see how this is done and get an idea of the extra expressive
power it gives us.

10.1 Calculating infinite traces

Our aim is to represent each process by the triple

(failures⊥(P), divergences(P), infinites(P))

recalling that infinites(P) already, by definition, contains all extensions of diver-
gences.

Bear in mind that we know (thanks to the argument in the proof of Theorem
2 on page 181) that for any finitely nondeterministic process

infinites(P) = traces⊥(P) � traces⊥(P)

where S = S ∪ {u ∈ Σω | ∀ t < u.t ∈ S}. Thus, the extra component will only
convey extra information outside this category of process.

If we are to follow the route taken in Chapter 8 we should now axioma-
tize which triples (F ,D , I) are allowable, investigate the model’s properties (order-
theoretic and otherwise) and then use it to give the semantics. It is entirely possible

254 Infinite traces

to build such a model, and indeed we will do so later in this chapter, but it turns out
that the relationship in it between failures and infinite traces is remarkably subtle
and creates problems which there is no overriding need for us to meet yet.

One can, at least temporarily, avoid these difficulties thanks to the following
observations:

• The stable failures failures(P) are accurately calculated, even for infinitely
nondeterministic CSP, by the semantics over the stable failures model F .

• If one examines the way that CSP operators generate behaviours, it turns
out that the stable failures of component processes never influence any of
finite or infinite traces or divergences.

It therefore makes sense to introduce infinite traces via a simpler model in which a
process is modelled as

(traces⊥(P), divergences(P), infinites(P))

We can still work out failures⊥(P) from a combination of the second components
of this representation and the semantics over F .

I, the infinite traces/divergences model, consists of the triples (T ,D , I),
where T ,D ⊆ Σ∗� and I ⊆ Σω, meeting the following conditions:

T1. T is non-empty and prefix closed.

D1. s ∈ D ∩Σ∗ ∧ t ∈ Σ∗� ⇒ s t̂ ∈ D

D2′. D ⊆ T

D3. s 〈̂�〉 ∈ D ⇒ s ∈ D

D4. s ∈ D ∩Σ∗ ∧ u ∈ Σω ⇒ s û ∈ I

I1′. u ∈ I ∧ s < u ⇒ s ∈ T

I is a complete lattice under both
I (defined, of course, to mean reverse
inclusion on all three components) and its reverse, the subset order. For I =
({〈〉}, {}, {}) (the representation of STOP) is the greatest
I-lower bound of the
empty set, and the greatest lower bound of any non-empty set is given, as usual, by
componentwise union: 	 S = (T ∗,D∗, I ∗), where

T ∗ =
⋃
{T | (T ,D , I) ∈ S}

D∗ =
⋃
{D | (T ,D , I) ∈ S}

I ∗ =
⋃
{I | (T ,D , I) ∈ S}

10.1 Calculating infinite traces 255

The least refined element is ⊥I = (Σ∗�, Σ∗�, Σω), representing any process that
can diverge immediately.

It is easy to give clauses for calculating infinites(P) for all the standard CSP
operators.

infinites(STOP) = {}
infinites(SKIP) = {}

infinites(a → P) = {〈a 〉̂ u | u ∈ infinites(P)}
infinites(?x : A→ P) = {〈a 〉̂ u | a ∈ A ∧ u ∈ infinites(P [a/x])}

infinites(P � Q) = infinites(P) ∪ infinites(Q)

infinites(P 	 Q) = infinites(P) ∪ infinites(Q)

infinites(P ‖
X

Q) = {u ∈ Σω | ∃ s ∈ Traces(P),

t ∈ Traces(Q).u ∈ s ‖
X

t}

∪ {s û | s ∈ divergences(P ‖
X

Q) ∩ Σ∗ ∧ u ∈ Σω}

infinites(P ; Q) = infinites(P)
∪ {s û | s 〈̂�〉 ∈ traces⊥(P) ∧ u ∈ infinites(Q)}

infinites(P [[R]]) = {u ′ | ∃ u ∈ infinites(P).u R u ′}
∪ {s û | s ∈ divergences(P [[R]]) ∩ Σ∗ ∧ u ∈ Σω}

infinites(P \ X) = {u ′ ∈ Σω | ∃ u ∈ infinites(P).u \ X = u ′}
∪ {s û | s ∈ divergences(P \ X) ∩ Σ∗ ∧ u ∈ Σω}

Recall that Traces(P) is an abbreviation for traces⊥(P) ∪ infinites(P). The trace
constructs ‖

X
, \ X and renaming have been extended in the natural ways to encom-

pass infinite traces. Of course, to give a denotational semantics to CSP you need
clauses for the other components, traces⊥(P) and divergences(P), of the represen-
tation. In all but one case, the clauses for divergences(P) are the same as they were
over N because knowledge of a process’s infinite traces does not affect what the
divergences are when applying the respective operators. The exception is hiding,
since we no longer have to attempt to infer what the infinite traces are from the
finite ones and can directly define:

divergences(P \ X) = {(u \ X)̂ t | u ∈ infinites(P)∧
t ∈ Σ∗� ∧ u \ X is finite}

∪ {(s \ X)̂ t | s ∈ divergences(P) ∩ Σ∗ ∧ t ∈ Σ∗�}

The definitions for the finite traces component traces⊥(P) are identical to
the mappings on traces that can be extracted from the failures clauses for N . These

256 Infinite traces

differ from the clauses for the finite traces model T only in the cases where it is
necessary to close up to preserve axiom D2/D2′, so for example

traces⊥(P \ X) = {s \ X | s ∈ traces⊥(P)}
∪ {s t̂ | s ∈ divergences(P \ X) ∩ Σ∗ ∧ t ∈ Σ∗�}

All the resulting semantic clauses are both universally accurate and repre-
sentable as relations over behaviours: we have eliminated the problem which caused
the semantics over N to break down for infinitely nondeterministic CSP. It is now
possible to prove the lemmas of an operational/denotational congruence proof (like
that for � and T on page 248) for every one of the operators. For example, the
processes A∗ and A∞ defined on page 208 are now clearly distinguished by the
semantics, which correctly predict that A∞ \ {a} can diverge and that A∗ \ {a}
cannot.

The fact that they are representable by relations implies (as in Section 8.2)
that they are all monotonic, fully distributive, and continuous in the ⊆ order. Let us
consider the question of continuity in the
 order. The argument for the continuity
of hiding over N no longer applies because of the different way we are calculating
divergence. One would not expect the argument to apply when we reason about
infinitely nondeterministic CSP, since it relied on König’s lemma, which in turn
requires finite branching. And, in fact, hiding is not continuous over I. When Σ is
infinite, the same example as used on page 192 works. An example for finite Σ is
provided by the processes Qn defined below (hiding {a, b} makes each Qn diverge,
but not their limit A∗). Indeed, the incorporation of infinite traces, which each
contain an infinite amount of information, leads to several other relations becoming
infinitary and the corresponding operators discontinuous. This applies to sequential
composition, parallel and finitary renaming.

For example, let R be a renaming that maps events a and b to b, and let Pn

be the process that performs n a’s and then an infinite sequence of b’s:

Pn = a → . . .→ a → BS
BS = b → BS

Obviously Pn [[R]] = BS for all n. If we define Qn = 	{Pm | m ≥ n} then these
form an increasing sequence under
I whose limit is actually A∗ (it can perform
any finite sequence of a’s, but has no infinite trace). But we then have

⊔
{Qn [[R]] | n ∈ N} = BS = (

⊔
{Qn | n ∈ N})[[R]]

demonstrating the failure of continuity.

In Chapter 8 we established a rule of thumb that one should identify a re-
cursion with either the
 or ⊆ least fixed point depending on whether or not one’s

10.1 Calculating infinite traces 257

model incorporates infinite behaviours. On this principle we must expect the right
answer for I to be
, and indeed it is, despite the fact that it means a large-scale
abandonment of continuity and the resulting simple formula for fixed points. The
need to use
 rather than ⊆ can now be demonstrated not only from under-defined
recursions such as μ p.p, (which diverges and so must be mapped to ⊥I rather than
to I), but also from very ordinary ones such as μ p.a → p.

For ({〈a〉n | n ∈ N}, {}, {}) (which is the value in I of the process A∗), is
the ⊆-least fixed point of the function F (·) derived from the recursion μ p.a → p.
This is plainly not the right value, since it does not contain the infinite trace that
the process self-evidently has. The problem is that F (P) can never have an infinite
trace when P does not, so starting an iteration from I (which itself has no infinite
traces) will never yield one. On the other hand, the
-least fixed point (and greatest
⊆ one) is ({〈a〉n | n ∈ N}, {}, {〈a〉ω}), the correct answer.

In the case of μ p.a → p, there are only the two fixed points quoted above,
but in only slightly more complex cases, such as μ p.(a → p) 	 (b → p), there can
be infinitely many. In this second example also it is clear that the correct answer
is the
-least one, which contains all infinite traces made up of a’s and b’s.

Even ‘constructive’ recursions can fail to reach their least fixed points via
the simple formula

μ f =
⊔∞

n=0 f n(⊥)

This is illustrated by the recursion

μ q. ((a → q) ‖
{a}

A∗)

where A∗ is as above. For this recursion, Fn(⊥I) has the infinite trace 〈a〉ω for all
n (because 〈a〉n is a divergence), and hence so does

⊔∞
n=0 Fn(⊥I) which equals

({〈a〉n | n ∈ N}, {}, {〈a〉ω})

However, this value is neither a fixed point of this recursion, nor does the operational
semantics of the recursion have the infinite trace 〈a〉ω . The least fixed point, which
is also the operationally correct value, is A∗. It is clear, both from this and the
multiplicity of fixed points we saw above, that the proof that you always get the
operationally right answer is more critical than over previous models.

The argument we saw for T in Section 9.4 still applies when it comes to
proving that the operational semantics of any recursion maps to some fixed point of
the associated function. But the proof that it is always the least one seems to require
subtlety and mathematical machinery well beyond what we can present here. The
interested reader can consult [105].

258 Infinite traces

But the important thing is that the result, and hence the congruence theorem
with the operational semantics, can be proved and so is true. This establishes that
the denotational semantics for CSP, derived from the above operator definitions and

 least fixed points for recursions, does give the correct value for every process.

The demise of metrics

The major gain we have made from the move to incorporate infinite traces in our
model is the ability to calculate a satisfactory semantics for general CSP (i.e.,
incorporating unbounded nondeterminism) denotationally. The attentive reader
may already have noticed what is the greatest practical loss, and one of the best
reasons for not using infinite traces all the time. The recursions μ p.a → p and
μ p.(a → p) 	 (b → p) are certainly constructive in every reasonable sense, and yet
we have seen that they do not have unique fixed points. This is because no family of
restriction functions based (as all those for other models have been) on describing
what a process does up to some finite length of trace, can discriminate between a
pair P , P ′ which only differ in infinite traces.

Thus the UFP rule, and the fixed-point induction principles relying on con-
structiveness as defined in Section A.2, are not in general valid over I or other
models using infinite traces. We will be able to repair the damage somewhat, but it
is better to do this after we have studied the incorporation of failures information
into our model as this can significantly affect the situation.

Exercise 10.1.1 Suppose Σ is infinite (containing, say, {ai | i ∈ N}). Find finitely

nondeterministic processes P1, P2, Q1 and Q2, a set X and a renaming relation R such

that

• traces⊥(P1 \ X) = traces⊥(P2 \ X) but infinites(P1 \ X) �= infinites(P2 \ X).

• traces⊥(Q1[[R]]) = traces⊥(Q2[[R]]) but infinites(Q1[[R]]) �= infinites(Q2[[R]]).

The existence of such examples demonstrates that infinite hiding and infinitary renaming

can introduce unbounded nondeterminism.

Exercise 10.1.2 Find the relations which generate infinites(P ; Q) in the relational

representation of this operator. Show by means of example that they are not all finitary.

Find a process Q and a directed subset Δ of I (with respect to �) such that

(
⊔

Δ); Q �=
⊔
{P ; Q | P ∈ Δ}

This shows ; to be discontinuous in its first argument; is it also discontinuous in its second

argument?

10.2 Adding failures 259

10.2 Adding failures

We now know that, for any CSP process, we can calculate its divergences, traces
both finite and infinite, and (stable) failures. In fact, we know how to do these
things two ways since we can either get them from the operational semantics or
by using a combination of two denotational models. It is nevertheless interesting
to try to combine all of these types of behaviour into a single model, because only
by doing this can we understand what ‘the space of all processes’ looks like, and
establish results like full abstraction. We want to build the failures/divergences/
infinite traces model U consisting of sets of triples (F ,D , I).

The main issue in understanding which (F ,D , I) can represent the

(failures⊥(P), divergences(P), infinites(P))

of some process P is the way in which failures and infinite traces interact, for the
other relationships have all been established in studying I and N .

Their relationship is analogous to axiom F3, which can be read as stating
that when an event a is not refusable after trace s , then s 〈̂a〉 is a finite trace.
Carrying on this argument to infinity will lead to infinite traces; we will investigate
this by studying the two recursions used as examples in the previous section:

Ra = a → Ra

Rab = (a → Rab) 	 (b → Rab)

It is easy to see that

Fa = failures⊥(Ra) = {(〈a〉n ,X) | a ∈ X }
Fab = failures⊥(Rab) = {(s ,X) | s ∈ {a, b}∗ ∧ {a, b} ⊆ X }

In the model I, both of the recursions have solutions with no infinite traces,
but that would be inconsistent with the failure information since, if we always offer
either process the set {a, b}, then it is certain to perform an infinite trace. A process
with no infinite trace is certain, if we always offer it the whole of Σ, eventually to
deadlock or terminate; neither of these processes can do either.

So in fact the Ra recursion does have a unique fixed point when we take into
account the additional information from failures, since the set of infinite traces from
the ‘wrong’ one of the pair seen on page 257 can now be discounted.

We can be sure that any set of infinite traces to be paired with Fa has
the trace 〈a〉ω because this infinite trace can be forced from a known finite one.
Specifically, if s is a finite trace of the process P , and u > s is in Σω, and
whenever s < t 〈̂a〉 < u we have (t , {a}) ∈ failures⊥(P), then u must belong

260 Infinite traces

to infinites(P). This implies that whenever F is the failure-set of a deterministic
process in N then there is only one set of infinite traces consistent with F , namely
traces⊥(F) � traces⊥(F).

As infinite traces tell us nothing interesting about processes in U whose
projection into N (the first two components) appear deterministic, we can take
exactly the same definition for ‘deterministic’ over U as over N .

Unfortunately the story is not quite as simple with Rab , for there are still
infinitely many sets of infinite traces consistent with the failures. Furthermore,
there is no specific infinite trace you can be sure is there. If I is any subset of
{a, b}ω with the property that for all s ∈ {a, b}∗ there is u ∈ I with s < u, it turns
out that we can create a CSP process with value (Fab , {}, I).

If v is any infinite trace, let Tv be the process that simply communicates the
members of v in turn (akin to the processes Ts for finite traces used on page 237).
Then

NI = 	{Tv | v ∈ I }

is the process we want: it obviously has the correct infinite traces, and our assump-
tion implies it has the right failures since if s ∈ {a, b}∗ then there are va and vb
in I with s 〈̂a〉 < va and s 〈̂b〉 < vb . The processes Tva and Tvb

give to NI all the
failures of Fab for this s .

These are precisely the sets of infinite traces consistent with Fab . For we
know that every finite trace is possible, and if after the trace you offer a process
with failures Fab the set {a, b} for ever, you are bound to get an infinite extension of
s . Not all I of this form give rise to fixed points of our recursion, though infinitely
many of them do (see Exercise 10.2.3), but that is not relevant to the issue of
determining what it means for a set of infinite traces to be consistent with a set of
failures.

Whatever formula captures the general relationship between infinite traces
and failures is inevitably going to be more complex than previous axioms such
as F1–F4 since it evidently relates the entire sets of these behaviours rather than
individual ones. A variety of formulations of an axiom relating F and I have been
discovered, but all of them rest ultimately on something very like the following
ideas.

Imagine that you are about to experiment on a process. Now there may well
be some nondeterminism in the implementation, and on any run it will then have
to make decisions to resolve this. From the experimenter’s point of view there is no
way of telling whether the decisions are being made in ‘real time’ as the experiment
proceeds, or have all been pre-ordained. If all the decisions have been made in
advance, then the process you are actually dealing with is a refinement P ′ of P that

10.2 Adding failures 261

is at least nearly deterministic.1 The reasons why the procedure in the footnote
may not deliver a deterministic result are divergence and the events that are left as
alternatives to an internal action. It is certainly closed in the sense that

Traces(P ′) = traces⊥(P ′)

Since every recordable behaviour of P is present in one of these P ′ it follows
that

P = 	{P ′ | P
 P ′ ∧ P ′ is closed}

This identity is the key to deciding when sets of failures and infinite traces
are consistent. For there can be no doubt that if (F ,D) is a member of N then its
closure

(F ,D) = (F ,D , traces(F) � traces(F))

must be included in the failures/divergences/infinite traces model U . A construction
identical to that for N on page 239 (which now requires unbounded choice since Σ
may be infinite) creates a process with these behaviours. And it is clear that for any
(F ,D , I) ∈ U , (F ,D) is a member of N , so that the closed processes are precisely
N , the set of closures of members of N .

Thus the model U equals

{	S | {} = S ⊆ {(F ,D) | (F ,D) ∈ N}}

and the way we have derived this fact equips U with the expressibility half of a full
abstraction result.

There is no reason, of course, why you should not take the above as the
definition of U . But one can get back to the earlier, directly axiomatized, style by
extracting what this says about infinite traces into a suitable formula.

We can thus define U to consist of those triples (F ,D , I) satisfying F1–F4,
D1–D4, the following property slightly reformulated from I1′ of I

1You can imagine this choice procedure as being applied to an LTS which has been unrolled

into a tree, as in Figure 7.3 on page 161, so that no node is visited more than once, recognizing that

different decisions may be made each time a node is visited. There is then an ‘implementation’

of it that is produced by a method like the algorithm for extracting a deterministic refinement

described on page 229, except that you should select one representative for each label leading from

a node irrespective of whether it is stable or not. This is because we have to recognize that the

process is allowed to accept visible alternatives to internal actions and that if such alternatives

were always ignored then there would be legitimate behaviours of the LTS which would not appear

in any of the ‘implementations’.

262 Infinite traces

I1. u ∈ I ∧ s < u (for s ∈ Σ∗) implies s ∈ traces(F)

and one more property, I2. A wide range of formulations, as well as some plausible
alternatives that fail, can be found in [105] and especially in [12]. The axiom can
be stated in terms of game theory and via logical formulae with infinitely deeply
nested quantifications, but the most understandable are probably those closer in
spirit to the discussion above. The following version simply states that from any
point a process can reach, we can pre-resolve the nondeterministic choices it will
make thereafter so that it acts deterministically:

I2. s ∈ traces(F) ⇒ ∃T ∈ T d .(F ,D)/s
FD det(T)
∧ {s û | u ∈ T} ⊆ I

The more refusal sets a process has (relative to a fixed set of finite traces),
the less infinite traces it need have. This is because, in the above, the sets T can
be smaller when F is able to refuse more. Thus, for the failure-set Σ∗� × P(Σ�)
and divergence-set {}, any set of infinite traces is permissible. In particular, you
can have the empty set of infinite traces, creating the interesting process FINITEΣ

which can be written

	{Ts | s ∈ Σ∗�}

with Ts , as before, being the process which simply communicates the trace s .

The semantic clauses for computing how CSP operators behave over U can
easily be put together from those of earlier models. Those for divergences and
infinite traces are identical to those over I, while those for failures are identical2 to
those over N . Every one has a relational representation and so is monotonic and
fully distributive. Just as over I, many fail to be continuous.

You should always remember that if P is a finitely nondeterministic term
(or, indeed, a node in a finitely nondeterministic LTS) then its value in U is always
simply the closure of its value in N .

Full abstraction

Our first expression for U as a set of nondeterministic compositions equips it with
the expressibility half of its full abstraction result.

The second half serves to emphasize that U is the natural extension to un-
boundedly nondeterministic CSP of the failures/divergences model N , since except

2Those, especially \ X , that refer to divergence-sets, of course now mean the ones derived from

I.

10.2 Adding failures 263

for the larger language the testing criterion is identical. U is fully abstract with
respect to the test for immediate deadlock or divergence (T3, see page 244). Ex-
actly the same contexts as over N distinguish processes on the bases of finite traces,
failures and divergences, so all we need is to find contexts that distinguish them on
the basis of infinite traces. If Tu is, as above, the process that simply performs the
trace u then

Cu [V] = ((V ‖
Σ

Tu) \ Σ) ||| a → STOP

can diverge if and only if u ∈ infinites(V). As with finite traces, the last part of the
context is included to avoid any possibility of immediate deadlock and so ‘diverge’
can be replaced by ‘fail T3’ here.

Partial order properties

The refinement order on U is exactly what we would expect:

(F ,D , I)
U (F ′,D ′, I ′) ≡ F ⊇ F ′ ∧D ⊇ D ′ ∧ I ⊇ I ′

This order has a bottom element, the one representing any process that can
diverge immediately:

⊥U = (Σ∗� × P(Σ�), Σ∗�, Σω)

Like N , it has no top element but many maximal elements which are exactly the
deterministic processes

{det(T) | T ∈ T d}

The nondeterministic choice operator, as over other models, corresponds to
the greatest lower bound operator over arbitrary non-empty subsets of U and to
componentwise union.

It should not come as a great surprise that the refinement order fails to be
complete over U , since we have seen there is a close correspondence between finite
nondeterminism and the attractive properties of completeness and continuity. If A∗

is, as before, the process that can perform any finite number of a’s but not infinitely
many, then the following series of refinements hold:

A∗
U a → A∗
U a → a → A∗
U . . .

since prefixing A∗ with a simply removes its ability to perform no a’s. However,
this sequence has no upper bound since any such bound could never refuse a but

264 Infinite traces

would be unable (as all the members of the sequence are) to perform the forceable
trace 〈a〉ω .

Whereas over N for infinite Σ the incompleteness of
 could be got round by
introducing the strong order ≤, no such remedy exists3 here since one can actually
prove (see [105]) that any order which makes CSP operators monotone and which
finds the same fixed points for them as
U is incomplete.

Nevertheless, it turns out that every CSP definable function does have a
least fixed point, and that fixed point is the correct (judged by congruence with
operational semantics) value for it. There are two known ways of proving this
result, the outlines of which are sketched below.

It is this difficulty in finding fixed points, added to the subtlety needed to
build and understand the model in the first place, that led us to look at the in-
finite traces/divergences model I before U . We observed there that a failures/
divergences/infinite traces representation for every process could be computed from
its values in I and F (see page 254). There is no guarantee, just because we have
pieced together a member of I and one of F that the result will be one of U , since
in general the failures and infinite sets produced need not satisfy I2. However, the
congruence theorems of the two models with the operational semantics do imply
it is in U , since the combined value is guaranteed by these to be the abstraction
into U of (the operational semantics of) the process in question. A little analysis
then shows it is a fixed point, and indeed the least fixed point, of the corresponding
operator over U .

This is a simple proof given the earlier congruence theorems, and indeed it
establishes the extremely important congruence theorem for U as a bonus. It is,
however, worth bearing in mind (i) that the results on which it rests, especially the
congruence for I, are highly non-trivial and (ii) that it has the curious property of
being a proof entirely stated in one domain (the denotational semantics in U) which
rests on detailed analysis of another one (the operational semantics).

There is an elegant proof, discovered by Geoff Barrett [5, 7], whose overall
difficulty is considerably less and which does not rely on analyzing the operational
model. The following is an outline of his work.

Say a process (F ,D , I) ∈ U is pre-deterministic if it behaves deterministically
whenever it does not diverge. In other words,

s ∈ traces(F) �D ∧ s 〈̂a〉 ∈ traces(F) ⇒ (s , {a}) ∈ F

The combination of axioms D1, D2, I1 and I2 ensures that each pre-deterministic

3The strong order can be defined on U : (F , D , I) ≤ (F ′, D ′, I ′) if and only if (F , D) ≤ (F ′, D ′)
in N and I ⊇ I ′. All CSP operators are monotone with respect to this order, but it fails to be

complete.

10.2 Adding failures 265

process is closed. In fact, the pre-deterministic processes P form a complete partial
order under
U , and have the property that every member of U is refined by one
of them. The maximal members of P are, of course, the deterministic processes D.

Now it is easy to show that if a monotonic function f over U has a ‘post-fixed’
point (one such that f (x)
U x) then it has a least fixed point. For we can use the
proof of Tarski’s theorem for complete lattices on page 490: the crucial point here
is that the set of post-fixed points (upon which the proof is based) has a greatest
lower bound as it is non-empty and every non-empty subset of U has one.

Barrett proved that every CSP definable function f has a pre-deterministic
post-fixed point by finding a monotonic function f ′ from P to itself such that
f (P)
U f ′(P) for all P ∈ P . This has the desired consequence because then
f ′ (being a monotonic function from a cpo to itself) has a fixed point μ f ′, and

f (μ f ′)
U f ′(μ f ′) = μ f ′

He built the f ′ by replacing each CSP operator by a refinement that preserves
determinism in a systematic way. Essentially, he modified the operators so that
each way described on page 227 for them to introduce nondeterminism was avoided.
For example, P 	′ Q = P and P �′ Q always behaves like P where an ambiguous
first event is chosen.

Exercise 10.2.1 Show that any process P ∈ N such that Traces(P) consists only of

finite traces can either deadlock or terminate. Hence prove from I2 that if s ∈ traces⊥(Q)

for Q ∈ U , then either there is u ∈ infinites(Q) with s < u, or Q can either deadlock or

terminate on some s ′ ≥ s.

Exercise 10.2.2 Recall the Rab recursion on page 259. Find a set of infinite traces I

that is consistent with Fab but such that (Fab , {}, I) is not a fixed point of the recursion.

Exercise 10.2.3 If u is any infinite trace in {a, b}ω, let Δ(u) be the subset of {a, b}∗
consisting of those sequences obtainable by a finite sequence of additions and deletions

from u: {s v̂ | s ∈ {a, b}∗ ∧ ∃ t ∈ {a, b}∗.u = t v̂}. Even though there are infinitely many

members of each Δ(u) and v ∈ Δ(s) ⇔ u ∈ Δ(v), there are infinitely4 many different

Δ(u) and each satisfies the identity Δ(u) = {〈a 〉̂ v , 〈b 〉̂ v | v ∈ Δ(u)}.
Show that, for any u, NΔ(u) (as defined on page 260) is a solution to the Rab

recursion.

Find a sequence In of subsets of {a, b}ω such that (Rab , {}, In) ∈ U for all n,

In ⊇ In+1, but
⋂
{In | n ∈ N} = {}. This leads to a �U increasing sequence of members

4There are, in fact, uncountably many since {a, b}ω is uncountable and each Δ(u) is countable.

Since any union of countable sets is countable, there must be uncountably many different such

sets.

266 Infinite traces

of U which differ only in their infinite traces, but which has no upper bound. This shows

that the strong order ≤ (defined in a footnote on page 264) is incomplete.

Exercise 10.2.4 Prove that the deterministic processes are precisely the �U maximal

elements of U . Hint: use the characterization of U as the nondeterministic compositions

of closed processes, and the corresponding result over N .

10.3 Using infinite traces

It is controversial whether an infinitely nondeterministic system could really be
(fully) implemented. Any implementation would have to include a mechanism which
guaranteed to select between an infinity of choices in a finite time. You cannot do
this by repeatedly performing a finitely nondeterministic activity such as tossing a
coin or throwing dice, since König’s lemma implies that any such procedure that
has infinitely many outcomes can go on for ever. For example, if you toss a coin
and count how many successive heads are seen before the first tail, there remains
the possibility that the series of heads will go on for ever. On the other hand, if
a system made a choice dependent on the value of some infinitely varying physical
quantity such as time ...

Whatever you believe about this, the ability to model infinite nondetermin-
ism has a number of practical applications. Many of these occur when we want
either to specify or to assume some property, which requires infinite nondetermin-
ism to express it, of a process even though the process may well only be finitely
nondeterministic. This can quite legitimately lead to us reasoning about infinitely
nondeterministic processes, even if you take a conservative position in the debate
above. This having been said, you should always bear in mind that there is no need
to use U when you are dealing with a finitely nondeterministic CSP term and want
to prove a property of it that can be expressed in one of the weaker models.

10.3.1 Infinitary specifications and fairness

Recall the specification of a buffer B from Section 5.1: divergences(B) = {} and

(i) s ∈ traces(B) ⇒ s ∈ {| left , right |}∗ ∧ s ↓ right ≤ s ↓ left

(ii) (s ,X) ∈ failures(B) ∧ s ↓ right = s ↓ left ⇒ X ∩ {| left |} = {}
(iii) (s ,X) ∈ failures(B) ∧ s ↓ right < s ↓ left ⇒ {| right |} ⊆ X

This allows a buffer to input infinitely without ever outputting. We might wish to
insist that our buffer is always finite, in the sense that it never accepts an infinite
sequence of inputs without outputting. To express this naturally requires an infinite
trace specification:

10.3 Using infinite traces 267

(iv) u ∈ infinites(B) ⇒ u \ {| left |} is infinite

Clearly each of the explicitly bounded buffer processes BUFFN
〈〉 meets this

specification, but the infinite buffer B∞
〈〉 does not. It remains true, of course, that

any satisfiable behavioural specification can be identified with the most nondeter-
ministic process satisfying it (its characteristic process, the nondeterministic choice
of all processes satisfying it). Naturally, BUFF 〈〉, the characteristic process of the
basic buffer specification, does not satisfy the stronger finite buffer specification.
It is interesting to construct an explicit CSP representation FinBUFF 〈〉 of this
process: see Exercise 10.3.6.

Even if you believe it is impossible actually to build an infinitely nondeter-
ministic system, it can still be sensible to include an infinitely nondeterministic
component in a model of an implementation. For there may be a component pro-
cess which is either outside your control or which you may wish to vary: in either
case it is appropriate to replace the component by a specification it is assumed to
meet, and this specification may well be infinitely nondeterministic.

A good example of this can be found in the Alternating Bit Protocol as
discussed in Sections 5.3 and 8.4. Recall that this protocol is designed to work
(i.e., transmit successive pieces of data correctly) provided that neither of the two
error-prone channels used either loses an infinite sequence of consecutive messages
or duplicates any message infinitely. In the first discussion (Section 5.3) we had to
choose some fixed bound on the number of consecutive errors, while in the second
we saw that the protocol could be proved correct for arbitrary loss/duplication
conditional on any refinement that removes the divergence. The channel processes
we really want (which are, indeed, refinements of those C (in, out) used in Section
8.4) can only be modelled accurately in models incorporating infinite traces.

What we want to assert about the channels is that they cannot output in-
finitely without inputting (for that would constitute infinite duplication), nor input
infinitely without outputting (which would be infinite loss). We call such a condition
a fairness assumption. A fair arbiter between two non-empty and usually disjoint
sets A and B of events is a process which repeatedly chooses between allowing A
and B , but which never chooses either side infinitely without the other. The most
general fair arbiter between A and B is

Fair (A,B) = LFair (A,B) 	 RFair(A,B), where

LFair (A,B) = 	{NLeft(n,A,B) | n ∈ {1, 2, . . .}}
RFair (A,B) = 	{NRight(n,A,B) | n ∈ {1, 2, . . .}}

NLeft(n,A,B) = RFair (A,B)<I n = 0>I ?x : A→ NLeft(n − 1,A,B)

NRight(n,A,B) = LFair (A,B)<I n = 0>I ?x : B → NRight(n − 1,A,B)

268 Infinite traces

since this repeatedly chooses one of A and B a non-zero finite number of times, and
then goes back and starts on the other. Fair (A,B) is divergence-free, has as its
finite traces (A ∪ B)∗ and for each trace has (when A ∩ B = {}) maximal refusals
Σ� �A and Σ� �B . What makes it special is its set of infinite traces, which can be
written, in a natural extension of existing notation,

A∗(B B∗ AA∗)ω

The asymmetry in this expression is immaterial, since switching all A’s and B ’s
leaves the set unchanged.

You can use processes like Fair(A,B) to add fairness into systems by mak-
ing them replace existing (unfair) choice mechanisms like those in C (in, out).
The definition of C∗(in, out) below simply replaces the nondeterministic choices
of C (in, out) by external choices, thus leaving them to be made by the parallel
composition with the arbiter.

C∗(in, out) = in?x → C ′
∗(in, out , x)

C ′
∗(in, out , x) = out !x → C ′

∗(in, out , x)
� in?y → C ′

∗(in, out , y)

Cfin(in, out) = C∗(in, out) ‖
Σ

LFair ({| in |}, {| out |})

Notice that we use the version of the arbiter that guarantees that its first choice
will go to the left, because C∗ needs to input first.

Cfin (in, out) has identical failures to C (in, out), but has just the restriction
on its infinite traces we want. Using it to model the channels in the alternating
bit protocol eliminates the divergences that occur when you use C (in, out), though
of course you need the power of U to express this formally. The mathematical
argument would just paraphrase the informal one for lack of divergence in Section
5.3. One could then either prove directly in U that the resulting system is equivalent
to COPY , or deduce it from the analysis done in Section 8.4 over F .

What we have managed to capture over U are the ‘real’ assumptions on the
communication medium that are required to make the protocol work. Of course,
having done this, any medium that refines the Cfin model is also guaranteed to
work.

Fairness is a difficult subject, both because it is inextricably linked with
unbounded nondeterminism and because interpretations of what it means for a
system to be ‘fair’ vary widely depending on just how one has chosen to model
systems and on authors’ opinions. See, for example, [16, 40, 77, 89]. Different
notions of fairness are couched in terms:

10.3 Using infinite traces 269

• of one or more specific internal decisions inside the program, as was the one
above;

• of the complete pattern of internal decisions, one example being ‘angelic
nondeterminism’: if, whatever decisions are made, it always remains possible
to attain some desirable state, then eventually that state must be reached;

• of the pattern of ‘enabled actions’ – if an action is enabled infinitely then it
will occur; or

• of ‘fair parallel’: ensuring that each side of a parallel composition is treated
fairly in terms of being allowed to make progress.

In CSP one has to be careful about how to define fairness because of the basic model
of communication: no action can occur unless the environment is willing to perform
it. Thus a process like μ p.(a → p) � (b → p) cannot enforce fairness between a
and b, even though each is always enabled, and nor does it make sense to say that
the equivalent process μ p.a → p ||| μ p.b → p necessarily behaves as a fair parallel
construct, since in either case the environment can insist on an unfair trace such as
〈a, a, a, . . .〉.

For clarity, and because it corresponds directly to perhaps the most widely
used notion of fairness in the literature, the only form we will consider directly is
the first. The most natural way to introduce this into CSP would seem to be a fair
nondeterministic choice operator 	F that behaves like 	 except that it guarantees
to make its choices fairly. There is no reason why you should not use this as a
shorthand, but it cannot be treated as a CSP operator like all others. One problem
is that, as a binary operator over CSP models, 	 and 	F are indistinguishable, and
yet in a recursive context they mean very different things.

Where there are multiple fair choices in a program, these have to be treated
as separately fair, in the sense that if any one of the choices is made infinitely
often it is made fairly, but there is no linking property between the ways in which
combinations of choice are made. This creates curious programs like

(μ p.(a → p) 	F (b → p)) ‖
{a,b}

(μ p.(a → p) 	F (b → p))

Obviously this can deadlock, for the two sides can immediately, or after any finite
trace, pick different actions. The interesting question is whether it must eventually
deadlock. On a global view of fairness (perhaps along the lines of angelic fairness)
one is tempted to say ‘yes’ (it being too much of a coincidence if they always pick
the same event), but actually the two sides of the parallel are allowed to make
exactly the same fair decisions (behaving, perhaps, like μ p.a → b → p) since there
is no link between the fairness conditions. Indeed it is quite likely that if we take

270 Infinite traces

a fair choice mechanism off the shelf it will, in fact, always follow the same pattern
such as strict alternation. Thus the answer under our model of fairness is ‘no’.

A very similar phenomenon creates a second problem in trying to view 	F

as an ordinary operator. Consider the ‘identity’

(P 	 Q); (R 	F S) = (P ; (R 	F S)) 	 (Q ; (R 	F S))

which should be provable by the left distributive law of ; . But the right-hand
side has two 	F operators while the left-hand side has one, and this makes a big
difference to how the two sides behave when put in a context such as the infinite
iteration P* that forces infinitely many choices to be made.

• If the ordinary nondeterministic choice on the left-hand side alternates be-
tween P and Q , there is nothing to stop the fair choice alternating between
R and S , so that R always follows P and S always follows Q .

• On the other hand, the different pattern of 	F ’s on the right-hand side means
that each of P and Q , if picked infinitely often, must be followed by a fair
choice between R and S . The alternating pattern 〈P ; R,Q ; S 〉ω is thus not
allowed.

Fair choices are thus much more context sensitive than other CSP constructs.
As said above, 	F should really be thought of as shorthand rather than as an
operator in its own right. To implement processes involving this ‘operator’ we
simply delegate the choices to separate fair arbiters for each occurrence of 	F ,
rather like the modelling of Cfin above. This can be done by transforming the CSP
definition of your process. Invent two new events for each occurrence of 	F (a.i
and b.i for the ith, say) and replace the ith P 	F Q by a.i → P � b.i → Q .
The new events should not be synchronized, hidden or renamed in the transformed
definition. Then take the final transformed process T and place it in parallel with
fair arbiters for each choice:

(T ‖
{|a,b|}

(Fair ({a.1}, {b.1}) ||| . . . ||| Fair ({a.n}, {b.n}))) \ {| a, b |}

This transformation is incorrect if there is any possibility of the original process
terminating (�), since the fair arbiter(s) prevent the transformed one terminating.
A more elaborate transformation is then required (see Exercise 10.3.3).

We might well want fair choices between more than two options. When
there are finitely many (the only case we consider here) it can accurately be done
by composing the binary version: executing a program with the construct

P1 	F (P2 	F . . . (Pn−1 	F Pn) . . .)

10.3 Using infinite traces 271

(N,M)

(1,1)

?(1,M)

(N,1)

Figure 10.1: A counter moving across an N ×M board.

implemented as above, allows just those behaviours in which all of the Pi are chosen
infinitely often if any is. Obviously one could define a more than two-way fair arbiter
and use it to implement a multi-way fair choice more directly. For example,

Fair (A,B) ‖
B

Fair (B ,C)

has (for A and C disjoint) exactly the behaviour we want of Fair (A,B ,C). Make
sure you understand why the asymmetry of this definition does not matter.

Example 10.3.1 (fair counter) Fairness is generally used to ensure progress of

some sort in a system. For example, imagine a counter sitting on a rectangular

board as in Figure 10.1. The counter c, when sitting at co-ordinates (i , j), can do

one of three things:

• It can choose not to move, and communicate the event procrastinate.c.

• It can try to move up (to (i , j +1)) by communicating with the target square.

• It can try to move right (to (i + 1, j)) by communicating with the target

square.

Let’s assume that after requesting permission to move to a square it receives either

an ok or ref signal, indicating that it can move or not, and that we ensure that if

it asks to leave the board (off the top or right edges) then it always gets the refusal

(ref) response.

272 Infinite traces

CTR(c, i , j) = procrastinate.c → CTR(c, i , j)
	 (req .i .j + 1.c →

(ref .i .j + 1.c → CTR(c, i , j)
� ok .i .j + 1.c → enter .i .j + 1.c →

leave.i .j .c → CTR(c, i , j + 1)))
	 (req .i + 1.j .c →

(ref .i + 1.j .c → CTR(c, i , j)
� ok .i + 1.j .c → enter .i + 1.j .c →

leave.i .j .c → CTR(c, i + 1, j)))

Clearly if no fairness is assumed in the way it makes these choices, then it

need never move, no matter where it starts, since it can always take the first option.

If the board is programmed in the obvious way so that a square, when empty, will

allow a counter to move onto it, etc., then if these choices are made fairly a system

consisting of a single counter on an N ×M board will eventually have the counter

reach the top right-hand corner (N ,M) no matter where it starts.

This naturally leads to the question of how one specifies the concept of ‘even-

tually’ in CSP. To specify that a system P must eventually (unless deadlocked by

the environment) communicate a specific event a, all you have to specify is

a → div
 P \ (Σ �{a})

over either N or U as appropriate to the constructs used. For this says that the

process P can neither diverge nor engage in an infinite sequence of non-a actions

before communicating a, and neither can it deadlock or terminate before doing so.

This has much in common with the timing consistency check described on page 399.

One can obviously compose variations on this theme.

In this case you can either show that eventually our counter seeks to move to

(N +1,M) or (N ,M +1) (since it has to be on (N ,M) to do so), or, better, to look

for the event the counter communicates when entering (N ,M). In other examples

you might well have to add a ‘success’ event explicitly into the program, and look

for that.

It is interesting to consider the case where there are two or more tokens on

the board. At first sight you would probably expect that the fair counter definition

will inevitably result in the counters becoming huddled together at and around

(N ,M). But this is not so, since no fairness is imposed regarding the speed of

different counters. If there are, initially, counters at (1,M) and (2,M) then there is

nothing to say that the left-hand one cannot perform infinitely many actions while

the right-hand one does nothing. This, of course, would lead to no counter moving

since the left-hand one is blocked by the top edge and the right-hand one. What

is required is essentially the fair parallel composition discussed briefly earlier. This

10.3 Using infinite traces 273

only makes sense if we remove from the environment the ability to choose which

counter communicates next. The appropriate way to do this is to place the system

in parallel with a fair arbiter whose job it is to choose which counter acts. If

choices(c) = {procrastinate.c, req.i .j .c | i , j ∈ N}

then for counters c1 and c2, you can use the arbiter Fair(choices(c1), choices(c2)).
(End of example)

Exercise 10.3.1 Complete the programming of the system in the example above by

defining a Square(i , j) process, any others you need, and putting the complete network

together.

Exercise 10.3.2 If instead of moving just up and right, the counter chooses fairly

between trying to move up, down, left and right, need it ever leave the board?

Exercise 10.3.3 The implementation of �F given in the text does not work for po-

tentially terminating processes. Put this right as follows:

(a) Revise the definition of Fair(A,B) to produce a process TFair(A,B , tk) (for tk ∈
Σ � (A ∪ B)) whose behaviour is identical except that it is always willing to com-

municate tk (as an alternative to its current choice of A or B), upon which it

terminates.

(b) In transforming a program with �F ’s in, as on page 270, sequentially compose the

previous result with tk → SKIP for some new event tk .

(c) Put together the resulting process with TFair processes, synchronizing appropri-

ately, and explain why the result behaves as you would wish.

Exercise 10.3.4 The process Cfin(in,out) can both lose and duplicate messages.

Define (in CSP) the most general process Efin(in,out) that acts like a one-place buffer

except that it can lose any message as long as it does not lose an infinite consecutive

sequence of them (i.e., it behaves like Cfin(in,out) except that it never duplicates). What

refinement relation, if any, holds between the Cfin(in, out) and Efin(in, out)? Hint: define

the process using �F and then use the transformation implementing this.

Exercise 10.3.5 The process

SemiFair(A,B) = RUNA ||| Fair(A,B)

always allows any event in A and need never allow B , but specifically does not permit

an infinite trace unless it contains infinitely many events from A. Compute its sets of

failures and infinite traces and find a direct definition of this process in the style of that

of Fair(A,B) on page 267.

Construct the process which, for three disjoint sets A, B and C , may at any time

select between them, and which does not allow infinitely many of either A or B without

274 Infinite traces

the other, and which does not allow infinitely many C without infinitely many each of A

and B .

Exercise 10.3.6 Use a fair arbiter (using the �F to introduce it, if you wish) to

construct the most general finite buffer FinBUFF〈〉 discussed on page 267.

10.3.2 Fixed-point induction over U

As we saw on page 258, it is not possible to use restriction functions to generate
complete metrics over models incorporating infinite traces, and indeed constructive
functions often have multiple fixed points. These facts are as true over U as over
I. This is a great pity since the UFP rule and fixed-point induction (whose proofs
in Section 9.2 depend on constructiveness and the uniqueness of fixed points) are
very important tools for establishing facts about recursively defined processes.

It is possible to establish weak versions of fixed-point induction and the
‘unique’ fixed point rule over U and I. To do this we have to define what a con-
structive function is via a family of restriction functions: over U these are defined
(F ,D , I) ↓ n = (F ,D) ↓ n where the restriction on the right-hand side is that
defined over N , with a similar definition over I. Though these do not generate
a metric (there are pairs of distinct processes they cannot separate), we can still
define ‘constructive’ and ‘non-destructive’ functions exactly as before, and exactly
the same collections of the standard operators are respectively one or the other (see,
for example, Lemma 3).

While a constructive function over U may not have a unique fixed point, it is
easy to show that all fixed points have identical projections into N . This is because
you can inductively prove that if P and Q are two fixed points then P ↓ n = Q ↓ n
for all n. This argument leads to the following result.

Lemma 1 Suppose F : U → U is constructive, monotonic and has a least fixed

point μF , and P ∈ N (a closed member of U) is such that P
U F (P). Then

P
U μF

Proof By induction on n it is easy to prove that

P
U Fn(P) and Fn(P) ↓ n = (μF) ↓ n

Suppose b is a finite-length behaviour of μF (i.e., a failure or divergence). Choosing
n to be any number greater than its length we thus have that b is a behaviour of
Fn(P) and hence of P . Hence

failures⊥(μF) ⊆ failures⊥(P) (+)

divergences(μF) ⊆ divergences(P)

10.4 Notes 275

We thus have

infinites(μ F) ⊆ traces⊥(μ F) (1)
⊆ traces⊥(P) (2)
= Traces(P) (3)

Here, (1) is a consequence of axiom I1, (2) is by (+), and (3) is because of our
assumption that P ∈ N . This implies that

infinites(μ F) ⊆ infinites(P)

completing the proof that P
U μF .

This result means that the rule of fixed-point induction (Sections 5.1 and 9.2)
is valid over U provided the property you are proving is finitely nondeterministic
and the function is constructive.

Of course, both the above lemma and the conclusion regarding fixed-point
induction extend easily to mutual recursions (i.e., functions in UΛ → UΛ). It also
leads to the following weak analogue of the UFP rule since under the assumptions
of the following rule we have P
U μF by the lemma, but μF is the least fixed
point.

Unique closed fixed point rule Suppose F : UΛ → UΛ is a constructive, CSP

definable function, and that P ∈ (N)Λ is such that F (P) = P . Then P = μF .

Thus, if a finitely nondeterministic process satisfies a constructive recursion,
it is always the value of the recursion. There are, of course, recursions that do not
have a closed solution like this, an example is μ q.(a → q) ‖

{a}
A∗ which we studied

earlier.

10.4 Notes

The role of infinite traces in modelling unboundedly nondeterministic constructs
such as fairness was well understood before CSP was invented. They were not
incorporated into the semantic models for some years, however, because of technical
difficulties they introduce such as incompleteness and discontinuity.

U was introduced in [105], which also is the main reference for the basic
properties of this model. It proves the existence of fixed points of recursions via
operational congruence. Barrett’s alternative proof can be found in [5, 7], and is
analyzed further in [84]. Some finer properties of the model can be found in [6, 12].
Our understanding of the axioms of U (especially I2) owes much to the work of
Stephen Blamey.

276 Infinite traces

2005: The author has now shown [114] that it is possible to build an infinite
traces which is not divergence-strict. A vestige of this strictness remains in that
infinite traces which are the limits of divergent finite traces are always included.
Otherwise it only includes real traces, failures, divergences and infinite traces. The
penalty for this is an elaborate fixed-point theory.

Chapter 11

Algebraic semantics

11.1 Introduction

Throughout the introductory chapters we used algebraic laws to help explain the
meanings of the various operators of CSP. Laws of this type have historically played
an important role in the field of process algebra (the very name of which suggests
this).

An algebraic semantics for a programming language is one where the notion
of process equivalence is derived from a set of laws. Some authors proposing pro-
cess algebras have regarded algebraic semantics as the most basic means of defining
process equality, in that they propose a given set of laws and set about investi-
gating what equivalence they produce. The theory most closely associated with
this approach is ACP (see, for example, [9, 10]). This gives a remarkable degree of
freedom, since essentially any set of laws will create an equivalence on the set of
process terms. There is no constraint on one’s choices that is nearly as sharp as the
requirement that a denotational model induce a congruence.

Simply quoting a set of laws does bring the dangers of not identifying pro-
cesses that you had intended should be equal, or, more worryingly, identifying far too
many. See Exercises 11.1.1, 11.4.5 and 11.5.3 for examples of the latter. Therefore
the equivalence induced by a proposed set of laws must be thoroughly investigated
to make sure it has the intended effect.

Since we already have a well-established concept of equivalence between CSP
processes, our approach will be to attempt to characterize that. In other words, we
will attempt to capture the equivalences induced by the various denotational models
for CSP described in Chapter 8. Obviously all laws used must be theorems of the
equivalence under consideration: if the semantics we are attempting to duplicate is

278 Algebraic semantics

written S[[·]], this just involves proving a series of simple lemmas such as

S[[P � Q]] = S[[Q � P]]

S[[SKIP ; P]] = S[[P]]

S[[P ||| (Q ||| R)]] = S[[(P ||| Q) ||| R]]

(in each case for all processes P , Q and R). It is usually not hard to find a large
number of true laws with respect to a sensible notion of equivalence. Provided
all your laws satisfy this basic ‘sanity’ stipulation, and all rules which you use in
conjunction with them are valid also, it is plain that they can never prove a pair of
inequivalent processes equal. In the usual logical sense of the word, such a theory
is sound.

The real challenge is in finding, and being able to show you have found,
enough laws to be able to prove any pair of equivalent processes equal; in other
words, creating a complete algebraic theory. This chapter shows how you can do
this. We will deal only with the semantics of finitely nondeterministic CSP with
Σ finite. We will also, for now, deal only with the fragment of the CSP language
without SKIP or sequential composition since these require special cases that would
unnecessarily complicate an introductory view of the way algebraic methods work.
Most attention is given to the equivalence induced by N , since that is the main
denotational model for finitely nondeterministic CSP.

All the laws given names (e.g., ‘〈hide-dist〉 (3.1)’) in earlier chapters are true
under all the equivalences generated by the models described in Chapters 8 and 10.
Since each of our models equates some pairs of processes that are discriminated in
at least one of the others, a set of laws true in all three models cannot be sufficient
to capture any one of the model-based equivalences completely, but, as we will see,
they require very few additions.

Examples of such pairs of processes are

P = div

P ′ = div ||| a → STOP (equivalent to P in N but not in T)

Q = STOP

Q ′ = STOP 	 div (equivalent to Q in T and F but not in N)

Our existing laws thus cannot prove the equivalences

P =N P ′ and Q =T Q ′

since any such proofs would contradict the inequivalences

Q =N Q ′ and P =T P ′

11.2 Operational semantics via algebra 279

Exercise 11.1.1 A certain text ([53]1) proposes the following laws for CSP (amongst

many others)

(1) P ‖ ⊥ = ⊥
(2) P ‖ STOP = STOP

(3) P ‖ Q = Q ‖ P

(4) ⊥ � Q = ⊥
(5) STOP � Q = Q

Which of these are true, and which false, over N on the assumption that ⊥ is identified

with div? Show that these laws alone (and hence any superset) are sufficient to prove

that P = Q for all processes P and Q .

Exercise 11.1.2 Prove that the following laws are all valid in the semantics of CSP

over N :

(a) 〈; -assoc〉 (6.3), (b) 〈hide-step〉 (3.6), (c) 〈hide-combine〉 (3.3).

11.2 Operational semantics via algebra

An operational semantics does not have to follow the pattern set out in Chapter
7: all we require is a formally-based method of implementing a language. You can
do this via systematic algebraic transformations: a reduction strategy very much
like those used for functional programming. A way of implementing CSP in this
fashion is to calculate the selections of initial actions a process can communicate by
transformation to a process of the form2

	N

i=1
?x : Ai → Pi

where, of course, the Pi are terms that can depend on the identifier x . By anal-
ogy with functional programming, an appropriate name for this is head normal
form (hnf)3. To execute a process, you thus transform it into this form and make

1An amazing proportion of the ‘laws’ stated in [53] are false, and it is possible to find many

distinct combinations which prove all processes equal. Three disjoint such sets can be found in

this exercise and Exercises 11.4.5 and 11.5.3 in this chapter. Some of the laws given in that book

make even less sense than simply being false: for example ‘P ||| Q ∧ Q ||| R ⇒ P ||| R’ which is

trivially ill-typed since processes are not truth values.

2Here, 	N

i=1
Qi is an abbreviation for Q1 � (Q2 � . . . (QN−1 � QN) . . .), though in what

follows we will not go explicitly through the transformations required to turn more arbitrarily

constructed nondeterministic compositions into this precise, right-associated, form. This can, of

course, be done with the laws 〈�-assoc〉 (1.6), 〈�-sym〉 (1.4) and 〈�-idem〉 (1.2) in such a way as

to guarantee that all the Qi are different.
3The formal definition of hnf will appear on page 284 and be a little more general than this.

280 Algebraic semantics

an arbitrary selection from the nondeterministic choice of initial selections Ai of
actions which are thereby displayed. If the environment picks one of these, it is
communicated and we can repeat the procedure on the result process, and so on.

There are four types of laws required to do this:

• the distributive laws, for removing nondeterministic choices to the outside;

• the step laws, which calculate the first-step actions of constructs like P ⊕Q
in terms of those of P and Q ;

• the unwinding law of recursion; and

• manipulations of the expressions within processes.

Just as in earlier chapters we have avoided going into details about the syntax
and semantic details of sub-process expressions, here we will generally assume that
one of these can always be replaced by an equivalent expression without comment.
The only law as such we will need is one to change the names of input identifiers:

?x : A→ P = ?y : A→ P [y/x]
if y is not free in P

〈input α-cnv〉 (11.1)

While this is frequently needed to perform the transformations below, in describing
them we will simply assume it has been used to unify the names of inputs where
necessary without further comment.

The strategy for reducing an arbitrary process P into hnf is quite simple,
and is as follows:

• If P has the form ?x : A→ P ′, it is already in the required form so we need
do nothing.

• If P has the form P ′ 	 P ′′, then reduce each of P ′ and P ′′. The resulting
process (P ′

1 	 P ′′
1 , say) is in the required form.

• If P is STOP , then apply the law 〈STOP -step〉 (1.15).

• If P has the form P ′ ⊕ P ′′, where ⊕ is any other standard binary operator
(i.e., �, ‖

X
, ||| or X ‖Y), then first reduce each of P ′ and P ′′, to P† and P‡,

say. Next, use the left and right distributive laws of ⊕ (in each case the right
distributive law is proved using the left distributive law and the symmetry
law) to move all the top-level nondeterminism from P† and P‡ to the outside.
The result then has the form

	N

i=1
(?x : Ai → P†

i)⊕ (?x : Bi → P‡
i)

11.2 Operational semantics via algebra 281

In each case the respective step law (〈�-step〉 (1.14), 〈‖
X

-step〉 (2.10), 〈|||-step〉
(2.6) or 〈X ‖Y -step〉 (2.2)) transforms this into the required form.

• If P has the form P ′[[R]], then very much the same procedure (using 〈[[R]]-dist〉
(3.13) and 〈[[R]]-step〉 (3.15)) is followed.

• If P has the form P ′ \ X , then applying the same procedure (using 〈hide-dist〉
(3.1) and 〈hide-step〉 (3.6)) will result in a process of the form	N

i=1
Qi where

the Qi either have the form ?x : Ai → (Q ′
i \ X), which is what we want, or

(?x : Ai → (Q ′
i \ X)) �	{P ′′

i,j \ X | j ∈ {1, . . . ,Mi}}

which is not. The second case occurs, evidently, when some of the initial
actions of P ′ are hidden and so do not create initial visible actions of P (in
the operational semantics of Chapter 7 they would have become τ ’s).
The strategy in the second case is to reduce the processes P ′′

i,j \ X , and then
use the definition of P � Q = (P � Q) 	 Q and 〈�-step〉 (1.14) to organize
the result into the correct shape. (*)

• If P is recursively defined, simply apply 〈μ-unwind〉 (1.23) and reduce the
result. (**)

There is a significant problem with this strategy, namely it need not termi-
nate. The problem is that the clauses for reducing P \ X and μ p.P can both result
in infinite regression: the reduction-based operational semantics diverges rather
than produces a term of the required form. In fact, this is just as well, because
of course there are CSP terms in the language we are considering that are not
equivalent in N to any process in head normal form: the ones that can diverge
immediately.

The reduction strategy must therefore certainly fail on any term mapped by
the semantics to ⊥N . This can easily be demonstrated on divergent terms such as

(μ p.a → p) \ {a} μ p.p μ p.STOP 	 p

The converse (i.e., the strategy succeeds on any other term) is also true, because it
is easy to show that any infinite regression contains an infinite number of uses of (*)
and (**), the application of either of which generates a τ in the original operational
semantics.

Example 11.2.1 Consider the process (COPY ||| COPY) \ {| left |}. To trans-

form this to hnf we first expand the two recursions: this immediately brings each

of them into the hnf

left?x → right !x → COPY

282 Algebraic semantics

The law 〈|||-step〉 (2.6) then brings the interleaving to the hnf

left?x → ((right !x → COPY) |||
(left?x → right !x → COPY))

	 left?x → ((left?x → right !x → COPY) |||
(right !x → COPY))

which (thanks to 〈|||-sym〉 (2.7) and 〈	-idem〉 (1.2) and re-folding the recursion)

can be simplified to the hnf

left?x → ((right !x → COPY) ||| COPY)

(Such simplifications are not a necessary part of the procedure, but help.)

We then apply 〈hide-step〉 to this to transform the complete process (incor-

porating the external hiding) to

	{((right !x → COPY) ||| COPY) \ {| left |} | x ∈ T}

This, of course, is not in hnf since the hiding takes away the visible guard. We

therefore have to re-apply our strategy to the processes

((right !x → COPY) ||| COPY) \ {| left |} (§)

which yields

right !x → (COPY ||| COPY)
� left?y → ((right !x → COPY) ||| (right !y → COPY))

for the process inside the hiding. (Bear in mind that in practice it is a lot clearer

to use an appropriate mixture of prefix choices such as left?y and external choices

of these to represent a given initial set of actions of a given branch of an hnf, rather

than using the pure prefix-choice form used in the definition, though the latter could

easily be recovered using 〈�-step〉 (1.14).) Thus (via 〈hide-step〉 again) the process

(§) becomes

right !x → (COPY ||| COPY) \ {| left |}
� 	{((right !x → COPY) ||| (right !y → COPY)) \ {| left |} | y ∈ T}

This is still not hnf, since we have once again lost some of the guards to the

hiding. We now have to re-apply our strategy once more to

((right !x → COPY) ||| (right !y → COPY)) \ {| left |}

11.3 The laws of ⊥N 283

which fortunately does now yield an hnf:

right !x → (COPY ||| (right !y → COPY)) \ {| left |}
� right !y → ((right !x → COPY) ||| COPY) \ {| left |}

(It would really be purer to separate the cases of x = y and x = y as would be done

by 〈�-dist〉, but it would be even more complex!) We can now collect together an

hnf for (§): after a little manipulation it is

	{right !x → (COPY ||| COPY) \ {| left |}
	 (COPY ||| right !y → COPY)) \ {| left |}

� right !y → (right !x → COPY ||| COPY)) \ {| left |}
| y ∈ T}

and the hnf for the original process is then just the nondeterministic choice over

this as x varies.

Obviously if we had hidden {| left |} in a buffer with no initial bound on how

many inputs it can take, such as BUFF 〈〉, then the strategy would not terminate.

(End of example)

Exercise 11.2.1 Reduce the following processes to hnf:

(a) COPY \ {| right |}
(b) ((a → Pa) � (b → Pb)) ||| ((b → Qb) � (c → Qc))

(c) COPY \ {left .0} where the type T of the channels is {0, 1}

11.3 The laws of ⊥N

Our attempts to reduce divergent processes to hnf failed in the previous section
because the divergence translated itself into non-termination of the reduction algo-
rithm. It is a good idea to include an explicit representation of a divergent process
in the language we reason about algebraically: let div represent this as it did in
Section 3.1. We can then see how a term that is equivalent to a diverging process
behaves algebraically.

As one might expect from the discussions in Chapter 8, it is in the handling of
div that N differs from the models without an explicit representation of divergence
(F and T). The laws for div (equalling ⊥N) over N are thus often not valid
over these other models: with the exception of prefixing and the right-hand side of
sequencing, all operators are strict (in the sense defined on page 490). Notice that
the names of these laws reflect their selective validity. They are called zero laws
because of their similarity to the arithmetic equivalence 0× x = 0.

div 	 P = div 〈	-zero⇓〉 (11.2)

284 Algebraic semantics

div � P = div 〈�-zeroN 〉 (11.3)

div ‖
X

P = div 〈‖
X

-zeroN 〉 (11.4)

div X ‖Y P = div 〈X ‖Y -zeroN 〉 (11.5)

div ||| P = div 〈|||-zeroN 〉 (11.6)

div \ X = div 〈hide-zero〉 (11.7)

div[[R]] = div 〈[[R]]-zero〉 (11.8)

div; P = div 〈; -zero-l〉 (11.9)

These laws mean it makes sense to add the term div as an alternative head
normal form: we can now formally define a process to be in hnf if

• it is div, or

• it has the form ?x : A→ P , or

• it is 	N

i=1
Qi for processes Qi in hnf.

The laws mean that if either div appears explicitly in a program or you
can recognize and replace4 some divergent term by it, then you can extend the
reduction strategy to deal with this. Essentially, if div is encountered at any level
in reducing a process P to calculate its initial behaviour, then these laws (together
with symmetry laws to derive the right-zero laws for binary operators other than ;)
will reduce the process itself to div.

The definition of hnf above makes it optional whether to reduce a process in
which div appears as a choice, such as

(?x : A→ P) 	 div

to div using 〈	-zero⇓〉. For simplicity, let us assume that we always do make this
reduction.

4If the replacement is going to form part of our algebraic semantics, then it is clear that

the means of performing it would have to be formalized, justified, and incorporated within the

semantics.

11.4 Normalizing 285

The possible outcomes of the reduction strategy are then (i) the original
type of hnf, (ii) the term div and (iii) non-termination of the strategy. There is
no complete algorithm for telling if a given CSP term diverges5 or not, and so no
effective procedure which will tell us which terms our strategy will fail to terminate
on.

There is a simple and powerful6 algebraically-based method for detecting
divergence, namely:

LoopN If, during an attempt to reduce a process P to head normal form the (syn-
tactic) process P is encountered other than at the root of the reduction,
then P is divergent and may be replaced by div.

This is not, of course, a law in the conventional sense of the word, rather a
rule. To implement this rule it is necessary to keep a record of the tree structure
that results from the attempt to reduce a process, and look for loops (nodes identical
to predecessors). The notation LoopN indicates that this is a valid rule over N ,
but not over T or F .

11.4 Normalizing

It is our objective to be able to prove any pair of equivalent processes equal using
an algebraic theory. An obvious approach to this is to identify a normal form: a
highly restricted syntax for processes meeting the following requirements.

• A pair of normal form programs are only semantically equal if they are either
syntactically identical, or perhaps differ in a well-defined and trivial way such
as the name of a bound variable or the order of terms composed under a
symmetric and associative operator.

• Every program is equivalent to one in normal form.

• This equivalence can be demonstrated by the algebraic theory.

Let us restrict ourselves, for the time being, to processes that are finitely
transformable to hnf, as are all successors reached when executing their algebraic
operational semantics. (In other words, processes in which all divergences are either
syntactically explicit, div, or detectable using a rule such as LoopN .)

5This would solve the halting problem.
6Inevitably, given the previous discussion, it is not complete in the sense of detecting all di-

vergence. It is, however, complete provided the process is finite state. It then corresponds to a

depth-first search for loops in the graph of nodes reachable from the chosen root.

286 Algebraic semantics

Our approach will be to refine the concept of head normal form into a full
normal form, and to show how a program in head normal form can be transformed
using the laws of � and 	 into this restricted form.

Given that Σ is finite, the first-step behaviour P ↓ 1 of any process P is
completely characterized by the following information:

• Does P diverge immediately? If not,

• what is P ’s set of initial actions initials(P), and

• what are P ’s maximal refusals?

The divergent case of head normal form evidently captures the first of these precisely,
but the non-divergent one is too loose in that there are typically many different sets
{A1, . . . ,AN} of initial actions that would give rise, in

	N

i=1
x : Ai → Pi

to exactly the same sets of initial actions and maximal refusals, bearing in mind
that the complements of the Ai are the refusals. For example,

{{a, b, c}, {a}, {b}}
{{b, c}, {a}, {b}}
{{a, b, c}, {a, b}, {a}, {b}}
{{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}}

all give the same result, and are by no means the only sets that give this particular
one. We need to decide on a unique representation of any given collection of accep-
tance sets7 Ai and provide a way of transforming any non-div head normal form
to this. There are various sensible choices one could make, but the one we opt for
here is to specify that the set {A1, . . . ,AN }

7The concept of an acceptance set is obviously very closely related to that of a refusal set. If we

define an acceptance set just to be the complement of a refusal set (in Σ�) then clearly we could

have replaced all uses of refusal sets in our models with them, subject to systematic changes in

definitions. This would, however, imply that acceptance sets were superset-closed (as an analogy

to axiom F2), implying there were members of ‘acceptance sets’ that a process could never accept.

Thus an acceptance is arguably better defined to be a set of events which is (a) the complement of

some refusal and (b) contained in initials(P). This modification means that the translation from

refusal sets to acceptance sets is not so direct and means that model, operator, etc. definitions

work better with failures rather than with their acceptance-set analogues. So it seems that in

order to create acceptance-based analogues of the models N and F one either has to compromise

on naturalness or on ease of manipulation. Perhaps the most natural acceptance-set model is that

proposed in [87], which has no superset closure condition at all: modulo divergence, an acceptance

set is the set of all events offered by some stable state. This gives a subtly different (and less

abstract) congruence which fails the law 〈�-�-dist〉 (1.13).

11.4 Normalizing 287

• has the property that A1 ⊃ Aj for all j > 1 (i.e., A1 is the union of all Ai

and represents initials(P)), and

• if i , j > 1 are distinct then Ai ⊆ Aj (i.e., all these Ai represent minimal
acceptances, and hence their complements, the maximal refusals).

Note that in the case where initials(P) is a (necessarily the only) minimal accep-
tance, N = 1 and A1 plays a double role.

A simple procedure, which is described below, transforms an arbitrary non-
div head normal form to this format. It rests almost entirely on the laws of �, 	,
prefixing and conditionals.

You can ensure that each set Ai only appears once in the result by applying
the law 〈input-dist〉 (1.11) repeatedly till all pairs of identical ones are eliminated.

If there is only one Ai remaining after this, there is nothing further to do. If
there are more than one, we have to ensure the collection contains the union and
that all the rest are minimal. Observe that, for any processes P and Q ,

P 	 Q = (P 	 Q) � (P 	 Q)
by 〈�-idem〉 (1.1)

= (P � Q) 	 P 	 Q
by 〈�-dist〉 (1.7), 〈	-idem〉 (1.2), etc.

This argument can (see Exercise 11.4.1) be extended, by induction, to show that
for any N and processes Qi ,

	N

i=1
Qi = (�

N

i=1
Qi) 	 (N

i=1
Qi)

In the case where Qi =?x : Ai → Pi , the extra process Q1 � . . . � QN can be
transformed using 〈�-step〉 (1.14) to the form

?x : A† → R

where A† =
⋃N

i=1 Ai and such that, for any a ∈ Aj , we have

Pj [a/x] 	 R[a/x] = R[a/x]

Any a ∈ A† may appear in several different Ai , and the processes Pi [a/x],
which are the possible results of performing it, may all be different from each other
and R[a/x]. What the above does ensure is that R[a/x] is the most nondeterministic

288 Algebraic semantics

of these choices. Consider the transformation:

(?x : A† → R)
	 (?x : Ai → Pi)

=
(?x : A† �Ai → R �?x : Ai → R)
	 (?x : Ai → Pi)

by 〈�-step〉 and 〈<I ·>I -idem〉 (1.17)

= (?x : A† �Ai → R 	 ?x : Ai → Pi)
� (?x : Ai → R 	 ?x : Ai → Pi)
by 〈	-�-dist〉 (1.13)

= (?x : A† �Ai → R 	 ?x : Ai → Pi)
� (?x : Ai → (R 	 Pi))
by 〈input-dist〉 (1.11)

= (?x : A† �Ai → R 	 ?x : Ai → Pi)
� (?x : Ai → R)
by what we established about R above

= (?x : A† �Ai → R � ?x : Ai → R)
	 (?x : Ai → Pi � ?x : Ai → R)
by 〈�-dist〉

= (?x : A† → R) 	 (?x : Ai → Pi 	 R)
by 〈�-step〉, etc.

= (?x : A† → R) 	 (?x : Ai → R)
by what we established about R above

What this does is to show we can replace all the old result processes Pi by R in the
process we are transforming, making all the possible results of performing a given a
identical. This is both a vital part of the normalization process itself and is helpful
for the next and final part of transforming it to our target shape of hnf, which is the
removal of any non-minimal Ai (other than A†). This makes use of the following
identity, which is essentially that proved in the last part of Exercise 3.1.5.

(P � Q � S) 	 P = (P � Q � S) 	 (P � Q) 	 P

since we can then, for any Ai ⊂ Aj , set

P = ?x : Ai → R
Q = ?x : Aj �Ai → R
S = ?x : A† �Aj → R

and apply the identity from right to left.

11.4 Normalizing 289

What we have managed to do is transform our process P into a one-step
normal form: a hnf which is either div or satisfies the restrictions on its acceptance-
set pattern set out above and furthermore has a unique successor process for each
initial action. This gives a complete characterization of the first-step behaviour
of the original process P , and has the property that (provided P does not equal
div) for each a ∈ initials(P) we have P/〈a〉 = R[a/x]. If P ′ were another process
equivalent to P in N then it would reduce to a one-step normal form with exactly
the same shape (pattern of Ai , except that the Ai for i > 1 may be re-ordered)
and such that its successor process R′ is equivalent to R in N (in the sense that
R[a/x] = R′[a/x] for all a in the initials set A†).

This notion of a one-step normal form extends naturally to a full normal
form: the definition is exactly the same except that, in addition, we insist that each
of the result processes R[a/x] is also in normal form. (It is in doing these lower-
level normalizations of the leaf processes of a one-step normal form that we need the
assumption that all successor processes can be reduced to hnf.) The argument in
the previous paragraph can easily be extended by induction to show that any pair
of normal form programs which are equivalent in N have equivalent normal form
structures and can trivially be inter-transformed by laws. The only things that can
differ are things like the order of Ai ’s and the names of input variables.

It would seem that we have attained our goal of completely capturing the
denotational equivalence via algebra. Essentially we have, but not as simply as
it appears on the surface. The problem is how to handle processes that can go
on communicating for ever and which therefore fail to have a finite-depth normal
form. It is evident that we can attempt fully to normalize a process P by first
transforming it to one-step normal form and then normalizing each of the result
processes R[a/x], but this transformation will only terminate and produce a finite-
depth normal form program if the set traces⊥(P) � divergences(P) is finite (which,
under our assumptions, is equivalent to there being a bound on the length of its
members). There are several ways around this difficulty, but all mean we have to
abandon any hope that all pairs of equivalent CSP processes are inter-transformable
by a finite sequence of law applications.

The first approach we can take is to incorporate into our theory the fact that
processes P and Q are equivalent in N if, and only if, P ↓ n = Q ↓ n for all n ∈ N,
where the restriction functions ↓ n are as defined on page 204. We can express
P ↓ n directly in CSP8, it is P ‖

Σ
Rest(n) where

Rest(0) = div
Rest(n) = ?x : Σ → Rest(n − 1) for n > 0

8The expression given here is dependent on our assumption that P never terminates. For how

to extend this idea to processes that can communicate �, see Exercise 11.5.4.

290 Algebraic semantics

Since each P ↓ n always has a finite normal form, the rule

EquivN If P and Q are any processes in finitely nondeterministic CSP, defined
without SKIP or sequential composition, then they are equivalent in N
if and only if, for all n ∈ N,

P ‖
Σ

Rest(n) = Q ‖
Σ

Rest(n)

leads directly to a decision procedure for equivalence which involves converting
infinitely many processes into finite normal form and seeing if you get the same
results for each pair. It is complete on processes satisfying our assumptions about
reducibility to hnf.

Another approach is to transform the program into a potentially infinite
normal form tree. It is perhaps easiest to understand this in terms of deriving,
from a process P , a recursive definition of a vector of processes which turns out
to be indexed by T , the set of members of traces⊥(P) other than non-minimal
divergences. If s is such a trace, we can compute Rs , the result process (equivalent
to P/s) derived from applying the one-step normal form transformation down s as
follows.

R〈〉 = P
Rs 〈̂a〉 = Q [a/x], where applying the one-step normal form trans-

formation to Rs yields something of the form

	N

i=1
?x : Ai → Q

Along with this derivation you have produced an expression for each Rs in terms
of the Rs 〈̂a〉: the one-step normal form of Rs . If you now replace the processes
Rs by the corresponding components of a vector N of process variables, the result
is a constructive one-step tail recursion whose unique fixed point in NT is clearly
〈Rs | s ∈ T 〉 = 〈P/s | s ∈ T 〉. If P ′ is a process equivalent to P then the recursion
produced will be exactly the same, since the one-step normal form of P ′/s has the
same shape as that of P/s for all s . So we have managed to transform P and P ′ to
the same process definition, albeit using in many cases an infinite number of steps.

When deriving this ‘tree’ expression for the normal form, it may very well
be the case that the number of distinct values of P/s visited is actually finite. This
is always so if P is finite state and even sometimes when it is not, for example

μ p.a → (p ||| p) (equivalent to μ p.a → p)

If you can recognize these equivalences (by transformation, for example), then you
can produce a more compact representation of the normal form tree as a finite graph

11.4 Normalizing 291

or as a recursion with a finite indexing set. Thus you can represent the process

P0 = μ p.(a → a → p) 	 (a → STOP)

as the two-state recursion

N〈〉 = a → N〈a〉

N〈a〉 = a → N〈〉
	 STOP

rather than having a component for each member of {a}∗.
The problem with this is that it re-introduces an element of flexibility into

the way normal form processes are structured: flexibility is just what you do not
want of a normal form. The main source of flexibility is the fact that one may or
may not spot an equivalence between a pair of processes. Consider, for example,
the process

P1 = P0 ‖
{a,b}

(μ p.a → a → ((a → p) � (b → STOP)))

This is, in fact, equivalent to P0, but the finite-state normal form you would be
most likely to derive for it is

N ′
〈〉 = a → N ′

〈a〉

N ′
〈a〉 = a → N ′

〈a,a〉
	 STOP

N ′
〈a,a〉 = a → N ′

〈a,a,a〉

N ′
〈a,a,a〉 = a → N ′

〈a,a,a,a〉
	 STOP

N ′
〈a,a,a,a〉 = a → N ′

〈a,a,a,a,a〉

N ′
〈a,a,a,a,a〉 = a → N ′

〈〉
	 STOP

because the structures of, for example, P1/〈〉 and P1/〈a, a〉 are sufficiently different
that it is unlikely one would spot or easily prove their equality while transforming
to normal form.

If the above were computed for P1, then one can no longer establish its equiv-
alence with P0 by the identity of their normal forms. The way around this, though it

292 Algebraic semantics

is not in any obvious sense an algebraic operation, is to factor each normal form you
compute by the maximal bisimulation computed over it9 (see Section 7.2). In the
case above this identifies {N ′

〈〉,N
′
〈a,a〉,N

′
〈a,a,a,a〉} and {N ′

〈a〉,N
′
〈a,a,a〉,N

′
〈a,a,a,a,a〉}

resulting in a structure identical to the normal form of P0 (which has no interesting
equivalences between its nodes).

These bisimulated normal forms are in some ways less attractive from a
purely algebraic standpoint than the ones with separate components for all traces,
but they are a lot more practical since they are so often finite. Though they are
derived via direct manipulation of the underlying LTS rather than by algebraic
transformations, the normal forms which play a crucial part in FDR’s operations
are essentially the same objects. See Appendix C for more details.

The reader might have noticed the great similarity between the normal forms
described in this section and the recursion defined on page 239 to demonstrate the
coverage of N by the CSP notation. This should not come as a surprise, since in
each case our task was to find a standard way of representing a given semantic
value, even if we did have to approach this problem from opposite ends. Except
for the fact that we have, in this chapter, yet to deal with SKIP and sequencing,
the only difference between the recursions Ns defined above and IntN(F ,D) defined
on page 239 is the indexing sets used. In the second case this is, for a given value
(F ,D) ∈ N ,

{(F ,D)/s | s ∈ T}

where T is, again, the set of traces other than non-minimal divergences. Naturally,
in comparing this with the normal form of a process P such that

(F ,D) = (failures⊥(P), divergences(P)) = SN [[P]]

it is not hard to prove that the relation over T defined

s ≡ s ′ ⇔ SN [[P]]/s = SN [[P]]/s ′

corresponds precisely to the maximal bisimulation over the processes Ns derived
from P . This demonstrates nicely that the result of quotienting the maximal bisim-

9This bisimulation can be computed in two ways. The first is to use the ordinary bisimulation

relation over the LTS you get from the standard operational semantics of the normal form recursion.

Before bisimulating you would then start with distinct nodes for all the normal form states, and

also extra states (reachable under τ actions from this first sort) for the initials sets and maximal

refusals. The second, and much more elegant, way is to consider only the normal form states as

nodes of the transition system. The nodes are marked with divergence or with maximal refusal

information which is taken into account when computing the maximal bisimulation: no two nodes

with different markings are ever identified. See Section C.2 for more discussion of this idea.

11.4 Normalizing 293

ulation into any ‘normal form’ of the sort represented by the N ′
s above gives a true

normal form. In other words, it demonstrates the ‘completeness’ of the method.

To summarize, we have shown that the algebraic laws completely characterize
the semantics of CSP over N , though the procedures we have provided for deciding
equivalence are infinitary. The only remaining issue is our assumption that we can
detect all divergent terms and replace them with div. The procedure for reducing a
process to hnf does, of course, provide an infinitary complete method for this, and we
could argue reasonably that if we are to accept an infinitary procedure for one thing
then it will do for this too! The unfortunate feature is that it leads to one infinitary
procedure (divergence detection) being a frequently-used subroutine in another.
You can get round this (i.e., back to a single level of infinity) by several methods,
perhaps the most frequently used of which is the concept of syntactic approximation
where, instead of comparing the desired pair of processes algebraically, you compare
pairs of recursion-free approximations (where recursions have been unwound a finite
number of times, and those that remain are replaced by div). For more details of
this, see [45], for example.

It is well worth commenting that the normalization procedure uses a sur-
prisingly small proportion of the laws set out in earlier chapters. The laws of
prefixing and choice have been used extensively in normalization, but the only laws
used for other operators have been unwinding and their distributive, step and zero
(strictness) laws (with the exception that some symmetry laws are needed to derive
symmetric versions, such as right distributive laws from left ones). The only possible
conclusion is that the rest of the laws must be implied by the ones we used, ex-
amples being 〈|||-assoc〉 (2.8), 〈X ‖Y -assoc〉 (2.5), 〈hide-‖

X
-dist〉 (3.8), 〈hide-combine〉

(3.3) and 〈f [·]-‖
X

-dist〉 (3.9). None of these is a trivial consequence of the ones we

used in the same sense that 〈hide-sym〉 follows from 〈hide-combine〉. It is usually
possible to prove them from the algebraic theory, but the proofs are generally much
harder than those directly using the underlying models. The proofs often make use
of the rule EquivN and inductions such as

((P ||| Q) ||| R) ↓ n = (P ||| (Q ||| R)) ↓ n

in which, for the inductive step, the two sides are reduced to hnf. See Exercise
11.4.2.

Algebraic semantics also give us (as discussed earlier) the freedom to ask the
question of what equivalence is induced if we drop one or more of the laws that
actually were necessary to characterize failures/divergences equivalence. The most
interesting ones to consider dropping are 〈	-�-dist〉 (1.13), which plays a crucial role
in normalization and which is, as discussed at the point of its definition on page
32, somewhat hard to justify on intuitive grounds, and the step laws of parallel

294 Algebraic semantics

operators. But all of this is beyond the scope of this text, and in any case the
occupation of experimenting with sets of laws for its own sake is a great deal more
fascinating theoretically than it is practically useful.

Exercise 11.4.1 Prove, using the laws and induction on N , that for any P1, . . . ,PN

	N

i=1
Pi = (�

N

i=1
Pi) � (N

i=1
Pi)

Exercise 11.4.2 Using the expression for P ↓ n given in the statement of the rule

EquivN , show by induction on n that for any processes P , Q and R

((P ||| Q) ||| R) ↓ n = (P ||| (Q ||| R)) ↓ n

by computing the hnf’s of the right- and left-hand sides in terms of hnf’s of P , Q and R. Do

you think this form of induction would work as easily for proving the law 〈hide-combine〉?

Exercise 11.4.3 Compute finitely mutual recursive normal forms for (COPY |||
COPY) \ {| left |}, dealt with in Example 11.2.1 and the process of Exercise 11.2.1

part (c).

Exercise 11.4.4 Recall the interrupt operator described on page 243. P �a Q

behaves like P except that at any time a may occur and the process subsequently behave

like Q . Give the failures/divergences semantics of P �a Q . Is it strict in P? and in Q?

Now give a step law that allows the reduction strategy to hnf to be extended

to processes involving �a constructs together with the strictness properties above and

distributive laws.

Notice that these laws completely determine the semantics of this new operator.

Do you think a similar principle applies to any new operator?

Exercise 11.4.5 Repeat Exercise 11.1.1 for the following ‘laws’ (also taken from [53]),

though this time only showing all divergence-free processes equal.

(1) P ‖ RUN = P

(2) P � STOP = P

(3) P � Q = Q � P

(4) P ||| STOP = P

(5) P ||| RUN = RUN ⇔ divergences(P) = {}

11.5 Sequential composition and SKIP 295

11.5 Sequential composition and SKIP

We have not dealt with SKIP , and hence sequential composition, so far because
it necessarily adds cases to the reduction/normalization strategies and to the def-
initions of the normal forms. This is not only because we are not permitted to
include � in choice sets Ai but also because � is, as seen in earlier chapters, not
treated like other actions. The law 〈�-SKIP resolve〉 (6.6) was crucial in explaining
the difference earlier, and it has a large impact on how the algebraic semantics are
affected by �.

The crux of the problem is that we now have processes like (a → STOP) �

SKIP which can offer an event in Σ transiently before they terminate. In many
ways the behaviour of this process is similar to

((a → STOP) � (b → c → STOP)) \ {b}

in that both can independently make the decision to remove the choice of doing a
in favour of something else. This latter process has hnf (indeed, normal form)

(?x : {a, c} → STOP) 	 c → STOP

In other words, the process with the transient event a has been replaced by a process
definition without transients which has identical observed behaviour. This is not
possible with the first process, because it involves the trick of offering the external
choice of the transient a and the result of the internal choice, and we do not permit
process definitions like

(?x : {a, �} → STOP) 	 SKIP

which would be the translation.

There are two reasonable ways to incorporate termination into hnf. In some
ways the more pleasing is to bring the sliding choice/timeout operator P � Q into
the syntax of hnf, thinking of it as a primitive operator implemented as in the direct
operational semantics for it on page 172 rather than as (P � Q) 	 Q (though
the equality over denotational models with this representation would still hold).
However, because some people might find this ‘doublethink’ about � confusing,
and because it is probably simpler overall, we will add termination by allowing
(?x : A→ P) � SKIP to be considered an hnf.

The definition of hnf now becomes:

• div is in hnf;

• SKIP is in hnf;

296 Algebraic semantics

• ?x : A→ P is in hnf;

• (?x : A→ P) � SKIP is in hnf;

• if each Qi is a hnf, then 	N

i=1
Qi is;

When we want to distinguish this extended form we will refer to it as �-hnf.

The idea that reducing to hnf provides an operational semantics easily ex-
tends to this larger class. Obviously SKIP terminates, whereas (?x : A→ P) � SKIP
may offer the choice of A for a short time before terminating.

Imagine you are reducing a construct like P⊕Q (⊕ being any binary operator
other than 	 or, with the obvious modifications, renaming or hiding) to �-hnf. The
recipe given earlier calls for us first to reduce P and Q . Clearly you need to deal
with the extra cases that arise when one or both of the results, P ′ and Q ′, are
of the form SKIP or (?x : A → R) � SKIP . The laws of SKIP given in Section
6.3 easily deal with all combinations of SKIP with itself and prefix choices. And
SKIP ; Q ′ and ((?x : A → P) � SKIP); Q ′ reduce, for any Q ′, via 〈; -unit-l〉 (6.4)

and 〈; -step〉 (6.7).

The remaining cases for � can be dealt with using existing laws, and the case
of ((?x : A → P) � SKIP)[[R]] by 〈[[R]]-�-dist〉 (3.14) and 〈SKIP -[[R]]-Id〉 (6.10).
The corresponding case for \ X requires a new law which is closely based on its
existing step law:

((?x : A→ P) � SKIP) \ X =

(?x : A→ (P \ X)) � SKIP
<I A ∩ X = {}>I

((?x : A �X → (P \ X)) � SKIP
	 	{P [a/x] \ X | a ∈ A ∩ X }

〈hide-SKIP-step〉 (11.10)

Parallel operators require three new laws each: one each for an input/SKIP com-
bination in parallel with a different type of �-hnf. (There is no need to introduce
a law to deal with the cases where the other process is a nondeterministic choice or
div since these are reducible by distributive and zero laws respectively.) Because
of this multiplicity we only give those for ‖

X
, since each of ||| and X ‖Y are express-

ible in terms of it. The second and third of these are better and more succinctly
expressed as general principles involving the � construction (bearing in mind the
law 〈�-SKIP resolve〉). These laws make it straightforward to extend the strat-
egy so that it can reduce CSP processes possibly involving SKIP and sequential

11.5 Sequential composition and SKIP 297

composition to �-hnf.

((?x : A→ P) � SKIP) ‖
X

SKIP =

(?x : A �X → (P ‖
X

SKIP)) � SKIP
〈‖
X

-� SKIP〉 (11.11)

(P � Q) ‖
X

(R � S) =

(P ‖
X

R) � ((Q ‖
X

(R � S)) 	 ((P � Q) ‖
X

S))
〈‖
X

-�-split〉 (11.12)

(P � Q) ‖
X

(?x : A→ R)) =

?x : A �X → ((P � Q) ‖
X

R)

� ((P ‖
X

?x : A→ R) � (Q ‖
X

?x : A→ R))

if x is not free in P or Q

〈‖
X

-�-input〉 (11.13)

Given its similarity to the normal form in the SKIP -free case, it is natural
to look to the full abstraction recursion on page 239 for guidance about how to
extend the definitions of one-step and full normal forms. The first-step behaviour
of any non-divergent process is now characterized by its initial actions (which may
now include �) and the minimal acceptance sets which are subsets of Σ. Minor
extensions to the strategy given in the previous section can transform any �-hnf to
one of the following forms:

(a) div

(b) ?x : A→ R

(c) (?x : A→ R) � SKIP

(d) (?x : A → R) 	 (N

i=1
?x : Ai → R) where the Ai are incomparable proper

subsets of A

(e) ((?x : A → R) � SKIP) 	 (N

i=1
?x : Ai → R) where the Ai are incompara-

ble subsets (not necessarily proper subsets) of A.

Here, (a) is the representation of a divergent process, (b) of a process which cannot
terminate or behave nondeterministically on its first step and (c) of a process which
can terminate immediately and must do so if no member of A is accepted quickly
enough. (d) and (e) add the possibilities of nondeterministic offers of proper subsets
of the initials to the cases in (b) and (c).

298 Algebraic semantics

The most important new transformation required to bring the manipulation
of an arbitrary �-hnf to one of these forms is developed in Exercise 11.5.1 below.

The above is the extended definition of one-step normal form, and the methods
and problems associated with converting this to a full normal form are exactly as
for the smaller language in the previous section.

Exercise 11.5.1 Show algebraically that for any P and Q ,

(P � SKIP) � (Q � SKIP) = (P � Q � SKIP)

Why is this useful for transforming a �-hnf process to one-step normal form?

Exercise 11.5.2 Our dealings with the combinations involving P � SKIP and parallel

operators would have been simplified if the distributive law

(P � Q) ‖
X

R = (P ‖
X

R) � (Q ‖
X

R)

were true. Give an example to show that it is not.

Exercise 11.5.3 Repeat Exercises 11.1.1 and 11.4.5 for the following ‘laws’ (also taken

from [53]), proving all processes equal.

(1) STOP ; P = STOP

(2) P ; STOP = P

(3) SKIP ; P = P

(4) P ; (Q ; R) = (P ; Q); R

It can be done with, or without, the associative law (4), which is, of course, true.

Exercise 11.5.4 Recall that on page 289 we showed how to define restriction over

N for �-free processes via a process context. Assuming that there is some event a ∈ Σ

that P never communicates on a non-divergent trace, find a corresponding way of defining

P ↓ n when P can terminate.

Hint: consider P ; (a → SKIP) in parallel with a well-chosen process.

11.6 Other models

We will not deal with the algebraic characterization of the other models for finitely
nondeterministic CSP in as much detail, since many of the basic principles are the
same and, as we will see, in some ways the algebraic approach does not work quite
as cleanly for T and F as for N .

11.6 Other models 299

Over both F and T we have the law

P 	 div = P 〈	-unit∗〉 (11.14)

which is, of course, radically different from the corresponding law over N (namely
〈	-zero⇓〉). The characteristic law of T is

P � Q = P 	 Q 〈trace-equivT 〉 (11.15)

which, together with 〈	-unit∗〉, 〈�-unit〉 (1.16) and symmetry, can establish that
div =T STOP . The fact that div can be replaced by STOP means that the lack
of all the div-strictness laws true over N is no handicap over T when it comes to
transforming processes involving div to hnf.

The situation over F is more complex because the processes div, P and
P � div are all, in general, different. This leads to the need for a variety of new
laws in much the same way we needed laws to deal with processes of the form
P � SKIP in the previous section. We do not enumerate them here.

An essential ingredient of demonstrating that you have captured one of the
other models is, as with N , the creation of normal forms which capture all possible
semantic values in exactly one way. This is always done by creating what is essen-
tially a picture in syntax of the semantic model, but we are still left with choices,
which generally increase in weaker models like T .

Given the close correspondence between the normal form for N and the
construction used for full abstraction in Section 9.3, you might expect the same to
be true for T and F . While their representations in Section 9.3 are perhaps the
starkest imaginable syntactic pictures of the representations of processes, they do
have disadvantages as normal forms. One is the fact that finitely nondeterministic
processes over finite Σ would often require a	 S construct, with infinite S , in their
normal forms. Another is the fact that the highest-level syntactic structure now
depends not on the first-step behaviour of the target process (as it did for N) but
on all levels. The crucial difference is in the place where nondeterministic choices
are made: in the N normal form (and its construction in Section 9.3) all choices
are left as late as possible, whereas in the Section 9.3 constructions for T and F a
choice is made immediately which effectively determines what the process will do
through all time.

There is no need for any nondeterministic choices in a normal form for T : a
process is in one-step normal form if it is either

?x : A→ P or (?x : A→ P) � SKIP

since all we have to specify of a process is what its initial actions are, and how it

300 Algebraic semantics

behaves after each. You can build full normal forms from this one-step form in just
the same way as over N .

The normal form for F is like that for N , though heavily influenced by the
radically different role of div: see Exercise 11.6.1.

When we were reducing a process to hnf over N , we could be sure that
either we would succeed or the process was equivalent to div (with this frequently
detectable via the rule LoopN). How helpful this is can be seen when we look at
the contrasting situation in models such as T which are not divergence-strict.

In T , the fact that a process can diverge does not mean it is identified with
div. For example, even though you can immediately deduce that it diverges, the
process

μ p.(a → Q) 	 p[[R]]

needs its recursion unwound potentially many times (infinitely if Σ is infinite) just
to reveal its first-step behaviour (its initial actions being the smallest set which
contains a and is closed under the renaming relation R). The real problem is that
the procedure for reducing this process to hnf diverges without the simple answer
this inevitably leads to over N .

This means that reduction to hnf (at least, the same hnf) cannot be at the
core of a reduction-based operational semantics which faithfully reflects all possible
behaviours predicted by T and F beyond points of possible divergence. In essence,
the strategy is certain to diverge on processes like the above which these models
suggest have alternative behaviours. The operational semantics described in Section
11.2 would, if the behaviours they predicted for processes were abstracted into these
other models, yield sometimes proper refinements of the denotational semantics of
the processes.

The possibility of divergence on reducing a process to hnf also creates prob-
lems in reducing an arbitrary process to one-step normal form, since we previously
relied on conversion to hnf first. Since these problems do not arise for recursion-free
processes, probably the best way of completing the algebraic characterizations of T
and F is via the concept of syntactic approximations discussed on page 293.

Exercise 11.6.1 Show that every member of F can be expressed in one, and only

one, of the following four ways

(i) (?x : A → P) � div

(ii) (?x : A → P) � SKIP

(iii) ((?x : A → P) � div) � (N

i=1
?x : Ai → P)

(iv) ((?x : A → P) � SKIP) � (N

i=1
?x : Ai → P)

11.7 Notes 301

where in (iii) and (iv) the Ai are all incomparable subsets of A.

Hence define a normal form for F .

Calculate the normal form of the process

(div � (SKIP � a → SKIP)); STOP

11.7 Notes

Algebraic laws have played an important part in the definition of CSP from its
earliest beginnings, and many of those presented here can be found in [18].

The algebraic semantics for the language was first given in Brookes’s thesis
[15]. The version presented here deals with a wider range of operators (consequently
requiring more laws) and deals with recursion differently, but is in most important
respects the same.

A closely related algebraic semantics is that of occam [121], which deals
with parallel language based on CSP with the added complexity of assignable state.
Algebraic approaches to other process calculi may be found in [1, 9, 10, 51, 81]
(amongst many other works).

The concept of algebraic reduction as an operational semantics has its origins
in the λ-calculus and similar. Hoare and He have advocated their use on more
general languages, see [47, 48].

2005: At the time of writing the author is engaged in some work to show how
the laws and normal forms of the algebraic semantics vary with the model we seek
to characterise. This encompasses both models described here and more elaborate
ones. A limited part of it can be found in [116].

302 Algebraic semantics

Chapter 12

Abstraction

One view of systems is said to be more abstract than another if it hides more detail,
thereby identifying more processes. Greater or lesser abstraction can result from
the choice of model used, where, for example, the traces model T is more abstract
than the stable failures model F . What we will be studying in this chapter are ways
in which one can deliberately abstract detail away from a process by applying CSP
constructs. We will then apply these ideas to formulating a variety of specifications,
including fault tolerance. Perhaps the most important of these is characterizing
information flow across processes and hence security.

What we will be doing, in other words, is learning both how to build carefully
designed fuzzy spectacles which let us see just that aspect of process behaviour that
may seem relevant and, equally importantly, why this activity can be useful.

One such abstraction mechanism is many-to-one renaming, which allows us
to ignore distinctions between events which may be irrelevant for some purpose. A
typical example of such a renaming might be to ignore the data that passes along a
channel by mapping all communications over the channel to a single value. Though
we will be using renaming occasionally in the rest of this chapter, the effects of
renaming, in itself, as an abstraction are covered in Sections 3.2.2 and 13.6.1 (see
Deadlock Rule 15 on page 388 in particular) and we will study the concept of
data-independence, which in some respects is similar, in Section 15.2.2.

It is worth remarking that many-to-one renaming often introduces nonde-
terminism, as is well shown by the routeing node example on page 388. In this
it has something in common with just about all imaginable abstraction mecha-
nisms: in forming an abstraction you deliberately obscure some detail about how
a process behaves and therefore risk losing information about how some choice is
made, though the effects of the choice remain visible. Any example of many-to-one

304 Abstraction

renaming introducing nondeterminism illustrates this, such as

((a → c → STOP) � (b → d → STOP))[[b/a]]

= a → ((c → STOP) 	 (d → STOP))

The rest of this chapter is devoted to abstraction mechanisms with one spe-
cific aim: taking a process P and a set of events X ⊆ Σ and working out what P
looks like to a user who can only see the events X (though there may be other users
interacting with P in the complement of X).

12.1 Modes of abstraction

Throughout this section we will assume that P is a divergence-free, finitely nonde-
terministic process with two users, Hugh and Lois, who respectively communicate
with P in the disjoint sets of events H and L which contain between them all the
events P ever uses, with each user only being able to see his or her own events. If
P could ever terminate (�) we would have to worry about which of our two users
could see this; to avoid special cases of limited practical use we will assume that
P never does terminate. (This does not, of course, exclude the possibility that the
definition of P might internally use SKIP and sequential composition.)

12.1.1 Lazy and eager abstraction

Given a process P and set of events L, it is tempting to believe that the abstracted
view of P in L is given by P \ (Σ �L). In the traces model T this is the right answer,
but over the richer models the situation is more complex since this definition does
not necessarily deal with refusal sets and divergences appropriately. The problem is
that the hiding operator P \ X assumes that X has passed out of sight and control
of the entire environment and hence that events from H become τ actions and thus
‘eager’. We will thus identify hiding with eager abstraction1:

EH (P) = P \ H

though we will find that, outside T , this is of rather limited use as a means of
abstraction.

If, on the other hand, we believe that the events H are under the control
of some other part of P ’s environment (the other user Hugh) but happen to be

1When choosing the notation for abstraction there is an important choice we have to make,

namely whether to make the set parameter either the events we are abstracting from, as done here,

or to, which would have led us to replace the subscript H here by L. Obviously this is arbitrary.

12.1 Modes of abstraction 305

invisible to us (looking at P through Lois’s eyes), then when an event in H becomes
available it may be either accepted or refused by Hugh. Thus Hugh, from Lois’s
perspective, gets to introduce nondeterminism into the system both by the choice
of which action to communicate and also by whether to communicate at all. If, for
example, Hugh decides to refuse absolutely all communications offered to him, P
will appear to act like P ‖

H
STOP .

The most general behaviour of the abstracted environment (Hugh) is ChaosH ,
accepting or refusing any event available to him. This suggests that the right way
to form the abstraction is

(P ‖
H

ChaosH) \ H

and indeed this has a lot to recommend it. However, in the failures/divergences
model N , this construction will introduce a divergence whenever P can perform
an infinite sequence of events in H even though P is not itself diverging. While
you can imagine that this corresponds to the real possibility of Hugh continuously
offering events to the process which are accepted, thereby excluding Lois from doing
anything, it is, particularly in conjunction with the severe way N treats divergence,
too strong an abstraction for most practical purposes: the divergences typically
mask much L behaviour we should really want to see. It is usually better to assume
either that Hugh is always sufficiently lazy not completely to use up the process,
or equivalently that the implementation is sufficiently fair between Hugh and Lois
that neither is infinitely excluded simply because of the eagerness of the other.
There are three, largely equivalent but stylistically different, ways of constructing
a lazy abstraction LH (P) which behaves like the above except for not introducing
the divergences.

Our assumptions about P mean that its representations in the three models
N , U and F are essentially the same (entirely characterized in each case by the
set of stable failures failures(P)). The following versions of the abstraction exist,
respectively, in these models.

The N version is best defined by direct manipulation of the failures of P .
As P is a divergence-free process, the projection of P into the alphabet L is the
divergence-free process P@L with failure-set

{(s \ H ,X) | (s ,X ∩ L) ∈ failures⊥(P)}

The main difference between this and the definition of the hiding operator P \ H
(see page 207) is that it does not insist that the whole of H is refused before
generating a failure. This is because Hugh can always refuse all the events in H �X .
LN

H (P) is defined to be P@L.

306 Abstraction

For example, if L = {l1, l2} and H = {h}, we might define P by

P = l1 → P
� l2→ h → P
� h → P

LN
H (P) is then equivalent to Q where

Q = l1→ Q
� l2→ (STOP 	 Q)

Notice that the (finite) traces of LN
H (P) are precisely {s \ H | s ∈ traces(P)},

which is what we might have expected and coincides with the abstraction mechanism
for T , namely hiding.

The second version, using the infinite traces/failures/divergences model U ,
can be expressed directly using CSP operators, since in that model we can express
fairness properties, as seen in Section 10.3.1. As discussed in Exercise 10.3.5,

SemiFair (A,B) = RUNA ||| Fair(A,B)

is a process which never refuses events in A, allows any finite combination of A’s
and B ’s, but only allows infinitely many B events to occur if infinitely many A’s do
as well.

LU
H (P) = (P ‖

Σ
SemiFair (L,H)) \ H

cannot diverge unless P can, as the structure of the infinite traces of SemiFair (L,H)
prevents new divergences being introduced by the hiding here. The failures of
LU

H (P) are exactly the same as those of P@L. The infinite traces are precisely
those infinite traces of P with infinitely many L events, with all H events hidden.
(Obviously the other infinite traces of P cannot be mapped sensibly onto infinite
traces in Lω, since u \ H is then finite. Naturally, it is then a finite trace of
LU

H (P). This is because u will have a finite prefix s such that u \ H = s \ H and
SemiFair(L,H) does not prevent P performing s .)

It should be remarked that abstraction in U distinguishes more processes than
abstraction in N , since the infinite traces component of the model can vary when
the abstraction construct (which is, itself, infinitely nondeterministic) is applied to
finitely nondeterministic processes whose LN

H abstractions are identical. Examples

12.1 Modes of abstraction 307

are Q1 and (Q2; STOP), where

Q1 = l1→ Q1
	 h → Q1

Q2 = h → (Q2; l1→ SKIP)
	 SKIP

Each of LU
H (Q1) and LU

H (Q2; STOP) can perform any number of l1’s before refus-
ing this event, but only the abstraction of Q1 can perform an infinite trace of l1’s,
since the only infinite trace of Q2; STOP is 〈h, h, h, . . .〉. This is a very reasonable
distinction to make, but it is one which is only possible over U .

The above discussion shows that lazy abstraction should be added to the list
of operators which can have the effect of introducing infinite nondeterminism, and
therefore require U as opposed to N for full precision. In fact the extra distinctions
only become an issue if either we need to place lazy abstractions into contexts in
which they affect the divergence-set via hiding as discussed in Section 8.3.2, or if we
want to prove that they meet specifications which constrain infinite traces. None
of the examples we will see in the rest of this chapter does either of these things, so
the extra precision of LU

H (P) is not something we will need.

As we will see later in this chapter, the case where LH (P) is deterministic is
very important. If the failures of LU

H (P) show it to be deterministic then we know
(see page 260) that only one set of infinite traces (all those that are limits of finite
ones) is possible. Thus, if LN

H (P1) = LN
H (P2) and this value is deterministic, then

also LU
H (P1) = LU

H (P2).

The third, and for practical purposes the best, way of computing the lazy
abstraction is the one over the stable failures model F where divergence is not a
concern for the simple reason that it is not recorded in the model: the value of

LF
H (P) = (P ‖

H
ChaosH) \ H

in this model is precisely

(traces(P) \ H , failures(P@L))

because (s ,X ∩ L) ∈ failures(P) implies that (s ,X ∪ H) ∈ failures(P ‖
H

ChaosH)

and hence

(s \ H ,X) ∈ failures((P ‖
H

ChaosH) \ H)

Since, under our basic assumptions, the traces of LF
H (P) are exactly those of its

failures, this form of abstraction is identical in strength to LN
H (P): these two values

308 Abstraction

being trivially inter-translatable. In fact, it is best to think of LF
H (P) as an alter-

native way of computing LN
H (P). Under our assumptions about P ,

• the determinism of LF
H (P) is equivalent to that of the other two versions,

and

• if S is a divergence-free and finitely nondeterministic (specification) process,
then the three refinements

S
F LF
H (P) S
FD LN

H (P) S
U LU
H (P)

are all equivalent.

LF
H (P) is the best form of lazy abstraction in practice simply because it is

directly computable by FDR for finite-state P , and the above equivalences mean
that in most cases we are free to choose whichever we want. Together with its
application to the specification and automated analysis of deadlock discussed around
page 221 it provides the main ways of applying F to tell us things about divergence-
free processes P by putting them in contexts C [P] which could introduce divergence
if analyzed over N .

Throughout the rest of this chapter we will only use lazy abstraction in
circumstances where all three are equivalent, and therefore cease to distinguish be-
tween them in our notation: henceforth we will normally simply refer to LH (P).
Equally, the refinement relation
 will denote any one of the three generally equiv-
alent versions referred to above (i.e., not
T).

The following results are both easy to prove and show the extent to which
lazy abstraction really does capture an accurate one-sided view of a process.

Lemma 1 If Σ is partitioned by {H ,L} and P = PL ||| PH where PL and PH are

processes satisfying the assumptions of this section whose finite traces are respec-

tively contained in L∗ and H ∗, then LH (P) and LL(P) respectively equal PL and

PH .

A process that can be factored into two components with disjoint alphabets
like this is called separable. Invariably, separability will be considered relative to a
specific pair of alphabets.

The proof of this lemma is left as an exercise.

Theorem 2 If Σ is partitioned by {H ,L} and P is any process satisfying the basic

assumptions of this section, then

P � LL(P) ||| LH (P)

12.1 Modes of abstraction 309

in any of the three models over which lazy abstraction is defined. Additionally, over

the traces model T we have the analogous result:

P �T P \ H ||| P \ L

Proof We deal with the result over N , which is equivalent to that over F and
implies that over T . Suppose (s ,X) ∈ failures⊥(P). Then, by definition of P@A
(see page 305), (s \ H ,X) ∈ failures⊥(LN

H (P)) and (s \ L,X) ∈ failures⊥(LN
L (P)).

Since plainly s ∈ (s \ H) ||| (s \ L) for any s ∈ Σ∗ (where ||| is the trace version of
the operator defined on pages 68 and 150), it follows from the definition of ||| over
N (see page 207) that

(s ,X) ∈ failures⊥(LN
H (P) ||| LN

L (P))

which establishes our result.

The result for U follows because if u is any infinite trace of P , then u \ H
and u \ L are respectively traces (which may be either finite or infinite) of LU

H (P)
and LU

L(P). u is then an interleaving of these two.

The above theorem cannot be extended to equivalence: the refinement is
often proper, as it is if

P = l → h → P

when L{h}(P) = l → Chaos{l} and L{l}(P) = Chaos{h} so that the interleaving of
the two abstractions contains all traces in {l , h}∗ rather than the highly restricted
set of P . This is hardly surprising, since we would rather expect the behaviour of P
visible to Lois to depend on what Hugh does, and vice-versa, and the interleaving
into two abstractions removes all such influences and hence all linkage between what
they see. The lemma above shows that the refinement turns into equality when there
demonstrably is no linkage because P is separable. The following result gives an
interesting partial converse to this, allowing us to determine when deterministic
processes are separable.

Corollary 3 P is deterministic and separable (over {H ,L}) if and only if the

processes LH (P) and LL(P) are both deterministic.

Proof The ‘=⇒’ half of this result follows from the lemma and properties of
determinism. For the ‘⇐=’ half, suppose both the abstractions are deterministic.
Then, as the alphabetized parallel operator A‖B preserves determinism (see page
227), so is

LH (P) L‖H LL(P) = LH (P) ||| LL(P)

310 Abstraction

But we know that P refines this process, so the two must be equal by maximality
of deterministic processes under refinement.

For example, this shows that the deterministic process P = l → h → P con-
sidered above is not separable, since its two abstractions are both nondeterministic.
On the other hand, the process Q(n) defined

Q(n) = h → Q(n)
� ((l → Q(n − 1))<I n > 0>I STOP)

is separable, since its abstractions are respectively

n︷ ︸︸ ︷
l → . . .→ l → STOP and μ p.h → p

The above series of results, and especially the last, hints at one of the most
important uses of abstraction: characterizing when one user of P can influence what
another user sees. We will return to this in Section 12.4.

12.1.2 Mixed abstraction

While lazy abstraction is the one truest to the underlying philosophy of CSP, it is
sometimes necessary to weaken the assumption that the abstracted user Hugh can
delay all events he sees. One quite often builds models of systems in CSP whose
alphabets contain some events that the environment really can delay – typically in-
puts to the system – and some, perhaps outputs, that it would be more comfortable
to picture as not really delayable. If Hugh is sitting at a workstation, his keystrokes
would naturally be thought of as delayable actions, but outputs displayed on the
VDU would not. In many respects, undelayable signal events have much in common
with the way the termination signal � is thought of (see Chapter 6).2 As long as
such events remain visible, this is not much of a concern since we can take account
of the differences between events in specifying and animating the process. But, if
they are to be abstracted, one can get undesirable results if the signal events are
abstracted lazily.

2It would be possible to take this analogy further and develop models in which Σ was partitioned

into delayable events and signals; the semantic treatment of signals would then be very like that

we have developed for �. We have not done so in this book in the interests of purity (sticking

close to Hoare’s original concept of CSP) and simplicity. Without this special modelling, signals

only really make sense at the external interface of a process with its environment unless one is

extremely careful to make sure that whatever process context they are placed in does not delay

them. There are close connections between these ideas and some of those we will meet when we

model timed processes in Chapter 14.

12.1 Modes of abstraction 311

The right abstraction to use is then a mixed one, with delayable events treated
lazily and signal events abstracted eagerly (i.e., by ordinary hiding). If S are P ’s
signal events then we define

MS
H (P) = LH (P \ (H ∩ S))

Essentially, this treats the events in H ∩S exactly as though they are internal
actions of the abstracted process. This is reasonable since they are invisible to Lois
and cannot be delayed by anyone. There is a potential problem in this definition,
namely that the hiding P \ (H ∩ S) might either introduce divergence or (if the
hidden set is infinite) unbounded nondeterminism; either of these take it outside the
domain over which we have defined lazy abstraction. While one should be aware
of the second problem, it will rarely occur in practice since in practical examples
process alphabets are usually finite, and all it would mean in any case is that we
would be forced to compute the two abstractions over U .

Divergence of P \ (H ∩ S) corresponds to an infinite unbroken sequence of
signal events from P to Hugh. We might well think that this sort of behaviour, which
gives Hugh no opportunity to be lazy and gives Lois a slice of P ’s attention, is more
compellingly identified with divergence, from her perspective, than the type we so
carefully avoided when defining lazy abstraction. Whatever one thinks, the process
produced by this hiding is not one to which lazy abstraction can be applied, and
so we have to stipulate that mixed abstraction is only used for processes where the
inner hiding does not introduce divergence. In any case where this is a danger, you
should, if using FDR, establish this divergence freedom separately before computing
the abstracted process MS

H (P) which, as with LH (P), is then evaluated over F .
Over this model it equals

(P ‖
H � S

ChaosH �S) \ H

Example 12.1.1 This form of abstraction is often the appropriate one for processes

in which each transaction with a user comprises an input from the user followed

by some finite sequence of responses. Consider, for example, a memory device with

the following specification:

Mem(s) = write?user?a?v →
(ok .user → Mem(update(s , a, v))
<I a ∈ WriteAddresses(user)>I
(reject .user → Mem(s)))

� read?user?a →
(value.user !fetch(s , a) → Mem(s)
<I a ∈ ReadAddresses(user)>I
(reject .user → Mem(s)))

312 Abstraction

The functions update and fetch respectively modify the state s to execute a write,

and look up the value for a read.

Here, we would expect the events in {| write, read |} to be delayable, and

S = {| ok , reject , value |} to be the signals. We will, naturally, assume that the set

of users is {Hugh,Lois}. If you use lazy abstraction on this, then the abstracted

views can both deadlock immediately because it is assumed that the hidden user

might initiate a read or write and then refuse the response it gets.

Mixed abstraction does not predict these deadlocks. The only way (it says)

that either user can affect the other is by writing to variables readable by the other:

if L is the set of Lois’s events, thenMS
H (Mem(s)) is equivalent to the process ML(s),

where

ML(s) = write .Lois?a?v →
(ok .Lois → M L(update(s , a, v))
<I a ∈WriteAddresses(Lois)>I
(reject .Lois → M L(s)))

� read .Lois?a →
((value .Lois !fetch(s , a) → M L(s)

<I a ∈WriteAddresses(Hugh)>I
	{value.Lois !v → M L(s) | v ∈ T})

<I a ∈ ReadAddresses(Lois)>I
(reject .Lois → M L(s)))

Here, T is the (finite, to avoid difficulties with unbounded nondeterminism) type of

the values stored in the memory. The nondeterminism in this abstraction relates to

the fact that Lois has no way of knowing, when she reads a value that is writeable-to

by Hugh, what the value will be. On the assumption that T has more than one

member, this process will be deterministic if, and only if,

ReadAddresses(Lois) ∩WriteAddresses(Hugh) = {}

It might have been preferable, in formulating the above, to have restricted

the range of memory locations held in the parameter s of ML(s) relative to the

original (i.e., only retaining those accessible by Lois). The semantics of the result

would not, however, differ from the version where the full range is retained, provided

of course that everything was done appropriately. (End of example)

Exercise 12.1.1 Find as simple as possible representations, as CSP processes, of the

following lazy abstractions.

(i) L{down}(COUNT 0) (see page 16)

(ii) L{up}(COUNT0)

12.1 Modes of abstraction 313

(iii) L{up,down}(Counter(0, 0)) (see page 26)

(iv) LA(COPY), where A = {left .a, right .a | a ∈ V } for {} �= V ⊂ T , T being the

type of left and right .

Which of these processes is separable (in each case relative to the partition of its alphabet

implied by the abstraction quoted above)?

Exercise 12.1.2 Show that LΣ(P) = STOP and L{}(P) = P for every P satisfying

the assumptions quoted at the start of this section.

Show that LF
A (LF

B (P)) = LF
A∪B(P) for any A,B and P .

Exercise 12.1.3 Let V and A be as in Exercise 12.1.1 (iv) above. Describe the

behaviour, respectively, of the mixed abstractions

(i) M{|right|}
A (COPY)

(ii) M{|right|}
A (COPY >>COPY)

Which of these is deterministic? How would you expect the same abstraction to behave

applied to an N -fold chaining of COPY (i.e., an N -place deterministic buffer)?

Exercise 12.1.4 Suppose we were to replace the formulation of LU
H (P) on page 306

by the following:

L̂U
H (P) = (P ‖

H
FINITEH) \ H

where FINITEH is the process (defined as on page 262) which can communicate any finite

trace of events from H , but no infinite trace. Show that this always has exactly the same

set of failures as the other lazy abstractions, but can differ from LU
H (P) in its set of infinite

traces. Find a process P which demonstrates this difference.

Does any refinement relation hold between the two versions (for all allowable P)?

Find a reason why LU
H (P) is the better of the two.

Exercise 12.1.5 Prove Lemma 1 for the failures/divergences model N .

Exercise 12.1.6 Show that, for any P , Q and X , the equivalence

(P ‖
X

Q) ‖
H

ChaosH = (P ‖
H

ChaosH) ‖
X

(Q ‖
H

ChaosH)

holds in F . Deduce that, if H ∩ X = {}, then

LH (P ‖
X

Q) = LH (P) ‖
X
LH (Q)

and hence that

LH (P ||| Q) = LH (P) ||| LH (Q)

314 Abstraction

12.2 Reducing specifications

It is very common to want to prove that a process P meets a specification S which
refers only to a subset of its events. It makes no sense to ask the direct question
‘S
 P?’, since we know it will fail. We have either to extend S so that it allows
the extra events of P , without specifying anything about them, or to abstract the
extra events away from P .

With traces specifications, there is little difficulty about achieving this either
way. If X are the events of P that we want to ignore, then we should establish
either

S ||| RUNX
T P or S
T P \ X

For example, to prove that a pair a and b of actions alternate, irrespective of any
other events P might do, we could establish the refinement

μ p.a → b → p
T P \ (Σ �{a, b})

On the whole it is better to take the latter, hiding approach rather than the
former in which we ‘boost’ the specification. It is arguably clearer, especially when
examining any failure of the specification, but the main argument is in terms of
efficiency when running FDR. If the set X is large, the process S ||| RUNX may be
slow to normalize, whereas the act of hiding X in P frequently enables the result
to be compressed (as described in Section C.2), thereby substantially speeding up
the check.

When the specification S involves failures, we have to worry not only about
how to abstract away from events that P may perform outside the alphabet of S ,
but also how to deal with its refusals. Perhaps the most spectacular example of
a failures specification abstracted has already been seen in Section 8.4, where we
found that, over F , P is deadlock-free if and only if P \ Σ is. Thus, apparently, we
can reduce deadlock freedom to a specification with an empty alphabet! What turns
out to be important here is the way the (many) irrelevant events are abstracted: by
doing so eagerly, we have said that the only relevant refusal sets are those where all
the abstracted events are refused.

To generalize this, over F , with X being the ‘extra’ events as before,

S
F P \ X

means that, in addition to S
T P \ X , whenever (s ,Y ∪ X) ∈ failures(P) then
(s \ X ,Y) ∈ failures(S). But this says nothing whatsoever about P ’s refusals in
any state where it does not reject the whole of X . This may or may not be what we

12.2 Reducing specifications 315

want. For example, it does not allow us to make the specification ‘P always offers
either a or b’, since in fact

μ p.(a → p) 	 (b → p)
F P \ (Σ �{a, b})

is (for �-free P) another equivalent of ‘P is deadlock-free’.

The obvious alternative is to replace eager abstraction by lazy abstraction
and, indeed,

μ p.(a → p) 	 (b → p)
 LΣ �{a,b}(P)

says exactly what we wanted, namely that every stable state of P can perform either
a or b. Thus,

• we should eagerly abstract X if, as with the deadlock specification, we are
only interested in those refusals which occur when every member of X is
impossible, and

• we should lazily abstract X if, as is more likely in other situations, we are
concerned about P ’s refusals in the alphabet of S at other times as well.

Given our discussion in the previous section, one would expect that LΣ � X (P)
will normally give the right abstraction into the alphabet of S and therefore be the
correct process to test. Of course, if some of the events in X were signals and
therefore not delayable by the environment, it would be appropriate to use mixed
abstraction instead. We will see some important examples of this in Chapter 14.
Perhaps the right way of looking at the deadlock specification is as an extreme
example of this: it is not that we are assuming that the environment cannot delay
any event, only that if it is testing for deadlock then it is reasonable to assume that
it chooses not to.

As discussed in Section 8.4, one of the main advantages of the abstracted
proof of deadlock freedom is the compression it often makes possible when perform-
ing a check using FDR. This is brought about by pushing the hiding as far into a
parallel system as possible. The formulation of LF

H (P) on page 307 does not directly
show how to extend these manipulations of lazy abstraction: 〈hide-‖

X
-dist〉 (3.8) is

no longer directly applicable since the entire hidden set P is synchronized (with
ChaosH) immediately below the hiding. Fortunately, however, it is possible to
combine 〈hide-‖

X
-dist〉 with properties of Chaos to establish rules for pushing lazy

abstraction down through a process: see Exercise 12.2.1.

Example 12.2.1 A token ring is a parallel network organized as a ring. It is

designed so that there are a fixed number of tokens that exist in the ring, each

316 Abstraction

conveying some privilege on the node containing it. For example, if there is only one,

ownership of the token might permit the node to perform some critical operation

which must not be simultaneously executed in more than one place at once. (This

is another view of the mutual exclusion problem, discussed briefly on page 4.)

A very simple implementation of this might be

Empty(i) = ring .i → Full(i)

Full(i) = ring .i ⊕ 1 → Empty(i)
� start -cr .i → end -cr .i → Full(i)

Ring = ‖N−1

i=0
(Full(i)<I i = 0>I Empty(i),Ai)

where Ai = {ring.i , ring .i ⊕ 1, start -cr .i , end -cr .i}

and the events start -cr .i and end -cr .i respectively represent the start and end of

i executing a critical region. The intention is that at all times exactly one process

has the token.

We might want to specify this in the alphabet CR = {| start -cr , end -cr |} as

follows:

Spec = 	{start -cr .i → end -cr .i → Spec | i ∈ {0, . . . ,N − 1}}

Interpreted as a failures specification, this says that the ring is always able to

perform some event in CR, and furthermore the events in this set that do occur

comprise the sequencing of a number of disjoint critical regions. Of course, exactly

which process is allowed to perform start -cr .i will depend on where the token is.

We can test this specification of the ring by the abstracted check

Spec
 L{|ring|}(Ring)

This is true, and essentially says that however the passing of tokens round

the ring is managed, Spec holds.

There will be further discussion of token rings in Exercise 13.3.3 and else-

where. (End of example)

Exercise 12.2.1 Use the results of Exercises 12.1.2 and 12.1.6 to prove that

LF
H (P A‖B Q) = LF

(A∩B∩H)(LF
(H∩A) � B (P) A‖B LF

(H∩B) � A(Q))

Secondly, prove algebraically that

LF
H (P \ X) = (LF

H � X (P)) \ X

12.3 Abstracting errors: specifying fault tolerance 317

Combine these two principles to produce a rule for pushing LF
H into processes of

the form (P A‖B Q) \ A ∩ B .

This question is formulated in terms of F because L has the easiest CSP formulation

over this model.

Exercise 12.2.2 Let S be a divergence-free, finitely nondeterministic and �-free

process communicating only in H .

(a) Show that S � LH (P) if, and only if,

S ||| ChaosH � P

Hint: use the series of results beginning on page 308 and monotonicity properties.

(b) Show that S � LH (P) if, and only if,

S ||| RUNH � P ||| RUNH

Hint: use a similar argument to part (a), plus the result of Exercise 12.1.6.

12.3 Abstracting errors: specifying fault tolerance

CSP is often used for modelling systems with unreliable or potentially faulty com-
ponents, the intention being to overcome these errors and preserve all, or a defined
subset, of their functionality. The main examples we have seen so far have been
unreliable communication media in Chapter 5, as well as subsequent further inves-
tigations of the alternating bit protocol in Sections 8.4 and 10.3.1.

The approach to error modelling used so far has been the most obvious one:
namely to make the occurrence of each error a nondeterministic choice introduced
by 	: see, for example, the definitions of E0 on page 123 and C (in, out) on page
134. In systems with potential faults it is usually the case that, if errors happen in a
totally unrestricted way, then at least some of the intended behaviour is lost. This
is certainly true of the example designed to overcome message corruption on page
123, where we built our model of the medium so that it commits at most one error
for every three transmissions: if we had allowed the corruption of any message, then
neither the transmitter and receiver defined there nor any others could overcome
this. Even the alternating bit protocol relies on there not being so many errors as
to create an infinite sequence of consecutive losses or duplications. A fault-tolerant
system created (as is common) by replicating functionality (such as processors) and
using a voting mechanism will only be immune to some finite limit of errors which
disable individual elements: plainly it will not function if all the processors are
disabled.

318 Abstraction

It is often easier to understand the relationship between the pattern of errors
that occur and the behaviour of the entire system if the errors appear in traces. In
other words, each fault, when it occurs, is signposted by some event. It is usually
simple to adapt CSP models of faults to reflect this: instead of being selected by a
nondeterministic choice, errors are triggered by special events placed in the alphabet
specially and not confused with the ‘ordinary’ events of the processes concerned.
Thus the loss/duplication medium C (in, out) for the alternating bit protocol would
become:

CE (in, out) = in?x → (out !x → C ′
E (in, out , x)

� loss → CE (in, out))
C ′

E (in, out , x) = dup → out !x → C ′
E (in, out , x)

� CE (in, out)

Each time a message is input it can be lost if loss occurs, and once it has been
output once it can be duplicated arbitrarily often if dup is communicated.

You should imagine that the events E = {loss, dup} are under the control
of some dæmon that can choose whether or not to introduce errors. We could get
back to the original medium by abstracting away these events:

LE (CE (in, out)) = C (in, out)

When building a model of a faulty process where the errors are controlled by ex-
tra events, you should aim to create one where the lazy abstraction, as above,
is equivalent to the version in which the errors occur nondeterministically. Con-
versely, if you prevent the errors from occurring by synchronizing with STOP , as
in CE (in, out) ‖

E
STOP , you should get a process equivalent to perfect behaviour of

the component in question. In this case it is a suitably renamed version of COPY .

When the components with these visible errors are put into the entire net-
work, we can fulfil our wish to see directly how the occurrence of faults affects runs
of the system. One simply places the erroneous processes into the system and leaves
the error events unsynchronized. In cases like the alternating bit protocol, where
there are several erroneous components, it is a good idea to ensure that the error
events of each are distinct. This is so that the errors in the different components
can be distinguished when analyzing the behaviour later. Thus the alternating bit
protocol might become

ABPE = ((S ‖
{|a,d|}

(C1E ||| C2E)) ‖
{|b,c|}

R) \ {| a, b, c, d |}

12.3 Abstracting errors: specifying fault tolerance 319

where S and R are as previously and

C1E = CE (a, b)
C2E = CE (c, d)[[loss

′, dup ′
/loss, dup]]

We thus extend E to be {loss, loss ′, dup, dup′}.
Having constructed a system with visible errors like this, we can either ab-

stract them immediately or put bounds on the circumstances in which they occur
before doing so. It turns out that the first of these options is what is required for
the alternating bit protocol. The lazy abstraction LE (ABPE) is the natural one to
look at: it is well-defined since ABPE is finitely nondeterministic and is, provided
R and S are correctly defined as in Section 5.3, divergence-free. This form of ab-
straction correctly reflects our expectations of this protocol, namely that an error
can happen at any time but we should never rely on one happening. The fairness
assumptions built into lazy abstraction also correspond closely to the fact that the
protocol works provided the channels are not permitted to commit an infinite series
of errors. If S and R are as defined in Section 5.3, it is true that

COPY
 LE (ABPE)

What this establishes precisely is that the alternating bit protocol refines this speci-
fication provided only finitely many errors of any sort occur between each pair of
visible actions. Another way of saying the same thing is that, whatever errors have
occurred in the past, if whatever dæmon is selecting them stops doing so for long
enough, the protocol will come into a state where it can make the progress required
by the specification.

This lazy abstraction into non-error events gives what is probably the best
general-purpose picture of the way a system with potential errors can behave under
the assumption that errors do not exclude everything else. However, what we have
shown in this case is not precisely the same as was proved in Section 10.3.1 where we
looked directly at how infinite traces can analyze the protocol. There the infinitary
relation was directly over the two internal channels, whereas here it is between the
errors and the external communications of the entire protocol. While the difference
does not appear to be of great importance in this example, this is not always so:
see Exercise 12.3.3. It teaches us one general lesson, namely that if you want to
relate the errors that occur to some internal events of your system, then you must
delay hiding the latter until after the comparison has been made.

The best way to assume a stronger bound on error behaviour than that
expressed implicitly by lazy abstraction is by putting a constraining process in
parallel with either the whole system or an appropriate part of it. Such a bound
is likely to take one of two forms: either a limit on the total number of errors

320 Abstraction

that can occur through all time (perhaps with separate limits for different types of
errors) or a limit on how many errors can occur relative to some other behaviour, in
which case, of course, the limitation must be imposed before any of the comparative
actions have been hidden.

Imagine, for example, a supposedly fault-tolerant processor built out of four
identical units enclosed in a context which feeds them all identical inputs and gathers
all their results.3 There are at least two different modes of failure of one of the
processors: they might simply die in such a way that they never communicate
again (i.e., behave like STOP) or might become corrupted so that they can be
relied on for nothing, not even not communicating (the most appropriate model
then being ChaosA where A is the failing processor’s alphabet). In this latter case
we are assuming that a corrupted processor might, either through luck or, in some
applications, malice, do whatever it can to make the surrounding hardware’s job
as difficult as possible. A fault of this second sort is usually termed a Byzantine
failure.

If Proc is a process modelling the correct (and deterministic) behaviour of a
processor without faults, then

(Proc !halt STOP) !byzantine ChaosA

gives a natural way of adding the potential for faulty behaviour. (P !a Q is the
interrupt operator defined on page 243.)

Suppose that the result of composing the entire system, together with these
faulty components and the harness used to manage the distribution and collection
of data to and from the four processors, is FTP (fault-tolerant processor).4 The
important thing from our point of view is that the four sets of fault events are
permitted to occur freely (i.e., they do not synchronize with each other or anything
else). We will assume that the error events have become

E = {halt .i , byzantine .i | i ∈ {0, 1, 2, 3}}

You would not expect FTP to work once all four processors have been
brought down by faults. And Byzantine faults are likely to be harder to over-

3In any application like this it is vital that the programs running on the processors are de-

terministic, since otherwise there might be several valid answers that the various copies could

produce, almost certainly leading to confusion in the surrounding voting hardware!
4The mechanisms used to do this in the general case are really quite complex and would take

too long to describe for this book. One of the major issues is the extent to which the harness itself

has to be fault tolerant, since the advantages of running multiple copies of a processor are clearly

reduced significantly if you are dependent on some unreplicated piece of hardware to achieve ‘fault

tolerance’. The mechanisms for achieving fault tolerance frequently use the timed dialect of CSP

described in Chapter 14. Some references can be found at the end of this chapter.

12.3 Abstracting errors: specifying fault tolerance 321

come than halting faults. It is, for example, reasonable to expect it to continue
working when all but one processor has halted, but it could not work when even
two chaotic faults have appeared since the pair of faulty processors might agree on
a different answer to a problem than the pair of correct ones; plainly there is no way
for a voting system to distinguish which is right. If we wanted to prove that FTP
was tolerant of one Byzantine, or three halting, faults, the way to do this would be
to prove that

LE (FTP ‖
E

Halt(3)) and LE (FTP ‖
E

Byzantine(1))

both meet an appropriate specification (see later), where, for example

Halt(n) = halt?i → Halt(n − 1)
<I n > 0>I STOP

One of the major applications of the style of error modelling where the num-
ber of faults is limited relative to some other set of events is in timed modelling,
which we will meet in Chapter 14 and where you can express a bound on how many
errors occur in a given interval. For example, you could state that no more than 3
errors occur in any 13 time units. See page 422 for more on this.

In general, if you are imposing limits on how many errors occur, it will almost
never be appropriate to make an implicit assumption that errors definitely occur.
This means that if the limit is expressed via the parallel composition

SystemE ‖
A∪E

Limiter

where A is part of the alphabet of SystemE , then the process Limiter should never
restrict which members of A occur. In other words,

LΣ �A(Limiter) = RUNA

A process which satisfies this condition is said to be a monitor for A: its E behaviour
can depend on what it sees in A, but it will never refuse any communication in A.

If, for example, you want Limiter to express the condition that no more than
N errors occur for every M events in A, an appropriate process to use would be

Limit(E ,A,N ,M) = Bound(E ,A,N) ‖
E

. . . ‖
E

Bound(E ,A,N) (M copies)

where

Bound(E ,A,n) = ?a : A→ Bound(E ,A,N)
� ((?e : E → Bound(E ,A,n − 1))<I n > 0>I STOP)

322 Abstraction

is the process which prevents more than N error events happening for every A
event. This subtle parallel composition expresses exactly the right condition on
traces via the way it synchronizes only on E : it acts as a monitor on A because
each Bound(N) does. See Exercise 12.3.4.

The most extreme limitation on errors is to ban them outright. If E is the set
of error events in a process SystemE modelled with visible errors (perhaps limited
in a less severe way), then

NoFaults = SystemE ‖
E

STOP

represents its behaviour under the assumption that no error ever occurs. There
is no need to abstract error events in this process since they never occur. The
refinement check

NoFaults
 LE (SystemE)

has a very interesting interpretation: it says that the system, with error events
permitted to the extent allowed by the definition of SystemE , behaves no worse
than the error-free version. In other words, it asserts that SystemE is fault tolerant
to the extent that it assumes faults can occur. The definition of lazy abstraction
implies that the reverse refinement relation holds for any process SystemE at all,
so proving the above relation actually implies equivalence.

This gives a very clean definition of what it means for a process to be fault
tolerant, and it is invaluable when faced with a system for which it is difficult to
give a complete functional specification in a more abstract way. In using it you
should, however, realize that simply proving a system is fault tolerant does not
mean it does what you intended. All it means is that any misbehaviour which is
present in the version with faults is also there without. For example, the process
ChaosA∪E (which is, of course, refined by any divergence-free process with this
alphabet) is fault tolerant because it behaves no worse when faults are allowed than
without. Thus it is not, in general, the case that if P is fault tolerant and P
 Q
then Q is fault tolerant: fault tolerance is not a behavioural specification. (Unlike
determinism it does satisfy a distributive law – see Exercise 12.3.5.)

Thus, if faced with the problem of developing a system which combines com-
plex external behaviour with the need for fault tolerance, you should combine the
above refinement check with tests of whatever basic functional specifications (such
as freedom from deadlock and safety checks) seem appropriate. Of course, it would
only be necessary to prove these of the NoFaults version.

In conclusion to this section, it is the author’s opinion that the approach
to modelling faults as controlled by visible actions, subsequently regulated and

12.3 Abstracting errors: specifying fault tolerance 323

error.0

error.1

error.2

Figure 12.1: Replicating data over multiple lanes (see Exercise 12.3.1).

abstracted, gives a more flexible and usually superior method than simply using
nondeterministic choices. The exceptions to its superiority are cases, such as over-
coming a specified level of message corruption by replicating messages on page 123,
where (i) there is no need to specify patterns of errors above a very low level, (ii) the
occurrence of errors is sufficiently bounded to avoid problems with divergence and
(iii) the overall system behaviour is sufficiently simple so as to make the abstract
specification of fault tolerance above unnecessary.

By their nature, interesting complete examples of fault tolerance are moder-
ately complex. Thus it was not possible to give as many examples in this section
as we might have wished. The interested reader can, however, find various analy-
ses based on the methods described in this section at the associated web site (see
Preface for details).

Exercise 12.3.1 Define a buffer of bits ({0, 1}) which uses three error-prone channels

as shown in Figure 12.1. Channel i , after communicating the event error .i , may corrupt

(but, for simplicity, does not lose) any bit it subsequently receives. Each bit is sent

separately through the channels and voted on at the other end.

Describe such a system and formulate a refinement check that asserts it is tolerant

of one such error.

Exercise 12.3.2 Let P be any deterministic process with alphabet A. We can define

a process

reboot(P) = P �error reboot(P)

324 Abstraction

which reboots itself (back to initial state) each time the event error (�∈ A) occurs. Define

a context rebuild(·) which, though allowing all error events to occur, is such that

P = L{error}(rebuild(reboot(P)))

Hint: rebuild(Q) should record the external trace. Whenever an error event occurs

it should communicate that trace to Q so as to bring it back from its rebooted state to the

one it was in before the error. Be careful to take account of any errors that occur during

this rebuilding. It is helpful to use 1 → 2 renaming on the argument Q so that some of the

events it communicates are visible, but a second copy of them is available to be used while

resetting, and hidden. Specifically, you do not want to hide the ‘normal’ actions of Q, but

need to hide the rebuilding actions.

Why is it important that P is deterministic?

Exercise 12.3.3 Define a process Alt which alternately outputs 0 and 1 on channel c,

and another Switch which inputs values on channel d and communicates the event switch

each time it inputs a consecutive pair of values that are different. Show that, as defined

in this section, with CE as defined on page 318, the process

((Alt ‖
{|c|}

CE (c, d)) ‖
{|d|}

Switch) \ {| c, d |}

is fault tolerant.

Show that this behaviour is not preserved when CE (c, d) is replaced by the medium

process CN (c, d) defined on page 134 used in the original version of the alternating bit

protocol which guarantees to transmit at least one of each N messages and to duplicate

each no more than N times. How does the misbehaviour manifest itself?

This is an illustration of the effect mentioned in the text by which a system is

considered fault tolerant, using the lazy abstraction definition, if it works provided there

are no more than finitely many faults between consecutive visible actions.

Exercise 12.3.4 Prove that the traces of Limit(E ,A,N ,M) (page 321) are precisely

those members s of (A ∪ E)∗ satisfying

s = s1̂ s2̂ s3 ∧ #(s2 � E) > N ⇒ #(s2 � A) ≥ M

Exercise 12.3.5 Suppose P and Q are both fault tolerant (in the sense defined using

NoFaults) with respect to the same set E of error events. Show that P � Q is also fault

tolerant.

12.4 Independence and security

In the first section of this chapter we imagined the existence of two users, and formed
views of how some process P looks to one of them with the other abstracted away.

12.4 Independence and security 325

Suppose they are working in a security conscious environment, and that Hugh has
a higher security classification than Lois. It is a problem of considerable practical
importance to understand when information about what Hugh is doing can get to
Lois via their joint use of P . You can imagine the following scenarios:

(a) Lois, a spy, attempts to find out about Hugh’s interactions with P , the
assumption here being that Hugh is unaware of Lois’s presence.

(b) Hugh is a ‘mole’, namely an agent working in the high security levels of his
enemies. He is trying to set up a ‘covert channel’ with Lois, who is his friend
on the outside, so that the information he has learned can be relayed back to
their spy-masters. Therefore they try to use P to get information from one
to the other, and may well have agreed some code in advance.

Though the second of these is, on the face of it, the more challenging problem
for the process designer from the point of view of counter-espionage, in an absolute
sense they are the same. If no information about what Hugh does ever leaks through
to Lois (i.e., P is secure in the sense (a)) then automatically no covert channel
can exist since anything a malicious Hugh does under (b) to pass information, an
innocent one under (a) might have done ‘by accident’. It is only when considering
imperfect systems that the two modes should perhaps be differentiated.

Clearly what is important is Lois’s abstracted view of P . She can only see
what Hugh is doing if what he does affects what she sees. What we are trying to
specify is what one can either view non-interference (i.e., what Hugh does does not
interfere with what Lois sees) or independence (i.e., what Lois sees is independent
of Hugh). The latter of these two terms is more appropriate for the applications we
now have in mind. A very clear specification of this is simply that Lois’s view is
deterministic: you can think of Hugh as a nondeterminism resolving dæmon within
an abstraction such as LH (P), so if the abstraction is actually deterministic then
none of his choices is reflected in what she sees. You should use either lazy or mixed
abstraction depending on the nature of the interface between Hugh and P .

For a finitely nondeterministic, divergence and �-free process P we can thus
define

• P is lazily independent from H (written LINDH (P)) if and only if LH (P) is
deterministic, and

• P is mixed, or transaction5 independent from H , with respect to the set of
signals S (written MIND

S
H (P)) if and only if MS

H (P) is deterministic.

5The term transaction independence (used by Wulf [138]) derives from the most common use

of mixed abstraction: interpreting the output phases of transactions such as those seen in the

memory example on page 311 correctly.

326 Abstraction

There is a clear connection between this definition and Corollary 3, since
it is evident that the condition of separability is closely related to security. After
all, a process which is built as the parallel composition of two processes which do
not synchronize and respectively serve only Hugh and only Lois is self-evidently
secure. Indeed, some authors have used it as one definition of non-interference/
independence. It has two disadvantages: the easier to understand is that it is
clearly symmetric whereas independence is not. We do not mind Hugh being able
to see what Lois can do, since we have not banned information flowing that way.
We will discuss the second disadvantage later.

The best way to understand our definitions is to see some examples. Let
L = {l , l1, l2, ls1, ls2}, H = {h, h1, h2, hs1, hs2} and S = {ls1, ls2, hs1, hs2} (the
set of signal events). The following simple processes show the main ways security
and insecurity manifest themselves.

1. Let P1 = h → l → P1. This is insecure because LH (P1) = Chaos{l}, which
is nondeterministic. Intuitively, this process is insecure because Lois can see
exactly how many events Hugh has performed.

2. On the other hand, P2 = (h → l → P2) � (l → P2) is secure, since
LH (P2) = μ p.l → p. It is not, however, separable since the abstraction into
H is nondeterministic. The fact that l can always occur means that Lois can
no longer count h’s by counting l ’s.

3. Define

P3 = l1→ P3′

� h1 → P3

P3′ = l2→ P3
� h2 → P3′

P3 is secure since LH (P3) = μ p.l1 → l2 → p. It is not secure in the reverse
direction since

LL(P3) = μ q.(h1 → q) 	 (h2 → q)

The point is that only Lois controls which state (P3 or P3′) it is in, but
Hugh can detect the state by looking which of h1 and h2 is permitted. Thus
information can pass from Lois to Hugh but not back.

12.4 Independence and security 327

4. The following process, unlike those seen so far, uses signal events:

P4 = l1→ ls1 → P4
� l2→ ls2 → P4
� h1 → hs1 → P4
� h2 → hs2 → P4

You can think of this process as one that both Hugh and Lois can ask ques-
tions of by inputting values, and it gives them the appropriate answer back
as a signal. The lazy abstraction of this process is nondeterministic, since if
Hugh could delay the events hs1 and hs2 then Lois could tell he was doing
so (and had input some value). The mixed abstractionMS

H (P4) is, however,
deterministic and so this process satisfies MIND

S
L(·). This is appropriate,

since its behaviour towards Lois does not depend on what Hugh has done.

5. If Hugh is certain to receive a signal at some point then the fact that he does
does not convey information to Lois. Thus the following process satisfies
MIND

S
L(·), since to Lois it looks exactly like μ p.l → p.

P5 = hs1 → l → P5

6. On the other hand, if Lois can tell something about which signal Hugh re-
ceived, then we get an insecure process, and indeed

P6 = hs1 → l1→ P6
	 hs2 → l2→ P6

fails the mixed condition. This only applies when, as in this example, the
value Hugh gets is not predictable on the basis of what Lois legitimately
knows.

Now look back to the memory example on page 311. The work we did there
shows that this is secure, for | T |> 1, if and only if there is no location that Hugh
can write to and Lois can read. This is, of course, exactly what one might expect.
This is perhaps the simplest of a wide range of situations where our two users are
both reading and writing to some system. Some extensions that can lead to further
security difficulties are listed below.

• They might be reading and writing to files, which have to be created using
some name. It is possible for information to flow by Lois testing, by trying
to create a file with a given name, whether Hugh has one of the same name
open. (This assumes that either user will have a request to create a file
refused if the other has one with the chosen name.)

328 Abstraction

• There might be contention for resources: if what Hugh does affects whether
there is room (in memory, on disk etc.) for an action of Lois to be executed,
then information can flow.

• Instead of the transactions on the data being only atomic reads and writes,
they may comprise series of actions which require locks to be placed on some
data items (usually non-exclusive read locks or exclusive write locks). If
Hugh were to place a read lock on a location Lois wants to write to, then it
is possible for information to flow.

All of these situations have been dealt with successfully via the methods described
in this chapter. For more details, see [123, 138] and the worked examples on the
web site (see Preface).

Example 12.4.1 (sharing a communication medium) Interference, and hence

information flow, can also appear in other applications where high-level and low-

level processes share resources. One of these is shared communication media. Sup-

pose Hugh and Lois respectively want to send messages to Henry and Leah, who

share their security clearances. Consider the network

Comm1 = ((SendH ||| SendL) ‖
{|in|}

Medium) ‖
{|out|}

(RecH ||| RecL)

where

SendL = send .lois?x → in.lois .leah!x → SendL

SendH = send .hugh?x → in.hugh .henry !x → SendH

RecL = out .leah?x → rec.leah!x → RecL

RecH = out .henry?x → rec.henry !x → RecH

Medium = in?s?t?x → out !t !x → Medium

Even though the high-level processes cannot send messages to the low-level

ones through this system, it does not satisfy the obvious lazy security property.

Despite the buffering provided at the two ends, it is possible for the high-level

processes to block up the network if Henry refuses to accept the messages that

arrive for him. This means that the low-level lazy abstraction is nondeterministic:

the low-level processes can detect certain high-level activity via their own messages

being blocked.

The following two solutions illustrate much more widely applicable methods

for overcoming security problems which arise, like this one, from contention for

resources.

12.4 Independence and security 329

The first solution is simply to give the low-level users priority in access to

resources: we could replace the process Medium by

Medium2 = in.lois?t?x → out !t !x → Medium2
� in.hugh?t?x → Medium2′(t , x)

Medium2′(t , x) = in.lois?t ′?x ′ → out !t ′!x ′ → Medium2
� out !t !x → Medium2

This simply throws away any high-level communication that is sitting in the medium

when a low-level one comes along. In the revised system, Comm2, the low view

becomes deterministic (it is a 3-place buffer), but there is the great disadvantage

of losing some high level messages. That in turn can be got around by a further

revised medium informing a modified SendH whether each message got through

successfully or not, with each thrown-away message being resent.

SendH 3 = send .hugh?x → in.hugh.henry !x → SendH 3′(x)

SendH 3′(x) = ok .hugh → SendH 3
� ref .hugh → in.hugh .henry !x → SendH 3′(x)

Medium3 = in.lois?t?x → out !t !x → Medium3
� in.hugh?t?x → Medium3′(t , x)

Medium3′(t , x) = in.lois?t ′?x ′ → ref .hugh → out !t ′!x ′ → Medium3
� out !t !x → ok .hugh → Medium3

This addition, producing Comm3, preserves security and re-establishes the

link between Hugh and Henry as a trace-correct buffer (with capacity reduced from

3 to 2). Except for this reduction in capacity, the system now gives essentially the

same behaviour towards Hugh and Henry as did the original system, but Lois and

Leah cannot now detect what the high-level users are doing.

Attaining security by giving priority to low-level users will not be an ideal

solution in many cases. The system designer has to decide, on pragmatic grounds,

whether it is better or worse than the other solution, which is to limit individual

users’ access to the system sufficiently that low-level users are never further re-

stricted by high-level activities. In a file system one might, with an overall disk

capacity of N , allocate M units to high-level users and N −M to the low-level ones.

The analogy in our communication example is to use flow-control to prevent either

user deadlocking the system. We reprogram the sender and receiver processes so

that the sender waits until it gets a message back from the receiver before it next

accepts an input on send , and the receiver does not send such a message until

it knows it will be able to accept another message. The following processes can

be combined with the original Medium (from Comm1): the content of the reverse

330 Abstraction

messages is irrelevant.

SendL4 = send .lois?x → in.lois .leah !x → out .lois?x → SendL4

SendH 4 = send .hugh?x → in.hugh.henry !x → out .hugh?x → SendH 4

RecL4 = out .leah?x → rec.leah!x → in.leah.lois .Zero → RecL4

RecH 4 = out .henry?x → rec.henry!x → in.henry.hugh.Zero → RecH 4

The resulting Comm4 is not only secure, it is separable and equivalent to the

composition of a one-place buffer (i.e., COPY) between each of the two pairs of

processes. Note that the medium is used more than previously, since two internal

messages are required for each external one, but it is used more carefully as each

time one of the four processes around it sends a communication to it on in, it is

impossible for the resulting out to be refused. (End of example)

We have seen that the natural specifications of both security and fault toler-
ance involve similar ideas. They are, in fact, closely related specifications. Suppose
LINDH (P) holds. The determinism of LH (P) easily implies that it equals

LH (P ‖
H

Q)

for any divergence-free process Q with alphabet H . This is reassuring, since it
means that what Lois sees does not depend on what high-level process we put in
parallel with P . It also means that

LH (P) = P ‖
H

STOP

and so P is ‘fault tolerant’ if you think of the high-level actions as the errors. This
is not surprising, since if there is no way of telling, by looking at the pattern of a
process’s behaviour in its non-error alphabet, what, if any, errors have occurred,
then it must be fault tolerant!

On the other hand, a process can be fault tolerant without the abstraction

LE (P)

being deterministic, so the reverse implication does not hold. The difference is that,
when considering fault tolerance we have an inbuilt standard to judge the process
against, namely the way it behaves without errors. If it should happen that some
error resolves a nondeterministic choice which would have had to be made anyway,
this does not matter in judging fault tolerance, but it might convey information to
the user about the pattern of errors. See Exercise 12.4.2 for a class of examples.

12.4 Independence and security 331

In real applications one will frequently have more than just the two security
levels we have modelled in this section. One could have any number with a partial
order security policy relating them: user Ui ’s behaviour can affect Uj if and only if
clearance(i) ≤ clearance(j). There is, however, no need to extend our theory further
since all you have to do is to show that, for each security level λ, the collection of
all users with this level or below is independent of the collection of all the others.
Thus you simply look at a series of two-way partitions of the overall alphabet. For
example, if there is another user Mhairi with alphabet M whose clearance is mid-
way between Hugh’s and Lois’s, then to establish security of a process P you should
prove

LINDH∪M (P) and LINDH (P)

i.e., neither Hugh nor Mhairi can influence what Lois sees, and Hugh cannot influ-
ence what Lois and Mhairi see.

The limitations of security modelling

Security modelling is a subject full of philosophical difficulties, and just about all
specifications of what it means for a process to be ‘secure’ can be criticized in one
way or another. A general text is not the place to go into this in detail, but it is as
well to understand just what our particular specification can and cannot do.

First and foremost, a security specification couched in a particular model can
only reflect information flow via the sort of behaviour the model records. The most
obvious thing missing from the models we have used is timing information, and it
is certainly possible to construct examples which appear secure over N which one
would suspect might contain ‘timing channels’ if implemented in the obvious way.
The various secure communication examples above, such as Comm4, come into this
category as the low users will presumably get a variable bandwidth depending on
the level of activity of Hugh and Henry.

By and large, the more detailed a model one chooses, the more complex
both process modelling and security analysis become, and (presumably) the more
likely we are to find small flaws in security. All one can do is to pick one’s model
intelligently and be aware of the limitations built into the choice.

As we will see in Chapter 14, it is possible to take time into account in mod-
elling CSP. There is no reason in principle why the determinism-based specification
could not be used to specify security over that sort of model too.

There is a clear sense in which the determinism-based condition can be viewed
as too strong. It only defines as secure those processes whose low view-point is de-
terministic. However, it is undoubtedly possible to build a secure process whose

332 Abstraction

low-level abstraction is nondeterministic, since the mechanism resolving the non-
determinism has nothing to do with how the high interface behaves. For example,
there are many separable processes whose low-level abstraction is nondeterministic,
and clearly any process implemented as an interleaving of entirely disjoint high and
low-level processes is secure. In this sense,

ChaosH∪L = ChaosH ||| ChaosL

is secure.
The point you should try to understand, however, is that just because one

implementation of a given process is secure, this is no guarantee that all are. For
example, if LEAK is any divergence-free process whatsoever, for example

μ p.hugh?x → lois !x → p

you would not naturally think of

ChaosH∪L 	 LEAK

as secure since it is free to behave like LEAK every single time it is used. The
above process is, however, equivalent to ChaosH∪L, and we thus have two process
definitions that none of our semantic models can tell apart, one being plainly secure
and one insecure. Perhaps the problem is that our models go to great lengths to
represent nondeterminism as abstractly as possible, and specifically do not give us
information about whether a given nondeterministic decision is resolved innocently
or in a way that allows information to flow.

A number of authors have attempted to define conditions to decide whether
a general CSP process is secure in the sense we have being trying to capture. In-
variably these conditions are satisfied by ChaosH∪L, even though this process is
refined by many others which do not satisfy them. We might call this the refine-
ment paradox. The idea that P can be secure and Q � P insecure is contrary to
all our understanding of what refinement means. Reassuringly, it is true that if
LINDH (P) and P
 Q then LINDH (Q), because by construction

P
 Q ⇒ LH (P)
 LH (Q)

and the only refinement of a deterministic process is itself. In truth, it simply is not
possible to determine whether a general process is secure by looking at its value in
the standard denotational models of CSP.

A good analogy is provided by deadlock freedom: if P is deterministic you
can tell if it can deadlock by looking at its value in T , but for general processes you
need a richer model like N . Similarly, if P is low-deterministic6 in the sense that

6Any deterministic process is low-deterministic, as is any process satisfying LINDH (·).

12.4 Independence and security 333

for all traces s and a ∈ L

s 〈̂a〉 ∈ traces⊥(P) ⇒ (s , {a}) ∈ failures⊥(P)

then you can accurately decide whether or not it is secure from its value in N . For
values outside this class, like ChaosH∪L, they do not give enough information.

Just how much finer a model is required to deal with the general case is
debatable: certainly you need something about as fine as that provided by the
operational semantics in Chapter 7, and arguably you should incorporate probability
as well. In any case it is very unlikely that such an attractive, persuasive, or
practical (thanks to FDR’s ability to check determinism: see page 229) definition
can be found.

Exercise 12.4.1 Recall from page 321 that a monitor for a set A of events is one that

never refuses any member of A. Say that P is semi-separable with respect to (H ,L) if there

is a monitor M for L and a process PL using only events from L such that P = M ‖
L

PL.

(a) Show that if P is separable then it is semi-separable.

(b) Suppose P is semi-separable (into (M ,PL) as above) with respect to (H ,L). Show

that LH (P) = PL for such P . Deduce that if PL is deterministic then LINDH (P)

holds.

(c) Now suppose that P is such that LINDH (P). Let M be the process whose failures

are

{(s, X ∩ H) | (s,X) ∈ failures(P)}
∪ {(s 〈̂l 〉̂ t ,Y) | Y ∩ L = {} ∧ s ∈ traces(P) ∧ 〈l 〉̂ t ∈ L∗ ∧ l �∈ initials(P/s)}

Show that M is a monitor such that P = M ‖
L

LH (P) and hence that P is semi-

separable.

Exercise 12.4.2 Let P be any divergence-free process with alphabet H ∪ L. Show

that P ′ = P � ChaosL satisfies the definition of fault tolerance

P ′ ‖
H

STOP � LH (P ′)

but need not be secure.7

7There are a number of definitions of ‘security’ in the literature which would define such P ′ to

be secure for all P , even though if with P = LEAK from page 332, for example, you can guarantee

that if Hugh communicates anything with P ′, then Lois gets to hear it.

334 Abstraction

12.5 Tools

With the exception of the fine distinctions made at the start by the interpretation
of abstraction over infinite traces, just about everything in this chapter is relevant
to FDR. The ways of structuring the checking of specifications using abstraction
both helps in formulating the properties you want of processes and in using the
tool’s compression functions (see Section C.2).

We have seen various applications of determinism checking in this chapter,
in the sense that it has been used to characterize security and separability. FDR’s
ability to check determinism was included mainly because of these results. Note
that because of the way lazy and mixed abstraction are formulated it will often be
necessary to use the stable failures model F for these determinism checks, just as it
is used for refinement checks involving abstraction. For the only formulation of lazy
abstraction which can be rendered in finitely nondeterministic CSP is the one on
page 307 which, if interpreted over N , often introduces false divergences that would
confuse FDR. This means that you are, in fact, checking a process that might well
diverge for F -determinism as discussed on page 225. This is only a technicality,
however, since the F -determinism of LF

H (P) is equivalent to the (true) determinism
of the other two formulations of LH (P).

All the significant examples from this chapter, and several larger applications
of the definitions of fault tolerance and security, can be found on the web site.

12.6 Notes

The work in this chapter has developed over the past three years, with many of the
results arising from Lars Wulf’s doctoral studies with the author: his thesis provides
by far the most extensive study of the compositional properties of abstraction and
its application to security. Jim Woodcock was very influential on the early phases
of this work.

The precise formulations of lazy and mixed abstractions in this chapter are
new. They are direct descendants of the versions used in [109, 123, 124] which were
based on a definition of lazy abstraction using interleaving:

L|||
H (P) = P ||| RUNH

The intuitive justification for that form of abstraction is that the process RUNH

camouflages events in H : you can never get any information about P from such an
event occurring since it could always have come from RUNH .

The one advantage of the earlier version is that it is easily definable using
standard operators over N , while we have had to compute ours over F (in the

12.6 Notes 335

knowledge that the N version is, in fact, the same). It has at least three disadvan-
tages. The first is that it is not natural to have an abstraction into L performing
lots of events in H , with the consequence that many of the results and definitions
we have formulated do not work as neatly since they have to take account of the
camouflage events. The second is that the corresponding way of lifting a specifi-
cation on L to one on the whole alphabet (implied by the second part of Exercise
12.2.2) does not lend itself nearly as well to facilitating compression.

The third and main disadvantage is that L|||
H (P) is not quite abstract enough:

it identifies strictly less processes than LH (P). If the event l ∈ L is only possible
after h ∈ H this is still true of the interleaving abstraction. Thus if

P1 = STOP 	 l → STOP

P2 = h → l → STOP

P3 = h → h → l → STOP

we have that LH (Pi) are all the same, but L|||
H (Pi) are all different. The interleaving-

based abstraction of P1 has the trace 〈l〉, whereas the shortest traces of the other
abstractions containing an l are respectively 〈h, l〉 and 〈h, h, l〉. Intuitively, the
interleaving definition gets this wrong since surely all these three processes actually
do look the same in L.

Having seen this example you might wonder why the interleaving definition
was ever used, but in fact this difference does not show up in three of the most
important applications of lazy abstraction. Thanks to the result contained in the
second part of Exercise 12.2.2, noting that

NoFaults = P ‖
E

STOP

never communicates in E , we get that P is fault tolerant in the sense described
earlier if and only if

L|||
E (NoFaults)
 L|||

E (P)

So it yields an identical definition of fault tolerance.

It can be shown that LH (P) is deterministic if and only if L|||
H (P) is. This

is left as an (interesting) exercise. It follows that independence defined in terms of
the determinism of either abstraction is identical, and that a deterministic process
is separable if and only if both L|||

H (P) and L|||
L (P) are deterministic.

An example of the use of abstraction in formulating fault tolerance properties
can be found in [141]. Earlier fault tolerance case studies such as [14] have used
specifications crafted to the examples under consideration.

336 Abstraction

There have been numerous definitions of security, in the sense of indepen-
dence/non-interference, over CSP models. Several of these, namely those of [125, 2,
44, 38] turn out to be equivalent to ours for deterministic P , though they usually
make the decision to extend their definitions over all processes rather than restrict-
ing them to the low-deterministic processes or a subset. That usually leads to their
conditions passing processes that appear decidedly suspect.

An exception to this problem is the work of Forster [38], who develops con-
ditions on labelled transition systems that are both equivalent to ours for low-
deterministic processes and which are extremely careful not to admit any insecure
processes – at least provided one interprets labelled transition systems in a partic-
ular way. That is, he insists that when a process’s operational semantics produce a
given labelled transition system, all the potential behaviours displayed in the LTS
must actually be possible in every implementation. In other words, there must be
no implementation decisions taken that refine away some options. In this possiblis-
tic view of processes, where the range of potential behaviours may not be reduced,
the concept of refinement more-or-less has to be discarded. While this is hardly
welcome, the fact that we lose the refinement paradox with it is some compensa-
tion.

His conditions themselves are very simple in concept. They essentially state
that the result of each high-level action in any state σ is equivalent, in the low
view produced by banning all subsequent high actions, to the same low view of σ.
Though generalisations of lazy independence, they are nevertheless still very strong
conditions, perhaps chiefly because they look at LTS’s as basically sequential things
where all actions subsequent to a given one are influenced by it. Perhaps for that
reason they seem to be good at handling examples in which nondeterminism is used
to mask8 potential insecurities arising in the low-level user’s interactions with the
same process in a network, but not at handling ones in which the nondeterminism
is introduced by a different one.

Forster named his conditions (there are variations based on different process
equivalences and different ways of handling the case where a given state has several
copies of the same high-level action) local non-interference. An implementation of
perhaps the main variant has since been included in some versions of FDR.

Both Forster’s thesis [38] in which the conditions are described in detail, and
several example files, can be found via the web site of this book.

Though we have, of course, couched our determinism-based definition of se-
curity in the models of CSP, one can argue that it is largely independent of which

8This typically means that an analysis is done to discover what range of behaviours might be

visible to low as a result of different high-level choices, and we ensure that these choices are always

present whatever high has done.

12.6 Notes 337

process algebra equivalence is used. This is explained in [109] and illustrated in
[37].

2005: The work on noninterference in this chapter has recently been extended
to timed processes of the form found in Chapter 14.

338 Abstraction

Part III

Practice

339

Chapter 13

Deadlock!

We have already met several examples of deadlock, which is certainly the best-
known pathology of concurrent systems. It is also – probably for this reason – the
most feared. A system becomes deadlocked when no further progress can be made.
We distinguish it from livelock, where an infinite amount of internal progress is
being made without any interaction with the external environment, even though
from the outside a deadlocked and a livelocked system look similar. Internally the
two phenomena are quite unalike, meaning, for example, that different techniques
are needed for analyzing when they can appear.

In the first section we find out how deadlock arises, how to eliminate dead-
locks arising for local reasons, and hence how to eliminate deadlock in tree networks.
There are various useful ad hoc conditions on networks, many based on orderings,
which can be used to eliminate deadlock; these are surveyed in the second sec-
tion. The third section looks at some more general global techniques for deadlock
avoidance. The fourth shows how the construction and topology of a network can
sometimes allow us to factor its deadlock analysis into a number of smaller parts.
The fifth section looks at the limitations of the style of local analysis we advocate.

13.1 Basic principles and tree networks

13.1.1 Assumptions about networks

We cannot detect or reason about deadlock using traces alone. After all, for any
process P ,

traces(P) = traces(P 	 STOP)

342 Deadlock!

and the right-hand side can deadlock immediately whether or not the left-hand side
can. Deadlock is best described in the stable failures model of CSP, where it is
represented by the failure (s , Σ ∪ {�}) for s any trace in Σ∗. (The fact that a
process does nothing after it terminates should not be regarded as deadlock.) In
fact, systems in which both deadlock and termination are simultaneously an issue
are (at least in the author’s experience) very rare and it would be an unnecessary
complication to have to deal at every turn with the case of processes or networks
terminating. This leads us to make the first of a number of assumptions about
the sorts of network we are dealing with. These are all things we will assume
throughout the first four sections of this chapter, since they all help in pinning
down and reasoning about deadlock in realistic systems.

(A) Throughout this chapter we will assume that none of the component pro-
cesses of our networks can terminate (though this does not preclude them
being constructed out of sub-processes that can).

Deadlock is a static condition: when it happens no process is making progress
and, in particular, both the shape of the network and the states of all the processes
in it are, from that moment, fixed. This leads to our second assumption about the
networks we are considering:

(B) We will consider only statically-defined networks ‖n

i=1
(Pi ,Ai), where the

communications of Pi are entirely within Ai .

This does not mean we are excluding dynamically-growing networks such as those
we can build with piping and enslavement, merely that one would have to take a
snapshot of such a network at the moment of deadlock and think of it in our new
terms. The use of the alphabetized parallel operator means we have excluded uses
of ||| and ‖

X
where there are some events that can be communicated independently

(i.e., without synchronization) by more than one process. We want to know exactly
which process or processes participate in each event. The majority of practical
uses of ‖

X
and ||| could be written in this way since they do not use the power

of those operators to introduce ambiguity about which process performs an event.
In practice we will allow the use of these operators as long as the network could
have been built using the alphabetized parallel operator. What we have done is
to concentrate on ‘realistic’ style compositions, at the expense of forms of parallel
composition which are mainly used for establishing specification effects. This is
equally true of our next assumption:

(C) We will consider only networks that are triple-disjoint, meaning that there
is no event that requires the synchronization of more than two processes. In

13.1 Basic principles and tree networks 343

other words, if Pi , Pj and Pk are three distinct nodes in the network, then
Ai ∩ Aj ∩ Ak = {}.

Thus all events are either communications between a pair of processes, or are simple
interactions between a single process and the environment. All interaction within
the network must be point-to-point. The main thing that this excludes is the use
of parallel composition as the many-way conjunction of trace specifications.1

Implicit in assumption (B), but sufficiently important that it should be stated
directly, is the following:

(D) We consider only networks built using parallel composition from their com-
ponent processes. In particular, they contain no renaming or hiding.

Since the majority of networks one meets in practice violate this, especially because
of the hiding of internal communications, this looks like an over-strong assumption.
The reason why we make it is to allow us to concentrate on a single central case and
to see the communications of all the component processes of a network directly. Two
basic facts and a series of laws mean that we can always transform any reasonable
network into one which is, from the point of view of deadlock, equivalent and which
meets condition (D). The two facts are:

• P is deadlock-free if, and only if, P \ X is for any X ⊆ Σ. (P \ X may be
able to diverge when P cannot, but see Section 8.4.)

• P is deadlock-free if, and only if, P [[R]] is for any alphabet transformation R
which contains all of P ’s events in its domain.

Intuitively these are both obvious: since deadlock means reaching a state where no
action of whatever name and whether visible or invisible is possible, it does not
matter if the actions are renamed or hidden.

The laws referred to are just 〈hide-X ‖Y -dist〉 (3.7), 〈f [·]-X ‖Y -dist〉 (3.10),
〈f [·]-hide-sym〉 (3.11), and 〈f [·]-hide-null〉 (3.12).

These usually allow us to move all the hiding to the outside of a parallel
composition, and all the renaming onto the individual component processes. The
hiding is then irrelevant from the point of view of deadlock, and the renaming sim-
ply creates new (and necessarily busy if the originals were) component processes.
(Two of these laws are restricted to 1–1 renaming, but fortunately it is that sort of
renaming which is generally used in the construction of realistic models of imple-
mentations – typically modularized into operators like >> and //.) An example is
given at the end of this chapter in Section 13.7.

1In that case, deadlock is likely to arise because of ‘inconsistency’ in the specifications: they

allow a trace s but no continuation of s.

344 Deadlock!

Our final assumption is much easier to understand than the one above:

(E) We assume the network is busy, defined to mean that each component process
is deadlock-free.

While there are many deadlock-free networks that do not satisfy this, the deadlocks
occurring in their individual processes usually fall into one of the following two
categories:

• states (often error states) which in fact – and often because of the correct
functioning of the network – the component process never reaches; and

• the component process that is deadlocking is one (most often the process
STOP itself) which is an ‘extra’ process designed to prevent some undesirable
event from happening in the main network.

In the second case one can usually (and always when the offending process is STOP)
just redesign the individual processes so that they simply avoid the offending be-
haviour rather than require an externally imposed ban. To expect a deadlock analy-
sis technique to be able to handle the first case is like using a screwdriver to hammer
in a nail – one should not expect it to be able to analyze trace conditions of in-
dividual component processes. Thus this assumption of busy-ness is a reasonable
starting point for examining deadlock behaviour per se.

Finally we make an assumption about the way we describe processes rather
than about the processes themselves. The concept of a channel in CSP is rather
broad, and in general many processes may share events from the same channel (i.e.,
the events c.x for the name c) even when the network is triple-disjoint. This is
typically because the name c really represents an array of ‘real’ channels. Through-
out our discussions of deadlock, the word channel will be restricted to this ‘real’
sense: a collection of events used either by a single process to communicate with
the environment, or by a pair of processes to talk to each other. In other words,
any channel that intersects the alphabet of a process is contained in it. There is
also the implication in the word ‘channel’ that communications over it are somehow
well-behaved and co-ordinated. This is an idea we will be able to make clearer at
the end of the next section.

This completes our base assumptions. Though they may seem severe, the
intention is only to concentrate on the central cases of deadlock and to give ourselves
a common language to talk about the systems we are considering. In fact we will
find that the methods used to combat deadlock are often phrased in a way that is
not specific to our tightly-defined class of networks, merely to the class of networks
that could be transformed into it in the ways described above.

13.1 Basic principles and tree networks 345

13.1.2 Ungranted requests and conflicts

The assumption of triple-disjointness gives particular importance to the concept of
a communication graph, something we first discussed in Section 2.2, for this graph
(a node for each process and an edge between a pair if their alphabets intersect)
now ‘shows’ all the interactions between processes. The essence of any deadlock
state will be the collection of requests for communication that processes are making
to each other along the edges of this graph.

We might as well assume that this graph is connected (i.e., that there is a path
through the edges between any chosen pair of nodes). If it were not connected the
various connected components into which it divides can be thought of as completely
independent processes from the point of view of deadlock analysis.

Since deadlock is a static phenomenon, we can examine the fixed state in
which it occurs. Each component process is in a state which we can add to the
communication graph. Because of our assumption of busy-ness, each process must
be able to perform some action. In general this might be either one which does
not require the agreement of any other process or (because of triple-disjointness)
one which requires the agreement of exactly one other process. The first of these
(which breaks into two cases: internal (τ) actions and ‘external’ communications)
cannot be the case in a deadlock state since there would be nothing in the network
preventing the action – meaning that it was not deadlocked. Therefore every process
must have one or more requests to other processes – necessarily ones that do not
agree to any of the requested actions.

Thus, all of the interest in a deadlock state is concentrated on the set of
communications that are shared by two processes: we will call this set

⋃
{Ai ∩Aj | i = j}

the vocabulary of the network.

Suppose P and Q , with alphabets A and B , are processes in the network
which can communicate with each other (i.e., A∩B = {}). We define an ungranted
request to exist from P to Q in the state σ (the details of which we will discuss later),
written P σ=⇒•Q , if neither process can communicate outside the vocabulary of the
network; P can communicate in B but they cannot agree on any communication in
A ∩ B .

Ungranted requests are the building blocks of a deadlock. We can form a
snapshot graph of a deadlock by superimposing the (directed) arcs representing them
onto the communication graph. A possible example is shown in Figure 13.1 (where
the dotted lines represent edges of the communication graph with no ungranted
request). We should notice that any ungranted request which appears between a

346 Deadlock!

e

a

b

d

c

Figure 13.1: Typical snapshot graph of a deadlock state.

pair (Pi ,Pj) of processes in the entire network can also appear when Pi and Pj are
put in parallel (only) with each other.

There are very good reasons why as much as possible of the analysis (whether
for deadlock or anything else) of a large network should be done locally rather than
considering the whole system all the time. The patterns of behaviour that occur
between small and localized collections of processes are much easier to understand
both for humans and computer tools – the latter because of the state-space explosion
which occurs as networks grow. The various assumptions (A)–(E) above are all
conditions that apply to an individual process (i.e., are local in the strongest sense),
and it is clear that enumerating the ungranted requests between pairs of processes
is also very local.

Start from any process P0 in a deadlocked network. It has an ungranted
request to another process P1, which in turn has an ungranted request to some P2,
and so on. Since the network we are looking at is finite this sequence must repeat,
giving a cycle of processes

〈Pr ,Pr+1, . . . ,Pr+s−1〉

where Pr = Pr+s . This simple argument, and the chains and cycles of processes it
creates, are central in deadlock analysis.

Look again at Figure 13.1. Wherever you start here, and whatever choices

13.1 Basic principles and tree networks 347

Two nodes in conflict (both may have external requests)

Strong conflict (at most one may have external requests)

Figure 13.2: Illustrations of conflict and strong conflict.

are made about which requests to follow, the sequence leads to one of two cycles:
either 〈a, b〉 or 〈c, d , e〉. The latter is very much what we might have expected, but
one might well regard the former as rather peculiar: an adjacent pair of processes
each waiting for the other. This can, of course, happen when the intersection of a
pair’s alphabets has size greater than 1 (consider the processes μ p.a → b → p and
μ q.b → a → q placed in parallel). There are two variants of this situation that
need to be studied separately.

• We say that a pair of processes are in conflict if each has an ungranted request
to the other, no matter what other requests they may have.

• They are in strong conflict if, additionally, one of the two processes in conflict
has its only ungranted request to the other. (Note that the pair 〈a, b〉 are in
strong conflict.)

These two situations are illustrated in Figure 13.2.

One can search for potential conflicts and strong conflicts between a pair of
neighbours by looking at their binary parallel composition. They are said to be free
of conflict (respectively free of strong conflict) if the appropriate situation never
occurs. (Note that the vocabulary of the entire network is necessary to judge these
things since it affects whether a given state is formally an ungranted request. In
practice the escape clause this can provide is rarely used, though it certainly can
prove invaluable.) A network is free of (strong) conflict if all its constituent pairs
are. Notice that this is another example of a locally-checkable property.

348 Deadlock!

As we will see in the rest of this chapter, these are extremely useful prop-
erties for a network to have. Most well-designed systems, except ones with rather
symmetric communication patterns, are (or can readily be made) conflict-free. For
example, any pair of processes connected by a single channel will be conflict-free (ex-
cept in unusual circumstances where the inputter can select which inputs it wants),
as will any pair where both sides agree on the sequence of channels/events to be
communicated (with the same caveat).

Note that freedom from strong conflict is a weaker condition than conflict
freedom. (It is better to avoid the potentially ambiguous phrase ‘strong conflict
freedom’ so as not to get confused about this.) Since to fail it there must be
one process Q which is willing to communicate only with another one, P , which
strangely offers some communication to Q but none that Q can accept, this is a
condition which is met by the great majority of practical networks. And the few
correctly functioning networks that fail to satisfy it can invariably (at least in the
author’s experience) be redesigned so that they do satisfy it without changing the
behaviour of the network at all. The author believes it should be adopted as a
design principle for parallel networks.

Example 13.1.1 (dining philosophers) One of the first examples of deadlock

we saw (in Section 2.2.1), and certainly the best known generally, is the five dining

philosophers (the number of philosophers, as it turns out, being immaterial). We

look at it again here because it turns out to be an excellent example for illustrating

the design principle discussed above.

The basic example described earlier is easily shown to be conflict-free. The

only pairs of processes we have to examine are adjacent FORK j and PHILi processes

(i ∈ {j , j ⊕ 1}), and both of these agree that the sequence of communications

between them will be a potentially unbounded alternating sequence of picksup.i .j
and putsdown .i .j events. Since they always agree on what their next communication

will be, they can never be in conflict.

The situation becomes much more interesting if we adopt one of the standard

ways of avoiding the deadlock: the introduction of a BUTLER process whose duty

it is to prevent all the philosophers sitting down simultaneously. Perhaps the most

obvious definition of this process is BUTLER0, where

BUTLERn = (sits?i → BUTLERn+1<I n < 4>I STOP)
� (getsup?i → BUTLERn−1<I n > 0>I STOP)

This process just keeps a count of how many philosophers there are at the table,

allowing another as long as there are no more than three already there, and allowing

one to leave as long as there is any there. This process works: if it is put in parallel

13.1 Basic principles and tree networks 349

with the network described in Section 2.2.1, synchronizing on {| sits, getsup |}, the

result is deadlock-free.

This solution has much more the feeling of a patch put on to cure the observed

deadlock than of a network designed from first principles to be deadlock-free. It is

relatively easy to find the right patch for this example since there really is only one

deadlock possible in the original system (as well as there only being one cycle in the

communication graph), but on more complex systems it would be relatively harder.

For that reason we will, in the rest of this chapter, concentrate on ways of building

systems that are intrinsically deadlock-free rather than on removing deadlocks after

they have been introduced.

The network augmented by this definition of BUTLER, perhaps surpris-

ingly, contains strong conflicts between the new process and philosophers. These

arise when four philosophers are sitting down and the fifth (PHIL0 say) wants to

sits down. The BUTLER quite correctly refuses, but also (on close examination,

bizarrely) is quite happy to let PHIL0 get up from the table (the event getsup.0),

an event that this philosopher in turn refuses, not being at the table! Because these

two processes each have an ungranted request to the other, this is a conflict; because

PHIL0 has no other request it is a strong conflict.

We can remove this by a slightly more careful definition of BUTLER: it

becomes BUTLER′({}), where

BUTLER′(X) = (sits?i : ({0, 1, 2, 3, 4} �X)→ BUTLER′(X ∪ {i})
<I | X |< 4>I STOP)
� getsup?i : X → BUTLER′(X �{i})

This is designed so that it does not make offers to philosophers that it should know

they cannot accept. The behaviour of the network with BUTLER′ is identical

to that with the other; the new network is, however, more amenable to deadlock

analysis. (End of example)

We can easily transfer the notion of conflict freedom to a single channel
connecting two processes. This will be when the two processes cannot both offer
communication on the channel without agreeing on at least one event in the chan-
nel. This definition is more focused than simply saying that the two processes are
conflict-free since it ignores the other channels they may have and their external
communication. However, we can say that if two processes are only connected by a
single conflict-free channel then they are conflict-free.

Channels that are not conflict-free, while easy to give examples of, are a
somewhat counter-intuitive concept. From the point of view of deadlock analysis it
will sometimes be helpful to assume all channels are conflict-free.

350 Deadlock!

Formal definitions

Many of the concepts in this section have been defined more in words than in math-
ematical notation. Though hopefully these words have clearly expressed what we
wanted, it is important that we can formalize our reasoning within our mathemat-
ical models. While the concepts and definitions in this section may help clarify
things for the mathematically inclined reader, it is only necessary to understand
the concepts below if it is intended to pursue deadlock proofs at a very formal level.
The rest of this chapter does not depend significantly on the precise definitions
below; other readers can safely proceed to the next section.

As discussed earlier, the model we are using here is the stable failures model
F where (except for the special case of � actions which is irrelevant to this chapter
because of assumption (A)) a process is identified with the sets

(i) of pairs (s ,X) such that it can perform the trace s and then reach a stable
state where it cannot perform any action from X , and

(ii) of its finite traces.

The network V = ‖n

i=1
(Pi ,Ai) is deadlocked when it has the failure (s , Σ)

for some s ∈ Σ∗. (Our assumption that no Pi can terminate means that we can
ignore the refusal of �, which must now be refused in every stable state.) We
know (from the failures definition of the parallel operator) that s ∈ (

⋃n
i=1 Ai)∗,

that si = s � Ai ∈ traces(Pi) and that there are refusal sets Xi such that (si ,Xi) ∈
failures(Pi) and

⋃n
i=1 Ai =

⋃n
i=1 Ai ∩ Xi

(In general there may be many different combinations of Xi that work here.) A dead-
lock state is the pair (s , 〈X1, . . . ,Xn〉): it allows us to see how each Pi contributed
to the deadlock. Except in quite exceptional circumstances, where both Σ is infinite
and the definitions involve unbounded nondeterminism, we can assume that all the
component failures (si ,Xi) are maximal in the sense that there is no Y ⊃ Xi with
(s ,Y) ∈ failures(Pi). We can and will always assume that Xi ⊇ Σ � initials(P/si).

In the common case that a Pi is deterministic, the only option is to set
Xi = Σ � initials(Pi/s).

We can generalize the above notion of deadlock state to look at how any
failure of a parallel composition arises:

Definition A state of ‖n

i=1
(Pi ,Ai) is a pair (s , 〈X1, . . . ,Xn〉) where

• s ∈ (
⋃n

i=1 Ai)∗,

13.1 Basic principles and tree networks 351

• (s � Ai ,Xi) ∈ failures(Pi),

• Xi ⊇ Σ � initials(Pi/s � Ai)

A state is maximal if all the Xi are maximal refusals as described above. It is a
deadlock state if

⋃n
i=1 Ai =

⋃n
i=1 Ai ∩ Xi

Note that from any state we can deduce a state for each subnetwork, in particular
all adjacent pairs of processes.

The notions of request, ungranted request, conflict, etc. are now straightfor-
ward to define formally.

Definition If (s ,X) ∈ failures(Pi) and X ⊇ Σ � initials(Pi/s), then we say Pi is
making a request to Pj (i = j) if Aj ∩ (Σ �X) = {}.

Definition There is an ungranted request from P to Q in the composition P A‖B
Q , with respect to vocabulary C ⊇ A ∩ B if it has a state (s , 〈XP ,XQ〉)

• (Σ �XP) ∪ (Σ �XQ) ⊆ C

• B ∩ (Σ �XP) = {}
• B ∩ (Σ �XP) ⊆ XQ .

There is an ungranted request from Pi to Pj in the deadlock state σ (written
Pi

σ=⇒•Pj) if the corresponding state of the parallel composition of Pi and Pj is an
ungranted request with respect to the vocabulary of the whole network V .

Definition A conflict (with respect to vocabulary C ⊇ A ∩ B) in the parallel
composition P A‖B Q is a state (s , 〈XP ,XQ〉) which is simultaneously an ungranted
request (with respect to C) in both directions.

Definition A strong conflict of the pair P A‖B Q with respect to C is a conflict
(s , 〈XP ,XQ〉) with respect to C such that either Σ �XP ⊆ B or Σ �XQ ⊆ A.

Definition The network V is free of conflict (respectively strong conflict) if each
pair of adjacent processes in its communication graph are, in the sense that no state
of their pairwise composition is a conflict (respectively strong conflict) with respect
to the vocabulary of V .

13.1.3 The Fundamental Principle and tree networks

If a network is free of strong conflict, we can make an important assumption about
the sequence of nodes 〈P0,P1,P2 . . .〉 constructed when developing the Fundamental

352 Deadlock!

Principle, namely that Pn = Pn+2 for any n. This is because, even though Pn+1

may have an ungranted request to Pn , we can guarantee that it has one to at least
one other node, for otherwise Pn and Pn+1 would be in strong conflict. We can
immediately deduce that the cycle of ungranted requests produced by the sequence
must be a proper cycle, namely one which is a sequence of at least three distinct
nodes. This is the fundamental result which underpins all of our deadlock analysis
techniques.

Fundamental principle of deadlock If V is a network which satisfies our

basic assumptions (A)–(E)2 and which is free of strong conflict, then any deadlock

state of V contains a proper cycle of ungranted requests.

It has one immediate consequence, since no tree network (i.e., one whose
communication graph is a tree) can contain a proper cycle of ungranted requests.

Deadlock rule 1 If V is a tree network which is free of strong conflict, then V
is deadlock-free.

This is likely to be the only rule you ever need for proving deadlock freedom in
tree networks. What it shows is that deadlock is not a real concern in well-designed
tree networks.

Since the dynamic networks produced by recursing though operators like >>

and // (see Chapter 4) are almost invariably trees, it is worth noting here that
even though these do not fit directly within assumptions (A)–(E) set out earlier,
the remarks and transformations set out with those assumptions mean that to all
intents and purposes Rule 1 still applies. Thus, so long as basic principles (such
as busy-ness and freedom from strong conflict) are adhered to, deadlock is rarely a
problem in this type of network.

One could generalize Rule 1 a little to deal with the case where the commu-
nication graph is not a tree, but where there are enough (directed) edges between
nodes over which ungranted requests are impossible to exclude proper cycles of
them. Obviously one should bear this in mind if there are such edges, but it does
not seem to be a very common situation.

Exercise 13.1.1 Let us suppose we need to pass messages in either direction between

a pair of users separated by a chain of intermediate nodes. Someone proposes the following

design for a node:

Node = leftin?m → rightout !m → Node

� rightin?x → leftout !m → Node

where, in composing the network, these channels are renamed so that each adjacent pair

is connected by a pair of channels, one in each direction. He argues that this must be

deadlock-free because the communication graph is a tree.

2In subsequent results we will, for brevity, omit these assumptions, which will be implicit.

13.2 Specific ways to avoid deadlock 353

Show that he is wrong and that it can deadlock, and explain why in terms of the

analysis in this section.

What modification would you suggest so that the system meets its intended purpose

but is deadlock-free?

Exercise 13.1.2 Sketch a proof that the dynamic network described on page 112 for

implementing the quicksort algorithm is deadlock-free. To do this you should show that

any deadlock state is equivalent, from the point of view of deadlock, to one of a conflict-

free tree network satisfying our assumptions. (Unless you are keen to do this, there is no

need to go into details of the transformations that manipulate the renaming and hiding

introduced by enslavement.)

Exercise 13.1.3 A token ring, as previously discussed on page 315, is a network in

which a fixed number of tokens are passed round the processes in a ring network. We

are not yet in a position to prove one these deadlock-free since it is evidently not a tree

network! One can, however, produce an interesting variant on this which is.

Suppose we are presented with an arbitrary connected tree structure of processes,

and we want to ensure that exactly one of these has a token at any time. Design a node

process which achieves this, and additionally allows any node to issue a request for the

token which will normally result in it being sent. (The resulting network should have the

given tree as its communication graph.) It should be deadlock-free by Rule 1.

It is helpful to note that (with correct initialization) each node can always either

have the token or know which of its neighbouring processes is the right one to ask for the

token. After our node has seen the token, this is simply the neighbour to whom it most

recently passed the token.

13.2 Specific ways to avoid deadlock

If the communication graph of V is not a tree (i.e., it contains cycles) we need to
find ways of showing that the sort of cycle produced by the Fundamental Principle
cannot appear, even though there is now ‘room’ for it to do so.3 In this section we
meet a number of design rules which, when they are followed, guarantee that no
such cycle can appear. Each of these rules tends to apply to only a certain class of
system.

3Though in fact there are cases of deadlock-free networks that can contain proper cycles of

ungranted requests, all our rules are based on removing them. In fact the careful reader may

notice that a few of our later rules do not exclude the possibility of there being some, provided

that ones that ‘matter’ in some sense are not there.

354 Deadlock!

13.2.1 Node orderings

Our first few rules and examples are based on the existence of some partial ordering
on the nodes which represents something like the direction in which data, or perhaps
some decision process, flows. A node ordering on a network is a partial order on its
nodes where every pair of processes whose alphabets intersect (i.e., have an edge
between them in the communication graph) are comparable. We will use these
orderings to break symmetry and eliminate the possibility of cycles.

Deadlock rule 2 Suppose V is conflict-free and has a node ordering < such

that whenever node Pi has a request to any Pj with Pj < Pi then it has a request

to all its neighbours Pk such that Pk < Pi . Then V is deadlock-free.

The proof of this particular rule is very easy: if there were a cycle of un-
granted requests 〈P0,P1, . . . ,Pn〉 then necessarily this contains at least one Pi which
is maximal (under <) among the members of the cycle. Necessarily Pi has an un-
granted request to Pi+1, a process less than itself; the assumptions of the rule
mean that it therefore has a request (necessarily ungranted) to each Q such that
Q < Pi . But the predecessor Pi−1 of Pi in the cycle is necessarily one of these, and
so (in contradiction to the assumption of conflict freedom) these two processes are
in conflict. This completes the proof.

Notice that the assumptions of Rule 2 imply that when a node Pj has an
ungranted request to a Pi with Pj < Pi , then Pi must have a request to a Pk with
Pi < Pk (for, by busy-ness, Pi must have a request somewhere and it cannot have
a request to any of its predecessors). This fact alone is enough to imply deadlock
freedom since it would imply that any deadlock state contains an ever-increasing
sequence of nodes, each with an ungranted request to the next. This is impossible
because the network is finite. This rule would be slightly more general than Rule 2
but also it would also be harder to verify its conditions, since one has to look at how
pairs of processes behave in parallel rather than at the construction of individual
processes.

Example 13.2.1 (layered routeing) An elegant example of the use of this Rule

is provided by a routeing algorithm invented by Yantchev [140], which he calls

‘virtual networks’.4 Suppose we have a rectangular5 grid of nodes {Ni,j | 0 ≤ i ≤
A, 0 ≤ j ≤ B} and might want to send a message packet from any one of these

nodes to any other. On the face of it, this system is too symmetric to apply the

above rule: messages can be sent in any direction so there is no obvious partial

4He also invented a clever hardware-level packet propagation mechanism which minimizes prop-

agation latency in this network. He called this the mad postman algorithm, but the details are

not relevant to the present discussion.
5In fact the algorithm works equally well in any number of dimensions.

13.2 Specific ways to avoid deadlock 355

N1,1 1,2 1,3 1,4

2,42,32,1

3,1 3,2

2,2

3,3 3,4

O

I

up.(i,j)

right.(i,j+1)

N N N

NNNN

N N N N

down.(i,j) up.(i+1,j)

left.(i,j−1)

right.(i,j)

down.(i+1,j)

receive.(i,j)

over.(i,j)

send.(i,j)

left.(i,j)

Figure 13.3: Virtual network routing and detail of a node.

356 Deadlock!

ordering on the nodes that we could begin to use for Rule 2. The trick is to divide

each node Ni,j into the parallel composition of two processes Ii,j and Oi,j and to

put the following ordering on the resulting network:

Ii,j ≤ Ii′,j ′ iff i ≤ i ′ ∧ j ≤ j ′

Oi,j ≤ Oi′,j ′ iff i ≥ i ′ ∧ j ≥ j ′

Ii,j ≤ Oi′,j ′ for all i , j , i ′, j ′

This implies (following the intuition of the order) that data flows into the Ii,j ;
through these in increasing index order; over to a Oi′,j ′ , and then through these in

decreasing index order before leaving the network.

In fact it is possible to route from any Ni,j to any other Ni′,j ′ in this way:

data is input into Ii,j ; routed to Ii′′,j ′′ where i ′′ = max{i , i ′} and j ′′ = max{j , j ′};
passed over to Oi′′,j ′′ and then routed to Oi′,j ′ before being output. A picture of the

4 × 3 version of this network is shown in Figure 13.3, with the routeing technique

illustrated by the path a message takes from N1,3 to N2,1.

One implementation of this is given by the following process descriptions:

Ii,j = in?x?y?m → I ′
i,j (x , y,m)

� I-up?x?y?m → I ′
i,j (x , y,m)

� I-left?x?y?m → I ′
i,j (x , y,m)

I ′
i,j (x , y,m) = I-right!x !y!m → Ii,j

<I i < x>I
(I-down!x !y!m → Ii,j
<I j < y>I over !x !y!m → Ii,j)

Oi,j = over?x?y?m → O ′
i,j (x , y,m)

� O-down?x?y?m → O ′
i,j (x , y,m)

� O-right?x?y?m → O ′
i,j (x , y,m)

O ′
i,j (x , y,m) = O-left!x !y!m → Oi,j

<I i > x>I
(O-up!x !y!m → Oi,j

<I j > y>I out !x !y!m → Oi,j)

Here, X-up, X-down, X-left and X-right (with X ∈ {I ,O}) are the channels con-

necting Ii,j or Oi,j to the process of the same sort in the chosen direction in the

X -plane, over is the channel connecting Ii,j and Oi,j , and in , out are the chan-

nels connecting Ni,j to the environment. (All of these need to be renamed when

composing the complete network so as to get the synchronizations right.) These

processes transparently satisfy the requirements of Rule 2 with respect to the given

order. (End of example)

13.2 Specific ways to avoid deadlock 357

Rule 2 applies to networks where, whatever nodes are doing with the data
they are taking in, they do not mind what order it arrives on the various input
channels (i.e., the neighbours that precede them). There is no restriction on which
output channels are used and when. The rule applies to systems where (like the
example above) each input is in some sense complete and atomic. It does not really
deal with situations where a pair of neighbours have a related series of communica-
tions, since the greater one in the partial order is obliged to deal with all its other
neighbours every time it offers a communication to the lesser one of the pair: it can-
not concentrate temporarily on one predecessor. Rule 3 below, a direct extension
of Rule 2, specifically allows for this in a way that is frequently useful.

Deadlock rule 3 Suppose V is conflict-free and has a node ordering <. Further,

suppose that the state space of each process Pi of V breaks into two parts A and

B in such a way that

• when Pi is in a state of type A it obeys the assumptions of Rule 2;

• when Pi is in a state of type B it has a request to some Pj with Pj < Pi ;

• the parallel composition of each pair of neighbours Pj and Pi with Pj < Pi

is such that whenever Pi , in a state of type B , has an ungranted request to

Pj , then Pj is also in a state of type B .

Then V is deadlock-free.

The proof of this is almost as easy as Rule 2: we can ensure that the cycle
of ungranted requests picked by the Fundamental Principle has the property that
the ungranted request from any node in a B -state is to another, lesser node in a
B -state. It follows that if one of the nodes in the cycle is in a B -state then they
all are, in a sense that is incompatible with the node ordering; so they are all in an
A-state and the Rule 2 argument applies.

In this rule, a node is in a B -state just when it is waiting for a communication
from the (usually) unique predecessor to whom it is temporarily engaged. The rule
says that we must only allow such a request to be ungranted when the predecessor is
simultaneously engaged with one of its predecessors and waiting for communication
on that session. In this way, chains (or occasionally more complex patterns) of these
engagements can build up through the network. The wormhole routeing example
below shows how these arise.

Networks of the form amenable to this rule are often termed client/server
networks, the idea being that each process acts as a server for some activity for
those processes less than it in the order, which are its clients. The conditions of the
rule can then be paraphrased:

358 Deadlock!

S1

S2

R2

R1 *

Figure 13.4: Wormhole routeing in action.

• A server process is either engaged by one of its clients or is available to them
all.

• A client and server never get into conflict, and the only way an ungranted
request can arise from a server to a client it is currently engaged by is when
that client is itself a server to another process and has itself a request to that
process.

Example 13.2.2 (wormhole routeing) A typical example of the type of net-

work supported by Rule 3 is an extension of the class of network seen in our previous

example. Suppose a typical message is large: it may be that they can be too large to

fit into a single node in our routeing system; even if not, the time taken to transmit

a message step-by-step across the network may be substantial if the whole message

has to enter a node before the node can begin to send it out.

What we do is to break up each message into a variable number of packets

where the first one (the header) contains all of the routeing information and each

node can tell when it has received the last packet (either by counting relative to

13.2 Specific ways to avoid deadlock 359

some earlier figure contained in the header or by a marker).

When a node is not currently engaged in transmitting a message it behaves

very much like one of the nodes in the earlier example. After receiving and passing

on a message header it will only accept input from the node which sent it the

header (passing on the packets one at a time) until the message is complete. Thus

a complete message, at any one time, occupies a connected chain of nodes which,

when the message is completely within the network, is at least as long as the number

of packets it comprises. The way it works leads to this method being given the name

wormhole routeing.

Figure 13.4. shows how this might look, with two messages currently in

transit. The two messages are from S1 to R1 and S2 to R2 respectively. Notice

that the second message is temporarily blocked by the first: it will only be able to

progress when the first message clears the node labelled ∗.
The actual coding of wormhole routeing in CSP is left as an exercise. (End

of example)

13.2.2 Cyclic communication networks

There is a large class of calculations that can be performed on (usually) regular
networks where data and partially-computed results flow through, and where each
processor regularly inputs one collection of values before performing a calculation
and then outputting another collection on another set of channels. These are often
referred to as systolic arrays, though that term more properly applies to the case
where the calculations and communications in the network are regulated by a global
clock rather than being self-timed. These networks are perhaps the most common
example of a rather different class of ordered networks to those treated by Rules
2 and 3: ones where each node communicates in a fixed cyclic pattern with its
neighbours.

Definition A cyclic communication network is a network V in which

• Every node is connected to each of its neighbours by one or more distinct,
conflict-free channels.

• The communications of each node Pi are divided into cycles.

• On each cycle Pi communicates exactly once on each of its channels in a
fixed order.

The following two rules show how to design these networks to be deadlock-
free.

360 Deadlock!

Deadlock rule 4 A cyclic communication network is deadlock-free if and only

if there is a linear (total) ordering of all the channels linking the nodes such that

each Pi addresses its neighbours in order on each cycle.

Deadlock rule 5 If there is exactly one channel connecting each pair of neigh-

bours in a cyclic communication network V (i.e., no pair of processes communicate

twice in any one cycle), and there is a linear node ordering on V such that each

node addresses its neighbours in this order, then V is deadlock-free.

Rule 5 is just a somewhat simplified version of Rule 4: it is easy to show that
it is a corollary of it since under the assumptions of Rule 5 one can find an ordering
on the channels satisfying Rule 4 – see the exercises.

The proof that Rule 4 works is rather like those of earlier rules. It depends
on the following two facts, both of which are easy to see when you consider how the
parallel composition of a pair of neighbouring processes communicate in a cyclic
communication network:

• If Pi
σ=⇒•Pj then the number of cycles completed by Pi either equals the

corresponding number for Pj or exceeds it by exactly 1.

• If Pi
σ=⇒•Pj and they have completed the same number of cycles, then the

channel currently offered by Pj (there is always exactly one) precedes that
offered by Pi (to Pj) in the order on channels.

From the first of these we get that all the nodes in a cycle of ungranted requests
have completed the same number of communication cycles. The second then shows
the cycle cannot exist because the order on channels decreases all the way round.
Showing that deadlock freedom actually implies the existence of such an order (the
other half of this if-and-only-if result) is rather harder.

Often the way this type of network is built makes it natural for the nodes
to perform a group of communications within a cycle in parallel. In other words,
instead of enforcing a fixed order between the communications a1, . . . , ak , say, they
are all made available, and as each is performed it is removed from the set until
they have all happened. These communications are termed parallel because it is
equivalent to writing

(a1 → SKIP ||| . . . ||| ak → SKIP); P ′

where P ′ is the subsequent behaviour (though there are likely to be identifier binding
problems if this style is used for parallel inputs).

We can liberalize the definition of cyclic communication networks to take
this into account.

Definition A generalized cyclic communication network is a network V in which

13.2 Specific ways to avoid deadlock 361

• every node is connected to each of its neighbours by one or more distinct,
conflict-free channels;

• the communications of each node Pi are divided into cycles;

• each Pi partitions its channels into a number of subsets and offers these each
of these sets in parallel in turn, the order of the sets being fixed.

It is a good idea to make the communications in one of these networks as
parallel as possible. Putting communications in parallel can substantially reduce
the computation time because nodes are not blocked from communicating for so
long. It is important to know that this ‘parallelization’ does not interfere with
deadlock freedom: this is captured in the following rule.

Deadlock rule 6 If V is a deadlock-free generalized cyclic communication net-

work, and V ′ is identical except that one or more groups of consecutive communi-

cations in nodes of V have been made parallel, then V ′ is still deadlock-free.

The proof of this result can be found in [118].

Example 13.2.3 (matrix multiplication) The rows and columns of two matri-

ces we want to multiply together can flow, respectively, along the rows and columns

of a rectangular grid. As pairs of values meet, their product is added to a value

that is accumulating in the node where they meet. Recall that the product of the

p × q and q × r matrices [ai,j] and [bj ,k] is the p × r matrix whose terms are

ci,k =
∑q

j=1 ai,j bj ,k

The top left-hand corner of the array is shown in Figure 13.5, including an

example configuration of data.

We will first code this without parallel communication. Since the nodes all

communicate once with each neighbour per cycle, we can do this by selecting a

linear node ordering and using Rule 5. Since we expect our node to input (up and

left) on each cycle before outputting (right and down), the order must make the

two nodes that a given one inputs from less than the two it outputs to. This still

gives a great deal of freedom in the choice of order, but there are only a few natural

ones, one of which is

Ni,j ≤ Ni′,j ′ ⇔ i + j < i ′ + j ′ or
i + j = i ′ + j ′ ∧ i ≤ i ′.

The resulting code for a node (omitting whatever method is used to access the final

value) is N (0), where

N (x) = up?a → left?b → right !b → down !a → N (x + a × b)

362 Deadlock!

b b b b

b

b

b

b b

b

a a a

aaa

a

a

a

4,1

2,23,1

2,1

3,2

1,2

2,3

1,3

1,4

a

4,1

3,1

2,12,22,3

3,2

a

a

a

a

2,4

3,3

b b b b4,25,1 3,3 2,4

1,5

1,2 1,1

1,1

1,4 1,3

4,2

Figure 13.5: Matrix multiplication on a rectangular array.

13.2 Specific ways to avoid deadlock 363

since, for any fixed node, the surrounding ones are ordered in the way implied by

these communications.

It is rather unnatural to impose an order on the two inputs and the two

outputs of a node in this example. Knowing that the above system is deadlock-free

we can use Rule 6 to observe that the system where the inputs and outputs are

both put in parallel is still deadlock-free:

N ′(x) = up?a → left?b → N ′′(x , a, b)
� left?b → up?a → N ′′(x , a, b)

N ′′(x , a, b) = (down !a → SKIP ||| right !b → SKIP); N ′(x + a × b)

Notice that inputs have been ‘put in parallel’ by giving explicit alternatives to allow

the values of a and b to carry over. (End of example)

It is worth noting that the generalized cyclic communication network pro-
duced over any node-ordered network in which each node communicates with all the
preceding processes in parallel, and then with all the following processes in parallel,
is bound to be deadlock-free.

Finally, if it is possible to put all the communications of each cycle in parallel
then the network is guaranteed to be deadlock-free without the need to consider
any orders at all. This could well be possible in a network iterating the solution
to an equation6 by a method in which the (n+1)th value at a given point is some
function of the nth values at that point and the four surrounding ones.

13.2.3 Resource sharing

Many classic deadlocks, not least the dining philosophers, occur because of con-
tention for resources. The basic set-up is that the network consists of two separate
classes of process: users and resources. For simplicity we will assume that the only
communications are between a user and a resource7 (i.e., the alphabets of any two
users, or any two resources, are disjoint). Each resource can be acquired by a user
U , and then cannot be acquired by any other until it is released by U . Notice how
this describes the dining philosophers, where the resources are the fork processes
and each fork can only be acquired by the two neighbouring philosophers.

More formally, the user processes will be enumerated {Ux | x ∈ Υ} and the
resource processes are {Rn | n ∈ {1, . . . , k}}. The resource processes each allow
themselves to be acquired by one user at a time (acq .x .n represents the acquisition

6Perhaps an elliptic partial differential equation like Poisson’s equation.
7Technically, the communication graph is bipartite.

364 Deadlock!

of Rn by Ux), and have to be released (release.x .n) before being available to others:

Rn = acq?x :Xn !n → release.x .n → Rn

Here Xn ⊆ Υ is the non-empty set of users that Rn can be acquired by.

Notice that this definition of Rn completely abstracts away from whatever
the users do with the resources once they have them. In a real example it is likely
that there would be other communications, but eliminating them here allows us to
concentrate on the central issue of contention.8

Our objective is to understand how the users must behave to prevent dead-
locks like that in the dining philosophers. We must obviously assume that the users
interact properly with the individual resources: any trace of a user alternates ac-
quiring and releasing a specific Rn . For simplicity we will assume that, initially, no
user holds any resource so that the first event of each of these alternating sequences
is the appropriate acq.x .n . Notice that this assumption means that our network is
certainly conflict-free.

If tr is any trace of a user process Ux , we can easily compute the set of
resources held after tr :

resourcesx (tr) = {n | tr ↓ acq .x .n > tr ↓ release.x .n}

Because there will never be an ungranted request from a user to an unused
resource, or from a user to a resource which it currently has possession of, it follows
that any cycle of ungranted requests in such a network is bound to look essentially
like the one in the dining philosophers. It will alternately consist of users and
resources; with a given user waiting for the next resource on the cycle while holding
the previous one with the resources waiting to be released.

The classic way to prevent this, which you will see is very like the methods
we have already developed for other types of network, is to follow the principle set
out in the following rule.

Deadlock rule 7 Suppose we have a network V of users and resources as set

out above, and each Ux follows the principle that it never tries to acquire a resource

of lower index than one it presently holds, i.e.,

tr 〈̂acq .x .n〉 ∈ traces(Ux)⇒ resourcesx (tr) ∩ {m | m > n} = {}

then V (under our usual assumptions such as busy-ness) is deadlock-free.

8From the point of view of eliminating deadlock when communications between users and

currently-held resources are allowed, it should be very helpful to observe that at all times these

clusters are all rather simple tree networks.

13.2 Specific ways to avoid deadlock 365

Of course this assumption about the users would imply that the indexes of
the resources increase as we move round the cycle of ungranted requests discussed
above, which is clearly impossible, hence the deadlock freedom.

Example 13.2.4 (asymmetric dining philosophers) Given the above rule it

is simple to apply it to the dining philosophers example. We would not expect it to

matter to a philosopher in which order he or she picks up the forks, but the above

rule shows that this order is the key to eliminating deadlock. All we have to do

is pick any enumeration whatsoever of the forks and to program the philosophers

so that each of them picks up the one with lower index first. Using the obvious

enumeration (the one used to define them) we get the following definition of a

philosopher: if i ∈ {0, 1, 2, 3} then

PHILi = thinks .i → sits.i → picksup.i .i → picksup.i .i + 1→
eats .i → putsdown .i .i + 1 → putsdown.i .i → getsup.i → PHILi

while

PHIL′
4 = thinks .4 → sits .4→ picksup.4.0→ picksup.4.4 →

eats .4→ putsdown .4.4→ putsdown .4.0→ getsup.4 → PHIL′
4

If the network is otherwise constructed as in Section 2.2.1, it satisfies all the con-

ditions of Rule 7, and so this very slight adjustment has made it deadlock-free.

What we have in essence done is to break the symmetry of the original example by

varying the order (in the sense of the ring) in which the philosophers pick up their

forks. We end up with four left-handed ones and one right-handed (say). (End of
example)

13.2.4 Communication order

The rules introduced so far have certainly not covered all the possible ways of
eliminating cycles of ungranted requests. Any reader who cannot make a network
fit any of the rules given here is encouraged to try to capture why it is deadlock-free
and to attempt to formulate it either in the same way or to translate it into the
methods described in the rest of this chapter.

To illustrate this process we will give an example which does not fit into any
of the categories shown so far, and then show how this motivates another class of
rule.

Example 13.2.5 (non-blocking message ring) The objective here is to create

a ring network where messages may be input at any node, addressed to any other

366 Deadlock!

node. They are to be transported in one direction (clockwise, say) round the ring

until they get to their destination, and are then output.

It is very easy to build such a system that deadlocks: this is the fate, for

example, of just about the simplest possibility, described below.

Di = in .i?m → D ′
i(m)

� ring .i?m → D ′
i(m)

D ′
i(m) = out .i !m → Di

<I destination(m) = i>I
ring .(i ⊕ 1)!m → Di

Here every node has one ‘slot’ for a message: this can be occupied either by a

message input from the local user over in.i or by one from the ring. One way to

deadlock the resulting ring is for all the users simultaneously to transmit a message

for another node. All the processes are then stuck waiting to output to the next

member of the ring.

One’s first reaction to this might be to add more buffering capacity to the

nodes. But this in itself does not help, since however large a finite capacity we give

each node we cannot stop them becoming full if the external users are very keen to

send messages.

What we need is a mechanism to prevent the ring getting filled up. There are

several ways to do this. The first way, which is unacceptable9 for practical reasons,

is to take the approach of the BUTLER process for the dining philosophers: a single

process, put in parallel, which counts how many messages are present (i.e., input

but not yet output) and prevents ones being inserted over a given limit.

A second approach (which is in some respects just a distributed implemen-

tation of the first) is to implement a token ring alongside the communication ring.

This ring contains a number (again, less than the number that could deadlock the

communication ring) of tokens. A message can only be input to the communication

ring by a node that has a free token, and the message then occupies the token for

as long as it is in the ring. There has to be some mechanism for nodes seeking to

input but without a token to obtain one (if available), in this sense one would have

to produce a more sophisticated ring than that seen in Section 12.2: see Exercise

13.3.3.

The third approach, which is much simpler to describe in CSP than the

second, is to make each node responsible for making sure that it is not the one to

complete the deadlock. This is done by increasing the buffering capacity of each

9It is unacceptable because one would normally expect the ring to be moderately well dis-

tributed. Having a process which has to synchronize with every input and output is therefore not

practical.

13.2 Specific ways to avoid deadlock 367

node to at least two, picking a limit for each node that is at least one and strictly

less than its total capacity, and programming the nodes so that they only accept

new messages from their own user when this would not make the total content

exceed this limit. We can easily modify the earlier definition to get the required

node process (which is now parameterized by the sequence of message it currently

holds):

Di(s) = (in .i?m → Di(s 〈̂m〉)<I #s < limit(i)>I STOP)
� (ring .i?m → Di(s 〈̂m〉)<I #s < capacity(i)>I STOP)
� (STOP<I s = 〈〉>I

(out .i !head (s)→ Di(tail(s))
<I destination(head(s)) = i>I
ring .(i ⊕ 1)!head(s) → Di(tail (s))))

(where 1 ≤ limit(i) < capacity(i)).

We would intuitively expect a ring of these processes to be deadlock-free

because

• The ring can never become full, in the sense that every node is full to its

capacity . Therefore there is at least one node that is not full.

• A node that is not full will accept input from its ring predecessor.

• The said predecessor can at all times either communicate with its own user

or output to our node.

The crux of this argument is, of course, the first line. To turn it into a formal

proof we would have to define and prove this statement, which itself requires under-

standing every state the ring can reach. (One would probably go about this by

formulating and proving a suitable invariant – something we will discuss later.) We

will shortly find that the proof of deadlock freedom can be cast in rather different

terms, much more akin to the methods seen hitherto.

A substantial case study (most of which is cast in occam rather than CSP)

of how this ring mechanism can be extended to a deadlock-free routeing protocol

for use on an arbitrarily connected network can be found in [103]. (End of example)

The only cycle of ungranted requests that could arise in the ring above is of
each node blocked from outputting to its clockwise neighbour. (The reverse cycle of
each node waiting for input does not arise because then all the nodes are prepared
to input – i.e., communicate outside the vocabulary of the network, which means
this is not formally an ungranted request.) Consider the state of an individual node
in this cycle: it is certainly full, and the last communication it performed was the

368 Deadlock!

one that filled it. But that communication must have been from its anticlockwise
neighbour rather than from its external user, because of the way it is defined. We
can deduce that our node has communicated more recently with its anticlockwise
neighbour than with its clockwise one.

This brings us right back into familiar territory: as we progress clockwise
round the cycle of ungranted requests we find that the most recent communications
on the channels were earlier and earlier, creating the usual contradiction when
we have gone all the way round. Thus the cycle, and consequently deadlock, are
impossible. This is formalized in the following.

Deadlock rule 8 Suppose V is a network which is free of strong conflict and

such that, for each pair P ,Q of neighbouring processes, it can be shown that,

whenever P =⇒•Q ,

(i) Q has previously communicated with P and

(ii) Q has done so more recently than with at least one other process to which

Q has a request,

then V is deadlock-free.

This rule allows us to prove our ring deadlock-free by local analysis (since,
like all of our rules, the conditions underlying this one are checked by looking at
the behaviour of individual processes or small collections of them). Another, larger
example that uses Rule 8 can be found in Section 15.2.1.

Of course, once we have discovered this rule, other related rules immediately
occur to us. We could, for example, turn the above rule around and specify that
Q must have communicated with another neighbour (to which it has a current
request) more recently than any communication with P . This looks less likely and
the author is not aware of any natural applications.

Exercise 13.2.1 Recall the treatment of the alternating bit protocol in Section 5.3.

We argued on page 136 that it is deadlock-free. That argument can be re-cast in terms of

one of the rules in this section: do so.

Exercise 13.2.2 Suppose V is a cyclic communication network satisfying the assump-

tions of Rule 5. Show how to build an ordering on the edges that satisfies the conditions

of Rule 4, showing that Rule 5 is a consquence of its predecessor. Hint: identify each edge

with the two-element set of the nodes at each end.

Exercise 13.2.3 Define a version of the ‘virtual network’ on page 354 that operates in

three dimensions rather than two. You still only require 2 layers. Define the node ordering

with respect to which Rule 2 applies to your network.

13.3 Variants 369

Exercise 13.2.4 Create a ring network in which the communications of each node n

consist of external events in.n.m.x and out .n.m.x , respectively meaning that the message

x is being sent to or received from node m, plus communications with the adjoining nodes

of the form ring .n.p meaning that packet p is being sent to node n by its predecessor (i.e.,

anti-clockwise neighbour), where p is either of the form Message.a.b.x (meaning that it

carries message x to b from a) or is Null , meaning that it carries no message. It should

have the effect of reliably delivering messages as addressed. Each node should basically

have the capacity of one packet, and should only be able to input on in when this packet

is null.

The result should be a cyclic communication network that is deadlock-free by Rule

4. (Note that it is only the communications with other nodes that have to follow a strict

cyclic pattern and that the external inputs and outputs therefore do not.) Why are the

null packets important? (In other words, why can we not simply get away with two

consecutive ring nodes only communicating when they have something substantive to say

to each other.)

Comment on what happens when there are no real messages passing round the

system, so that all packets are null. What are the advantages and disadvantages of this

approach as compared to the one in Example 13.2.5?

Exercise 13.2.5 Provide definitions of the nodes in a wormhole routeing network

based (like that in Figure 13.4) on a two-dimensional virtual routeing network. Assume

that each message consists of a series of packets, with a special one representing the end

of the message. Identify which of the states of these processes are types A and B for Rule

4, and check that they satisfy the necessary conditions to make this rule work.

13.3 Variants

13.3.1 Introduction

The arguments underlying the various principles in the previous section seem to be
variations on a common theme: we follow a putative cycle of ungranted requests
and find that some ordering property gives a contradiction once we have gone all
the way round.

We can unify the rules under a single theory, which gives perhaps the most
general practical tool for proving deadlock freedom in networks with cycles. The
idea is related to a well-known method of proving loop termination in sequential
programming, namely variants. In sequential programming a variant function is a
usually natural-number valued function of state, with the property that every time
the loop body is executed the value of the function decreases. The fact that such a
function cannot decrease for ever means that the loop must terminate after a finite
number of iterations.

370 Deadlock!

The corresponding idea in deadlock analysis is to make sure a variant function
decreases round a cycle of ungranted requests. We associate a value – its variant –
with the state of each process. Showing this decreases once round the cycle is
enough since the variant of each process is then less than itself in the same state,
which gives exactly the sort of contradiction we were getting in the arguments in
the previous section. Because this type of argument is essentially finitary, there
is no need to restrict ourselves to orders which, like the natural numbers, have no
infinite descending sequences.

The first thing we have to do to use variants is to define the functions them-
selves. Usually these depend on two things: the node’s position in the network and
its current trace. But there is no particular limitation on what is included – it may
be necessary, for example, to include internal process parameters or to take account
of the way an internal nondeterministic choice is resolved. All that matters is that
the variant can be calculated in terms of the node’s own state and history.

The reason why this last condition is necessary is the requirement that the
preconditions to our proof rules are locally checkable. We need to be sure that the
fact that variants decrease across ungranted requests between P and Q when we
examine their parallel composition implies that the same is true when they are part
of a large network.

Given a network {(Pi ,Ai) | 1 ≤ i ≤ N } the associated variant functions
will usually be written {fi | 1 ≤ i ≤ N }. The fi are all functions into the same
partial order Z , and as discussed above will usually be functions of the traces of
the corresponding Pi . For clarity, many of the rules and arguments below assume
that they are functions of traces but can be modified easily to take account of
other circumstances. The objective in defining these functions is to make the value
decrease over any ungranted request. In many – perhaps a majority of – practical
cases it is possible to make the variant decrease strictly over every ungranted request,
which gives the easiest-to-understand case.

Deadlock rule 9 A network V is deadlock-free if it has a system of variant

functions such that, for every pair (Pi ,Pj) of neighbouring processes and every

state σ of their parallel composition

Pi
σ=⇒•Pj ⇒ fi(trσ � Ai) > fj (trσ � Aj)

Notice that we did not explicitly assume the network to be free of strong
conflict: in fact the assumptions of the rule imply conflict freedom since two pro-
cesses with an ungranted request to each other would both need to have variants
less than the other.

Most of the rules in the previous section can be reduced to this one. Two

13.3 Variants 371

examples of this are given below, and others are included as exercises at the end of
this section.

Example 13.3.1 (rule 4 in terms of rule 9) We can more or less translate

the proof that Rule 4 (concerning cyclic communication networks) guarantees dead-

lock freedom into a system of variant functions. Notice that the proof uses two levels

of order: a cycle count and then events. This suggests that the partial order should

compound these two ideas together: N×L, where the first component is the natural

number of cycles a node has completed and the second is the linear order from the

statement of the rule. The order on this structure is

(n, a) ≤ (m, b) ⇔ n ≤ m ∨ (n = m ∧ a ≤ b)

The variant of process Pi after trace s is then just the pair (n, c) where n is

the number of cycles completed (i.e., the natural number #s div ki where ki is the

number of events Pi communicates each cycle) and c is the channel on which it is

due to communicate on next. The statement that, for each state σ of the parallel

composition of Pi and Pj ,

Pi
σ=⇒•Pj ⇒ fi(trσ � Ai) > fj (trσ � Aj)

then follows by exactly the arguments we put forward earlier when justifying Rule

4. We have simply translated the original proof to the framework of variants rather

than found a genuinely different proof.

We can, of course, use orders (for the range of the variant functions) that

are less contrived. For example, if we enumerate the channels in the order of L:

c1, c2, . . . , cM then, for sufficiently large K the variant functions

fi(s) = K × (s div ki) + nextindex(s)

work, where nextindex (s) is the index in this enumeration of the channel that Pi

is due to communicate on next. (K has to be sufficiently large so that any pair of

neighbouring processes with one a cycle behind the other always give the smaller

variant to that one. M is certainly large enough.)

Slightly simpler variant functions than these can be found for many examples

of this type: see the exercises for ones that work on the matrix multiplication

examples. (End of example)

Example 13.3.2 (rule 2 in terms of rule 9) The two things we have to build

the variant from in Rule 2 are a node’s position in the node ordering, and what it

is doing. So far as the rule is concerned there are really only two possibilities for

372 Deadlock!

the latter: either it is making a request to all processes less than itself (call this an

α state), or it is not making a request to any of them (a β state). There are four

sorts of ungranted requests we can get in one of these networks:

1. A process in an α state can have an ungranted request to a predecessor in

an α state.

2. A process in an α state can have an ungranted request to a predecessor in a

β state (because the latter is waiting for a different successor).

3. A process in an α state might (if able to output as well as input) have an

ungranted request to a successor in a β state.

4. A process in a β state can have an ungranted request to a successor in a β

state.

The other four cases are impossible because of the assumptions of the rule: a

process in a β state has no requests to its predecessors, and no process can have an

ungranted request to a successor in an α state (here we are using the assumption

of conflict freedom from the rule).

The partial order we use is thus {α, β} ×W , where W is the node ordering,

and

• (α, x) > (β, y) for all x and y

• (α, x) > (α, y) if, and only if, x > y

• (β, x) > (β, y) if, and only if, x < y (note that the sense of the node ordering

is reversed for this clause).

The variants are then obvious: a process maps to the pair of the type of its state

and its position in the node ordering. That these satisfy the requirements of Rule

9 follows directly from the analysis above.

It is worth remarking that these variant functions may have to be thought

of as functions on (maximal) failures rather than traces: in the general case it may

not be possible to tell from the trace alone whether a process is in an α or β state.

(End of example)

13.3.2 Cycle-cutting sets

Having established the basic idea of a variant function, we can develop a few varia-
tions which give it a little more power. The first of these is based on the realization
that making the variant decrease strictly all the way round a cycle contains an
element of overkill. It would be just as effective if we were to guarantee the variant

13.3 Variants 373

is non-strictly decreasing (i.e., ≥) over each ungranted request, in such a way that
there is always at least one strict decrease in every cycle.

The easiest-to-understand way to obtain this is to nominate a set C of di-
rected edges such that every proper cycle in the communication graph contains one
of them. Then we simply have to insist that ungranted requests over an edge in C
always have a strictly decreasing variant. Such a set will be called a cycle-cutting
set for obvious reasons.

As an example, consider a rectangular grid network like that defined for the
matrix multiplier array earlier in this chapter. A possible C for this network is the
set of all directed edges leading in any one of the four directions up, down, left or
right – since any cycle is bound to contain at least one of each.

Deadlock rule 10 If the network V is free of strong conflict and has a system

of variant functions fj and a cycle-cutting set C such that, for every pair (Pi ,Pj)
of neighbouring processes and every state σ of their parallel composition

Pi
σ=⇒•Pj ⇒ fi(trσ � Ai) ≥ fj (trσ � Aj) and

fi(trσ � Ai) > fj (trσ � Aj) if (i , j) ∈ C

then V is deadlock-free.

We have had to bring in the explicit assumption of freedom from strong
conflict, since the non-strict variant decrease is not enough to exclude it.

The more liberal requirements for variant functions can be used both to
create simpler variants for networks that could have been dealt with by Rule 9, and
to deal with some that could not. Below there is an example of each.

Example 13.3.3 (matrix multiplication again) We once again deal with the

first – purely cyclic – array of processes defined for matrix multiplication. Choose

as C the set of downward-pointing edges. It turns out that with this choice we can

simplify the variant functions to just the cycle-count: i.e.,

fi,j (s) = #s div 4

Work previously done implies that this variant is non-increasing over all ungranted

requests in any cyclic communication network. The important thing to notice about

the cyclic order we chose (guided by a linear order) – 〈up, left , right , down〉 – is that

because the first thing a node does on each cycle is look up, the existence of an

ungranted request on a downward-pointing edge (i.e., one in C) implies that the

upper node is one cycle ahead of the lower one. In other words the simplified

variants decrease and the conditions of Rule 10 are satisfied. (End of example)

374 Deadlock!

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0,1

0,2

0,3

1,1

1,2

1,3 2,3

2,2

2,1 3,1

3,2

3,3 4,3

4,2

4,1 6,1

5,2

5,3 6,3

6,2

7,3

7,2

7,15,1

Figure 13.6: Binary switching network.

Example 13.3.4 (binary switching network) Suppose there are a number of

potential senders and receivers of messages, each of whom might wish to send a

message to any one of a class of receivers. With a carefully chosen network structure

one can connect 2n of each with the average path length only being as long (to within

a small constant factor) as that of the n2 nodes connected by a square version of

the virtual routeing network we saw earlier.10

The network, shown for n = 3 in Figure 13.6, has 2n columns of n ‘switch’

processes, with a sender and a receiver connected at each end. Each is connected to

exactly one process in a different column: the one in column i and row j is connected

to the one in row k and column i j , the natural number with the same binary

representation as i except that the j th least significant bit has been complemented.

The routeing algorithm is very simple: it is the duty of the processes in row j
to make sure that the j th least significant bit in the address of the message matches

that of the place it is sent to. In other words, if the (i , j) process receives a message

10Though that network certainly has compensating advantages.

13.3 Variants 375

from above, the j th bit of i is compared with that of the address. If they are the

same the message is sent down, if not it is switched across to the node’s partner

(i
j
, j). The path from 6 (110 in binary) to 5 (101) is illustrated in Figure 13.6.

In fact the precise nature of this routeing algorithm is irrelevant from the

point of view of deadlock analysis, as are the contents of the messages communi-

cated. Thus, we abstract away from these details. All we need concern ourselves

with is the fact that a node might receive a message from above or its partner.

A message from the partner (on channel swin , say) is always sent down (channel

out), while one from above (channel in) is either sent down or across to the partner

(channel swout). From our point of view, under this abstraction, this latter choice

is nondeterministic.

The behaviour of a typical node is given below:

Sw = in → (Sw ′ 	 out → Sw)
� swin → out → Sw

Sw ′ = swout → Sw
� swin → out → Sw ′

Notice that, when this process contains a message which it has decided to send

over its link (i.e., is in state Sw ′), it retains the ability to accept a message from

the linked process. This is to avoid the strong conflict which would otherwise have

arisen if both of a pair of partners decided simultaneously to relay messages to each

other. The network is free of strong conflict, but not of conflict, since when each of

a pair of partners is empty they have ungranted requests to each other. This last

fact implies that Rule 9 does not apply, but it is straightforward to apply Rule 10

with C the set of all vertical edges (i.e., all except the ones linking partner nodes).

The variant function fi,j of node Swi,j is defined:

fi,j (s) =
{

j when the node contains no message

−j when it contains one or more messages

These work because, in our network, no node that contains a message can have an

ungranted request to one that is empty. Notice that when a pair of partners are

either both empty or both non-empty, their variants are equal.

The node process above is what you would get if you started with a definition

in which all the information necessary for routeing were included, and the decisions

made accordingly, and then applied a forgetful many-to-one renaming which omitted

the address and data components of communications. This abstraction mechanism

will be re-examined in Section 13.6.1 (End of example)

376 Deadlock!

13.3.3 Selective requests

The rules seen so far insist that all ungranted requests a process makes have a
reducing variant across them. Looking back at how we derived the Fundamental
Principle, this is a little more than we really need. All we require is that the
ungranted requests which we happen to have chosen for the processes in the cycle
have this property. And of course we are free to select any ungranted request for
the process Pn in the sequence as long as it is not back to Pn−1.

In just about all the examples we have seen to date (the nearest thing to an
exception among the concrete examples being the binary switching network), all the
requests a process makes in any one state have been similar to each other. There was
no particular reason why the process should single one out. But in less symmetric
examples one can imagine a process might be making several very different requests
at once, and of course it (and we) might have different expectations about the
processes at the other ends of these requests. Since we only need to follow a single
path to find the cycle for the Fundamental Principle, it may be sensible in such
circumstances to nominate which request to follow from a given one (selected from
the set of requests it is making in its current state). Ordinarily one would expect
to select the one (or one of those) that we are relying on eventually being able to
satisfy the request.

So as well as having a variant function of each process’s state, we will also
have a request selector function. For each state σ of process Pi which is (i) stable
and (ii) refuses all events not in the vocabulary of the network, ci(σ) must choose a
process to which Pi has a request in σ (the assumption of busy-ness implying there
is at least one to choose from). The advantage of this is that the variant only has
to decrease across chosen ungranted requests: Pi

σ=⇒•Pj where ci(σ) = j .

We state here the rule that corresponds to Rule 9 – i.e., the variant functions
always decrease strictly. One could similarly produce an analogue of Rule 10, but
in that case care has to be taken to ensure that a pair of nodes in conflict do not
select each other.

Deadlock rule 11 If the network V has a system of variant functions such that,

for every pair (Pi ,Pj) of neighbouring processes and every state σ of their parallel

composition

Pi
σ=⇒•Pj ∧ j = ci(σ) ⇒ fi(trσ � Ai) > fj (trσ � Aj)

then V is deadlock-free.

It is possible to modify some of the rules of Section 13.2 in the same way to
allow for explicit selection, notably Rule 8 (which already contains an element of
it).

13.3 Variants 377

One of the best uses of selection functions is to liberalize communications
in a network that has been carefully engineered to be deadlock-free, but where a
seemingly heavy penalty has been paid for this. The approach is to extend the
range of requests a process makes – adding some ‘optimistic’ ones – but in such
a way that the variant functions continue to be defined and to work for the old
requests. The selection functions then choose the old requests.

One example of this – relaxing the constraints imposed by Rule 7 on resource
acquisition – can be found in the exercises below.

13.3.4 Weak variants

A weak set of variants is one where there is never the requirement of a strict decrease
over an ungranted request. All we insist on is a non-strict reduction. (While there
may be some use for ones equipped with selection functions as discussed above, we
will assume that this decrease occurs over all ungranted requests.) Weak variants do
not in themselves prove absence of deadlocks – after all if we simply choose the same
constant function for each process in a network, the non-decreasing requirement is
satisfied whether the network deadlocks or not.

What they can do is refine our understanding of where a deadlock might
be in a network, allowing us to concentrate our search. In some cases it may be
possible to refine the weak variants into a set that does prove deadlock freedom by
one of our earlier rules, or to establish deadlock freedom by some other method. In
other words, weak variants are an analytic tool.

The following rule captures the main analytic principle using weak variants.

Deadlock rule 12 If the network V is free of strong conflict, and has a system

of variant functions such that for every pair (Pi ,Pj) of neighbouring processes and

every state σ of their parallel composition

Pi
σ=⇒•Pj ⇒ fi(trσ � Ai) ≥ fj (trσ � Aj)

(a weak set of variant functions) then every deadlock state of V has a proper cycle

of ungranted requests in which all the variant values are equal.

Example 13.3.5 (cyclic communication again) Good examples of the ana-

lytic power of weak variants can be found in the area of cyclic communication

networks and, more generally,11 conflict-free networks where each process commu-

nicates exactly once each cycle on each channel.

11The generalization comes from not assuming that the communications are in the same order

each cycle.

378 Deadlock!

The natural weak variants for such systems are just cycle counts: in the

notation of earlier discussions of similar networks:

wi(s) = s div ki

No process can have an ungranted request to a neighbour that has completed

more cycles, because this would imply that the requesting process has communi-

cated on the requested channel less times than the other process (contradicting the

fact that the two processes synchronize on such events and so have at all times

communicated on the channel exactly the same number of times).

Thus, by Rule 12, any deadlock state must contain a cycle of ungranted

requests with every process having completed the same number of cycles. This

means, for example, that the fact that a process can vary its order from cycle to

cycle is irrelevant: all that matters is the particular order they have chosen for this

cycle. One can, by examining how this cycle can arise, deduce that there is a cycle of

processes 〈Q0, . . . ,Qr−1〉 and one (with the same length) of channels 〈c0, . . . , cr−1〉
where ci and ci⊕1 are both in the alphabet of Pi which insists (in the offending

cycle) on communicating ci⊕1 before ci .

If we had not already seen Rules 4, 5 and 6 we would have been in a much

better position to deduce them after the above analysis.

We now turn to a fascinating specific example, where we can refine the weak

variants a little. Imagine a network which behaves like the rectangular matrix

multiplication array except that nodes are allowed to choose nondeterministically

in which order to communicate the two inputs and in which order to communicate

the two outputs. (We still insist that inputs precede outputs.) Ignoring the data

values and calculations, the resulting node then behaves like

NDN = ((left → up → SKIP)
	 (up → left → SKIP));
((right → down → SKIP)
	 (down → right → SKIP));
NDN

Now consider the number of half-cycles a node has completed when it has an un-

granted request to its neighbour.

• When it has an ungranted output (down or right) request it must have com-

pleted at least one more half-cycle than the process it is requesting to.

• When it has an ungranted input (left or in) request it must have completed

at least the number that is one less than the half-cycle count of the process

it is requesting.

13.3 Variants 379

If we therefore define a set of weak variants

wi,j (s) = i + j + (s div 2)

we find that these satisfy the conditions of Rule 12. For a process such that i+j = K
(level K) outputs to ones at level K + 1 and inputs from ones at level K − 1.

We can thus infer that any deadlock state of the resulting network must have

a cycle of nodes whose variants wi,j (s) are equal. Closer examination shows this to

be impossible, for

• If a process (in level K , say) has an ungranted request to one in level K + 1
and their variants are equal (i.e., the first process has completed exactly one

more half-cycle than the second) then the second process itself has all its

ungranted requests to other processes in level K . (In other words, it must

be waiting for its other input first.)

• If a process (in level K , say) has an ungranted request to one in level K−1 and

their variants are equal, then the second process itself has all its ungranted

requests to other processes in level K .

• If follows that the cycle of ungranted requests lies in the nodes on two ad-

joining levels: K and K + 1, say. But there is no cycle amongst these nodes

(which actually form a chain when thought of as a graph).

In other words, from the point of view of deadlock, it actually does not matter

what order the nodes choose to input and output in on each cycle (and they may

choose independently) so long as they make all their inputs before their outputs.

Exactly the same analysis applies when we move up to higher-dimensional

grids of processes (e.g., three-dimensional) and allow the processes to order their

inputs and outputs nondeterministically (there being as many of each as there are

dimensions). Except, that is, the very last part, for in three or more dimensions the

set of processes in two consecutive layers does contain cycles, and the system can

actually deadlock (see exercises). This difference between two and three dimensions

is most surprising and the fact that we can discover it so easily illustrates the power

of weak variants in focusing in on the essentials of a deadlock analysis. (End of
example)

Exercise 13.3.1 Show that the variants

fi,j (s) = 2 × (i + j) + #s

work for Rule 9 for the matrix multiplier array.

380 Deadlock!

B

A
C

D

Figure 13.7: Road with a narrow section: see Exercise 13.3.5.

Exercise 13.3.2 On page 371 we showed how Rule 2 could be shown to be a conse-

quence of Rule 9 by constructing a set of variant functions. Do the same thing for Rule

3.

Exercise 13.3.3 Recall Exercise 13.1.3. Now design a token ring, in which a sin-

gle token circulates in anti-clockwise direction, and in which nodes acquire the token by

sending requests to their clockwise neighbours (either on their own behalf or in passing

on requests received when they do not hold the token). Find a set of variant functions for

Rule 9, and a simplified set (together with a set of cycle-cutting edges) for Rule 10.

Exercise 13.3.4 (a) Show that Rule 7 (resource acquisition) can by proved via Rule

9, again by defining a suitable set of variants.

(b) Use the variant functions defined in (a) and Rule 11 to liberalize Rule 7:

users can be given the additional ability to acquire any resource they want at any time

provided they follow rules about there being at least one ‘legitimate’ request in each state.

Formulate these rules.

Exercise 13.3.5 Figure 13.7 shows a road layout allowing visitors to drive round a

monument. Cars all enter the road at A and pass round the loop until they exit at B . As

you can see, a pair of rocks have meant that one stretch of road is too narrow for cars to

pass each other: it is single lane there and two-lane elsewhere.

Code CSP processes which implement this layout, with one process per lane seg-

ment with the assumption that no more than one car can occupy each with, for the

moment, no other restriction on who can move forward onto the next segment on their

route. (Except for segment C , each should have two states, Empty and Full ; C should

have three states, Empty , Leftwards and Rightwards .) Show that this can lead to deadlock.

It is then decided to give out-going (i.e., rightward in our picture) cars priority over

in-coming ones, in the sense that an in-coming car is not allowed to enter the single-lane

13.4 Network decomposition 381

segment (C) until segment D is empty. Modify your coding to achieve this, it will require

extra communication between C and D . Your aim should be to produce a system that is

now deadlock-free via a rigorous argument. The following is a suggested argument.

Use a set of weak variants (taking values in {0, 1}) to show that, in any state with a

deadlock, either all segments are empty or there is a cycle of ungranted requests involving

full segments only. Show that the first of these is not deadlocked.

Now show that, when full, segment C can never have an ungranted request to D

nor vice-versa, and that therefore the cycle of full processes cannot arise.

How would your coding and argument be affected if there were more than one

single lane segment (all separated by two-lane stretches)? Would it work to give in-coming

traffic priority rather than out-going?

Exercise 13.3.6 Find the deadlock discussed on page 379 that appears in a three-

dimensional version of a nondeterministic input/output systolic array.

13.4 Network decomposition

Remember Rule 1, which shows how simple deadlock analysis is for tree networks.
We might hope to inherit some of this simplicity in cases where the network, though
not a tree itself, can be decomposed into a number of components (probably not
trees themselves) which are connected to each other like a tree. Specifically, we
might hope that the proof of deadlock freedom can be broken down into a separate
proof for each component.

First, we have to decide on exactly what it means for a graph to break
down into a number of components. There are really two sensible answers to this
question, both of which turn out to be relevant to decomposing deadlock analyses.
For simplicity we will concentrate on the coarser factorization (i.e., the one that
divides a network into fewer pieces), but will later indicate where the other one
could have been used.

Define a disconnecting edge to be one whose removal would disconnect the
communication graph. Such an edge can never be part of any cycle since the rest
of the cycle provides an alternative path between its two ends. These edges can
be thought of as the edges of a tree whose nodes are the components they leave
behind when they are all removed. These components might be termed essential
components since we hope to concentrate our deadlock analysis on these.

This gives a very pleasing decomposition of our network: if C1,C2, . . . ,Ck are
the partition of the nodes (or rather their indexes) into essential components, and
A∗

1,A∗
2, . . . ,A∗

k are the unions of the alphabets of the members of these components,

382 Deadlock!

we have

‖n

i=1
(Pi ,Ai) = ‖k

i=1
(P∗

i ,A∗
k) where P∗

j = ‖
i∈Cj

(Pi ,Ai)

is the composition of the processes in the component Cj . The communication graph
of this re-construction of the network is, of course, a tree and the intersection in the
alphabets of two neighbouring components is just the intersection of the alphabets
of the unique pair of processes in them that are adjacent in the original graph
(across a disconnecting edge).

Since we have a tree (the network V ∗ comprising the (P∗
j ,A∗

j)), the obvious
hope is that we can apply Rule 1. There are two requirements of Rule 1 that we
need to be careful are satisfied:

• The new network has to be busy. In other words, the subnetworks defining
the P∗

j must all be deadlock-free. This is hardly surprising: the individual
proofs of deadlock freedom for the P∗

j are just the parts our overall analysis
gets factored into.

• The new network has to be free of strong conflict. This creates more of a
problem since it turns out that even if the original network V was free of
strong conflict, V ∗ need not be. If, however, each of the (disconnecting)
edges in V linking two of the P∗

j is free of conflict, then it is easy to see that
V ∗ is also free of conflict, which is of course enough.

Deadlock rule 13 If each of the essential components of the network V is free

of deadlock, and each of the disconnecting edges in V is free of conflict, then V is

deadlock-free.

This rule is pleasingly general except for the requirement that the discon-
necting edges are conflict-free. This more or less excludes the nodes at either end
getting into a state where each is waiting for some stimulus (e.g., a message packet)
from the other. Its use is therefore largely restricted to cases where, either naturally
or by careful design (e.g., the introduction of to-and-fro polling across such edges),
the two processes at the ends of a disconnecting edge agree which channel their next
communication will be on.

Of course we are still left with the problem of proving the essential compo-
nents deadlock-free. It is quite likely that we will use some of the methods seen
in this chapter which work by proving the non-existence of cycles of ungranted
requests. If this is done, then the restriction that the disconnecting edges are
conflict-free can be dropped.

Deadlock rule 14 If the network V is free of strong conflict, and such that

none of the essential components can contain a cycle of ungranted requests (judged

13.4 Network decomposition 383

Articulation point

Essential component

Smaller biconnected component

Disconnecting edge

Figure 13.8: Two ways of decomposing graphs.

relative to the vocabulary of V , not those of the components) then V is deadlock-

free.

This is, of course, a trivial consequence of the Fundamental Principle since
the cycle of ungranted requests this generates must lie entirely within one of the
essential components. Of our rules so far, Rules 2, 3, 4, 5, 7, 9 and 10 all exclude
cycles entirely.

For example, we can choose the variant functions (if Rule 9 or 10 is to be
our chosen method) for the different essential components independently: there is
no need for variants to decrease across disconnecting edges.

We mentioned above that there are two natural ways to decompose a network.
The difference between these comes from so-called articulation points: nodes rather
than edges whose removal would disconnect the graph. The biconnected components
of a graph are the largest subsets of a graph such that any two different points belong
to a proper cycle. In general one essential component12 may divide into several
biconnected components: the divisions coming at articulation points like the one
shown in Figure 13.8 which belongs to three different biconnected components. To
find out more about this, consult a book on graph theory such as [46].

Rule 14 applies if essential components are replaced by biconnected com-
ponents, since any proper cycle always lies completely inside one of these (which
are the smallest regions of which this can be said). This can lead to the curious
situation where we have to define two (or even more) different variant functions for
a single node: one for each biconnected component it belongs to!

12In graph theoretic terms essential components are termed edge biconnected components.

384 Deadlock!

Exercise 13.4.1 Suppose there are two adjacent tables of dining philosophers, each

individually made deadlock-free as in Example 13.2.4. A pair of them (one from each table)

make a pact that they will always eat at the same time: how is this situation described in

CSP? Show that it does not harm deadlock freedom. What can happen if there are two,

disjoint, pairs of philosophers like this?

13.5 The limitations of local analysis

Deadlock is a global phenomenon over a network and sometimes arises – or fails to
arise – for extremely subtle reasons. There is probably no complete method for de-
ciding whether or not a network deadlocks other than brute-force state exploration.
And yet all the methods described in this chapter so far have relied entirely on
local analysis: establishing properties of the behaviour of small collections – usually
no more than 2 – of processes. Such methods can never hope to decide all cases,
though they do seem to work in a large proportion of the examples that we humans
are cunning enough to devise.

If faced with the problem of designing a network that had to be deadlock-free,
you should look first to the principles already established in this chapter, including
concepts not emphasized much such as building some of the pairs of processes so
that an ungranted request can never arise in one or both directions.

There is a rather precise sense in which all of our existing methods produce
networks that are robustly deadlock-free. It is this: all of the existing rules which
themselves guarantee deadlock freedom (Rules 1–11) actually guarantee the stronger
condition of hereditary deadlock freedom, meaning that the network and all its
subnetworks are deadlock-free.

What this does mean is that there can be no hope of using them to prove
the deadlock freedom of networks where one subnetwork relies on the behaviour of
other processes to prevent it reaching a deadlock state it might otherwise find itself
in. The archetypal example of this is the dining philosophers with butler we saw
earlier: this is not hereditarily deadlock-free since the network can deadlock if the
BUTLER process is removed.

That was a case where it was very easy to do things properly, but there are
other examples where this is much harder and/or unreasonable. An example of this
is shown in Figure 13.9 which shows a picture of a small railway layout, in which
each of the pieces of track is one-way and there are two sets of points. The rules are
that a train can only move onto an empty section of track (where, if relevant, the
points are not against it) and that each set of points can only be switched when the
segment of track containing it is empty. Unlike some other codings of railways in
this book, the only processes in this network are the track segments, with adjoining

13.5 The limitations of local analysis 385

Full track segment

Empty track segment

Figure 13.9: A simple railway layout with two trains.

ones communicating with each other to represent the movement of a train, rather
than there being separate train processes.

If we happen to know that there are only two trains running round this
picture we will probably quickly come to believe it is deadlock-free. On the other
hand, it is not hereditarily deadlock-free: as soon as we look at a proper subnetwork
such as that shown in Figure 13.10 there is nothing to prevent what is left becoming
filled up with trains. We have to rely on the fact that the overall network is closed
to prevent any more getting in. And this can lead to deadlocks: the configuration in
Figure 13.10 (in which one track-segment process has been removed) is deadlocked
because the lower ‘exit’ set of points on the small loop cannot move to let out any
of the trains that are clogging this loop.

In this particular case a substantial re-coding to make trains explicit processes
would help, but the more natural way to go is probably to prove an invariant of the
network (namely that the total number of trains is 2) and then use this to contradict
the existence of cycles of ungranted requests. This specific sort of invariant, which
can be written

∑n
i=1 fi(σi) = K

where fi(σi) is a function of the state σi of the ith process, can itself be established
by local analysis: what we have to show is that each action of a single process Pi

leaves its contribution unchanged, and that each communication between a pair of
processes leaves their joint contribution fi(σi) + fj (σj) invariant.

386 Deadlock!

Figure 13.10: A subnetwork that deadlocks.

13.6 Deadlock and tools

We already know how to test a process for deadlock via refinement checking13: test
it against one of the specifications

DF = 	
a∈Σ

a → DF

DF� = (
a∈Σ

a → DF�) 	 SKIP

depending whether or not it has the potential to terminate. When a system is
within the scope of this type of check, this is usually the easiest way to analyze for
deadlock. It has the added advantage that none of the basic assumptions such as
busy-ness and triple-disjointness made at the start of this chapter is required. In
the first part of this section we look at ways of bringing relatively complex networks
within the scope of this form of checking; in the second we discuss tools which
implement techniques more like those seen hitherto in this chapter.

13.6.1 Direct mechanical checking of deadlock freedom

The direct approach to analyzing systems for deadlock: simply testing for refinement
of DF has two main drawbacks. The first, which we can do little about, is that
any check of a system on FDR requires us to define a specific network. There is
no sense in which we can directly prove that a particular structure of network is
deadlock-free whatever its size. We can only attack N dining philosophers for a
particular N , not for all N at once.

13FDR has a specific deadlock-checking function. At the time of writing all this does is to

perform this refinement check; everything discussed in this section about improving the efficiency

of the said check therefore applies to the FDR deadlock check.

13.6 Deadlock and tools 387

The second problem is one of state-space size. Many problems of interest
have (at least in non-trivial instances) very large state-spaces and quickly get out
of the range that FDR can deal with by enumerating one state at a time. There
are two main tricks that can be used to bring a problem down to the size where its
deadlock behaviour can be analyzed on FDR.

The first is abstraction. Usually our intended use of a network will involve
it in handling data values; for example, passing messages around or processing
numbers. Certainly we would expect the values passed along channels to depend
on this data. It may or may not be the case that which channels the process
communicates on also depends on data. Good examples to consider here are the
matrix multiplication nodes, where the values passed along channels depend on
data, but the choices of which channels do not, and our various routeing networks,
where both the contents of messages and where they are sent depend on data (i.e.,
address fields).

Assume that communication on a given channel is straightforward (specifi-
cally, conflict-free). In the first case above – where the only thing that depends on
input data is output data – it is clear that the data being passed is quite irrelevant
from the point of view of deadlock analysis. Thus, for deadlock analysis, the matrix
multiplication node process

N (x) = up?a → left?b → right !b → down !a → N (x + a × b)

is equivalent to one with all the data values removed:

N † = up → left → right → down → N †

This process of abstraction has reduced a process with an infinite state space (as-
suming the values are real numbers) to one with four states.14

Now consider a node from the virtual routeing network (Section 13.2.1). The
data it transmits is in two parts: address and message contents. We would expect
to be able to abstract away from the contents field in exactly the same way, since
the only thing that depends on what is input is the value later output in the same
field. The address field is, however, used in a crucial way to decide where (in each
case of three options) to send the data, so we cannot eliminate that so easily.

Whether we can eliminate it at all depends on whether we believe (and this is
a belief we can test using the following) that the precise choice between the available
options is important from the point of view of deadlock. Unless you are sure it is

14This form of abstraction – removing detail which is irrelevant to the internal operation of

component processes – is very closely linked to the topic of data-independence which we will study

in Section 15.2.2.

388 Deadlock!

important, you should turn all the choices, made on the basis of the data you are
trying to abstract, into nondeterministic ones. Thus, the two types of node in the
virtual network will become

I † = in → I ′†

� I-up→ I ′†

� I-left→ I ′†

I ′† = I-right→ I †

	 I-down → I †

	 over → I †

O† = over → O ′†

� O-down→ O ′†

� O-right→ O ′†

O ′† = O-left→ O†

	 O-up→ O†

	 out → O†

This abstraction procedure is one you can check: if forget is the renaming function
that forgets whatever data values we are abstracting from channel communication
(e.g., forget(in.i .j .m) = in), you should find that

I †
 forget(I)

In other words, every behaviour that I might make is reflected in the abstracted
process.

You should then use the processes I † and O† in place of the originals when
checking for deadlock freedom. In this case it would work: in fact the proof of
deadlock freedom in terms of Rule 2 works just as well for the abstracted network
as it did for the original. If it does work this guarantees deadlock freedom for
the unabstracted network. If it does not, and a deadlock is found, you have to
decide whether the offending behaviour was one that the unabstracted network
could have produced or not. Bear in mind that just because a single deadlock of
the abstracted network could not appear in the original, this does not imply the
original is deadlock-free.

The formal basis of this abstraction procedure is captured in the following
rule.

Deadlock rule 15 (abstraction rule) Suppose ‘forget ’ is the function that

abstracts away the data contents of one or more conflict-free channels (each of which

is contained in each process alphabet it intersects) in the network V = {(Pi ,Ai) |

13.6 Deadlock and tools 389

1 ≤ i ≤ n}. Then

‖n

i=1
(P†

i ,A†
i)
 forget(‖n

i=1
(Pi ,Ai))

where (P†
i ,A†

i) = (forget(Pi), forget(Ai)). Hence if the left-hand side of the above

refinement is deadlock-free, so is V .

Notice that we already performed the same sort of abstraction in the bi-
nary switching network (page 374). It can, of course, also be applied to wormhole
routeing.

The second method of making the state spaces of explicit checks manageable
is the combination of hiding and compression. In the stable failures model a CSP
process P can deadlock if and only if P \ Σ can (see Section 8.4 for technical details).
This is of interest because it is generally the case that the more hiding is present
in a process definition, the more susceptible it is to hierarchical compression. The
objective of hierarchical compression (which is discussed in more detail in Section
C.2) is to build up processes in stages, at each one trying to minimize the number of
states in their representations. The effectiveness of this technique is demonstrated
by several of the example files on the web site (see Preface).

13.6.2 Automated checking of rule-based proofs

While the methods described above frequently allow one to investigate automatically
whether a network is deadlock-free, it will certainly sometimes occur that, even
using compressions, addressing the state space of the entire network is too great a
problem.

It is then natural to ask whether automation can help in the sort of deadlock
analysis addressed in the rest of this chapter. All of the basic conditions on networks
we have used, such as busy-ness and freedom from (strong) conflict, as well as the
preconditions to Rules 1–8, can quickly be checked for any network of finite-state
processes, though it sometimes requires a good deal of ingenuity to do so with
a refinement checker like FDR. The reason for this problem is that in conditions
relating to how a pair of processes evolve (such as strong conflict) it is necessary
to examine the inner workings of the pair (such as whether they have requests to
each other) as well as their outward appearance as a process. It is really better,
particularly because of this need to examine how pairs evolve, to build a specialized
tool for checking the preconditions for deadlock rules. This has been done by Jeremy
Martin, whose tool is called the Deadlock Checker.15

The later, variant-based, rules are a little more problematic to automate
because we need some way to represent the variant function. It must be recognized

15See the Bibliography for the availability of this tool.

390 Deadlock!

that sometimes adding a variant function can turn a finite-state process into an
infinite-state one: this obviously happens when, as in the variants used for cyclic
communication networks, the variant has an infinite range.

Martin’s tool incorporates an additional method of analyzing for deadlock
which is arguably very close to the concept of variant, but has the advantage of
being completely automatic. This is based on the State Dependency Digraph (SDD),
something which is usually too unwieldy to work out by hand but which is well
within the scope of an automated tool even for very large networks. The SDD of
a network has one node for each state of an individual process in the network V –
thus its size is the sum of the state space sizes of the component processes. It has an
edge from (i , σ) (Pi in state σ) to (j , ρ) if, and only if, Pi and Pj can simultaneously
reach σ and ρ when put in parallel and then Pi has an ungranted request to Pj .

It is possible to show that the SDD is acyclic if, and only if, there is a set
of variant functions for V satisfying the preconditions of Rule 9 and such that the
functions are all based purely on the position the processes are in their finite state
machine representations. (It should be noted that not all the variant functions
used earlier have this latter property. The exceptions are those relating to cyclic
communication networks and similar.) Thus an acyclic SDD implies deadlock free-
dom. Martin’s thesis [78] and tool both contain extensions of this technique to allow
SDDs to be used for proving deadlock freedom in wider classes of network such as
networks with conflict.

Clearly any cycle of ungranted requests in the network implies the existence
of a cycle in the SDD. It is tempting to believe the reverse, but there are two reasons
why the existence of a cycle in the SDD does not necessarily imply the possibility
of a cycle of ungranted requests in V .

Firstly, just because the processes round some cycle in V can reach some
assignment of states when we consider their parallel compositions pairwise does not
mean that the same combination can be reached in the parallel composition of the
entire network.

Secondly, and more interestingly, it is entirely possible for different states of
the same process to appear in the same cycle in the SDD. Obviously no such cycle
can correspond to a cycle of ungranted requests. It is this possibility that generates
the restriction above that the variant functions have to be based on the specific
states used in constructing the SDD. Clearly one can look only for those cycles that
involve all different processes, but this appears to be much more time consuming.

Despite these drawbacks, methods based on analyzing SDD graphs appear
to be perhaps the most interesting and powerful class for building deadlock analysis
tools.

13.7 Notes 391

13.7 Notes

The definitions and results in this chapter are largely taken from the author’s papers
with Dathi and Brookes [118] and [21] together with the theses of Dathi [28] and
Martin [78], as are many of the examples. These are probably the best sources to
pursue for further details. Earlier work on the analysis of deadlock in CSP networks
can be found in [101] and [20]. There have been various applications of this type of
analysis, especially in the occam community, see [103, 136], for example.

The fact that tree networks are a special and easy case in deadlock analysis
has been long known and it is hard to pin down where it originates. The conditions
and definitions in Section 13.1 can be thought of as an attempt to capture formally
the circumstances under which the result ‘trees are deadlock-free’ is true.

The concept of a cyclic communication network was described by Dijkstra
and Scholten in [33], and Deadlock Rule 4 is essentially derived from that source.

It should be appreciated that none of the combinatorial techniques described
in this chapter is complete, in the sense of guaranteeing to establish deadlock free-
dom whenever it is true. It seems almost certain that no tractable locally-based
technique could do this, since in general the problem of deciding whether a CSP
network can deadlock is NP complete. All one can hope for is that the methods we
have described, and other similar ones, are sufficient to deal with the majority of
practical deadlock analyses. Provided one is prepared to espouse the principle dis-
cussed on page 349 that we should build our systems to be inherently deadlock-free
rather than adding patches later, this seems a much more reasonable desire.

The author hopes that the wide range of deadlock analysis techniques in this
chapter will deal with many of the examples readers want to handle, and also give
them ideas about how to formulate and prove their own rules to deal with other
examples.

2005: It has recently come to the author’s attention that the concept of con-
fluent processes (namely ones where if two events are possible then performing one
will not preclude the other), which can be found in Milner’s work [82], is closely
connected with the CCNs presented in this chapter. Furthermore, it can be shown
that both these classes of network (and any others for which a set of non-decreasing
variant functions can be found, that never decrease as a process evolves) are buffer-
tolerant with respect to deadlock freedom. Namely, adding arbitrary buffering never
introduces deadlock into them.

Example transformation

A typical transformation using algebraic laws to manipulate hiding and renaming
as discussed when introducing assumption D in Section 13.1.1 is given below. The

392 Deadlock!

example considered is the parallel/hiding/renaming combination

(P >>Q)>>R

We wish to move all hiding to the outside, and all renaming on to the component
processes.

First we observe that the name of the channel mid used in defining >> is
irrelevant, because, for any other name n (apart from left and right),

P >>Q = (P [[right ,mid/mid, right]] {|left,mid|}‖{|mid,right |}

Q [[mid , left/left, mid]]) \ {| mid |}
= ((P [[right ,mid/mid, right]] {|left,mid|}‖{|mid,right|}

Q [[mid , left/left, mid]]) \ {| mid |})[[n/mid]]

= (P [[right ,n/n, right]] {|left,n|}‖{|n,right |} P [[left ,n/n, left]]) \ {| n |}

(Here the second line follows by 〈f [·]-hide-null〉, and the final one by a combination
of 〈f [·]-hide-sym〉, 〈f [·]-X ‖Y -dist〉 and 〈[[R]]-combine〉 (3.16).) Note that the last line
above is identical to the definition of P >>Q except that the name n replaces mid .

This shows that (P >> Q)>>R can be written:

(((P [[right ,n/n, right]] {|left,n|}‖{|n,right|}

Q [[left ,n/n, left]]) \ {| n |})[[right , mid/mid, right]]

{|left,mid|}‖{|mid,right|} R) \ {| mid |}

This is important because it allows us to push the renaming of the inner combination
down to P and Q (using 〈f [·]-hide-sym〉 and 〈f [·]-X ‖Y -dist〉) without changing the
name of the channel hidden at the intermediate level:

(((P [[right ,n/n, right]][[mid , right/right ,mid]] {|left,n|}‖{|n,mid |}

Q [[left ,n/n, left]][[mid , right/right ,mid]]) \ {| n |})

{|left,mid|}‖{|mid,right|} R) \ {| mid |}

And equally importantly it then lets us move this intermediate-level hiding, using
〈hide-X ‖Y -dist〉, to the outside since the events hidden do not intersect the alphabet
of the right-hand process.

((P [[right ,n/n, right]][[mid , right/right , mid]] {|left,n|}‖{|n,mid|}

Q [[left ,n/n, left]][[mid , right/right ,mid]])

{|left,mid,n|}‖{|mid,right|} R) \ {| n |} \ {| mid |}

13.7 Notes 393

Finally, we can collect all the renamings of each component, and all the hiding at
the outside, together.

((P [[right ,n/n, right]][[mid , right/right , mid]] {|left,n|}‖{|n,mid|}

Q [[left ,n/n, left]][[mid , right/right ,mid]])

{|left,mid,n|}‖{|mid,right|} R) \ {| n |} \ {| mid |}

394 Deadlock!

Chapter 14

Modelling discrete time

14.1 Introduction

All of the modelling we have done so far has been done without measuring the
passage of time. We have cared about what order events happen in, but not how
long there is between them or at what time any specific one happens. When our
correctness criteria are independent of time (as have been all we have seen to date, of
course) and our implementations do not rely on internal timing details to meet their
specifications, this abstraction is very useful since it simplifies both the description
of, and reasoning about, processes. Nevertheless, it is in the nature of the sort of
interactive systems we describe using CSP that sometimes it is desirable to be able
to reason about their timed behaviour.

There are two distinct approaches to this. The more elegant is to re-interpret
the CSP language over time, and record the exact time at which each event occurs.
A trace thus consists of a series of time/event pairs rather than just events. This
leads to a range of semantic models incorporating time, just as we have seen a
variety of models for the untimed version. This theory of Timed CSP, though its
models are sometimes surprisingly different to those we have seen (and generally
more complex), has elegant links into the untimed theory allowing development and
verification to be carried out in both. This will typically allow the developer to use
the more complex timed models only for those parts of his or her work which require
it.

There is a substantial literature on Timed CSP (see Section 14.8) and, in
particular, a textbook (by S.A. Schneider) covers it in detail. We will not, therefore,
go into the details of it here.

In Timed CSP, the times associated with events are non-negative real num-
bers. In other words, it adopts a dense, continuous model of time. This has an

396 Modelling discrete time

intuitive appeal, since it corresponds with the standard way in which we think
about measuring time. It is unfortunately true that using continuous time sub-
stantially complicates the problem of automating verification and, except in very
restricted circumstances, makes decision procedures based on state enumeration in-
feasible or impossible. For continuous time adds an extra infinite dimension both to
the recording of events and to the evolving process state, and it is only by imposing
severe restrictions and using clever equivalences that this infinity can be avoided.

The most obvious alternative model of time is of an infinite series of discrete
instants, equally separated. This results in a time domain which looks like the
natural numbers, though the interval between successive beats of the drum might
be any size, from nanoseconds (as would typically be the case for a clocked circuit)
upwards. In most computer applications where all of the component processes are
ultimately controlled by a single clock, such as clocked VLSI or scheduler-based
systems, a discrete clock is closer to the spirit of the system than a continuous time
model. In any case it is often possible to give a good enough approximation to other
systems using sufficiently fine discrete models.

There is a considerable variety of ways in which we could include a discrete
time model into CSP. Many of these would involve incorporating time explicitly into
semantic models, as described above for Timed CSP. The subject of this chapter,
however, is how to model timed systems in ordinary, ‘untimed’ CSP by including the
drum-beat of the passage of time as an explicit event. This event is conventionally
called tock (rather than tick since that is easily – especially on tools – confused with
�). All of the processes with timing constraints must synchronize on the event tock :
this allows us to regulate and reason about the amount each process and the overall
system does in given time intervals.

Advantages of this approach are:

• As we will see, it gives considerable flexibility about how to model and reason
about timed systems.

• The human user can understand timed systems without having to learn an-
other model.

• Existing tools can be applied to timed systems.

14.2 Meeting timing constraints

Having taken the decision to include the tock event in a process’s alphabet, one is
forced to make detailed decisions about what its actions mean and how they occur
in time. This is illustrated by a timed version of COPY . Suppose it takes one unit

14.2 Meeting timing constraints 397

of time for a data value to pass through this one-place buffer, and that a further unit
of time is required between the output and the next input. The obvious definition,
given this, is

TCOPY 1 = left?x → tock → right !x → tock → TCOPY 1

But there is a big difference between this process and the original COPY , because
this one insists on performing an action each unit of time: it does not allow time
to pass until it has done something on each and every cycle. The original COPY
will wait as long as you like either to input or output. It is reasonable to say
that TCOPY 1 becomes urgent one time unit after performing any action: it insists
on doing some visible action before time can progress. The correct translation of
COPY (with the same assumptions about how long it takes for one communication
to enable another) is actually

TCOPY 2 = left?x → tock → TCOPY 2′(x)
� tock → TCOPY 2

TCOPY 2′(x) = right !x → tock → TCOPY 2
� tock → TCOPY 2′(x)

since this process says that there has to be at least one time unit between input
and output events, without expressing an upper bound. The states TCOPY and
TCOPY 2(x) might be said to be idling, in that the passage of time has no effect
on them.

An interesting hybrid between these processes is one which will wait to input,
but not to output – it idles on input but is urgent about outputting:

TCOPY 3 = left?x → tock → right !x → tock → TCOPY 3
� tock → TCOPY 3

By slight modifications one can come up with versions which expect one or
other of their communications to occur within any fixed N time units, or which can
nondeterministically select when (and for how long) a communication is available.

Clearly, then, we can be much more expressive about how a process behaves
in this timed world than previously. This makes it possible to describe paradoxical
networks which must meet inconsistent timing constraints. Imagine, for example,
placing TCOPY 1 in parallel with a process expressing the constraint that there
cannot be more than M communications in the first N time units: TLimiter (N ,M),
where

TLimiter (n,m) = RUN <I n = 0>I
((STOP<I m = 0>I ?x : Σ �{tock} → TLimiter (n,m − 1))
� tock → TLimiter (n − 1,m))

398 Modelling discrete time

If M < N then our two sets of timing requirements are inconsistent, which
manifests itself in the combination deadlocking. This is what happens when one
puts together a combination whose timing requirements do not match, which gives
us an easy way of testing for this. This situation is called a time-stop. If we can place
a process like TCOPY 1 or TCOPY 3 into a system without creating a time-stop, it
essentially means that the timing assumptions on the availability of communication
that are built into these processes are consistent with the system.

As a further example to illustrate this idea, we can modify TCOPY 3 so that
it is parameterized by the channels it uses and, more importantly, by the delay
between the input and output of a datum:

TCOPY 4(left , right ,D) = left?x → TCOPY 4′(left , right ,D ,D , x)
� tock → TCOPY 4(left , right ,D)

TCOPY 4′(left , right ,D ,N , x) = tock → TCOPY 4′(left , right ,D ,N − 1, x)
<I N > 0>I
right !x → tock → TCOPY 4(left , right ,D)

Let us think about what happens if we ‘pipe’ two of these together:

TCOPY 4(a, b,D1) ‖
{|b,tock|}

TCOPY 4(b, c,D2)

If D2 ≤ D1, all is fine: we can guarantee that the right-hand process will not be
expected to make its (n+1)th input until at least D1 + 1 time units after its nth,
and it is therefore ready. On the other hand, if D2 > D1, then if (though it need
not) the left-hand process makes its second input as soon as it can, this will lead
to a ‘time-stop’ when it needs to output D1 units later and the right-hand process
is not ready. If, on the other hand, the environment is sufficiently slow in putting
inputs into the combination, the problem will not arise.

Notice that processes like TCOPY 4 and TLimiter (n,m) have many states
that are neither urgent nor idling: in other words they allow tock but are not
unchanged by it. It is as well to have a name for this type of state too, so we
will call them evolving. Every state of a timed system falls into one of the three
categories of urgent, idling and evolving, and it is a most helpful distinction to bear
in mind when designing programs for this style of CSP system.

In most examples it would be ridiculous to have infinitely many ordinary
actions between two tocks, since this would mean that infinitely many actions occur
in a finite time interval. This is equally easy to check for, all we have to do is look
for divergence in

P \ (Σ �{tock})

14.2 Meeting timing constraints 399

Indeed, the most basic ‘sanity check’ on this sort of model of a timed system is
to verify that the above process equals (which is equivalent, because the following
process is deterministic, to saying that it refines)

TOCKS = tock → TOCKS

in the failures/divergences model. This shows that infinitely many actions cannot
occur in any finite time interval, and that no matter what happens it is possible
(provided the environment communicates appropriately) for time to progress – in
other words, there are no reachable inconsistencies in the timing constraints. If there
were any possibility of our process terminating (�) we would have generalized this
to proving refinement of

TOCKS� = (tock → TOCKS�) 	 SKIP

though this will never be necessary for any of the examples we deal with in this
chapter.

As said above, a process can satisfy this check when, in order to let time pass,
it is necessary for the environment to engage in suitable communications with the
process. Both TCOPY 1 and TCOPY 3 satisfy it, for example. It may well be that
we need the process to be tolerant of not receiving some or all communications in-
stantly – the most obvious distinction here being between input and output events.1

(It may well be reasonable to assume that the environment is always willing to
accept an output, but it may be unreasonable to assume that the environment is
always waiting to send an input.)

If there is a set of events D which the environment is assumed to be allowed to
delay indefinitely, but may still allow, the above test should be modified to showing
that

(P ‖
D

ChaosD) \ (Σ �{tock})

refines TOCKS . If D = {| left |}, we will have that TCOPY 3 satisfies this but that
TCOPY 1 does not. The point is that ChaosD may either allow or prevent actions
from D , so the process can neither discount the occurrence of these events nor rely
on them happening. Setting D equal to Σ �{tock} would correspond to all normal
events being arbitrarily delayable by the environment – the conventional CSP view
of communication.

1There are similarities between this distinction and the one between ordinary and signal events

discussed in Section 12.1.2. Indeed, the process defined here for testing timing constraints is

exactly the mixed abstraction defined in that section. Setting D = Σ �{tock} reduces it to lazy

abstraction.

400 Modelling discrete time

In the above checks, using failures-divergences refinement will ensure that
only finitely many events happen between tocks, whereas using failures refinement
would check only for time-stops. It might well be the case that you want to relax
the condition that only finitely many events can happen between tocks, but only
as regards delayable events. In some circumstances it may be more appropriate to
rely on the external process instigating these events not to send infinitely many in a
finite time, and so putting in restrictions into our process P might seem unnecessary
and overcomplex. A good example of this will be found in the case study of the
bully algorithm (Section ??). One appropriate check to use in this case is that

P \ (Σ �(D ∪ {tock}))

failures/divergences refines

TOCKS ||| ChaosD

This says that events in D are never required to enable tock to happen, and that
only finitely many other events happen between each pair of events that are either
tock or in D . If you intend to join a pair of processes together, with each process’s
signal events being the delayable ones of the other, then this weaker check ought
only to be used at one end of the interface.

It would also be possible to allow for an environment that will guarantee
intermediate levels of acceptance of communication, such as guaranteeing to accept
any communication in a set B if offered for at least N units. There might well be a
role for such tests when we know that the component in hand will ultimately be put
in a system that makes such guarantees (because, for example, of scheduling). But
in specifying a ‘complete’ system, events will tend to come into the category that
are simply observed by the environment, which it cannot delay, and those which
the environment can delay indefinitely.

Exercise 14.2.1 Define a version of TCOPY which outputs at a time it nondeter-

ministically chooses between A and B time units from the corresponding input. It is then

ready to input again C units later. What might happen when two of these are connected

together?

Exercise 14.2.2 Give trace specifications for the following: (i) no more than N

ordinary events occur between any two tocks, (ii) no more than M tocks occur between

consecutive occurrences of the event a. Give definitions for the characteristic processes of

these specifications.

Exercise 14.2.3 Recall the cash-point machine examples in Part I. Define a version

in which the machine will wait only M time units for the correct insertion of the PIN, and

otherwise will retain the card. It should wait indefinitely for all its other communications.

Identify which states of the system are urgent, which are idling, and which are evolving.

14.3 Case study 1: level crossing gate 401

14.3 Case study 1: level crossing gate

A level crossing is where a road crosses a railway track (without a bridge or tunnel).
The road direction is usually controlled by a gate that is meant to stop cars getting
onto the railway line when a train is passing. In this example we consider a simple
model of this, in which timing is used to establish basically untimed safety properties
(e.g., when a train is near or on the gate, the gate is down) and to specify timing
properties of the system (e.g., the gate goes up within K units when there is no
train near or approaching).

We describe this system as a parallel combination consisting of a number of
parts:

• processes representing track segments;

• processes representing trains;

• processes describing timing constraints on these things;

• a process representing the gate;

• a controller process which monitors sensors, etc., and sends control signals
to the gate.

For simplicity we will model the case of a single line along which trains only
move in one direction. The track is broken into segments (which are at least as long
as any train). They are numbered, with this sensor in segment 1 and the crossing
and output sensor in segment GateSeg .

We are not going to rely on timing for anything other than the properties of
the gate. Other safety requirements obviously apply to our little system, such as
that there are never two trains on the same track segment, but these will not be our
primary concern here. Our method of system development will be to describe the
track segments and trains as untimed processes, and later put processes in parallel
with them to describe their timed behaviour.

The following gives an untimed description of train t on track segment j .
Note that a train enters the next segment (j + 1) before it leaves segment j , and
that there is a ‘track segment’ 0 which represents the outside world. SC denotes
the number of segments including this segment 0. We will assume that the level
crossing itself is in segment GateSeg, which lies between 1 and SC − 1. For timing
reasons it should never, in fact, be either the first or last segment.2 Here, t ranges

2If it were the first then it would not be possible to get the gate down in time and if it were the

last then the way we later arrange our timing constraints means there would be no guarantee a

train would ever leave GateSeg, thus preventing the gate from rising. The best value for GateSeg

is probably SC − 2.

402 Modelling discrete time

over a set TRAINS of train names and ⊕ represents addition modulo SC .

Train(t , j) = enter .t .j⊕1→ leave.t .j → Train(t , j⊕1)

The track segments can be occupied by one train at a time, and each time a
train enters segment 1 or leaves GateSeg the appropriate sensor fires.

Track (j) = (enter?t !j → sensor .in → Trackf (t , j))
<I j = 1>I
(enter?t !j → Trackf (t , j))

Trackf (t , j) = leave.t .j → sensor .out → Track(j)
<I j = GateSeg>I
leave.t .j → Track (j)

It makes sense to consider the combination of the SC − 1 track segment
processes with as many trains as we wish to consider. The processes within each of
these classes do not communicate with each other, but the collection of all trains
synchronizes with the tracks on all enter and leave events apart from those relating
to the notional ‘outside’ segment 0.

Tracks = Track(1) ||| . . . ||| Track(SC − 1)

Trains = Train(Duncan, 0) ||| . . . ||| Train(Thomas , 0)

Network = Trains ‖
IFace

Tracks

where IFace = {enter .t .j , leave.t .j | t ∈ TRAINS ∧ j ∈ {1 . . .SC−1}}

It would, of course, be possible to prove various safety properties of this system,
such as the fact that there are never two trains on the same track segment.

None of these processes uses the time event tock , but since our eventual goal
is to ensure via timing that the gate is up and down at appropriate moments, we
have to make some assumptions about the relative timing of the events in the above
system. What we do in this case is to introduce one or more timing processes to
regulate the behaviour of each of the component processes that needs it.

We can make assumptions about the speed of the trains as they pass through
our system by regulating how many units of time are taken over a track segment.
Let us suppose there are identifiers MinTocksPerSeg and MaxTocksPerSeg which
represent our assumptions about the minimum and maximum number of time units
a train can spend per track segment. This could be expressed either as a constraint
on trains or on track segments. In the former case one might set out the range of
times a train can spend between successive enter events (in which case it is necessary
to special-case the behaviour when outside the system). In the latter case one might

14.3 Case study 1: level crossing gate 403

express a bound on the time between any train entering and leaving a segment, or
between them entering a segment and entering the next. While the enter/leave
approach has obvious attractions, it has the disadvantage that the length of a train
affects how fast it can travel – presumably the enter event is triggered by the front
of the train and the leave event by the back. This would also mean that the same
tocks can apply to the train’s passage through two different segments: the time
taken to pass through several would not be the sum of the times apparently taken
for the individual ones. The approach we take is therefore the first alluded to
above: expressing upper and lower speed limits on all the real track segments via
consecutive enter events.

SpeedReg(j) = enter?t !j → SpeedReg ′(j , 0)
tock → SpeedReg(j)

SpeedReg ′(j ,n) = (tock → SpeedReg ′(j ,n+1)<I n < MaxTocksPerSeg>I STOP)
� (enter?t !j⊕1→ SpeedReg(j)
<I n ≥ MinTocksPerSeg>I STOP)

Slight modifications would allow the speed limits to vary from segment to segment,
or to change from this ‘track-centred’ constraint to a ‘train-centred’ one (with one
process per train).

The only other timing constraints we need are on the firing of the sensors:
we specify that these must fire within one unit of a train entering the first segment
or leaving the last, as appropriate.

InSensorTiming = enter?t !1 → sensor .in → InSensorTiming
� tock → InSensorTiming

OutSensorTiming = leave?t !GateSeg → sensor .out → OutSensorTiming
� tock → OutSensorTiming

Thus we end up with timing regulators only on the track segments. Thanks
to the associative properties of parallel operators, there are two equivalent ways of
adding in these constraints:

• We could rebuild the process Network by adding the timing constraints in-
dividually onto the component processes before combining them together
(bearing in mind that all the ones this is done to – in this case the track
segments – need to be synchronized on tock). This approach is complicated
in our example by the fact that most SpeedReg(j)’s overlap the alphabets of
two Track (j)’s.

• We could combine all the timing constraints together as a single process

404 Modelling discrete time

and put it in parallel (synchronizing on all relevant events) with the existing
Network .

Using the second of these approaches, we get the additional process structure

SpeedRegs = ‖SC−1

j=1
(SpeedReg(j), αSR(j))

where αSR(j) = {tock , enter .t .j , enter .t .j⊕1 | t ∈ TRAINS}

SensorTiming = InSensorTiming ‖
{tock}

OutSensorTiming

NetworkTiming = SpeedRegs ‖
S

SensorTiming

where S = {tock} ∪ {enter .t .1 | t ∈ TRAINS}

TimedNetwork = Network ‖
T

NetworkTiming

where T = {leave.t .GateSeg | t ∈ TRAINS} ∪ {| enter , sensor |}

The gate is operated by a controller process. In terms of CSP modelling, we
could either build our assumptions about the timing behaviour of the gate into the
controller process itself, or have a separate gate process. It is probably better to
do the latter, particularly if there is any nondeterminism about the gate timing.
Therefore we will define separate controller and gate processes. There are then four
basic states of the controller, some of them parameterized by a count of trains (the
number currently in the domain).

To illustrate a different way of constructing timed processes, we include the
rather simple timing constraints on the operation of the controller into its basic
definition rather than add them in later.

When the gate is up we allow time to pass or the inward sensor to fire, which
immediately (i.e., before the next tock) causes the godown command to be sent to
the gate. The first of the four states is thus:

ControllerUp = sensor .in → gate!godown → ControllerGoingDown(1)
� tock → ControllerUp

This raises an interesting question about our model: what happens if the sensor .out
event occurs in state ControllerUp? Now of course we do not want this to happen,
since it would mean that a train was on the segment including the crossing while the
gate is up. The process above, as written, would simply refuse the sensor event –
a refusal that does not really correspond to reality since simply refusing to look at
a problem does not mean it is not there! There are at least three ways one could
resolve this:

14.3 Case study 1: level crossing gate 405

1. Remember that our description is not accurate in this eventuality but prove
later that it never happens. (One of our aims will be to show that the gate
is always down when there is a train nearby.)

2. Note that the process OutSensorTiming implies that the event in question
must happen within one unit of time from the one that causes it, and that
the refusal of it when possible would cause a time-stop, since the basic timing
consistency check would have failed.

3. Add a clause to the above definition of ControllerUp which accepts the event.
It might then either cause an error/alarm condition or simply ignore it.

Of these, the author prefers the last since it avoids using either assumptions or
the subtleties of timing to ensure our definitions make sense. And while we can
later verify quite independently that the basic safety condition holds, it is useful for
debugging purposes explicitly to catch obvious error conditions, so we modify the
above definition to

ControllerUp = sensor .in → gate!godown → ControllerGoingDown(1)
� sensor .out → ERROR
� tock → ControllerUp

On the whole, if a process is one that simply observes an event (as the controller
observes various sensors) rather than being able to refuse it, it is good practice
to write the definition of the process in such a way that this pattern is obviously
adhered to.3

The two states ControllerGoingDown and ControllerDown both keep a record
of how many trains have to pass before the gate may go up. Each time the sensor
event occurs this count is increased. In order to keep the controller finite state,
we put in a clause to ensure that the count should not get greater than the num-
ber of trains that can legally be in the domain (which equals the number of track
segments). The ControllerGoingDown state comes to an end when the gate.down
event occurs. It is no more legitimate for the sensor .out event to occur in this state
than the previous one, so the same solution is adopted.

ControllerGoingDown(n) = (ERROR<I n > GateSeg>I
sensor .in → ControllerGoingDown(n+1))
� tock → ControllerGoingDown(n)
� gate.down → ControllerDown(n)
� sensor .out → ERROR

3This is related to the concept of a monitor that was defined on page 321.

406 Modelling discrete time

When the gate is down, either sensor event may occur, incrementing or decre-
menting the train count as appropriate (subject to the same finite state limitation).
When there are no trains left in the system the gate is signalled to go up.

ControllerDown(n) = (ERROR<I n > GateSeg>I
sensor .in → ControllerDown(n+1))
� tock → ControllerDown(n)
� sensor .out →
((gate!goup → ControllerGoingUp)
<I n = 1>I ControllerDown(n−1))

When the gate is going up, the inward sensor may still fire, which means that
the gate must be signalled to go down again. Any occurrence of the other sensor
event is an error, as previously. Of course this state may get the signal confirming
the gate is up, and will then return to its initial state.

ControllerGoingUp = sensor .in → gate!godown → ControllerGoingDown(1)
� sensor .out → ERROR
� tock → ControllerGoingUp
� gate.up → ControllerUp

In the above definitions, you can take ERROR to be any process whose
activation would make itself felt in the complete network, in the sense that it is
trivial to check that it never occurs. The two obvious possibilities for ERROR
are the divergent process div (which requires the full failures/divergences model
to detect it), and a process that raises an alarm via an error event (which should
not, of course, be synchronized with any other error events there may be in other
processes).

ERROR = error → STOP

If the latter approach is taken, one should assert that the error event never
appears by proving that the ultimate system refines ChaosΣ �{error}.

Neither ERROR nor div makes any allowance for how the system behaves
after an error occurs. This is fine when, as in this case, our objective is to prove
that errors never occur; but when errors can occur and have to be handled, a more
careful treatment would be required.

The gate process can always be commanded to go up or down, and will obey
the command in some nondeterministically chosen time within assumed bounds.

14.3 Case study 1: level crossing gate 407

When it reaches either the up or down state it sends a signal indicating this.

GateUp = gate.goup → GateUp
� gate.godown → GateGoingDown(0)
� tock → GateUp

GateGoingDown(n) = gate.goup → GateGoingUp(0)
� gate.godown → GateGoingDown(n)
� (((gate.down → GateDown)

	 tock → GateGoingDown(n+1))
<I n < DownTime>I (gate.down → GateDown))

GateDown = gate.goup → GateGoingUp(0)
� gate.godown → GateDown
� tock → GateDown

GateGoingUp(n) = gate.goup → GateGoingUp(n)
� gate.godown → GateGoingDown(0)
� (((gate.up → GateUp)

	 tock → GateGoingUp(n+1))
<I n < UpTime>I (gate.up → GateUp))

This completes the definition of the component processes, and we can now
add the last two processes to the network:

GateAndController = ControllerUp ‖
{|tock,gate|}

GateUp

SYSTEM = TimedNetwork ‖
{|sensor ,tock|}

GateAndController

It is worth noting that all the components of the system have been initialized
to indicate that there are no trains in the domain and the gate is up. This is much
the simplest (both to define and to understand) initialization, but it would be
possible to deal with other situations as long as care were taken to make sure that
all of the components were initialized consistently.

The reason why timing analysis is necessary in this system is that there is
no interlock that prevents a train getting onto the level crossing when the gate is
not down: note that TimedNetwork and GateAndController only synchronize on
tock and the sensor events. We are relying simply on the relative times that the
train takes to get from being sensed, to reaching the gate, and from the firing of
the sensor to the gate being fully down. Whether the basic safety requirement is

408 Modelling discrete time

satisfied will depend on just what parameters (number of track segments, speed
limits and gate timings) are used.

Before looking at this issue in detail we need to establish, on the pattern
discussed earlier, that the timing descriptions in our code are consistent. Most of
the events in our system are ones which are observed by, rather than controlled
by, the external environment. The only events that the system does not rely on
happening within some bound are those representing trains’ entries into segment 1.
Beyond that it does make various progress assumptions. So the only events that are
considered to be delayable by the environment are D = {enter .t .1 | t ∈ TRAIN }
in the check that

(SYSTEM ‖
D

ChaosD) \ (Σ �{tock})

failures/divergences-refines TOCKS .

Given the chosen initialization, the assertion that the gate is always down
when there is a train on the same segment as the crossing comes down to two things:

• When a train enters GateSeg , the gate is down, in that the most recent (non-
tock) event communicated by the gate process is gate.down . (Note that the
gate is initially up.)

• The gate never goes up when there is a train on GateSeg , in that no gate
event occurs between a train entering GateSeg and leaving it.

These are both elementary safety specifications which can be expressed as follows.
Let A, B and C be disjoint sets of events. We can define a general trace speci-
fication BetweenSets(A,B ,C) stating that events in C only happen between be-
ing enabled by any element of A and the next element of B (which disables C).
OutsideSets(A,B ,C) is the same except that elements of C are initially enabled
(becoming disabled by the first member of B). We define two processes representing
trace specifications of these things over the events A ∪ B ∪ C , and then lift4 these

4This is a case where we are specifying the behaviour of a process in what is potentially a

proper subset of its alphabet. See Section 12.2 for alternative ways to formulate such checks.

14.3 Case study 1: level crossing gate 409

to specifications that allow other events as well.

BetweenSets ′(A,B ,C) = ?x : A→ OutsideSets ′(A,B ,C)
�?x : B → BetweenSets ′(A,B ,C)

OutsideSets ′(A,B ,C) = ?x : C → OutsideSets ′(A,B ,C)
�?x : A→ OutsideSets ′(A,B ,C)
�?x : B → BetweenSets ′(A,B ,C)

BetweenSets(A,B ,C) = BetweenSets ′(A,B ,C) ‖
A∪B∪C

ChaosΣ

OutsideSets(A,B ,C) = OutsideSets ′(A,B ,C) ‖
A∪B∪C

ChaosΣ

The two requirements described above can thus be formalized as specifica-
tions to test for the refinement of:

EnterWhenDown = BetweenSets({gate.down},
{gate.up, gate.goup, gate.godown},
{enter .t .GateSeg | t ∈ TRAINS})

GateStillWhenTrain = OutsideSets({leave.t .GateSeg | t ∈ TRAINS},
{enter .t .GateSeg | t ∈ TRAINS}, {| gate |})

Since these are trace specifications we can take their conjunction by placing
them in parallel:

Safety = EnterWhenDown ‖ GateStillWhenTrain

Whether or not this is satisfied will depend on the timing details, as discussed
above, even though the specification itself does not mention time.

This is a safety specification in more than one sense of the word! Another
safety, in the technical sense only, specification we might want is that the gate
does not go down unless there is a train in the domain. The most natural way of
expressing this one is as a pure trace property:

tr = tr ′̂ 〈gate.godown〉 ⇒ #(tr � INS) > #(tr � OUTS)

where

INS = {enter .t .1 | t ∈ TRAINS}
OUTS = {leave.t .GateSeg | t ∈ TRAINS}

This can be expressed as a process to refine, but since that process involves a count
of the number of trains presently in the domain, in order to make it finite-state one
has to assume a limit (just as in the controller process).

410 Modelling discrete time

It is also possible to express safety conditions involving time, typically ex-
pressing some limitation on the times certain events can happen. In the present
case one could, for example, assert that the event gate.up only happens within a
certain interval of an event of the form leave.t .GateSeg .

There are two distinct varieties of liveness conditions that appear in this
sort of timed reasoning: those which assert that some set of events is offered by the
process in appropriate circumstances (very possibly involving time in the conditions)
and those that assert that things definitely occur within some time. The first sort
corresponds best to untimed liveness conditions, and we will shortly look at an
important class of these in detail. The second sort is made possible by our ability
to define urgent processes that insist on certain communications before allowing the
event tock . They are, in fact, trace conditions, since they make statements such as
‘no more than three tocks occur before an output’ and depend on our model of time:
we know that tock s appear regularly, so if the only way for four tocks to happen is
for an output to appear, then it does. Thus any trace condition which expresses a
limit on when the event tock can occur is, in fact, a liveness condition of this second
variety.

The following expresses a condition of this sort, namely that the gate rises
within K units of the last train leaving unless some other train appears before that
time limit expires. Once again we express it as a pure trace condition, the same
considerations applying to the construction of a process-style specification as in the
earlier case.

⎛
⎝ ((tr = tr ′̂ 〈leave.t .GateSeg 〉̂ tr ′′)
∧ (#(tr ′ � INS) = #(tr ′ � OUTS) + 1)
∧ #(tr ′′ � INS) = 0 ∧ tr ′′ ↓ tock > K)

⎞
⎠ =⇒ tr ′′ ↓ gate.up > 0

Again, whether or not this is satisfied will depend on the parameters. An example
file to allow you to experiment with them for this and all the other specifications
relating to this example can be found on the web site (see Preface).

Exercise 14.3.1 How should the system be adapted to handle two or more railway

tracks running over our crossing gate? Hint: different tracks are independent of each other,

and the total number of trains present is the total of those on the individual tracks.

Exercise 14.3.2 Give the controller the responsibility of turning on and off a red

traffic light that must always be on when the gate is down and for some defined time

beforehand. You should both modify the ControllerUp process to do this, and formulate

appropriate specifications for the new events used by the light.

14.4 Checking untimed properties of timed processes 411

14.4 Checking untimed properties of timed processes

It will often be the case that we want to compare a process in our timed style
against an untimed specification (which could be simply an untimed version of the
same process). Where the specification is of traces only, there is no real problem in
comparing a timed process against it: all one has to do is modify the specification
so it ignores tock events – something we did without thinking about it several times
in the level crossing gate example and which could be done simply by hiding tock .

Divergence (except for cases where an infinite number of events appear in
a finite time) is a rather different phenomenon in the timed world than in the
untimed one. In many ways it is less dangerous because of the fact that timed
ways of looking at processes tell you what they are doing at each moment, rather
than only giving an accurate picture when internal activity has stopped (which
never happens in a diverging process). It is sufficiently different that, except for the
case of infinitely many actions in a finite time, it is difficult to formulate a general
method for approaching the question in our timed formulation. Indeed, in many
cases timed analysis can make sense of, and prove well-behaved, systems that the
untimed models would regard as divergent.

What we will concentrate on in this section is how to prove untimed failures
specifications of timed systems. In other words, we want to place limits on what
traces a process can perform, and specify things about what the process offers
after each trace. (This is distinct from the extremely strong liveness properties
illustrated in Section 14.3 which asserted that events were not only offered, but
definitely happened.) The crucial issue with this type of property is deciding what
we mean by the word ‘offer’. An untimed failure (s ,X) means that the process can
get into a state after the trace s where it can refuse X and will refuse it for ever
after because it has become stable. The best timed analogue of what is intended
by an untimed failures specification that precludes a particular refusal X is that,
after some time beyond the end of the trace, the process will get into a state where
it must accept an element of X , and will do so for ever after until some (non-tock)
visible event occurs.

What we will in fact attempt to do in this section is to prove this statement,
but with the additional demand that the (permanent) offer occurs within some fixed
time bound. For the timed model gives us ability to see how long it takes for an
offer to be made and makes it impossible to say that an offer will eventually be
made without a limit of this sort.

The specification methods we use will be developed using an example. This
particular example is one where the internal timing behaviour is needed to establish
that the specification is met: the corresponding untimed process would not meet
the specification.

412 Modelling discrete time

It simply consists of a pipeline of two processes, feeding data items from left
to right.

The sender process waits for an input, and then outputs it on the next time
interval (i.e., after exactly one tock). It then waits three tocks before being able to
input again.

TS = tock → TS
� left?x → tock → mid !x → tock → tock → tock → TS

The receiver waits for an input, then outputs and returns to its initial state
on the next two time intervals.

TR = tock → TR
� mid?x → tock → right !x → tock → TR

The system is put together by synchronizing and hiding the shared data
channel and synchronizing on tock .

TIMP = (TS ‖
{|tock,mid|}

TR) \ {| mid |}

Thinking about this system, it is clear that the output must have occurred
before three tocks have happened since the corresponding input. This is before the
next input is possible and therefore this process behaves, in an untimed sense, like
the one-place buffer COPY

COPY = left?x → right !x → COPY

even though the untimed analogues of S and R would behave like a two-place buffer
if piped together. Note we are assuming that the external output is not refusable
by the environment.

Since COPY is an untimed specification that does not mention tock , and our
proposed implementation is a system that certainly does communicate this event,
it is clear that we cannot simply ask the question

COPY
 TIMP?

and expect a sensible answer. We will have to do one of two things:

• Build an understanding of time, and of our requirements for when offers need
to be made, into the specification.

• Abstract away the time event tock from the implementation in an appropriate
way.

14.4 Checking untimed properties of timed processes 413

In fact, either of these is possible. The obvious argument against the first is
that we have negated the objective of this section: if internal manipulation to bring
time into the specification is needed, it is no longer an untimed specification! In
fact we can do better than that and one can devise rather precise recipes for doing
the check in ways that do not require internal manipulation of either the untimed
specification or the timed implementation. Since they are both quite interesting in
their own right and give insight into the problem and each other, we will describe
them in the following subsections.

14.4.1 Abstracting time

We know two basic ways to abstract away from a set of events: lazy and eager
abstraction (see Chapter 12). Since the tock event is interpreted rather differently
from other events, it is worth while investigating what it would mean to abstract it
in these two ways.

In lazy abstraction we are placing no reliance on the abstracted events ever
happening. Thus the refinement test appropriate for the use of lazy abstraction:

COPY
F (TIMP ‖
{tock}

Chaos{tock}) \ {tock}

asserts that the process TIMP does what is required of it by COPY no matter how
many tocks it has done. In particular, it can never refuse whatever event COPY
says it must accept next, no matter how short a time has passed since the last
action. Clearly, then, this refinement does not hold because our system takes some
time before it is able to move from one communication to the next.

In eager abstraction, where the corresponding check would be

COPY
FD TIMP \ {tock}

we are assuming that the abstracted events are never resisted by the environment.
While this is true (hopefully) of the tock event, the different interpretation we make
of this event means that eager abstraction’s consequences for failures refinement
testing are wrong. For any process which can let time pass indefinitely (i.e., com-
municate infinitely many tocks without other intervening communication) will give
rise to divergence under this form of abstraction (which is just hiding) so that no
assertion can be made about what the process accepts or refuses between these
tocks. In other words, eager abstraction will only pick up refusal information when
and if the process has run out of tocks to perform.

What we want to achieve is a mixture of the two. We want to allow a fixed
interval to pass during which the process can offer what it likes, but after that we

414 Modelling discrete time

want to specify what it must offer irrespective of whether it can perform another
tock . We need to apply eager abstraction to the first few tocks after an event, and
lazy abstraction to the rest.

A certain amount of subterfuge is required to achieve this hybrid abstraction
(which is not the same as the mixed abstraction used in Chapter 12). We employ
the ideas introduced on page 3.2.3 to differentiate between identically-names events
via one-to-many renaming and parallel composition. We transform the timed im-
plementation process by allowing either of two sorts of tock events when the original
communicates the original one:

RTIMP = TIMP [[tock1, tock2/tock , tock]]

Having got two sorts of tock , we then constrain the process so that exactly one of
them is possible whenever the original process can perform a tock . Specifically, the
first N after the start of time or a non-tock event become tock1’s while the rest
become tock2’s.

REG(n) = nontock → REG(N)
� (tock2 → REG(n)<I n = 0>I tock1 → REG(n−1))

Reg = REG(N)[[x/nontock | x ∈ Σ �{tock , tock1, tock2}]]

RegTIMP = RTIMP ‖
Σ

Reg

The effect of this complex procedure is to give the classes of tock ’s that we
want to treat differently different names. We can therefore apply eager abstraction
to the tock1’s and lazy to the tock2’s to get the effect we want. The appropriate
test is then

COPY
F (RegTIMP ‖
{tock2}

Chaos{tock2}) \ {tock1, tock2}

This establishes that the refusal of the implementation process is correct
when either (i) at least N time units have passed either from the beginning or the
last non-tock event or (ii) the process insists on a communication before allowing
time to pass. In general, increasing N weakens this test, and decreasing it until it
fails will reveal the longest time one might have to wait before the underlying timed
process is ready to accept whatever is required by the specification.

A larger example of this technique can be found in Section 14.5. Note the use
of one-to-many (actually one-to-two) renaming here; as ever a very powerful tool
for achieving interesting effects when combined with a parallel regulator process.

14.4 Checking untimed properties of timed processes 415

14.4.2 Untimed specifications in a timed harness

In the first method we essentially put a harness around the implementation which
understood the timing requirements we were putting on the process, and did ap-
propriate things to tock events to allow for these. We will now deal with the
dual approach: putting a similar harness round the untimed specification so as to
transform it into one which allows for the occurrence of tock and makes the same
statement about the relationship between the untimed specification and the timed
implementation as was made by the first method.

The check set out above in terms of the first method seeks to establish the
following:

• The untimed traces of the implementation are correct.

• If it is within N time units of the last non-time event or the start, then
either time can pass or the set of events offered by the specification meets
the current requirements of the untimed specification.

• If at least N time units have passed then the set of events offered meets these
requirements whether time can pass further or not.

This careful statement takes account of the fact that our processes sometimes insist
on communicating before tock occurs. What we will do is construct a process
SpecReg which, put in parallel with any untimed specification (synchronizing on all
non-tock events), transforms it so that it says the above:

SpecReg = RSpec(N ,N)[[x/anyother | x ∈ (Σ �{tock})]], where

RSpec(M , r) = (tock → RSpec(M , r − 1)
	 anyother → RSpec(M ,M))
<I r > 0>I
(anyother → RSpec(M ,M))
� (STOP 	 tock → RSpec(M , 0))

We can now ‘lift’ our untimed specification to a timed one by putting this process
in parallel with it:

TSpec = SpecReg ‖
Σ �{tock}

Spec

(where Spec = COPY in the example we are considering). This achieves the goals
set out above since SpecReg allows any trace of Spec with arbitrary insertions of tock ,
and when RSpec offers anyother the renamed version SpecReg offers all non-tock
events and hence TSpec offers whatever of these events that Spec does.

416 Modelling discrete time

The refinement check TSpec
F System makes exactly the same statement
about System as the check developed using abstraction in the previous section. This
second version is easier to implement, since the amount of process transformation
is less, but arguably required a closer understanding of exactly what we wanted to
say about such things as the passage of time.

One possible reason for proving an untimed specification UTS of a timed
process TC is because you want to include it as a component in an otherwise
untimed system. It would then be natural to develop the untimed system with the
specification in the place of TC , before developing TC to meet UTS in the sense
discussed in this section. One important thing that should be borne in mind if you
do this is that we have here considered processes to meet untimed specifications even
though they may place upper time bounds on when some visible communications
occur: for example the outputs of the buffers above must happen within one time
unit even though the untimed COPY process would wait. It is therefore necessary
to perform a second check on the process TC which is developed to fill the slot left
by UTS : any event of its interface with the rest of the system, which you are not
totally confident will never be delayed, must be included in the Delayable set for a
timing consistency check on TC .

Exercise 14.4.1 Modify SpecReg so that it never refuses tock , but otherwise behaves

as before. Comment on how the revised timed specification it produces (when combined

with an untimed one) is relevant to the discussion above about TC and UTS . How would

the TIMP process above fare when checked against it?

Exercise 14.4.2 The example in this section shows how what is apparently a two-

place buffer might become a one-place one thanks to timing. Find an example of an

apparently deadlocking system which is deadlock-free because of timing.

14.5 Case study 2: the alternating bit protocol

In this section we give a slightly larger example of the sort of reasoning introduced
in the previous section, namely proving what are largely untimed specifications of
a system which depends on timing for its correct functioning. This is a version
of the alternating bit protocol which relies on time-outs to decide when it resends
messages and acknowledgements, rather than the mechanisms described in Section
5.3.

The overall specification we want it to satisfy will still be the same, namely
that it is a one-place buffer.

Unlike the untimed example, this version does not rely on the eventual correct
transmission of data to avoid CSP divergence, but we do need some bound on the

14.5 Case study 2: the alternating bit protocol 417

loss if we are to prove that data does eventually get through, and how long this takes.
Rather than make the occurrence of error ’s explicitly nondeterministic as in the
earlier treatments of communications protocols, here we use the more sophisticated
coding where error ’s are prompted by external actions as discussed in Chapter 12.
This has the advantage that the limits on errors do not have to be coded into the
basic system definition, and we can thus construct a single system and analyze it
under a variety of assumptions rather than having to reconstruct the system each
time. The only error modelled here is message loss; duplication could easily be
added.

TE = a?tag?data → tock → (b!tag !data → TE � error → TE)
� tock → TE

TF = c?tag → tock → (d !tag → TF � error → TF)
� tock → TF

Note that we have specified that all messages take precisely one unit of time
to get through and that an arbitrary time then passes before the next input. Clearly
one could make this more nondeterministic. Also, the fact that the outputs have
been made urgent imposes the obligation on us to ensure that the processes receiving
these outputs never refuse them when offered.

The implementation of the protocol consists of a sender process and receiver
process, linked by E and F above.

14.5.1 Describing time-outs

The crucial feature of the sender and receiver processes in this presentation is their
use of time-outs. A time-out is a sort of choice operator between two processes
(like � and), that only fully makes sense in a timed model. A time-out gives one
process the chance to communicate for some length of time (which is a parameter
to the time-out operator) and then, if no such communication has occurred, gives
up and behaves like the other process. In Timed CSP it is written

P �{t} Q

meaning the process which times-out to Q if P has not communicated within t time
units. It looks very like the untimed operator P � Q that we have seen from time
to time, since in its most natural implementation the latter essentially behaves like
a time-out though without the control over exactly when the decision to time-out
is made.

In the style of CSP discussed in this chapter we will obviously have to tie the
occurrence of time-outs to the tock event. Unless we are thinking that tock has some

418 Modelling discrete time

real existence, like a broadcast clock signal, it is better not to make the time-out
(i.e., the transition from P to Q) occur precisely at some tock (counted, presumably,
from when the time-out combination was started). This would create a potential
synchronization between time-outs in different parallel processes when there is no
mechanism to achieve it. As a simple example, consider P �{t} Q ‖ Q �{t} P ,
where P = a → P and Q = b → Q . If the time-outs are triggered by the same
tock , this combination is certain to deadlock while, assuming that in reality they
are managed by unsynchronized clocks, we would have the possibility (though not
the certainty) of being able to communicate one of a or b for a short interval.

It is usually preferable, therefore, to specify an interval (amongst the tock s)
during which a time-out will occur, without forcing it to occur at a tock. Thus a
time-out will be an event whose occurrence is tied to a specific interval, very like
many of the other events we have seen in this chapter.

Perhaps the most elegant way of achieving this is to delegate the firing of the
time-out to a separate parallel process which, rather like a kitchen timer, can be set
up to ‘ring’ at a given time in the future. In general the time-out controller process
might, like the more sophisticated kitchen timers,5 be programmable with a variety
of intervals. It should therefore have an input channel setup over which this data
is communicated, an event it communicates back when it fires, plus the tock event.
Because any time-out is abandoned if the left-hand process communicates before
the set time, the time-out controller has to be programmed so that it can be reset.

TOC = setup?n → Armed(n)
� tock → TOC
� reset → TOC

Armed(n) = ((timesout → TOC)<I n = 0>I (tock → Armed(n − 1)))
� reset → TOC

The main process then sends TOC the setup signal to arm the time-out function,
and includes the event timesout amongst the choices it offers during the period while
the time-out might fire. It is combined with the TOC process (of which there is one
for every separate component that needs one, since it is possible for the network to
have more than one time-out running at once) with the setup and timesout events
hidden.

5Ones that are not egg timers!

14.5 Case study 2: the alternating bit protocol 419

The structure of the complete process is then either

(Main ‖
Σ

TOC [[a/reset | a ∈ R]]) \ {| setup, timesout |} or

(Main ‖
Σ �{tock}

TOC [[a/reset | a ∈ R]]) \ {| setup, timesout |}

where R = Σ �{tock , setup, timesout}

depending on whether or not (respectively) the process Main is timed.

For example, if P and Q are the processes described earlier when discussing
the consequences of synchronized time-outs, we can describe P �{t} Q by defining
Main (in the first line above) to be setup.t → (S ||| RUN {tock}), where

S = timesout → Q
� P

(This is a timed process because it insists on sending the setup.t signal immediately –
before any tocks. The subsequent interleaving with RUN {tock} means there are no
further timing constraints apart from the ones introduced by TOC .)

If Q �{t} P is defined similarly, it is now possible for

P �{t} Q ‖ Q �{t} P

to synchronize on either a or b between tocks number t and t + 1.

14.5.2 The sender and receiver

In this treatment of the alternating bit protocol we have factored the sender process
into three parallel components: one for transmitting data, one for managing the
time-outs for retransmissions, and one for receiving acknowledgement signals and
filtering out repeats. By doing this it is easier to ensure that signals are sent and
received at appropriate times. It is, of course, possible to do the same thing with a
sequential process: see Exercise 14.5.1.

Send(bit) = left?x → tock → Snd1(bit , x)
� tock → Send(bit)

Snd1(bit , x) = a!bit !x → setup!sto → Snd2(bit , x)

Snd2(bit , x) = timesout → Snd1(bit , x)
� tock → Snd2(bit , x)
� ack → Send(1−bit)

420 Modelling discrete time

sto is a constant defining how long the process waits between successive
outputs of the same piece of data. The following process sends the ack signal just
when it gets each new, rather than repeated, acknowledgement on channel d .

SAck(bit) = d .bit → ack → SAck(1−bit)
� d .(1−bit) → SAck(bit)
� tock → SAck(bit)

Note below that this ack event is used to reset the time-out timer.

SEND = ((Send(0) ‖
{tock,ack}

SAck(0))

‖
A

TOC [[ack/reset]]) \ {| ack , setup, timesout |}

where A = {| tock , setup, ack , timesout |}

The receiver has one main component plus a timer, which is only reset (now
explicitly) when a new (rather than repeat) input is received. In this sense its
behaviour is not a classic time-out, since there are events the main process does
that do not reset the timer. (This illustrates the flexibility of this approach of
using parallel timers.) rto is the interval between successive sendings of the same
acknowledgement. Note that, in both the sender and receiver processes, it is only
elapsed time which determines how many times each message and acknowledgement
are sent.

Rec(bit) = b?tag?data →
(reset → tock → right !data → c!bit →
setup!rto → Rec(1−bit)
<I tag = bit>I
Rec(bit))
� timesout → c!(1−bit)→ setup!rto → Rec(bit)
� tock → Rec(bit)

REC = (Rec(0) ‖
{|tock}∪αTOC

TOC) \ αTOC

where αTOC = {| setup, timesout , reset}
TABP = SEND ‖

{|a,d,tock|}
((TE ‖

{tock}
TF) ‖

{|b,c,tock|}
REC) \ {| a, b, c, d |}

Aside from tock , the external alphabet of this system is {| left , right , error |}.
Of these events we are relying on the environment accepting the system’s outputs
(on right) promptly. Therefore the timing consistency check deems the delayable

14.5 Case study 2: the alternating bit protocol 421

events to be the complement of this set. It is appropriate to include the event error
in this set since not to do so would mean that we could not exclude the possibility
that the process is relying on some error ’s happening to ensure correct behaviour!
(Essentially we are lazily abstracting the error events, as recommended in Section
12.3.)

D = {| left , error |}
TimingConsistency = (TABP ‖

D
ChaosD) \ (Σ �{tock})

As ever, this check simply shows there are no contradictory timing require-
ments in our system. The main check, that our system behaves like a one-place
buffer, follows the pattern set out in the previous section. The checks set out below
attempt to show that the system meets the untimed specification COPY with all
required communications being offered within a specified number of time units since
the last external communication.

With Reg defined as on page 414:

RTIMP = TABP [[tock1, tock2/tock , tock]]

RegTIMP = RTIMP ‖ Reg

This can now be checked against COPY by eagerly abstracting tock1 and
lazily abstracting tock2 and error :

RHS = (RegTIMP ‖
{tock2,error}

Chaos{tock2,error}) \ {tock1, tock2, error}

This check, if successful (which depends on the timing parameters used), shows
something quite interesting because of the way it deals with errors. Since the
process Reg (which chooses between tock1’s and tock2’s) allows an error event to
reset its clock, what we are showing is that the offers required by COPY are made
by the time that a fixed interval has passed since the last input or output, and the
last error. This is the advantage of keeping the errors visible: we allow any number
of errors but only insist that the system makes progress when there have not been
any errors recently. If the thing which decides whether or not errors occur was an
invisible nondeterministic choice operator, there is no way such a statement could
be made.

Having put the system together in such a way as to leave errors (or, at least,
events that give us control over when these happen) visible, one can, if one chooses,
make assumptions about the error rate and see what effect this has on system
performance. The typical assumption it might be appropriate to make would be

422 Modelling discrete time

‘there are no more than L errors in any T time units’: something it is easy to specify
using the tock style of CSP. If L = 1 we can define

ER1(T) = ER′
1(T , 0), where

ER′
1(T , j) = tock → ER′

1(T , j−1)<I j > 0>I
(tock → ER′

1(T , 0) � (STOP 	 error → ER′
1(T ,T)))

and ERL+1(T) = ERL(T) ‖
{tock}

ER1(T). (This definition has a lot in common with

that of Limit on page 321.) The last line in the definition of ER′
1(T , j) includes the

nondeterministic choice between error and STOP because we do not want processes
to be able to rely on errors happening.

The appropriate thing to do with one of these assumptions is to use it to
constrain TABP and then to hide the error event.

CSYSTEM = (TABP ‖
{tock,error}

ERL(T)) \ {error}

One would then seek to prove that CSYSTEM meets the untimed specification
COPY using the same methods as above, though this time there is no need to put
in the abstraction of error and the fact that error has already been hidden means
that it does not reset the specification clock. One would expect to find that the
time one needs to wait before this version of the system makes the offers required
of it will be longer than in the version where error is allowed to reset the waiting
period for this, and also that there would be critical error rates beyond which no
‘settle time’ is long enough because there are enough errors to prevent real progress.

When this check succeeds it establishes that, provided the error pattern is
within the limits specified, the system meets the specification in a way independent
of exactly when the errors happen. This shows how one can elegantly extend to
timed systems the concepts of fault tolerance described in Chapter 12. Thus, one
might prove that, provided there are no more than L errors every T time units, the
system meets the COPY specification with settle-time (since the last proper input
or output) of N units.

Exercise 14.5.1 Write an alternative version of Send(bit) that does not require the

special acknowledgement handler SAck(bit) in parallel with it (though it should still use

TOC to handle its time-outs). Be careful that, whenever TOC wants to perform the event

timesout , your Send does not deadlock it.

Exercise 14.5.2 Use the time-out mechanism provided by TOC to re-work your

answer to Exercise 14.2.3. Then produce a further version where the TOC is also used to

place limits on the time the user has to perform each of his or her other actions.

14.6 Urgency and priority 423

14.6 Urgency and priority

Recall the process TCOPY 2, the timed version of COPY from the start of this
chapter that behaves most like the original. It will wait indefinitely for either an
input or an output. Now, preferably without looking ahead in this text, think how
you would expect the result of piping two copies of this together to behave:

(TCOPY 2[[mid/right]] ‖
{|mid,tock|}

TCOPY 2[[mid/left]]) \ {| mid |}

The issue you have to decide is: when does the hidden communication on mid
happen? One time unit after the corresponding input by the left-hand process,
both processes (assuming the right-hand one is not full) are willing and able to do
this action, but are also able to wait. A hidden action is one that the environment
has no control over, so the implementation (and our modelling) has to decide which
route to follow.

In all the timed examples seen so far we have carefully avoided this ambiguity.
Whenever a hidden communication occurred between two parallel processes, one of
them (invariably the one doing the ‘outputting’) specified exactly when it happened.
This puts us under the obligation to ensure that these communications are accepted
at precisely the specified moments, for otherwise the TimingConsistency checks fail.

In reasoning about untimed CSP we made the assumption that when a pro-
cess had a hidden action (a τ) available then the τ always happens unless some
other action occurs quickly. Certainly the process could not wait for ever in a state
with a τ available. The problem we have to face in modelling the passage of time
by tock events is that the untimed models of CSP do not understand the special
nature of this event. They would model the system of two TCOPY 2’s shown above
in such a way that the hidden mid event can nondeterministically happen after any
number of tock s or never, in the sense that the infinite trace

〈left .0, tock , tock , tock , . . .〉

is possible without the transfer on mid occurring. Thus, this attempt at modelling
a timed system in untimed CSP fails in an important way to model accurately our
understanding of how this system ought to behave.

Imagine the state this system is in one time unit after the input event left .0
(which we can assume is the first event the combination does). The internal commu-
nication (mid .0) is available; if it does not happen before the next tock then, unless
we are to keep some timer running, the state the system is in after the tock is iden-
tical to that before it. This means that if one tock is possible then, without special
treatment, it must be possible for there to be any finite number before the hidden
action occurs, and even for the hidden action never to happen at all. This would

424 Modelling discrete time

mean that the interpretation we were putting on this internal event in this world
of tocks would be different to the usual untimed models, where we have assumed
that a process cannot sit waiting for ever when there is an internal action possible.
The cleanest solution to this problem is to assert that a tock never happens when
there is an internal event available. In other words, internal events are urgent in
the sense that time does not pass when they are enabled. (Note that this mirrors
precisely the concept of an urgent state that we have already discussed.) This is
often called the assumption of maximal progress and is common across a variety of
models of timed concurrency, including conventional Timed CSP.

Looking at a timed system in this way gives a (possibly strict) refinement of
the way we would interpret it over the usual models of CSP, thinking of tock as any
other event. This is because these models (in particular the failures/divergences one)
allow the implementation to choose internal events that are available in preference
to any or all others (including tock), while our new view simply asserts that in some
circumstances it is obliged to do this.

It is perfectly clear how to simulate a system running under these new rules:
we have to give internal events priority over tock . (Other events are not affected
by this.) In terms of operational semantics, what we are doing is describing a new
transition rule x−→T in terms of the old one x−→: here T is a set of time-like actions
(usually {tock}). Unless x ∈ T we have

P x−→T Q ⇔ P x−→ Q

If x ∈ T , then

P x−→T Q ⇔ P x−→ Q ∧ ¬∃Q ′.P τ−→ Q ′ ∨ P �−→ Q ′

Here, τ is the usual internal action we are familiar with.

The consequences of this re-interpretation for our system of two TCOPY 2’s
is that the data moves across as soon as both sides are willing, namely, one time
unit after the later of the corresponding input and the output of the previous datum
(if any) by the right-hand process.

In almost all circumstances this new, prioritized, view is the right way of
looking at timed systems and the cases where the conventional semantics provides
the right answer (like all those in previous sections of this chapter) are written
so that the above rules are, to all intents and purposes, followed by the standard
transition rule x−→ without the need to impose them. In other words, in those cases
the semantic values of the standard and prioritized views coincide.

As discussed above, this will be true whenever one of the participants in each
internal action is unwilling to let time pass until it has occurred. Fortunately, since

14.6 Urgency and priority 425

the new prioritized view always gives a refinement of the old one, checking a timed
system against a specification6 will never give a false positive.

14.6.1 Consequences for semantic models

While the prioritized view of time is easy to understand in terms of operational
semantics, it presents rather more difficulties if you want to get a denotational theory
for predicting process behaviour (like the traces model, or the failures/divergences
model). The problem is that our usual models conceal all details of internal τ

actions, so there is no way of imposing the new interpretation on a process once we
have reduced it to its description in one of them. Whole new models, giving much
more detail about what was refused by a process during a trace as well as after it,
are required. While these are interesting, they are also complex and this is not the
place to describe them. The issues which arise are essentially the same as those as
in modelling (continuously) Timed CSP, and there is extensive discussion of these
in the literature.

It is possible, under the prioritized view, to have two processes that are
equivalent in all the denotational models of untimed CSP which are inequivalent
when put in a simple CSP context. What this means from a practical point of view
is that the compression functions described in Section C.2 are unsafe for prioritized
analysis, and that techniques for proving properties of processes by putting them
in contexts should be considered carefully before use. Basically, you should regard
the primary means of understanding a prioritized program as being its operational
semantics, rather than the denotational models which dominate for the standard
interpretation.

We need to understand how this new prioritized view interacts with the
methods described in Section 14.4 for proving a timed process meets an untimed
specification. The answer is very simple: the first method creates problems because
of the way time is abstracted by hiding. The problem is that once one hides a tock
event, it becomes a τ and so is put into precisely the category of events we are giving
priority to over tocks. Thus, once this hiding is done, we have lost the mechanism
to impose priority of more normal τ ’s over the passage of time. Thus this method
should not be used for systems with priority.

On the other hand, the second method, where the specification was trans-
formed and the implementation left unaltered, creates no problems and should be
used in preference.

The lazy abstraction of error events in this type of analysis does not appear

6Necessarily a specification that does not depend on the prioritized interpretation of time to

deduce its own behaviour.

426 Modelling discrete time

to cause any problems since, by construction, it allows the abstracted events to be
refused at any time.

14.7 Tools

The style of CSP presented in this chapter was developed specifically to meet the
demand for a mechanism for analyzing timed systems with FDR. Probably because
of the practical importance of timing analysis it has become widely used for that
purpose. A larger case study of the automated analysis of a timed system can be
found in Section ??.

Except where priority is required, no special considerations apply to using
tools. The main thing anyone intending to use CSP tools for timing analysis should
do is get a good grasp of the principles of modelling time set out in this chapter.

It is possible7 to add an operator prioritize(P) to FDR as a function
applied to processes: the process the function is applied to is given a revised opera-
tional semantics of the sort described above.

Potential users of the prioritized implementation of timing are warned to
ensure they understand just what this construction achieves and the limitations on
when it is safe to use it.

All the examples in this chapter, plus further examples of the style of CSP
it describes, can be found on the associated web site.

14.8 Notes

As we have said previously, the techniques presented in this chapter are not Timed
CSP in the sense described in the work of the author, Reed, Schneider, Davies and
others [29, 30, 31, 97, 98, 99, 127] because we do not use the continuous time model
used there. It has more in common, in terms of timing, with work on other flavours
of timed copncurrency. A good survey can be found in [3], and the rest of the papers
in that conference proceedings are also useful. The primary reason for advocating
the discrete approach here is pragmatic: while it is not as mathematically elegant,
it is easier to automate its analysis and, in many respects, easier to program in.
David Jackson has played an important role in the development of the style and in
promoting it.

There have been several papers published applying the tock-timed style of
CSP [14, 49], but no widely available general introductions to this style before. The

7This operator was present in later versions of FDR1. At the time of writing it has not yet

been included in FDR2.

14.8 Notes 427

level crossing example was originally proposed in [69] and was the example used in
[49].

2005: The style of CSP presented in this chapter remains widely used. Joel
Ouaknine [88] proved the existence of unexpectedly close links between a variant on
it and (continuous) Timed CSP in his thesis. Recently the theory of information
flow presented in Chapter 12 has been extended to tock-CSP and there has been
interesting work on semantic models for the priority model by Ouaknine and Lowe.
The priority model is now supported by FDR.

428 Modelling discrete time

Chapter 15

Case studies

We have already seen some moderately large examples of systems described and
specified in CSP in relation to protocols (Chapter 5), information flow (Chapter
12), deadlock (Chapter 13) and timing (Chapter 14). In this chapter we look at
some more which illustrate some different ideas and methods, and the notation’s
power in a wide variety of applications, some of which are by no means obvious at
first sight.

All of the examples in this chapter are drawn from case studies developed
as applications of FDR by the author and his colleagues. The definitions of more
realistically-sized processes such as those we use here are often easier to read in
the ASCII-based syntax used by FDR with its slightly lower emphasis on ‘alge-
braic’ constructs. This syntax also helps in presenting the functional programs1

for manipulating data which form a vital part of most realistic FDR examples and,
hopefully, will assist the reader to get used to the machine-readable version of the
language (details of which can be found in Appendix B).

In each case all the process definitions are included in the text, as are suf-
ficient subsidiary definitions to make these clear and to show what is involved in
setting up a realistic system description in CSP. Copies of the complete files from
which they are drawn are obtainable on the Internet (see Preface). Where possible,
readers are encouraged to run these files in conjunction with studying this chapter.

The author hopes that readers will gain both ideas and confidence in the
expressive power of CSP from looking at these examples.

1These programs are frequently simple and self-explanatory, as the ones in this chapter hopefully

are. However, an understanding of functional programming such as can be obtained from [11] is

undoubtedly useful for dealing with some types of example using FDR.

430 Case studies

Figure 15.1: Peg solitaire.

15.1 Combinatorial systems: rules and tactics

CSP can be used to describe systems quite unlike the obvious applications to net-
works of communicating parallel processes. There are a great many types of system
which evolve according to rules based on their states’ structures and where there is
a designated set of states which either one wishes to prove unreachable, or perhaps
one is simply interested in finding out whether the set is reachable and if so how.
An example of the former might be a railway signalling system, where we would
hope to prove that, provided some set of rules were applied, no two trains end up
on the same segment of track (amongst other properties of a similar flavour).

Examples of the latter are provided by the class of puzzles where the objective
is to reach one of a set of target states (frequently this set has only one member)
from a fixed starting state. The example we use in this section is one of the best-
known puzzles of this sort: peg solitaire. The starting position of the usual version
of this puzzle is shown in Figure 15.1. Thus initially there are 32 slots with a peg
in, plus an empty slot in the middle.

The rules are very simple: in any one of the four horizontal and vertical
directions (up, down, left, right) you can hop any peg over another peg into an
empty slot, after which you remove the hopped-over peg. The objective is to remove

15.1 Combinatorial systems: rules and tactics 431

all but one of the pegs and leave the remaining one in the slot that was initially
empty. Most human beings find this a very difficult puzzle.

Evidently the initial configuration can be varied, thus creating an infinity of
different puzzles, some of which are soluble and some of which are not.2 The CSP
script on which this section is based supports a simple notation which allows the
user to design his or her own puzzles and try them out.

This is done by writing each puzzle as a rectangular list of lists (i.e., a list of
rows) in which the standard version is shown

Board = <<X,X,P,P,P,X,X>,
<X,X,P,P,P,X,X>,

<P,P,P,P,P,P,P>,

<P,P,P,E,P,P,P>,

<P,P,P,P,P,P,P>,

<X,X,P,P,P,X,X>,

<X,X,P,P,P,X,X>>

Here, X is a non-slot (there just to fill up the rectangle), P is a slot with a
peg and E is an empty slot. (These are members of a data type which is declared
in the script.)

The rest of the script just compiles a parallel network out of the above
notation. To do this we need the dimensions of the board:

Height = #Board

Width = #(head(Board))

and a function which extracts the value of the (i , j)th member of the array. The
following definition allows for the fact that the above picture is inverted because
the 0th row is at the top, whereas it is easier to think of the origin (point (0, 0)) as
being at the bottom left-hand corner.

init(i,j) = nth(j,nth(Height-1-i,Board))

The following set then consists of all the co-ordinates of slots on the board.

BoardCoords = {(i,j) | i <- {0..Height-1},

j <- {0..Width-1}, init(i,j)!=X}

2The puzzle can be analyzed mathematically and a theory developed which helps predict which

boards can be solved, and in some cases how to solve them. See [8] for an extensive treatment of

this. We will, however, treat the puzzle ‘blind’ to its theory.

432 Case studies

When using FDR you have to declare the types of all channels used. The main
events we will use are ones representing moves, with the indexing of the events
corresponding to the co-ordinates of the slot the move is to (rather than from or
over). For reasons that will become apparent later we declare the possible indexes
of these events to range over an area a little bigger than the actual board:

Ycoords = {(-2)..Height+1}

Xcoords = {(-2)..Width+1}

channel up,down,left,right:Ycoords.Xcoords

channel done

We next define a process for each slot with just two states: full and empty.
These record the effects of the various moves and also permit the special event done
just when the state is correct for a solution (as recorded in the parameter target
using one of the values P and E used in the list-picture).

When a slot is full it can become empty in two basic ways: either the peg
that is in it hops out, or another hops over it. Since either of these can happen in
four directions, there are eight move events it can participate in.

Full(i,j,target) = (target==P) & done -> Full(i,j,target)

[] up.i+2.j -> Empty(i,j,target)

[] down.i-2.j -> Empty(i,j,target)
[] right.i.j+2 -> Empty(i,j,target)

[] left.i.j-2 -> Empty(i,j,target)

[] up.i+1.j -> Empty(i,j,target)

[] down.i-1.j -> Empty(i,j,target)

[] right.i.j+1 -> Empty(i,j,target)

[] left.i.j-1 -> Empty(i,j,target)

When it is empty, the slot cannot allow any of the above moves, but does allow four
new ones, namely the four directions of a peg hopping in.

Empty(i,j,target) = (target==E) & done -> Empty(i,j,target)

[] up.i.j -> Full(i,j,target)

[] down.i.j -> Full(i,j,target)

[] right.i.j -> Full(i,j,target)

[] left.i.j -> Full(i,j,target)

The initial value of the process at co-ordinates (i , j) is determined by the
picture: note the target is always the opposite.

15.1 Combinatorial systems: rules and tactics 433

Slot(i,j) = if init(i,j) == E then Empty(i,j,P)

else Full(i,j,E)

We are going to put all the various slot processes in parallel. To do so we
need an expression for the alphabet of each: it is just done plus all the moves the
slot is involved in.

Alpha(i,j) = Union({{done},

{up.i+k.j | k <-{0,1,2}},

{down.i-k.j | k <-{0,1,2}},

{left.i.j-k | k <-{0,1,2}},

{right.i.j+k | k <-{0,1,2}}})

Placing done in all the alphabets like this will mean that it can only occur when
every process is in its target state.

In a sense the definitions of the Full and Empty states, and also the alphabets,
are too general. They assume that all slots have a full complement of moves, ignoring
the fact that ones within two units of an edge of the board (in any direction) have
fewer. For example, a slot on the left-hand edge has no moves hopping over it to
left or right, none hopping in from the left and none hopping out to the left. For
a move to be a ‘real’ move, all of the from-, over- and to-slots need to be on the
board. This calculation is performed by the following:

JumpTos = {up.i.j, down.i.j, left.i.j,

right.i.j | (i,j) <- BoardCoords}

JumpOvers = {up.i+1.j, down.i-1.j, left.i.j-1,

right.i.j+1 | (i,j) <- BoardCoords}

JumpFroms = {up.i+2.j, down.i-2.j, left.i.j-2,
right.i.j+2 | (i,j) <- BoardCoords}

RealMoves = inter(JumpTos,inter(JumpOvers,JumpFroms))

OffBoardMoves = diff({|up,down,left,right|},RealMoves)

The following definition of the complete puzzle comprises the parallel composition
of one process for each slot, which is put in parallel with STOP to prevent the
moves OffBoardMoves from occurring:

Puzzle = (|| (i,j):BoardCoords @ [Alpha(i,j)] Slot(i,j))

[|OffBoardMoves|] STOP

434 Case studies

Notice that each move in RealMoves appears in the alphabets of exactly three slots,
and that done is, as discussed above, in the alphabets of them all.

We now have a perfect model of the puzzle in CSP: the traces are precisely
the legal sequences of moves, with the additional possibility of done when and if a
solution is reached. There is a solution, indeed, if and only if this event can occur,
and this fact leads to an obvious refinement check which we can give to FDR to
look for one: it is failed if Puzzle can perform done. The following is the syntax
used to pre-load a (traces) refinement check into FDR.

assert STOP [T= Puzzle \ {|up,down,left,right|}

This is all very well, but for the standard board the check is very large
(187,636,268 states) and takes a long time to run. When the first edition of this
book appeared it was still out of range, but hardware and software advances mean
that it now (October 2000) takes 12-24 hours on reasonably powerful PC’s or 2 hours
20 minutes on a parallel implementation using 8 533MHz Celeron processors (see
Appendix C). However this is still too large a check to run unless really necessary.

An interesting way round this is to impose further rules on the puzzle in such
a way as to restrict the number of states, and then see if this constrained version
has a solution. This can be done by placing another process in parallel which limits
the patterns of up, down, left and right events. In this case it is best to regard
these as tactics for solving the puzzle, but in other games you could use exactly
the same programming structure to add in standard rules, and when analyzing a
more real-life combinatorial system it could be used both for rules and to make
assumptions about the system’s environment.

Two examples are given below. The first simply says that moves in the four
directions rotate:

Tactic1 = left?x -> Tactic1’

Tactic1’ = up?x -> Tactic1’’

Tactic1’’ = right?x -> Tactic1’’’
Tactic1’’’ = down?x -> Tactic1

Puzzle1 = Puzzle [union(RealMoves,{done})||RealMoves] Tactic1

This fails to find a solution (i.e., the refinement check succeeds), establishing
that the puzzle has no solutions of the form implied by the tactic. If this tactic
is weakened so that the rotation only applies for the first 24 moves, a solution is
found: the coding of this is left as an exercise!

A second tactic is to make some of the pegs ‘sticky’ and forbid them being
moved until most of the others have gone. The best way to do this is to extend the

15.1 Combinatorial systems: rules and tactics 435

notation used to define the puzzle to include a sticky peg S as well as an ordinary
one P. An arrangement that works well for the standard puzzle is

Board1 = <<X,X,P,P,P,X,X>,
<X,X,P,P,P,X,X>,

<S,S,P,P,P,P,P>,

<P,P,P,E,P,P,P>,

<S,S,P,P,P,P,P>,

<X,X,S,P,S,X,X>,

<X,X,S,P,S,X,X>>

Adopting this extended notation does not change the network produced by the
earlier definition of Puzzle, because of the way the process Slot(i,j) was defined
above. It does, however, allow us to define a tactic process to implement our
restricted search for a solution. The following constants (derived from this new
board) represent the number of pegs that are not to be delayed, and the moves
which are respectively in the alphabets of any sticky peg and those which are not.

NoDelays = card({(i,j) | (i,j) <- BoardCoords, init(i,j) == P})

DelayMoves = diff(Union({Alpha(i,j) | (i,j) <- BoardCoords,

init(i,j)==S}),

{done})

NoDelayMoves = diff(RealMoves,DelayMoves)

To define the tactic fully we need to know how many moves need to happen
before a sticky peg can move. Perhaps the cleanest way to do this is to define a
constant NonStickiesLeft which defines how many other pegs are left when the
first peg marked S can move. This can be used, in conjunction with NoDelays, to
compute the initial parameter for a process that runs in parallel with the system to
implement the tactic.

Tactic2(n) = if n==0 then []x:RealMoves @ x -> Tactic2(0)

else []x:NoDelayMoves @ x -> Tactic2(n-1)

Puzzle2 = Puzzle [|RealMoves|]

Tactic2(NoDelays-NonStickiesLeft)

Provided this allowance is set to be at least 4, the configuration given above
(the first one the author tried, and the one described in [108], where the implied
NonStickiesLeft is 5) finds a solution.

436 Case studies

Solving puzzles like this is great fun, and several times we have found solu-
tions to other ones which are shorter than the best previously known. (Evidently
all solutions to solitaire have the same length!) The serious points of this example
are firstly to show how the constructs of CSP (especially its ability to synchronize
an arbitrary number of processes on a given event) allow us to model combinatorial
systems which evolve according to rules, secondly how to add further rules, tactics
or assumptions via parallel composition, and finally to show that model-checking
tools such as FDR really can discover things that are at or beyond the limit of what
the unassisted human can do.

Most of the exercises in this chapter require FDR or some similar tool.

Exercise 15.1.1 Modify Tactic1 so that it allows any move after 24 rotating ones

and find a solution to the puzzle that follows this pattern.

Exercise 15.1.2 A farmer has to ferry a wolf, a goat and a cabbage across a river

using a boat that is only big enough for him and one of his charges. Unfortunately, without

the farmer to control then, the goat would eat the cabbage and the wolf would eat the

goat. Devise a CSP program to find the way the farmer can get all across safely.

Use your program to demonstrate that his task would become impossible if he had

even one more of any of the cargo items. Would it help him, in that case, to have an island

in the middle of the river?

Exercise 15.1.3 Produce a version of the solitaire script which uses a hexagonal grid

like the two example puzzles shown in the upper part of Figure 15.2, with the pieces now

able to hop in any one of six directions along the lines. Are the puzzles shown soluble, in

the sense that you can end up with a single peg left, in the initially empty slot?

Hint: you might find adapting the script easier if you transform the hexagonal grid

to a rectangular one with moves allowed on one set of diagonals, as shown in the bottom

of the figure.

15.2 Distributed data and data-independence

Many of the applications CSP is best suited to are systems that handle data items
without altering them. Rather they manage data values, and input and output
them – hopefully at appropriate times on the desired channels. We have seen many
examples in buffers and communication protocols, stacks and bags. Some of the
most striking examples are systems that store multiple copies of data (either for
security against failure or speed of access) but seek to maintain the appearance of
a single copy which can be accessed for reading and writing.

In this section we see two of these: one where copies of a store are held
at every node on a ring, and a model of a cache not unlike those used on most

15.2 Distributed data and data-independence 437

Figure 15.2: Hexagonal solitaire (see Exercise 15.1.3).

438 Case studies

Z

W
X
Y

Z

W
X
Y

Z

W
X
Y

Z

W
X
Y

Z

W
X
Y

Z

W
X
Y

A

B

C

D

F

E

Figure 15.3: The ring database.

microprocessors. One of our main objectives is to explain and illustrate the theory
of data-independence, whereby it is often possible to prove facts about processes of
the type described in the previous paragraph for any data type by showing they
hold for a particular finite data type.

15.2.1 A ring database

Imagine that you have a ring of processes, each holding a copy of a selection of
registers, and that you want each node to be able to update any of these. An
update is first executed locally, and then transmitted around the other nodes in
turn until it arrives back home. See Figure 15.3. If two nodes at opposite sides
(A and D , say) of the ring choose to update the same register at very nearly the
same time, it is evident that the resulting updates will be seen in different orders
if they both simply pass all the way round the ring. This, in turn, might lead to a

15.2 Distributed data and data-independence 439

situation where even after all updates have completed their journeys, nodes B and
F disagree on the value of the register.

Unless some sort of locking mechanism is employed – inevitably expensive
in time and effort – it is certain that we must put up with there being instants
where simultaneous reads to the same register will yield different results. What we
cannot tolerate is any inconsistency which persists, like the one described above,
even when the system is quiescent. The author proposed several related algorithms
in [106]3 which guarantee at least this degree of consistency under various scenarios:
the simplest one is described below.

Let the nodes on the ring be Ni for 0 ≤ i < M , with indexes increasing in
the direction messages pass round. The user of any node may read or write any
of a set of registers locally. When a local write has occurred, Ni will generate an
update that is entered into the ring to carry the new value round the other nodes.
If otherwise uninterrupted, an update passes round until it arrives back at the node
that generated it; updates thus carry the identity of their origins with them, and
each node keeps a list Ei of the updates it has generated that are expected back.

In order to resolve the inconsistencies that can arise due to simultaneously
existing updates to the same register, the nodes are all assigned unique priorities:
let pi be the priority of Ni . These affect what happens when an update u originated
by Ni arrives at Nj :

• If i = j then u is removed from the head of Ej provided it is there. Its absence
is an error: we can deal with it any way we please. In the implementation
below we do not notice it belongs to the node if Ej is empty, and so it just
gets executed and passed round. Other options would be to STOP locally or
transmit some error event.

• If i = j and there is no clashing update (i.e., an update of the same location)
in Ej , u is executed locally and passed on round the ring.

• If pi < pj , and Ej contains any updates that clash with it, then u is stopped:
it is neither passed on round the ring nor executed locally.

• If pi > pj , and Ej contains any updates that clash with it, then u is executed
locally and passed on round the ring, and the clashing updates are cancelled
(removed from Ej).

3In that paper they are proved mathematically. The mathematical arguments have the advan-

tage that they apply to any size of ring, and yield rather more detail about the pattern of values

visible than we do here: provided the priorities are restructured to follow a logical time regime, a

form of sequential consistency can be proved. They have the disadvantage of being very far from

trivial, and also do not address questions such as deadlock and livelock freedom as we will here.

440 Case studies

In studying this algorithm it is plainly sufficient to consider only a single
register (i.e., each node has a copy of this register), since, while updates to the
same location interfere with each other in a complex way, ones to different locations
do not. Thus, in building our implementation we will restrict ourselves to that
case. This has the twin advantages of somewhat simplifying the programming and
reducing the size of the state space, though it would not be difficult to adapt the
definitions to deal with any number of registers.

It is clearly desirable that the system we build is free of deadlock and livelock
as well as satisfying consistency results. There would be no hope of achieving
this if the underlying mechanism that transports updates round the ring could
deadlock or livelock. We therefore base this aspect of our system on sound principles,
namely Deadlock Rule 8 (see page 368) in a way similar to the message-passing ring
described with the rule. Specifically we give each node the capacity to hold two
(travelling, as opposed to expected-back) updates, but only allow it to become full
due to an input from the ring.

Our later specifications will be predicated on what the system looks like when
it is quiescent (no updates circulating and none expected). This is the role of the
event quiet: each node can communicate it when it is locally quiescent; we force
them all to synchronize on it so that the event can happen when, and only when, the
whole system truly is quiescent. This event is not one that would be part of a real
implementation; it is simply something we will need for the purpose of specification
and verification. It actually has a lot in common with the event done from the
previous section, since they are both synchronized over all processes to identify a
particular global state.

The processes defined below do not actually hold the local copy of the register:
we will later combine each of them in parallel with a process that does. What they
do is handle updates according to the above algorithm, assuming that any that are
input have already been executed on local data and that any output are immediately
applied (at the point of output).

Below, N0(i,E,T) represents the node Ni which presently holds no travelling
updates, and which is expecting the list E of updates back from the ring. The
parameter T is the type which is being stored in the register: the reasons for making
this explicit will become apparent later. We impose a limit on the length of E since
this is necessary to keep the process finite state.

N0(i,E,T) = (#E<limit) & in.i?x:T -> N1(i,E^<x>,i,x,T)

[] #E==0 & quiet -> N0(i,E,T)

[] ring.i?j?x:T -> (if #E==0

then (out.i.j!x -> N1(i,E,j,x,T))

else (if i==j

15.2 Distributed data and data-independence 441

N1

N0

N5

N4

N3

N2

rin
g.0

ri
ng

.5

ring.1

ring.4 rin
g.3

ring.2

out.0in.0

in.5

out.5

out.4

out.3

out.2

out.1

in.1

in.2

in.3

in.4

Figure 15.4: Communications in the implementation.

then N0(i,tail(E),T)

else (if priority(i)<priority(j)

then (out.i.j!x -> N1(i,<>,j,x,T))

else N0(i,E,T))))

The connections of the channels when these are put in parallel are shown in Figure
15.4. Since there is only one register, there is no need to name it when passing
updates round the ring. The communication ring.i.j.x means the passing to Ni

round the ring of an update to the register originated by Nj of value x . In the
above state our node can (subject to the limit on E) accept inputs either from its
environment or the ring. When it already holds an update j.x which it is ready
to output on the ring, then because of the requirements of Deadlock Rule 8, it will
only accept a ring input, but otherwise it behaves similarly.

442 Case studies

N1(i,E,j,x,T) = ring.((i+1)%M)!j!x -> N0(i,E,T)

[] ring.i?k?y:T ->

(if #E==0
then (out.i.k!y -> ring.((i+1)%M)!j!x -> N1(i,E,k,y,T))

else (if k==i

then N1(i,tail(E),j,x,T)

else (if priority(i)<priority(k)

then (out.i.k!y -> ring.((i+1)%M)!j!x ->

N1(i,<>,k,y,T))

else N1(i,E,j,x,T))))

Since the capacity of these nodes is 2, whenever they are full they insist on out-
putting on the ring before accepting any more inputs. The ring can then be assem-
bled as follows.

Alpha(i) = {|in.i, out.i, ring.i, ring.(i+1)%M, quiet|}

RING(T) = (|| i:NodeNames @ [Alpha(i)] N0(i,<>,T))\{|ring|}

It is natural to split the desired properties of this system into safety (traces)
and liveness (failures/divergences) specifications. For this basic ring without regis-
ters, one can identify three different liveness checks.

The first and most obvious is deadlock freedom, established, for example, via
the check4

DF [F= RING(T) (1)

It is not too hard to see that the ring as constituted is divergence-free, because
each time a hidden action occurs (i.e., a communication on ring), this is preceded
by either the input (in) or an output (out) of the relevant update. It is, however,
interesting to ask whether the process RING(T)\{|out|} can diverge.

CHAOS(Events) [FD= RING(T)\{|out|} (2)

Such a divergence would correspond to one or more updates circulating endlessly
without the need for further input; this is plainly not meant to happen but could
if an update ever arrived back home to find the relevant Ej empty (i.e., it was not
expected).

Assuming that both deadlock freedom and this extended form of livelock
freedom have been proved as they can be (for given implementations) with FDR,

4The checks in this section are numbered so we can refer to them later.

15.2 Distributed data and data-independence 443

the final liveness check we use is to establish that, on the assumption that nodes
are never prevented by the environment from outputting updates, they inevitably
stabilize in the quiescent state. In other words, left to its own devices, the ring
will eventually come back to the state where no updates are active and none is
expected back. We need to show that, eagerly abstracting the output events and
lazily abstracting the input events, the ring failures refines the process

QS = quiet -> QS

The abstracted process can be represented and checked as follows:

QS [F= MixedAbstraction({|in|},{|out|},RING(T)) (3)

where the mixed abstraction operator is defined

MixedAbstraction(D,E,P) = (P[|D|]CHAOS(D)) \(union(D,E))

See Section 12.2 for more details of this style of specification using abstraction. This
particular check has much in common with the style of timing consistency check
described on page 421. A more direct and equivalent check is to show that

CHAOS({|in|}) ||| QS

is failures or, equivalently, failures/divergences, refined by RING(T)\{|out|}.

Now that we know that our system always returns to the quiescent state, a
natural way of formulating the basic safety specification (namely, consistency) is to
assert that whenever it is quiescent all the copies of the register are equal. One can
do this directly on the process RING(T) described above by carefully monitoring
the pattern of updates that occur in each node within the specification. This is
done as an alternative in the example file which illustrates this section, but here
we concentrate on the more obvious method, which is to add the actual registers
into the network. The following definition adds a new channel read, but identifies
writes to the register at node i with the communications in.i.x. There is nothing
essential about this approach and writes could also take place on a separate channel
provided the register process carried a flag which indicates whether an update needs
to be sent to the ring. (It would be set just when a local write had occurred more
recently than the last communication on in.i or out.i.)

VAR(i,x,T) = (out.i?j?v:T -> VAR(i,v,T))

[] (in.i?v:T -> VAR(i,v,T))

[] read.i!x -> VAR(i,x,T)

444 Case studies

VARS(x0,T) = ||| i:NodeNames @ VAR(i,x0,T)

DDB(x0,T) = (RING(T) [|{|in,out|}|] VARS(x0,T))\{|out|}

Here x0 (ranging over the type T) represents the initial value of the register.

The appropriate trace specification is then simply that whenever a quiet has
occurred more recently than a write (i.e., in this case an in event), two reads will
give the same answer. This can be established by showing that

SS [T= |˜| x0:T @ DDB(x0,T) (4)

where the specification process SS is defined

SS = quiet -> Q0
[] read?j?x -> SS

[] in?j?u -> SS

Q0 = read?j?x -> Q1(x)

[] quiet -> Q0

[] in?j?u -> SS

Q1(x) = read?k!x -> Q1(x)

[] quiet -> Q1(x)

[] in?j?u -> SS

Note that Q1(x) only permits one value to be read (any other leading to a failure
of refinement) whereas the other two states permit any. This is because Q1(x)

represents the case where at least one read (giving value x) has occurred since a
quiet event and before any further input on in.

15.2.2 Data-independence

Processes often have one or more parameters, namely quantities or objects that can
vary giving different instances of the system. Only the very simplest CSP processes
are usually defined without using parameterization at all. Parameters are typically
used to help capture the states of individual processes or to create a number of
similar components to include in a network (e.g., PHILi), but often a complete
network will still depend on one or more parameters (such as the total number of
philosophers). The parameters of the distributed database in the previous section
are:

1. The data type T of stored values.

15.2 Distributed data and data-independence 445

2. The number of nodes.

3. The limit on the sizes of expected-back queues.

4. The ordering on nodes used to determine priority.

In addition, one could address the question of whether it was buffer tolerant (as
discussed in Section 5.2) and regard the sizes of the buffers as parameters.

What we would really like to do is prove all the results about liveness and
consistency of the database independently of these parameters. However, tools like
FDR generally only address one specific instance at a time and are usually only cap-
able of handling ones with relatively small values for variable-sized parameters such
as the first three above. The general Parameterized Verification Problem (PVP), of
whether a system satisfies a correctness condition for all parameter values, is cer-
tainly formally undecidable [4] (it being easy to reduce other undecidable problems
such as the halting problem to it), but the subject of looking for specific classes
of problems where it might be made tractable is an active area of research (over a
much wider range of theories than simply CSP) and will probably remain one for
many years to come.

At the time of writing the most progress, by far, has been made with para-
meters of the first sort described above, namely data types, and this section is
devoted to presenting the most accessible and useful results about these.

A data type T used in a program P can fairly be said to be a parameter if
P treats it data-independently: it can input and output values of type T along its
channels, store them for later use, but never perform any ‘interesting’ computations
on them that constrain what T might be. (For example, if members of T were added
to each other, they would have to be numbers, . . .) With one or two exceptions,
the criteria for deciding whether a type is data-independent are identical to those
for deciding whether it is a free polymorphic type variable in the sense of languages
such as ML. Precise criteria for this, which are readily automatable, can be found
in [65], but the following are the main principles:

(i) Concrete values from T (such as 0, true, etc.) may not appear in the program
text of P , though abstract constant symbols can appear.

(ii) You may use basic polymorphic operations on T such as tupling, list forma-
tion and suitable operations for extracting members of structures built out of
T in these ways. Intuitively these can be thought of as operations which pass
members of T around without looking inside them at all. No other functions
which involve T either in the types of their arguments or result may be used.

(iii) No predicate (in a conditional) used in the program can depend on values
from T . The only exception to this rule is that we allow equality (and

446 Case studies

inequality) tests between members of T . We do not, however, allow order
comparisons such as ≤ and >.

(iv) Operations such as card(S) (the size of a set) may not be applied to any set
involving set T . (This would give a way of extracting information from T
that could be used to influence how P behaved.)

(v) No replicated constructs except nondeterministic choice (|~| x:S @ Q(x))
can appear in the process if their indexing set depends in any way on T .
Thus, parallel and external choice constructs indexed over T are banned,
though the effect of the latter can, in practical circumstances, almost always
be recovered using input (c...?x:S...), which is allowed.

Typical data-independent processes are COPY (in the type communicated)
and all the processes in the section on the distributed database (in the parameter
type T).

A data-independent program over type T makes sense whatever non-empty
set is substituted for T . If Spec and Impl are two of them, then it makes sense to
ask questions such as

• Spec
T Impl?

• Spec
F Impl?

• Spec
FD Impl?

• is Impl deterministic?

for any specific T . Anybody performing many checks of this sort quickly comes to
the conclusion that there must be a strong relationship between the answers to these
questions for different sizes of T (it being relatively easy to see that the answer for
any pair of T ’s of the same size must be the same). Fortunately this intuition is
true and in almost all cases there is a threshold: an integer N such that the answer
to one of the above questions for a type of size M ≥ N is independent of M . In
other words, one can prove or refute a result for all sufficiently large5 T via one
check on FDR.

It is obviously of great practical importance to determine when these thresh-
olds exist, and to find as small a threshold value as possible for each question we are
presented with. There is a recently developed theory, too complex to present here,
which allows the computation of thresholds by an extension of the theory of logical
relations (or parametricity) to processes, by augmenting the operational semantics

5Where there is such a threshold N the answer for sufficiently large finite T also applies to all

infinite T .

15.2 Distributed data and data-independence 447

and CSP normalization to encompass terms with free variables as symbols for mem-
bers of the independent type, and by using techniques for exploiting symmetry in
state spaces. For details of this theory, see Section 15.4 and [68, 64]. References
to related work can be found in these papers and in Section 15.4. What we can
present here are the main conclusions.

There are four main factors which influence the size (and in some cases the
existence) of a threshold for a given refinement check. These are

• the extent to which the specification constrains which members of T are
communicated,

• the kinds of equality checks between members of T that are present in the
specification and implementation,

• the subtlety of any nondeterminism in the specification, and

• the extent to which any values of type T which the specification uses are
recorded in its traces (rather than only having some ‘behind the scenes’
effect)

Lazić has proved a wide variety of results for calculating thresholds for re-
finement and determinism checks, falling into four main categories. The following
sections present the central ideas and results from each. Often the result presented
can be improved (e.g., by weakening its assumptions or strengthening its conclu-
sions) if, for example, we are interested only in traces refinement: the interested
reader should consult [65, 68, 64].

When | T |= 1 is enough

One frequently wants to prove specifications of data-independent processes that do
not say anything of significance about how they are permitted to handle members
of T . Examples are deadlock and divergence freedom and any trace specification
that is always happy to allow any member of T in an event when it allows one.
It turns out that in many cases it is sufficient to prove such specifications for the
simplest possible T : a one-element type. In other words, the threshold is just 1.

Equality tests over T are banned altogether from both the specification and
implementation6:

6It should be pointed out that there are ways of introducing ‘hidden equality tests’ into CSP

programs via some operations and predicates on sets and sequences, and via communication. The

communication effect appears when we synchronize on two output events: c!x -> P [|{|c|}|]
c!y -> Q contains an implicit equality check between x and y and therefore violates NoEqT.

These problems do not appear in the great majority of practical programs and can be avoided

448 Case studies

NoEqT A data-independent process P satisfies this when it contains no test of
equality between members of T .

All the processes of the distributed database example satisfy NoEqT, as do COPY
and all the other buffer and similar examples we have seen.

NoEqT effectively rejects the liberal side of condition (iii) in the definition
of data-independence. To ensure that the specification basically ignores T we assert
that the only way a member of T can occur in a communication of the specification
process Spec is via a nondeterministic selection of the form a$x:T -> P which is
introduced as an abbreviation for

|~| x:T @ a.x -> P

(For the purpose of trace specification, this is equivalent to a?x:T -> P.) In other
words, Spec can never specify which member of T is communicated or that any
more than one arbitrary member of T is offered. We will only use the $ form on
the specification side of refinement, since it will always be permissible to re-write
ones in the implementation using the more general |~| as above.

The characteristic processes DF of deadlock freedom and ChaosΣ of diver-
gence freedom satisfy these criteria, as do processes like

ALT = a$x:T -> b$x:T -> ALT

This particular example just says that communications over a and b alternate with-
out placing any constraint on which members of T appear.

We can now state the first of a number of results establishing exact criteria
for data-independent reasoning.

Theorem 1 Suppose we have processes Spec(T) and Impl(T), each data-independent

with respect to the type parameter T and additionally satisfying condition NoEqT.

Suppose further that Spec is restricted to nondeterministic selections over T as de-

scribed above. Then, with
 representing any of {
T ,
F ,
FD} the result of the

refinement check

Spec(T)
 Impl(T)

is independent of which non-empty T is used. In particular, the answer for all T is

answered by the check when T = {0} is a one-element type.

provided the only set constructs used involving T are unioning of straightforward channel alphabets

(for synchronization and hiding), and each synchronization over channels of type T only has one

output. If you are in doubt about the legitimacy of some construct you should consult one of

[65, 64].

15.2 Distributed data and data-independence 449

What this result says, in essence, is that if we have a program whose control-
flow does not depend on which members of T it holds, and a specification which
ignores how it handles members of T relative to each other, then we can collapse
T to a single value without affecting the result of a refinement check. Obviously
this will usually give a significant advantage in state space size. It applies to checks
(1–3) from the distributed database example.

In fact, essentially the same result holds when Impl is, in addition, allowed
to use arbitrary functions whose result is of type T . These processes, which we can
term weakly data-independent, can thus calculate values in T in non-trivial ways,
but still cannot let T affect their control-flow. See [67, 68, 65, 64] for details.

When | T |= 2 is enough

If we build a system which is data-independent in some type T then it is likely
that we will want to prove things about how it handles members of T as well as
specifications that ignore T like those dealt with above. It turns out that, provided
we make the same assumptions about the implementation as in the previous section
(i.e., it is data-independent and satisfies NoEqT), and follow a set of conditions
on the specification designed to remove ambiguity about what state it is in after a
given trace, then we can assume that T has just two elements. In other words, the
threshold is then 2.

The following condition states, in essence, that the specification is already
nearly in the normal form for CSP used in the algebraic semantics (Section 11.4)
and in refinement checking (Appendix C).

Norm A process Spec meets this condition if

(i) its definition contains no hiding or renaming;

(ii) the only parallel operators allowed are alphabetized parallel P[X||Y]Q and
its replicated version;

(iii) other than the nondeterministic selection construct7 a$x:S -> P described
above, no indexed nondeterministic choice is used whose indexing set de-
pends on T ;

(iv) all internal and external choice constructs (Q |~| R, Q [] R, indexed ver-
sions of these, and [> (the ‘time-out’ operator)) have the initial events of

7It is legitimate to use complex prefixes such as cxy?z, but for technical reasons (see [68, 64])

you may not mix (either here or anywhere else the nondeterministic selection construct is used in

the study of data-independence) nondeterministic selections over T with inputs over types other

than T .

450 Case studies

each argument disjoint (i.e., once one event has occurred we must know
which branch was chosen) and

(v) any uses of the operators ; and /\ (!, the interrupt operator) conform to
some technical conditions given in [65] which essentially ensure that (iv) is
not broken implicitly.

The main role of this condition is to avoid the introduction of any nondeterminism
except when its effects are immediately apparent. Almost all natural specification
processes one ever builds satisfy this condition, or could easily be transformed to
ones that do, since in order for us to know what a specification says it should be
clear what state it is in after a given trace. In other words, Norm can be regarded
almost as a well-formedness condition on specifications in a wider sense.8

Theorem 2 Suppose Spec and Impl are data-independent processes, both satisfy

NoEqT and Spec satisfies Norm. Let
 be any of {
T ,
F ,
FD}.

• If Spec(2)
 Impl(2) holds (i.e., for T of size 2) then Spec(m)
 Impl(m)
holds for all finite and infinite m ≥ 1.

• If the refinement Spec(2)
 Impl(2) fails then Spec(m)
 Impl(m) fails for

all finite and infinite m ≥ 2.

The difference between this result and the previous one is that here there is
nothing to prevent the specification restricting which of the values of T it knows
about is communicated after a given trace. Also, in the case of failures and fail-
ures/divergences specifications, it can specify much more about which refusal sets
involving members of T are acceptable. Thus, for example, any of the processes
BUFFN

〈〉 and WBUFFN
〈〉 from Section 5.1 would be acceptable for Spec in this result

but not for Theorem 1.

Intuitively, this result says that if we have both an implementation and a
specification which pass members of T around without letting them determine the
control-flow, then in order to check whether a refinement holds it is sufficient to
look at T of size 2. What you have to check in these cases is that each value input
into an implementation is output in just the right places. In [67, 68, 65, 64] it is
shown that in many cases you can restrict the state space of the check further:
although it still requires a data type of size 2, one can assume that all but one of
the values input into the implementation are equal. These references also contain
(i) significant strengthenings of Theorem 2 which depend on definitions we have

8The only major class of specifications we have seen that do not fall within this category

are the fault-tolerance specifications such as NoFaults on page 322. These, being derived from

implementations, may very well contain hiding, etc.

15.2 Distributed data and data-independence 451

not had space for here, and (ii) discussion of the extent to which specifications that
do not satisfy the condition Norm can be transformed into ones that do via an
equivalent of the normalization procedures described in Section 11.4 and Appendix
C.

The consistency check (4) of the distributed database, as well as most of the
earlier correctness conditions of communications protocols and similar processes,
come directly within the scope of the above theorem, however. Thus all the checks
in the previous section have, as far as the type parameter T is concerned, a threshold
of 1 or 2.

There is an important generalisation to this case that we ought to mention
here, since it will be important in the section on cryptographic protocols. This is
that many of the results in this subsection continue to hold if we relax our insistence
that there are no equality tests and replace it with conditions that permit equality
tests but only allow progress when equality is true. In other words, we allow the
tests in contexts like

if e1 == e2 then P else STOP

where e1 and e2 are expressions of the data-independent type. The precise form of
both the booleans in these conditional and the process P depends on which form of
the condition we are using.

A process description is said to satisfy PosConjEqT when it contains no
equality tests (explicit or implicit) which can result in some behaviour on inequality
that is not possible on equality (other than on tests for equality with constant
symbols). For a formal definition see [64].

The general case

The definition of data-independence quoted at the start of this section allowed for
equality tests between members of T . Thus the process

RemDups = left?x -> right!x -> RemDups’(x)

RemDups’(x) = left?y -> if x==y then RemDups’(x)

else right!y -> RemDups’(y)

which removes adjacent duplicates from a stream of values is data-independent even
though its control-flow depends on the values of T it uses. Evidently, however, this
does not satisfy the condition NoEqT, and so neither of the earlier results applies to
it. In cases like this it is still, under appropriate conditions, usually possible to find
thresholds, but they vary with the complexity of the processes under consideration.

452 Case studies

For example, a process which inputs N values and then communicates a only if
they are all different plainly needs a threshold of at least N in order to show that
it can sometimes communicate a.

Lazić has shown how to compute thresholds in terms of the following quanti-
ties. Bear in mind that we are going to assume that the specification Spec satisfies
Norm whereas no such assumption will be made of Impl.

W Impl is the maximum number of values of type T that the implementation Impl

ever has to store for future use. This number can be computed by go-
ing through the operational semantics of the process in such a way that
members of T are treated as ‘symbolic’ identifiers and counting how many
of them are required in any state. For the RemDups example above, this
number is 1 because in any state it only has to store ‘x’ or ‘y’. (It might
appear that the point in RemDups’(x) just before the equality test has to
store two values, but in fact the operational semantics merges the effect
of any conditional with the preceding action. The fork produced by the
conditional thus occurs as part of the left?y action, with some values of
y leading one way and some the other.)

W Spec is the corresponding number for the specification.

LImpl
? is the largest number of values of type T that can be input in any single

visible event of Impl. This can be greater than one when dealing with
channels with multiple components and/or components that are tuples,
lists and similar.

LSpec is the corresponding number for the specification, except that it addition-
ally takes into account nondeterministic selections (using $) which may be
present in Spec.

LImpl
� is the largest number of values from T that can be nondeterministically

chosen in any single nondeterministic choice made over sets involving T in
Impl. Thus the choice |~| p:(T,T) @ Q(p) requires this quantity to be
(at least) 2.

All of these quantities can be infinite in some circumstances, for example, through
the use of unrestricted-length sequences of type T . When a constant necessary for
computing a given threshold is infinite, it essentially means that no useful one can
be obtained in this way.

The following results show the thresholds. We get a lower one for traces
refinement because it is not necessary to worry about how the members of T get
involved in the creation of refusal sets. There are examples (see [68, 65, 64]) which
show that neither of the thresholds given in the following pair of results can be
improved under the stated assumptions.

15.2 Distributed data and data-independence 453

Theorem 3 Suppose Spec and Impl are data-independent processes, Spec satisfies

Norm, and

B ≥ W Spec + W Impl + max (LImpl
? ,LImpl

�)

Then for all N ≥ B , the following traces refinements are equivalent:

Spec(B)
T Impl(B)

Spec(N)
T Impl(N)

Theorem 4 Suppose Spec and Impl are data-independent processes, Spec satisfies

Norm, and

B ≥ W Spec + W Impl + max (LSpec,LImpl
? ,LImpl

�)

Then for all N ≥ B and
 either of
F or
FD , the refinements

Spec(B)
 Impl(B)

Spec(N)
 Impl(N)

are equivalent.

For example, we might define a dual process to RemDups which, instead of re-
moving duplicates, only keeps the members of a sequence of values that do duplicate
their immediate predecessors.

OnlyDups = left?x -> OnlyDups’(x)

OnlyDups’(x) = left?y -> if x==y then right!y -> OnlyDups’(y)

else OnlyDups’(y)

Obviously we would expect the process

FilterAll = RemDups [right <-> left] OnlyDups

(the machine-readable version of RemDups>> OnlyDups) not to transmit any value
at all. In other words, it should refine

Sink = left?x -> Sink

The various parameters for the refinement check Sink
 FilterAll are W Sink = 0,
W FilterAll = 2, LFilterAll

? = LSink = 1 and LFilterAll
� = 0. Thus the threshold value

for both Theorem 3 and Theorem 4 is 3. Similarly, the process

454 Case studies

Partition = RemDups [|{|left|}|] OnlyDups

can be shown to refine COPY with a threshold of 4 (since W COPY is 1 rather than 0).
In fact, the threshold for this last check can be lowered to 3 by observing

that, in Partition, the two component processes always hold the same member of
T so that, in fact, W Partition is 1 rather than 2.

A bigger application of these results can be found in the next section.
Though this has not been done at the time of writing, there is an obvi-

ous potential for the creation of tools that check the various conditions of data-
independence and calculate thresholds. It should also be possible to do two further
things:

• Transformation of more arbitrary specifications into ones satisfying Norm.

• The theory that Lazić developed to prove the theorems in this section also
anticipates the possibility of proving a refinement parameterized by a data
type by carrying out the check symbolically, in the sense that members of the
type are kept as symbols during the check which is otherwise performed not
unlike the method described in Appendix C. This should be automatable
and, in many cases, should be significantly more efficient than checks derived
from thresholds calculated using general formulae. (One can argue that in
many cases the ‘real’ threshold of a given check is often lower than the values
predicted by Theorems 3 and 4.)

Determinism checks

It is natural to ask whether versions of the results we have seen for refinement checks
also exist for determinism checking, as this is a condition of processes that is not
readily characterized as a refinement check. In other words, can we compute thresh-
olds which are sufficient to prove that a given data-independent process Impl(N)
is deterministic for all larger N ? We have already seen the practical importance of
this question, particularly in Chapter 12 where determinism was the key to deciding
issues of security.

As with refinement checking, there are a number of results depending on
the complexity of the use of T within Impl. We quote two here, respectively for
processes that do, and do not, satisfy NoEqT. In the first case, perhaps surprisingly
given Theorem 2, we get a variable threshold rather than the fixed value of 2. It
is, however, equal to 2 in most simple cases since the following constant is usually
then 1:

LImpl
Occur is the largest number of distinct values of type T that can appear in any

single visible event of Impl.

15.2 Distributed data and data-independence 455

Theorem 5 Suppose Impl is data-independent and satisfies NoEqT. Then

(a) If Impl(LImpl
Occur + 1) is deterministic, then Impl(N) is deterministic for all

N ≥ 1.

(b) If Impl(LImpl
Occur + 1) is nondeterministic, then Impl(N) is nondeterministic

for all N ≥ LImpl
Occur + 1.

This result applies to all the versions of Example 12.4.1 (page 328 et seq), in
each case giving threshold 2 (in the type of messages).

The second result covers the same class of Impl as Theorem 3, namely general
data-independent processes, and uses the same quantities to compute thresholds.
The assumption about renamings should hold in the great majority of cases: a
threshold can still be computed when it does not hold, see [64].

Theorem 6 Suppose Impl is data-independent and contains no renaming which

conceals the value of any member of T input in a communication, then the threshold

for determinism is given by

2×W Impl + max(LImpl
? ,LImpl

�)

in the sense that Impl(N) is deterministic if and only if Impl(M) is, for M ,N at

least this value.

Both these results apply equally9 to true determinism (decided in N) and to
the weaker notion of F -determinism discussed on page 225. The latter is relevant
since the recommended way of of deciding the determinism of lazy abstractions
LH (P) (as discussed in Chapter 12) is via the F -determinism of the potentially
divergent process (P ‖

H
ChaosH) \ H .

15.2.3 Cache coherency

Imagine your computer has a large memory which is relatively slow to access com-
pared to the clock-speed of the process that is accessing it. The standard solution
to this is to use a cache: a relatively small piece of fast memory through which the
processor makes all accesses and which always keeps part of the main memory in
it, in the hope that the addresses which are required will be already there. Modern
computers may have several levels of cacheing, for example:

9In fact, at the time of writing, the quoted threshold in Theorem 6 is known to be tight for

F-determinism but not for true determinism. It is conjectured that, for the latter, the factor of 2

on W Impl can be removed.

456 Case studies

• ‘Real’ (i.e., RAM) memory versus virtual memory (on disk)..

• An off-processor (often SRAM) cache versus slow (often DRAM) memory.

• Cache which is an integral part of the processor chip versus off-processor
memory.

Though the technology of these different levels may be different, the logical
problems are the same, namely ensuring that, though there are in fact several copies
of some memory locations around, this does not affect the values the processor reads
relative to any writes that may have occurred. Logically, the combination of the
cache and the memory which it uses must be equivalent to the memory itself. You
can think of the memory as being enslaved to the cache:

Memory = Cache//m : Memory

Since enslavement is not supported directly in machine-readable CSP (see
Section 4.3) we will re-write this as

Memory = Cache [m_ra <-> ra, m_rv <-> rv, m_w <-> w] Memory

where the memory has three channels respectively for read requests, read values
and writes, and the cache has the same three channels (for its processor interface)
and separate versions (m_ra etc.) for communicating with the memory.

channel ra, m_ra:address

channel rv, m_rv:value

channel w, m_w:address.value

In order to prove this equivalence it will be sufficient to prove that the right-
hand side refines Memory, since the latter will be deterministic. (There should be no
need to apply the data-independence results above to establish this determinism:
Lemma 4 on page 228 should apply.) We will therefore concentrate on establishing
this refinement.

At any time the cache keeps a list of triples (a,(v,b))where a is an address10

presently resident in the cache, v is the value stored in that address and b is a bit
which records whether or not the address has been written to since it was brought
into the cache. b is necessary because it lets us tell, when the address is eventually
removed from the cache, whether or not the stored value has to be written-back to
the main memory. The four parameters of the process Cache are this list, the types

10In practice, data tends to be stored in blocks of more than one address. This would have a

minor impact on what follows.

15.2 Distributed data and data-independence 457

of addresses and storable values in use, and the maximum number of addresses that
can be stored in the cache at once.

The cache starts off empty and fills itself up as the processor asks to read and
write to addresses. Such reads evidently require a fetch from memory. Any read
or write to a location already in the cache is done without any interaction with the
main memory. When the cache is full and a miss occurs (i.e., an attempt to access
a location not presently held) it is necessary to flush one thing out of the cache in
order to make room for the new member. There are a number of cache replacement
policies used to do this, such as FIFO (first in, first out), random, and least recently
used. It is the last of these which is implemented below since each time an address
is used it moves up to the front of the queue.

The following definition captures all the behaviour of such a cache except
what happens when a flush is required. Note how the boolean flags that control
write-backs are set to true whenever a write to the given location occurs.

Cache(ps,A,V,N) = ra?a:A ->

(if elem(a,<a’ | (a’,_) <- ps>) then
(rv!val(a,ps) -> Cache(tofront(a,ps),A,V,N))

else if #ps < N then

m_ra!a -> m_rv?v:V -> rv!v ->

Cache(<(a,(v,false))>^ps,A,V,N)

else FlushAndRead(ps,a,A,V,N))

[] w?a:A?v:V ->

if elem(a,<a’ | (a’,_) <- ps>) then

Cache(update(a,v,ps),A,V,N)

else if #ps < N then

Cache(<(a,(v,true))>^ps,A,V,N)

else FlushAndWrite(ps,a,v,A,V,N)

The following three functions used above respectively fetch a value from the cache,
move a just-read address to the front of ps and perform a write to an address already
in the cache.

val(a,ps) = head(<v | (a’,(v,_)) <- ps, a’==a>)

tofront(a,ps) = <(a’,x) | (a’,x) <- ps, a’==a>^

<(a’,x) | (a’,x) <- ps, a’!=a>

update(a,v,ps) = <(a,(v,true))>^<(a’,x) | (a’,x) <- ps, a’!=a>

458 Case studies

The following two processes flush the last member of the queue (i.e., the least
recently used member) out, performing a write-back to memory if necessary. They
then fill up the vacant space with a new location either read-from or written-to.

FlushAndRead(ps^<(a’,(v’,wr_bk))>,a,A,V,N) =
if wr_bk then

m_w!a’!v’ -> m_ra!a -> m_rv?v:V -> rv!v ->

Cache(<(a,(v,false))>^ps,A,V,N)

else

m_ra!a -> m_rv?v:V -> rv!v ->

Cache(<(a,(v,false))>^ps,A,V,N)

FlushAndWrite(ps^<(a’,(v’,wr_bk))>,a,v,A,V,N) =

if wr_bk then

m_w!a’!v’ -> Cache(<(a,(v,true))>^ps,A,V,N)

else

Cache(<(a,(v,true))>^ps,A,V,N)

There are various ways in which one can provide a model of the memory that
the cache is intended to interact with. Perhaps the obvious one is to model it as a
simple shell around a function from addresses to values.

Memory(A,V,f) = ra?a:A -> rv!f(a) -> Memory(A,V,f)
[] w?a:A?v:V -> let f’(a’) = if a==a’ then v else f(a’)

within Memory(A,V,f’)

This does not work with FDR at the time of writing since the tool, for very good
reasons, does not detect the equalities between the functions that arise as it explores
the states of this process. The above definition can easily be modified so that it
does work by replacing the function with, for example, a set of address/value pairs.

The check that the Memory/Cache combination refines the Memory alone has
interesting data-independence properties in the types V of storable values and A of
addresses. The processes concerned are data-independent in both types, and satisfy
NoEqT in V. The process Memory satisfies Norm with respect to both. They do
not, however, satisfy NoEqT with respect to A since the behaviour of Cache depends
quite explicitly on comparisons between addresses, and Memory needs, whatever the
details of its definition, to be able to compare addresses to know which internal
value to read or modify.

Theorem 2 tells us that, whatever A is, it is sufficient to prove refinement
with V of size 2. If we can find a threshold for A with such V, we can then guarantee
that refinement holds for all larger instances of both types.

15.2 Distributed data and data-independence 459

Unfortunately there is no useful threshold deducible from Theorems 3 and 4
in the type A for the refinement check involving the cache coupled with the whole
memory, since the process Memory has every member of A in its state: there is no
bound on either W Impl or W Spec.

This can be remedied in an interesting way: we can concentrate on a single
but arbitrary address. Instead of proving that all interactions with the cache are as
expected for a well-behaved memory, we show that for any particular location each
read from the cache gives the right answer purely on the assumption that the reads
that the cache itself makes for the chosen location are well-behaved. The following
process behaves like a reliable memory for whatever address is chosen (together
with initial value) in the first communication. On the other locations it selects the
value of a read nondeterministically rather than by reference to previous writes:
this means that it only has to remember a single address rather than them all.

OneLoc(A,V) = loc?a:A?v:V -> OneLoc’(a,v,A,V)

OneLoc’(a,v,A,V) = w?a’:A?v’:V -> (if a==a’ then OneLoc’(a,v’,A,V)

else OneLoc’(a,v,A,V))

[] ra?a’:A ->

(if a==a’ then rv!v -> OneLoc’(a,v,A,V)

else |~| v’:V @ rv!v’ -> OneLoc’(a,v,A,V))

We can then check to see if this process is refined by a combination of the cache
and itself, which takes the form below to prevent any communications between the
environment and the cache before the special location is chosen:

Test(A,V,N) = loc?a:A?v:V ->

(Cache(<>,A,V,N)

[m_ra <-> ra, m_rv <-> rv, m_w <-> w]

OneLoc’(a,v,A,V))

In a sense, the fact that OneLoc(A,V) is refined by Test(A,V,N) proves a
stronger correctness condition than the more obvious one involving Memory, since
it shows that the reads made from the cache of address a only depend on the reads
the cache makes of the memory at a being correct.

Theorems 3 and 4 can be applied to this check since all the quantities they use
are finite with respect to the type A: W Test = 2+N , W OneLoc = LOneLoc = LTest

? = 1
and LTest

� = 0. Thus, for a cache of size N it is sufficient to prove the refinement
for N + 4 addresses (and 2 storable values).

It should not come as a surprise that the required size of A increases with
N , since the control-flow of the cache depends crucially on whether it is full or not,

460 Case studies

and obviously it could not get full if it had more slots than there were addresses!
The size of the cache is, of course, another parameter that we would like to dispense
with within the scope of the PVP. It is not, however, one that can be dealt with
via data-independence. At the time of writing there is no technique of comparable
generality to handle variation in N . We have to resort to ad hoc (i.e., application
specific) arguments. It can be shown without too much difficulty that the possible
behaviours relating to any given address are independent of cache size since any
behaviour of a small cache corresponds to a behaviour of a large one with more
accesses to other addresses between accesses to the chosen one.

Three different arguments have thus shown that our cache works for any11

V, A and N provided it does for them respectively being of sizes 2, 5 and equalling 1.

Exercise 15.2.1 Recall the buffer defined on page 123 which worked by majority

voting over groups of three bits, and was tolerant of no more than one corrupted bit in

any three. Define a version of this in which bits are replaced by an arbitrary type. We then

have to deal, when programming the receiver, with a group of three all being different:

you should make it deadlock in that case.

Your complete program, including a revised version of the corrupting channel,

should be data-independent and a buffer refining BUFF 3
〈〉. What threshold for the data-

independent type do the results predict for this (failures/divergences) refinement check?

Exercise 15.2.2 In the previous section we briefly discussed cache replacement poli-

cies. One such policy is FIFO, where the value in the cache to be replaced is always the

one that has been there longest (irrespective of how recently it has been used). It can

happen with this policy that adding to the size of the cache increases the number of cache

misses in a given series of reads and writes.

Build a CSP model that allows you to find an example of this behaviour with

FDR: it will probably consist of two different-sized caches to allow you to compare how

they behave on each possible run.

Although it is about caches, this fairly difficult question has much more in common

with the puzzles of Section 15.1 than with the cache model seen in this section. In particular,

the values stored in the memory and caches are irrelevant. All that matters is how the

addresses in the two FIFO queues of the large and small caches correspond.

Exercise 15.2.3 In books such as [25] you will find many intriguing distributed al-

gorithms for a wide variety of tasks, generally expressed at a lower level of formality than

those we have seen in this section. It is a fascinating practical exercise to take one of these,

re-work it in CSP and analyze versions with FDR, as we did for the database and cache

11In fact, the data-independence theorems do not always allow us to conclude refinement below

the threshold from refinement at it, and so it is actually necessary to deal separately with smaller

values of A.

15.3 Analyzing crypto-protocols 461

algorithms. Clearly these vary significantly in difficulty: suggestions taken from [25] are

Two-phase commit and concurrency control techniques. Many will require timing to be

built into the model in the style of Chapter 14.

15.3 Analyzing crypto-protocols

One sometimes needs to achieve secure interactions between individuals over a
medium which is untrustworthy and subject to tampering by potential intruders.
These interactions, and the consequent need for security, vary widely from applica-
tion to application, and several possibilities are given below.

1. The most obvious is to make communications between parties secret. No
information which Alice sends confidentially to Bob should become known
to an intruder.

2. Parties should be able to authenticate others: if Bob thinks he has been
talking to Alice, then he should have been (and Alice should think she has
been talking to Bob).

3. We might want to authenticate that a message is precisely the one issued by
Alice, even when we are not concerned about confidentiality.

4. In contexts where financial transactions are being implemented, we clearly
need to protect their integrity from interference and fraud.

To do these things in a context where an intruder can overhear messages,
stop messages from reaching their intended destinations, and even potentially fake
messages, for example, to Bob purporting to be from Alice, you need to make use
of encryption and related methods which limit:

(a) an intruder’s ability to understand the messages he or she hears, and equally
importantly,

(b) the potential for the intruder to create fake messages which can convince
someone else that they are genuine.

CSP is not an appropriate vehicle either for describing encryption algorithms
or for devising methods of deciphering coded messages. That involves a lot of
sophisticated mathematics in number theory, algebra, etc. However, it is often the
case that a use of encryption fails not because of vulnerability of the cipher in use,
but because of the way it is used. Frequently it is possible to defeat protocols using
and supporting encryption even under the assumption that the encryption method
used is unbreakable.

462 Case studies

A cryptographic protocol is a series of carefully defined messages, often en-
crypted, between two or more participants designed so that when it is complete,
they can be sure that a specified goal has been achieved, even in the presence of an
intruder who can perform the malicious acts described above. The only restriction
we place on the intruder is that it is unable to decrypt coded messages without the
appropriate key or to generate faked messages when it does not possess the neces-
sary information. Many cryptographic protocols are concerned with establishing a
connection between two nodes, often involving the trading or generation of a key for
use during the resultant session. CSP and FDR have proved to be excellent tools for
modelling and analyzing cryptographic protocols, using symbolic representations of
encryption.

The following is an authentication protocol known as the Needham–Schroeder
Public-Key protocol. It is intended to authenticate a pair of nodes to each other (so
that each is aware that the other is willing to talk to it), and to ensure that each
possesses the other’s public key.12 We assume that there are potentially many nodes
that might want to talk to each other, and that they do not necessarily remember
all other’s public keys, but do remember that of a server S from which they can
request other users’ keys. (Servers are a common, though by no means universal,
feature of cryptographic protocols, and play a wide range of roles in them.) The
protocol proceeds as follows when node A wants to establish communication with
B :

12Public-key encryption is based on the idea that it is possible to find algorithms where (i)

the key required to decrypt a message is different from the one used for encryption, and (ii) it is

computationally infeasible to construct one of this pair of keys from the other. Any node may

thus publish one of a pair of keys like this as its public key, retaining the other for itself as its

secret key. Then anyone holding the public key can send it a private message that only our node

can understand.

A more subtle use is for the node to send a message encrypted with its secret key: anyone can

decrypt this on the assumption that (as is true with some algorithms such as RSA), the decryption

key for the secret key is the public key. But when they do they will realize that the only person

who could have sent it is the node holding the secret key. This is an example of a cryptographic

signature. In fact it is generally considered good practice to use separate pairs of keys for signing

messages and confidentiality, but the same ideas still apply.

There are several problems in the use of public-key encryption in transmitting information

between nodes. An important one on practical grounds is that the algorithms used tend to be

computationally significantly more complex than symmetric algorithms (ones where the encryption

and decryption keys are the same). A second, and more directly security-related problem, is that

one has to guard against the situation where it is possible for an intruder to guess that a message

is going to be a member of a small set such as {yes, no}, since all the intruder has to do is to

encrypt each member of the set using the public key and compare them against the one actually

sent. Therefore public-key encryption is often used only during the establishment of a session, and

is replaced by a symmetric algorithm once it is possible to give the participants a key known only

to them (the session key).

15.3 Analyzing crypto-protocols 463

1. A→ S : B

2. S → A : {pk(B),B}sk(S)

3. A→ B : {NA,A}pk(B)

4. B → S : A

5. S → B : {pk(A),A}sk(S)

6. B → A : {NA,NB}pk(A)

7. A→ B : {NB}pk(B)

Here {X }Y means the public-key encryption of the message X under the key Y .
A commentary on this protocol follows:

1. A asks the server for B ’s public key.

2. S sends it, signed. There is no need for this information to be encrypted, but
it has to be signed (as a combination with B ’s name) to prevent, for example,
a malicious node substituting its own public key so it can impersonate B to
A. The body of this message can be regarded as a certificate that B ’s public
key is pk(B).

3. A can then send a message to B , which has the purpose of requesting a session
set-up. NA represents a nonce, which is a piece of random information which
has just been made up by A so that when it gets a response containing NA

it knows it must have been generated for this message 3.

4. B then requests A’s public key from the server,

5. and is sent it exactly as with message 2.

6. B can then reply to message 3, acknowledging it with the nonce NA and a
new nonce of its own, which

7. A then sends back to B so that B knows that the message 3 it has been acting
on was genuine (bearing in mind that, from B ’s point of view until it receives
message 7, anyone could have made message 3 up, and the confirmation to
B that it is real is when A understands and acts on message 6).

Apparently, when the run is complete, both A and B are reassured that the other
exists and is willing to talk to it, and the nonces NA and NB that have been created
are secrets known only to these two.

Note that messages 1 and 4 of this protocol are completely unsecured, merely
being indications to the server that a particular sort of information would be appre-
ciated. There is nothing to stop an intruder preventing one or both of these getting

464 Case studies

through and then replaying old messages 2 and 5 it may have recorded much earlier,
but the signature mechanism means that they would be identical to the ones the
server actually would have sent, and no fundamental security problem is created.
(However, if a node’s public key ever changes, this would create a problem and the
protocol would have to be improved.)

In fact, the mechanism for distributing public keys in messages 1, 2, 4 and
5 is largely independent of the authentication mechanism contained in messages 3,
6 and 7, which still makes sense as a protocol if we assume that nodes do not need
to communicate with a server to discover each others’ public keys. For simplic-
ity we will concentrate henceforth on the three-message version, re-numbering the
messages accordingly.

To test a protocol like this one with CSP we have to build models of well-
behaved nodes and an intruder and see how the latter can interfere with the former.
There is usually no need to create more than two well-behaved nodes (plus a well-
behaved server, if one is used in the protocol, which it is not in the abbreviated
Needham–Schroeder protocol). Rather, we give the intruder the ability to behave
like other nodes and to interact properly as well as improperly with the good ones.
The basic facts we then aim to prove are that the security of a session between the
well-behaved nodes is intact whatever else happens, and that neither of them can
be fooled into thinking it has a session with the other when it does not. Both of
these things should hold even though one or both nodes may previously have had
sessions with other, possibly corrupt, users.

An attack on a protocol is a series of messages that the intruder can bring
about in which each trustworthy node carries out its role properly but which brings
the network into an insecure state. Essentially our job in analyzing a protocol is to
capture this concept precisely and find out if attacks are possible.

15.3.1 Data types for symbolic encryption

What follows is a coding of this network. As we have already said, the encryptions
and similar will be modelled as symbolic objects: we create an appropriate data
type to contain them which consists of various constants we will need, public-key
(PK) and symmetric-key encryption constructions and a sequencing construct.

datatype fact = Sq. Seq(fact) |

PK. (fact , fact) |

Encrypt. (fact, fact) |

Alice | Bob | Cameron |

Na | Nb | Nc |

pkA | pkB | pkC |

15.3 Analyzing crypto-protocols 465

skA | skB | skC |

AtoB | BtoA | Cmessage

The type fact contains various collections of constants, which can be col-
lected together into sets for later use. The three identities used are those of two
nodes we will later treat as reliable, plus one (Cameron) for the intruder to assume
when it acts as another party.13

agents = {Alice, Bob, Cameron}

publickey = {pkA, pkB, pkC}

secretkey = {skA, skB, skC}

nonces = {Na, Nb, Nc}

sessmess = {AtoB, BtoA, Cmessage}

The roles of these sets will become apparent later.

We can tie the keys to these identities as follows, thereby defining functions
for determining the public and secret keys of each node and for mapping a key to
its inverse or dual.

keybindings = {(Alice,pkA,skA), (Bob,pkB,skB),

(Cameron, pkC, skC)}

pk(a) = pick({k | (a’,k,_) <- keybindings, a==a’})

sk(a) = pick({k | (a’,_,k) <- keybindings, a==a’})

dual(k) = pick(Union({{k’’ | (_,k’,k’’) <- keybindings, k==k’},

{k’ | (_,k’,k’’) <- keybindings, k==k’’}}))

Here pick is a function that maps a singleton set {x} to its member x (see also page
523). The following definitions allow us to make the symbolic encryption operations
into functions.

pke(k,m) = PK . (k , m)

encrypt(k,m) = Encrypt . (k , m)

13With the great majority of protocols it would not improve the intruder’s prospects to have

any more identities (Donald, Eve, etc.) to play with. This is because any attack which involved

more than one of these identities acting would also work with them all being Cameron.

466 Case studies

15.3.2 Defining reliable nodes

We are now in a position to define processes representing the behaviour of a reliable
node implementing the protocol. The following defines the node with identity id

which has the supply of nonces ns to use in sessions: we have to keep these lists finite
and fairly small if the size of checks generated on FDR is to be reasonable. Evidently
the definition below, which gives up when the list is empty, is not adequate if we
expect the resulting system to satisfy liveness14 but in this treatment we will only
worry about safety (traces) properties and so the only real concern is whether the
size of system used is sufficient to reveal any pathologies in the protocol. A node
can either act as an initiator of the protocol (Send) or as the responder (Resp).

User(id,ns) = if ns == <> then STOP else

Send(id,ns) [] Resp(id,ns)

When acting as an initiator, the node chooses a target to start up a session
with, and then communicates the three messages of the protocol in turn with it.
Note that any nonce is accepted as NB in the second message. When the three
messages are complete, it enters a state (which is discussed below) in which it is
happily in a session with its partner.

Send(id,ns) = |~| b:diff(agents,{id}) @

comm.id.b.pke(pk(b),Sq.<head(ns),id>) ->

([] nb:nonces @

comm.b.id.pke(pk(id),Sq.<head(ns),nb>) ->

comm.id.b.pke(pk(b),nb) ->

Session(id,b,nb,tail(ns)))

The responder process performs the same three messages, only from the opposite
perspective regarding who chooses nonces, etc. Note that each side, by accepting
only those events in an appropriate set, performs a check on the message it gets
from its partner containing its own nonce. Because we are only studying the three-
message version of the protocol, we assume each node has a (true) knowledge of the
public key it must use to communicate with the other.

Resp(id,ns) = [] a:diff(agents,{id}) @

14The coding that follows is, for quite separate reasons, insufficient to achieve liveness. In order

to stop the intruder deadlocking well-behaved nodes in a protocol like this, very careful use of

constructs like time-outs is required, which produces a system too complex to include here. In

any case, the presentations of crypto-protocols in the literature generally ignore issues of liveness

and so, to analyze them in their own terms, it is probably better to restrict the implementations

to simple ones that allow only safety properties to be addressed.

15.3 Analyzing crypto-protocols 467

[] na:nonces @

comm.a.id.pke(pk(id),Sq.<na,a>) ->

comm.id.a.pke(pk(a),Sq.<na,head(ns)>) ->
comm.a.id.pke(pk(id),head(ns)) ->

Session(id,a,head(ns),tail(ns))

There is nothing in the protocol description which says what the nodes do
once their sessions are set up. They may very well send each other messages either
under their public keys or under a symmetric session key constructed out of the
secrets established in the protocol run. Clearly the design of the code that does this
has to be as careful as that of the protocol itself, since for example:

• there is no way of knowing who has sent a public-key encrypted message
unless it is either signed or contains a secret known only to the sender and
recipient;

• a symmetrically encrypted message can potentially be replayed at the node
who sent it, who will (unless is contains something to securely authenticate
its origin) believe it has come from its partner; and

• in either case the intruder can trap, duplicate or reorder messages.

The Session state below uses the second nonce as a key for symmetric en-
cryption, but you should bear in mind that our purpose in designing this process is
not really to pass messages, but to test the correct behaviour of the main protocol.
Namely, we wish to show that when a node behaving like either the initiator or re-
sponder has completed the protocol and entered the Session state then its partner
has also engaged in the protocol in the opposite mode and the secrets of the run
(namely the two nonces) really are secret.

When connected to another node, a process in state Session uses the (ar-
bitrarily chosen) second nonce as the key and sends appropriately chosen messages
to its partner. Alice and Bob send messages that are symbols introduced to repre-
sent secrets, when they believe they are connected to each other (namely AtoB and
BtoA) but do not use these when connected to Cameron.15 We add a clause (one
made possible by the special choice of messages) which checks to see whether, if
one trustworthy node (Alice, say) receives a message which is apparently part of a
session with the other one (Bob), it really is. If, in this case, Alice receives anything
other than BtoA then something must have gone wrong.

15There is no sense in which Cmessage, AtoB and BtoA are real messages that Alice, Bob, and

Cameron might wish to send to each other. Rather, they are tangible ways of demonstrating and

testing their beliefs about who they are connected to.

468 Case studies

A B

Spy

Connections with "imaginary" nodes

Spy overhearing normal communications

comm

take fake
Channel where communications can be
intercepted or faked by the spy

Figure 15.5: Network to test a simple crypto-protocol.

Session(id,a,n,ns) = comm.id.a.encrypt(n,mess(id,a)) ->

Session(id,a,n,ns)

[] ([] m:sessmess @

comm.a.id.encrypt(n,Sq.<id,m>) ->

(if ok(id,a,Sq.<id,m>) then Session(id,a,n,ns)

else error -> STOP))

[] close.id -> User(id,ns)

ok(a,b,m) = (mess(b,a)==m) or (b==Cameron)

Equally, we would expect the intruder to be unable to learn the secrets AtoB and
BtoA, since these are never revealed to Cameron deliberately.

We are going to plumb the system together as shown in Figure 15.5. The
spy or intruder can hear whatever passes between Alice and Bob, can interact with
them as Cameron, and can intercept and fake messages.

15.3 Analyzing crypto-protocols 469

• An intercepted message must look to its sender no different to one that got
through successfully, but obviously it should not be received by its intended
recipient.

• A faked message should be indistinguishable at its destination from an iden-
tical message that was sent from its supposed sender (who, of course, should
never have seen it).

We have programmed our nodes so all communications use a channel called comm

(labelled with sender and address fields). An elegant way of implementing intercep-
tion (abbreviated take) and faking is to introduce two ‘shadow’ channels with the
same type, and then put a shell around each node that doubles each communication
by renaming:

channel comm,take,fake:agents.agents.messages

RenUser(id,ns) = User(id,ns)[[comm.id <- comm.id,
comm.id <- take.id]]

[[comm.a.id <- comm.a.id,

comm.a.id <- fake.a.id |

a <- agents]]

Each output comm can now either happen (so far as the outside world is concerned)
either as itself or as the corresponding take, and similarly each input comm can now
happen as the result of an external comm or fake. It is important to realize that the
User process inside has no way of knowing which way any of its communications
appears to the outside. The following parallel connection thus synchronizes Alice
and Bob on their mutual comm channels, but leaves the corresponding take and fake

channels to be manipulated by the spy. The resulting system actually gives the spy
two routes to and from each node when it acts as the third identity Cameron:
the divisions of the channels are unnecessary there. The final line below simply
removes this ambiguity: all communications with Cameron are (from the external
perspective) along take and fake rather than comm.

Network = (RenUser(Alice,<Na>)

[|{|comm.Alice.Bob,comm.Bob.Alice|}|]

RenUser(Bob,<Nb>))
[|union({|comm.Cameron|},

{|comm.a.Cameron | a <- agents|})|] STOP

470 Case studies

15.3.3 Creating a set of deductions

All that remains is to build the spy process. At first thought, you might expect
this to be a process endowed with great ingenuity and cunning to allow it to break
protocols. The great disadvantage of following this approach is that if, eventually, it
proves that your spy cannot break the protocol, all you have established is that the
particular tactics employed by the spy you happen to have created do not succeed.

There is no real evidence about the possible effects of other tactics, some of
which you might not even have imagined. As we saw in Section 15.1, the effect of
adding a tactic is to narrow a search making the finding of a solution (in the case of
a protocol, an attack) less likely. It is far better, unless prevented by a combinatorial
explosion as we were in Section 15.1, to create a definition which models all possible
tactics : we simply build a process that can perform any trace that a spy reasonably
ever could, and incorporate that into our network. If, after doing this, the result is
a system where the protocol remains intact in the sense that it satisfies appropriate
safety specifications, then you can be sure that no spy, however cunning, could have
broken it.

The most general spy can always overhear (comm) and intercept (take) any
message available to it. The limitation comes in what it can fake, since we are
making basic assumptions about the cryptographic devices used, such as the un-
decipherability of encryptions without appropriate keys and the non-guessability
of nonces. The entire coding that follows is devoted to the problem of creating a
process whose message generation ability is determined by what it initially knew,
what it has overheard or intercepted since, and a set of rules governing deducibility
of messages through encryption.

The rules of deducibility have to be programmed into our spy. We can work
out what deductions are relevant to a given finite subset X of the data type fact

using the following clauses. In them, a deduction is a pair (Y , a) where Y is a
finite set of facts and a is a fact which anyone in possession of the whole of Y can
construct. Below, we set up three types of deduction, each of which operates in two
directions, one ‘constructing’ and the other ‘destructing’. The first type says that
if one knows a sequence one can extract any of its members, and if one knows all
its members one can build the sequence:

deductions1(X) = {({Sq . m}, nth(j,m)) ,

({nth(i,m) | i <-{0..#m-1}}, Sq . m) |

Sq.m <- X, j<-{0..#m-1}}

The other two types of deduction are based on encryption, one on symmetric-
key encryption and the other on public-key encryption. In each case they say that
anyone in possession of a message and the appropriate key can build an encryption,

15.3 Analyzing crypto-protocols 471

and that someone holding an encryption and the key necessary to decrypt it (the
detail of which differs between the two cases) can know the contents. Finally, we
can put together all three sorts of deductions into a single set.

deductions2(X) = {({m, k}, encrypt(k,m)) ,

({encrypt(k,m), k}, m) |

Encrypt.(k,m) <- X}

deductions3(X) = {({m, k}, pke(k,m)) ,

({pke(k,m), dual(k)}, m) |

PK.(k,m) <- X}

deductions(X) = Union({deductions1(X),deductions2(X),

deductions3(X)})

We omit here the definition of the finite set messages: it is the subset of fact

consisting of all message bodies which could form part of any protocol run or session
between two of our three nodes. It is finite because the sets of agents, nonces, etc.
are finite. messages obviously forms the basis of what the spy might ever learn or
want to construct for faking. However, since the spy might build or learn messages
in parts it helps to have a way of taking a subset X of fact, and creating from it
a larger set consisting of all objects which are of direct relevance to members of X.
Applied to messages, this gives the set of facts which it might be sensible for the
spy to construct en route to building a message. The final clause of the following,
which is present to deal with all the constants (such as Alice and pkC) from fact,
exploits the convention that where a function is ‘over-defined’ on a particular value,
the textually first definition applies.

explode(Sq.xs) = union({Sq.xs},

Union({explode(x) | x <- set(xs)}))

explode(PK.(k,m)) = union({PK.(k,m),k,dual(k)},explode(m))

explode(Encrypt.(k,m)) = Union({{Encrypt.(k,m)},explode(k),

explode(m)})

explode(x) = {x}

AllFacts = Union({explode(m) | m <- messages})

AllDeductions = deductions(AllFacts)

AllFacts is a finite set, unlike the full data type fact, which is infinite.

The spy will have an initial basic knowledge: public facts such as agent

472 Case studies

names and public keys, and the private facts necessary to enable it to act as the
agent Cameron.

Known’ = Union({agents, publickey,

{sk(Cameron)}, {Nc,Cmessage}})

Our spy can initially construct a number of legitimate messages (such as initial
messages asking for sessions with either Alice or Bob, acting as Cameron) from
this set. The full initial knowledge can be found by closing up Known’ under the
deductions.

Close(S) = let

S’ = {f | (X,f) <- AllDeductions, diff(X,S)=={}}

within

if diff(S’,S)=={} then S else Close(union(S,S’))

Known = Close(Known’)

There remain many messages that the spy does not initially know, so we need to
describe how its state of knowledge evolves as it overhears more things. An obvious
coding of the spy which says exactly what we want is Spy1(Known) where

Spy1(X) = learn?x -> Spy1(Close(union(X,{x})))

[] say?x:X -> Spy1(X)

In other words, it can always create any message it knows, and each time it learns
a new one it adds in all the resultant deductions. Here, learn and say are two
channels of type messages which would subsequently be plumbed by renaming so
that they respectively took the roles of overhearing and intercepting, and of faking
(see below).

This would be a perfect definition, as well as being delightfully simple, if it
were not for one practical problem. This is that there are, for a typical protocol
model, between 50 and 1000 messages and perhaps 50% more other facts of relevance
to the spy (in the example presented here, there are respectively 90 and 42). The
state space of the spy when defined as above becomes impossibly large, given FDR’s
desire to pre-compute the state spaces of all ‘low-level’ processes such as this that
it encounters. In fact Spy1’s state space, when measured like this, is generally
exponential in the number of interesting facts. Most of these states are never
actually reached when the spy is eventually explored as part of the complete system,
but this only adds to the frustration of having computed them in the first place.

15.3 Analyzing crypto-protocols 473

15.3.4 The lazy spy

We need to find an equivalent process definition that avoids this impossible amount
of pre-computation. We will do this by creating a parallel network which has one
process for every fact that the spy (i) does not initially know and (ii) could conceiv-
ably learn during a run. These are the facts contained in the set LearnableFacts
defined below, since the spy can never know anything outside what can be deduced
from its initial knowledge and all the messages it could ever hear. (In the present
example this set has 96 members.)

PossibleBasicKnowledge = union(Known,messages)

KnowableFacts = Close(PossibleBasicKnowledge)

LearnableFacts = diff(KnowableFacts,Known)

We can discard all those deductions whose conclusion is something the spy
knows already, or where either the conclusion or one of the assumptions is never
knowable by him. For different reasons we know that these will never be relevant
to the spy in any run.

Deductions = {(X,f) | (X,f) <- AllDeductions,

member(f,LearnableFacts),

not member(f,X),

diff(X,KnowableFacts)=={}}

For each fact in LearnableFacts we can then create a component of our spy: it
only has two states, respectively representing ignorance and knowledge of the fact.
It can always learn its fact, but can say it only when the fact is known. Since
these actions are only relevant when the fact is a complete message these actions
are limited to this case. Inferences are carried out by a channel infer of type
Deductions: each one can only occur when all its assumptions are known (either
because they are in the set Known or because the relevant process is in state knows)
and the conclusion is not known. Thus each infer.(X,f) action may have many
different components synchronize on it.

ignorantof(f) = member(f,messages) & learn.f -> knows(f)

[] infer?t:{(X,f’) | (X,f’) <- Deductions, f’==f}

-> knows(f)

knows(f) = member(f,messages) & say.f -> knows(f)

[] member(f,messages) & learn.f -> knows(f)

474 Case studies

[] infer?t:{(X,f’) | (X,f’) <- Deductions, member(f,X)}

-> knows(f)

[] member(f,Banned) & spyknows.f -> knows(f)

The last line above assumes we have defined a set Banned of events which the spy is
not allowed to know. For our example we define this to be {AtoB, BtoA} since we
know that these two facts will never properly be sent to Cameron. The respective
alphabets AlphaL(f) of these processes are the sets of events they can perform.

The spy is then constructed by putting all the component processes in parallel
and hiding the infer events, since these are internal actions of this parallel inference
system. It is important to note that, by definition of Deductions, any assumption
of an infer.(X,f) which is not in LearnableFacts is initially Known to the spy.
Thus, whenever this event occurs in the following process, all the assumptions are
known.

Spy = (|| f:LearnableFacts @ [AlphaL(f)] ignorantof(f))

\{|infer|}
||| SayKnown

SayKnown = say?f:inter(Known,messages) -> SayKnown

[] learn?f:inter(Known,messages) -> SayKnown

Note that Spy incorporates a process which can always communicate any message in
Known, since evidently the spy can generate these messages and we did not include
them in the set LearnableFacts.

This version of the spy process is equivalent to Spy1(Known), but does not
suffer the same problems. As it runs the infer.(X,f) actions which occur (hidden)
within it have the same effect as the Close function used in Spy1. Whenever it learns
a new fact it can carry out just those inferences which extend its present state of
knowledge (defined to be Known plus the set of facts f whose component process is in
state knows(f)) appropriately. We have christened this model the lazy spy because
it avoids the eager pre-computation of inferences, most of which are unnecessary,
present in Spy1.

To use the spy in the network proper, we rename it so that the messages it
learns come from communications it has overheard or intercepted, and what it says
becomes a fake. Obviously the messages it overhears and fakes in actual runs have
sender and address fields, but since these are irrelevant to the issue of knowing what
the spy can generate16 we left these off when building the spy processes for reasons
of efficiency.

16The address fields never contain information unknown to the spy, and whenever the spy can

generate a message it can send it to whomever, and ‘from’ whomever, it pleases.

15.3 Analyzing crypto-protocols 475

RenSpy = Spy[[learn.f <- comm.a.a’.f,

learn.f <- take.a.a’.f |

a <- agents, a’<- agents]]
[[say.f <- fake.a.a’.f |

a <- agents, a’<- agents]]

System = Network [|{|comm,take,fake|}|] RenSpy

We can then test for attacks on the protocol by checking for occurrence of the
events error and spyknows.f, since none of them should be possible. Essentially,
the first represents a failure of authentication and the second a failure of confiden-
tiality. In the particular case we are looking at, either of these checks reveals a
striking attack (discovered by Gavin Lowe17 [71] many years after the protocol was
published and despite the fact that it had been analyzed with various logics with-
out revealing problems). The bottom line of this attack is that if one trustworthy
node (Alice, say) chooses to communicate with a node (Cameron) who proves to be
corrupted, then the intruder can impersonate Alice in opening a session (learning
all the secrets therein) with any other trustworthy node (Bob). Thus Bob thinks
he has a session with Alice, even when she may never have heard of him. We might
doubt Alice’s judgement in talking to Cameron, but she always behaves honestly.
It is clearly unacceptable for the security of sessions between a pair of honest nodes
to depend on the set of nodes with whom they have previously interacted.

The attack proceeds as follows: it contains two interleaved runs of the pro-
tocol, labelled α and β. Where you see C (A) below it means a situation where C
intercepts a message for A or fakes one apparently from A, as appropriate. Each
message is shown in two ways, with the right-hand one being the literal output from
FDR.18

α.1 A→ C : {NA,A}pk(C) take.Alice.Cameron.(pkC.Sq.<Na,Alice>)

β.1 C (A) → B : {NA,A}pk(B) fake.Alice.Bob.(pkB.Sq.<Na,Alice>)

β.2 B → C (A) : {NA,NB}pk(A) take.Bob.Alice.(pkA.Sq.<Na,Nb>)

α.2 C → A : {NA,NB}pk(A) fake.Cameron.Alice.(pkA.Sq.<Na,Nb>)

α.3 A→ C : {NB}pk(C) take.Alice.Cameron.(pkC.Nb)

17Lowe was the first person to apply the combination of FDR and CSP to crypto-protocols. The

CSP model Lowe developed for the Needham–Schroeder Public-Key protocol in [71] differs from

the one presented here mainly in its relatively ad hoc spy model. The lazy spy model presented

here, with its power and easy adaptation to new protocols, has since become the standard method

and has been integrated into Lowe’s protocol compiler Casper: see below.
18The trace continues take.Bob.Alice.Encrypt.(Nb,Sq.<Alice,BtoA>) which enables the event

spyknows.BtoA.

476 Case studies

β.3 C (A) → B : {NB}pk(B) fake.Alice.Bob.(pkB.Nb)

The spy uses node A in run α to decode the message it receives (but cannot at that
stage understand) in message β.2, since because of the way the protocol works A
assumes the nonce NB was generated by C in run α and so sends it back to C in
message α.3. Upon receipt of message β.3 node B has completed a run apparently
with A, as claimed.

The methods described in this section have been employed to analyze a wide
variety of protocols, dealing with a range of protocol features and specification
techniques we have not had time to cover here. Many of the analyses have involved
timing analysis along the lines set out in Chapter 14. Frequently they have dis-
covered attacks which were in no way imagined at the time of creating the CSP
model.

In the three years since the first edition of this book appeared the techniques
for analysing crypto protocols have developed enormously. There have been three
especially significant developments. The first is the ability to handle the far more
complex protocols that are common in growing applications like electronic cash
and electronic commerce: the basic idea here is that the security of such protocols
usually depends only on a few of their many details, and Lowe has developed a set
of safe, simplifying transformations which allow one to reduce them to a size FDR
can handle without losing any attacks. Namely, if there is an attack on the original
protocol, there will be one on the simplified one.

The second and third both address the problem of proving protocols secure:
the methods described so far allow us to discover if a very small implementation
of a protocol (with very few users and runs) can be attacked. There is no obvious
way of inferring, from an FDR run that finds no attack on a small system, that
there is no attack on larger ones: at the time of the first edition it could reasonably
have been said that our methods were excellent at finding attacks, but were found
wanting when it came to proof. One approach [74] to this problem has been through
careful analysis of how a potential attack might proceed, and Lowe produced a set of
essentially syntactic conditions (such as that both participants identities are bound
up in each encrypted component of the protocol) which, if true, enable one to infer
that an implementation of any size of a protocol will satisfy certain natural secrecy
(as opposed to authentication) properties if a minimal one does (consisting of just
Alice and Bob, able to run the protocol once each, plus a server if necessary and
an intruder like the one set out above except that it does not need an identity like
Cameron to play with).

The other approach to proof is via data-independence [113, 117, 13], as de-
scribed in the previous section of this chapter. It seems a reasonable goal that we
might use data-independence to derive thresholds for the sizes of types like node

15.3 Analyzing crypto-protocols 477

identities, nonces and keys that are used in protocol models. This is so because the
way our programs treat these objects is data-independently (they are just passed
around and compared for equality, possibly bound up in the complicated tupling
constructs that our symbolic models of protocol messages really are). Indeed, it
was recognition of this possibility that led the author to get seriously interested in
data-independence in 1995. There are, however, significant hurdles to overcome,
especially regarding the intruder process, which meant that this ambition was not
realised untilrelatively recently. The problem is that the most general intruder
(i.e., the one we are trying to model) clearly has an unbounded memory for data
that it sees and deduces. So the contribution this process makes to the threshold
component WImpl is, regrettably, infinite. Except in the case of the type of node
identities (perhaps) there seems no option but to use the data-independence theo-
rems that make use of the theorems involving this parameter. The solution is to use
a transformation that is safe (in the sense that it never loses an attack) but might
theoretically introduce false attacks (ones that are not really possible). What we
do is to introduce a Manager process for each type like nonces and keys, which has
the duty of monitoring what each foreground value in the type is being used for,
issuing them to processes who request them, and, when such a value is forgotten
by all nodes other than intruder, maps it to a background value by causing trans-
fers within the intruder’s memory. Thus all memories of runs that are no longer
active in either Alice or Bob will be clustered around these background values. The
potential for false attacks comes if the intruder can exploit the fact that values in
several old runs have been artificially identified to bring about an attack, for exam-
ple by making deductions which are possible only because of the identification. A
crucial component in this work is the condition PosConjEqT, described on page
451, and small variations upon it, which cryptographic protocols usually satisfy for
two reasons:

• Nodes often test for equality between values (e.g., for equality between a
name in a received message and the node that the session is supposedly
with, or between a nonce received and one generated earlier) but rarely for
inequality. Thus the result of an inequality is likely to be the run aborting,
which can easily be made consistent with PosConjEqT.

• The deductions that the intruder performs often rely on the equality of two
or more values (such as the key used to encrypt a message and the one we
happen to know) but rarely inequality. We say that a deductive system that
never relies on inequality is positive.

The proofs that the transformations we do are safe rely crucially upon these things,
so the methods only apply to protocols and deductive systems that satisfy them.

478 Case studies

The result is that we can now often prove that protocols meet their specifi-
cations for any number of node identities with agents who can perform any number
of protocol runs sequentially (i.e., they must finish or abort one run before start-
ing another). At the time of writing, research to extend this to the case where a
single agent can perform any number of runs in parallel is underway, but is not yet
concluded.

Gavin Lowe has produced a compiler (Casper, [73]), which inputs protocols
described in a notation close to the one used to describe the Needham–Schroeder
protocol on page 462, and outputs a CSP file which can be used to check various
forms of correctness. See the Bibliography for how to obtain this tool. All of this
has made FDR into arguably the most powerful tool available at the time of writing
for checking properties of crypto-protocols.

There are two main lessons to get out of this example aside from the intrinsic
interest of security protocols. The first of these is the way renaming has been used
at various points to achieve subtle effects in plumbing the network together. In
fact this idea can be taken a stage further to allow crypto-protocol analyses to take
account of any algebraic equivalences that may relate encrypted terms, such as

{{M }a}b = {{M }b}a

(the statement that if a message is encrypted twice, the order of the encryptions
does not matter). The second is how we managed to code what is effectively an
inference system as a parallel process,19 exploiting the multi-way synchronizations
allowed in CSP.

This example is also illuminating because it shows how very large networks
of CSP processes (almost exactly 100 processes in the present example, and quite a
lot larger in the case of other protocols we have worked with) can have a practical
use on FDR. The way it stores states means that it gets 32 one-bit spy components
into each word of memory.

15.3.5 Cutting corners

Initially the spy process used above does not know the nonce Na. It can easily learn
this nonce by being sent the message

comm.Alice.Cameron.pke(pk(Cameron),Sq.<Na,Alice>)

This immediately allows it to generate many more messages than it could before:
9 new message 1’s (of the abbreviated protocol), 9 new message 2’s and 3 more

19It would be interesting to try the techniques of the lazy spy on other applications where one

wants an inference system as part of a network.

15.3 Analyzing crypto-protocols 479

message 3’s. In all, there are 31 facts which can be inferred from this new one. They
cannot be deduced in any order. For example, the deduction of Sq.<Na,Alice>
from the body of the above message (and the spy’s knowledge of sk(Cameron)) via
a Deduction3 must be done first, and the subsequent deduction of Na from this
is necessary for almost all the others. However, there is an enormous number of
alternatives for the order in which these inferences are performed (certainly greater
than 2412), and similarly a huge number of states that the spy process can pass
through en route to the state where it knows all 31 new things (more than 224).

This combinatorial explosion is unfortunate since it considerably slows up
checks of protocols on FDR, and severely limits the sizes of protocols and depths
of checks it can manage. Fortunately, however, there is a way round the problem.
When our spy performs an inference it never loses the ability to perform any other
action (either visible or inference) it could already do. If we simply force all available
inferences to be performed in the spy, in an arbitrarily chosen order, before any other
action is allowed, then the observable behaviour of the spy is unchanged but the
state explosion is completely avoided. In the example above, it will simply be forced
through 30 inferences (‘appearing’ externally as τ actions) before coming to rest in
the state corresponding to

Spy1(Close(union(Known,pke(pk(Cameron),Sq.<Na,Alice>))))

A function has been incorporated into FDR for this purpose: chase(P) be-
haves like P except that whenever P reaches a state where it can perform a τ action,
this operator executes τ ’s until no more are possible. The other behaviour paths
are not explored. Thus this operator has, in general, the right to select from a range
of states since it may have many paths of τ ’s to follow. In the case of the spy (or
any similar inference system) there is a unique final state which any path reaches,
but this is certainly not true for general processes.

Unlike the other compression operators (see Section C.2) defined in FDR,
chase sometimes changes the value of the process it is applied to and should only
be used when, as with the Spy example, we are confident it does not. It is always
true that

P
FD chase(P)

since the chase operator only takes decisions which an implementation is free to
make. Thus chase(P) is equivalent to P whenever P is deterministic (as our spy is,
since it is equivalent to the process Spy1(Known)), but in most cases the above re-
finement is proper when P is nondeterministic. (It need not be since chase does not
remove nondeterminism other than that introduced by τ actions. It will not remove
the nondeterminism created by the initial ambiguity in (a → P) � (a → Q).) You

480 Case studies

should note that chase is an operator which is properly thought of as being applied
to a transition system, not to an abstract process, and that, for nondeterministic P ,
different transition system implementations of P may well produce different results
when the operator is applied.

In principle you can, of course, use the determinism checking capability of
FDR (see Section 9.1) to test if a process is one suitable to chase. Indeed, the
determinism checking algorithm has a lot in common with chase. But since a
determinism check involves visiting each state of the process under examination,
this is rarely a sensible option with processes we want to chase, since the whole
point of the exercise is to avoid visiting them all! Thus most applications will
probably involve a more mathematical proof of determinism.

The use of the chase operator has an enormously beneficial effect on protocol
checks in FDR. For the one described above, running on the version of FDR2 current
at the time of writing, it cut the number of states visited in finding the attack from
several million to 325. The reduction is even greater in cases where no attack is
found, since finding the above attack takes fewer actions than would allow an un-
chased version to go through the complete combinatorial explosion detailed above,
while a complete refinement check inevitably explores it all. For example, if the
second message of the abbreviated protocol is changed from

B → A : {NA,NB}pk(A) to B → A : {NA,NB ,B}pk(A)

Lowe’s attack is avoided and (subject to various assumptions we do not have time to
detail here) the protocol appears to be secure. Certainly the corresponding checks
now succeed, using about 300 states with the use of chase and being well out of
reach on the present tool without it. Thus, the lazy spy model only really makes
sense as a practical proposition on FDR with the chase operator, and fortunately,
with it, one is able to model protocols significantly more complex than the one we
have seen here.

The chase operator is an extreme – and by far the clearest applying to CSP
at the time of writing – example of a model-checking technique known as partial
order methods. These can be defined as methods for avoiding complete state
explorations in model-checking runs by the knowledge that certain actions can be
performed in any order (when available) without affecting the check, so that not all
orders need be explored. More examples of these as applied to other notations can
be found in [131, 96], amongst many others. (This is a regular topic for papers in
the annual proceedings of CAV, for example.)

15.4 Notes 481

15.4 Notes

The solitaire example presented here is a slightly updated version of the one de-
scribed in [108]. A number of similar puzzles can be found on the web site described
in the Preface.

The topics of Sections ??, 15.2.1 and 15.3 all come under the general heading
of distributed algorithms. There are, of course, many more, and an extensive survey
can be found in [25]. Certainly many of the others would make interesting case
studies for CSP and FDR, and, indeed, some of them already have been.

The bully algorithm was invented by H Garcia-Molina [41]. It is much used
in distributed systems. Since the curious behaviour we discovered depends both on
implementation details and the precise specification chosen, it is really for anyone
who has implemented it to decide whether it applies to them. Even if it is not,
they might decide that it is a good idea to run a check that does correspond to
their implementations and expectations. As far as the author knows, the behaviour
discovered here and the consequential correction are original.

The algorithm for managing a distributed database presented in Section 15.2
is taken, as stated there, from one of the author’s earlier papers [106] where it is
proved mathematically. The main reason for including it in this chapter is that it
shares one important quality with the examples from Sections 15.1 and 15.3, namely
that it is far from obvious on first encountering it whether it works or not.

The concept of data-independence, or something like it, has occurred inde-
pendently to many people. This is probably because of the amount of time they
have wasted watching their respective tools analyzing successively larger versions of
some system in which, in some sense, all the ‘interesting’ behaviours really ought to
have been caught using relatively small examples. The first person to have studied
it formally is Wolper [137], other references being [50, 58, 61].

Some of the data-independence rules for CSP set out in this chapter were
conjectured by the author in [122] (an earlier version of the distributed database case
study). These conjectures were proved, and many further results found, by Ranko
Lazić [65, 64, 67, 68], who established, amongst other things, a formal connection
with the theory of parametricity, or logical relations from functional programming
[17, 62, 85, 93, 100, 134] and developed versions of the operational semantics and
normal forms that differ from those seen in Chapters 7 and 11 in that they use
symbolic representations of data values (parts of this work are similar to work
on other process algebras, for example [52]). This work also exploits techniques,
related to those in [24, 34, 35, 58, 59] for exploiting symmetry in state spaces.
The data-independence results in this chapter were produced by Lazić specifically
for this book, and are mainly consequences of more complex results that you can
find in [65, 64, 67, 68]. The cache example in this chapter is adapted from the

482 Case studies

one presented in [67]. See [42, 95] for other examples of how techniques related
to data-independence can be applied to caches. Many more references to work on
data-independence and related topics can be found in [64, 67, 68].

2005: Work on data independence has proceeded rapidly since this book came
out. Work to note includes the extension of data independence to include such things
as arrays (indexed by data independent types and possibly containing a different
data independent type) and partial orderings (e.g. [66]), and the combination of
data independence and induction to create a new proof method for arbitrary-sized
networks called “data independent induction” [26, 27].

There is a large literature on the subject of crypto-protocols, fascinating
because of the remarkable proportion of protocols which are proposed with highly
plausible rationale for, or formal proofs in some logic of, their security, only to have
an attack found on them in a subsequent paper. There can be no other area of
computer science where such short programs are so frequently wrong. It is also
interesting how little consensus there is on how this security should be specified in
the abstract. Usually, though not invariably, researchers will agree on whether a
specific ‘attack’ is real; it is much harder to get them to agree on what constitutes
an attack in general. Some references to applications of CSP to these protocols
are [71, 72, 73, 75, 110, 111]; for more general references the reader should follow
up some of the citations in these papers or look through publications such as the
Journal of Computer Security and the annual proceedings of the IEEE Computer
Security Foundations workshop.

A natural question that may well have arisen in the minds of readers who
have studied both Section 12.4 and Section 15.3 is how the rather different views
of computer security seen in them are related. The non-interference/independence
discussed in the first of these is an absolute notion and is best applied to analyze the
security of systems whose internal details are assumed to be inaccessible to potential
intruders. We look for ways in which one user can affect another, when both
are using ‘natural’ (generally unencrypted) interfaces to the system. Encryption
is necessary, in essence, when it is assumed that an intruder might well have an
entrée to some information being stored or passed around the interior of a system.
(You should think of networks over which encrypted messages pass as being highly
distributed systems in which the intruder can see and manipulate much of the
internal state, namely the messages.) It does not seem, at the time of writing, to
be possible to make the independence conditions properly understand the fact that
encrypted traffic is incomprehensible without the relevant key. The problem is that
the definition of independence does not understand that the distinctions between
the intruder seeing the encrypted messages {X }K and {Y }K are of less significance
than those between it seeing X and Y . Therefore the notions of independence and
non-interference are of limited used when dealing with the security of any encrypted

15.4 Notes 483

view of a system. So even though at an intuitive level one might characterize
our requirements of crypto-protocols as achieving two-way non-interference between
legitimate users and the intruder (i.e., the intruder cannot disrupt the users and
cannot detect what they are doing), the two approaches are not as closely related
as one might immediately expect. In fact, the level at which it is traditional to
analyze crypto-protocols (and is the level in Section 15.3) rarely achieves absolute
non-interference in either direction.

2005: There has been an explosion of work on crypto protocols since 1997,
both using CSP/FDR and other methods. It is now possible to check and (if possible)
prove such protocols reasonably routinely over quite a wide range. However the core
of the CSP approach remains exactly as set out here, though the need to create such
models by hand is generally eliminated by Casper.

484 Case studies

Appendix A

Mathematical background

Much of our work on semantics requires knowledge of the mathematics that under-
lies the models we build. This appendix is designed to provide a tutorial intro-
duction to two theories which go beyond the basic mathematics of sets, relations
and functions we have used throughout this book and which are essential to a full
understanding of Chapters 8, 9 and 10. These are partial orders and metric spaces.
Naturally, we concentrate on those aspects of these things which are most needed
elsewhere in this book, in particular the fixed-point theories derivable in each. The
intention is that each of the two sections is, however, freestanding (in particular,
being independent of the other). Examples are drawn both from conventional math-
ematics and from the world of CSP.

A.1 Partial orders

A.1.1 Basics

A partial order is a relation that describes when one member of a set is less than
another in some sense. It is generally written either something like x < y, indicating
a strict order where an element is not less than itself, or like x ≤ y, indicating a
‘less-than-or-equal-to’ style order where each element is comparable to itself. The
following are some examples.

• The usual order on numbers.

• The ‘divides’ relation on natural numbers: n | m ≡ ∃ r .n × r = m.

• The subset relation ⊆ on any set of sets.

• The prefix order ≤ on Σ∗ (s ≤ t ≡ ∃ u.s û = t).

486 Mathematical background

There are two properties a relation must have to be a partial order. It must be
transitive:

x ≤ y ∧ y ≤ z ⇒ x ≤ z

(Here, x , y, z are arbitrary members of the underlying set X .) This simply says that
if x is less than y and y is less than z then x is less than z . The statement of the
other property, that no pair of distinct objects are less than each other, is different
depending on whether we are looking at a strict or non-strict order, namely

x ≤ y ∧ y ≤ x ⇔ x = y

x < y ⇒ ¬(y < x)

These are called anti-symmetry properties, with the former encompassing reflexivity
(meaning that everything is related to itself) and the second anti-reflexivity.

There is no requirement that any two objects are comparable, and indeed
only the first of the four examples above satisfies the following property which, when
it is true in addition to the other properties, defines a total order:

x < y ∨ y < x ∨ x = y

As a relation, ≤ is always the (disjoint) union of the corresponding < and
the identity relation {(a, a) | a ∈ X }. When discussing an order we will feel free
to move between <, ≤ and the reverse versions > and ≥ when discussing a given
order, even though they are all different relations in a formal mathematical sense.

It is often convenient to represent partial orders (especially finite ones) as
pictures: Figure A.1 is an example of a Hasse diagram which shows the subset order
on P({a, b, c}).

Two partial orders with the same Hasse diagram are said to be order iso-
morphic. This generalizes to infinite orders: (X ,≤1) is order isomorphic to (Y ,≤2)
if and only if there is a bijection f from X to Y such that x ≤1 x ′ ⇔ f (x) ≤2 f (x ′)
for all x , x ′ ∈ X .

A number of branches of mathematics and theoretical computer science have
been built on top of partial orders, each of them generating its own set of special
conditions on orders to generate appropriate results about them. Two well-known
examples are lattice theory and domain theory. In the rest of this section we will
introduce just the relatively small portions of these theories that are important to
the study of CSP.

If a partial order has a least element (one that is less than all others), it is
conventionally written ⊥ (pronounced ‘bottom’). Similarly, a greatest element is

A.1 Partial orders 487

• {}

•{a} •{b} •{c}

•{a, b} •{a, c} • {b, c}

•
{a, b, c}

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

Figure A.1: Hasse diagram of a simple partial order.

488 Mathematical background

written (‘top’). Clearly, an order can have at most one ⊥ or , though, if it
does not have one or other of these, it can have many minimal or maximal elements
(ones that have no other element less than, or respectively greater than, them). For
example, the set N (natural numbers) with its usual order has a bottom (0) but no
top. P(X), under the subset order, has both a bottom ({}) and a top (X). The set
N �{1} = {0, 2, 3, . . .} under the divisibility order described above has a top element
(0, since n | 0 for all n) and all prime numbers as its minimal elements.

Suppose P is a partial order. If X ⊆ P and a ∈ P then a is an upper bound
for X if x ≤ a for all x ∈ X . Similarly it is a lower bound if a ≤ x for all x ∈ X . It
is the least upper bound of X (written

⊔
X) if it is an upper bound and a ≤ b for

all upper bounds b of X , and is the greatest lower bound (written 	X) if a lower
bound and greater than all others. The following remarks should help to explain
these concepts:

• Since a (least) upper bound is just a (greatest) lower bound in the reverse
order, everything that is said about one can, with suitable modifications to
take account of the switch, be said about the other.

• A set X can have many upper (lower) bounds or none at all. For example, if
the set Σ∗ is given the prefix order and s , t ∈ Σ∗, then the set {s , t} always
has at least one lower bound (〈〉) and perhaps many, but only has upper
bounds if s is a prefix of t or vice-versa. Note that if P has a ⊥ (), then
every set has a lower (upper) bound.

• If
⊔

X exists it is unique, and similarly for 	X .

• Even when a set has upper bounds, there may be no least one. The simplest
example to show this is a four-point order {a, b, c, d} where a < c, a < d ,
b < c, b < d and the pairs a, b and c, d are incomparable. Here, {a, b} has
two upper bounds (c and d) but no least one.

• Note the similarity between the pairs of symbols 	,
⋂

and
⊔

,
⋃

. Over the

powerset P(A) (with subset order) they correspond exactly: 	X =
⋂

X and⊔
X =

⋃
X for all X ⊆ P(A).

• Since every x ∈ P is both an upper and a lower bound for the empty set {},
⊥ =

⊔
{} and =	{} (these two bounds existing just when ⊥ and do).

If they both exist and P has at least two points we have the odd situation
that

⊔
{} < 	{}: something that can be true for no other set since x ∈ X

implies that

	X ≤ x ≤
⊔

X

• Similarly, ⊥ =	P and =
⊔

P whenever these objects exist.

A.1 Partial orders 489

It will often be important to us to understand which sets X have 	X and⊔
X existing, and how these operators behave. Just about the strongest possible

assumption that could be made in this department is that every set has both. An
order with this property is called a complete lattice.1 Good examples of complete
lattices are the powerset P(A) and the traces model T of CSP (the non-empty,
prefix-closed subsets of Σ∗�), both ordered by ⊆. That the latter is a complete
lattice is seen from the following observations.

• If X is any non-empty subset of T then
⋃

X is necessarily non-empty and
prefix closed. It follows that

⊔
X =

⋃
X .

• If X ⊆ T is non-empty then
⋂

X is non-empty (it contains 〈〉) and prefix
closed (if s < t and t ∈

⋂
X then necessarily s belongs to all x ∈ X).

•
⊔
{} = {〈〉} (the bottom element) and 	{} = Σ∗� (the top).

In fact, there is an interesting proof that if every set has a greatest lower
bound, then every set also has a least upper bound. Of course, the reverse is also
true by symmetry. Thus an order is a complete lattice if each set has a least upper
bound or if each set has a greatest lower bound.

Lemma 1 If 	X exists for every set X , then so does
⊔

X .

Proof Let X ⊆ P , and define Y = {y | y is an upper bound for X }. Clearly
x ≤ y whenever x ∈ X and y ∈ Y , so we can deduce that each x ∈ X is a lower
bound for Y . It follows that x ≤ 	Y , since the latter is the greatest lower bound.

Thus 	Y ∈ Y , by definition of Y , and it is clear that 	Y is necessarily the least
member of Y , i.e., the least upper bound of X .

Note that any complete lattice L necessarily has both a ({} and
⊔

L)

and a ⊥ (
⊔
{} and 	L). It tends to be the case in computer science that we use

orders where x < y means that y is in some way better than, or more defined than,
x . It is usually possible and realistic to arrange that there is a worst process, or ⊥,
but it is often inconceivable that any process could exist that was better than all
others. For this and other reasons we frequently have to deal with orders that have
⊥’s but do not have such rich structures of 	 and

⊔
as complete lattices.

There are two main reasons why we will frequently need CSP models to
have interesting structures of least upper bounds and greatest lower bounds. These
are the finding of fixed points to yield the semantics of recursive terms, and the
semantics of nondeterministic choice. The latter requirement comes from the fact
that very often the order on the models corresponds to refinement: P
 Q if, and

1A lattice is a partial order in which all finite sets X have 	X and
⊔

X existing.

490 Mathematical background

only if, Q refines P . In that case it is natural to expect that the nondeterministic
choice	S of the set of processes S is the most refined process that is refined by all
the members of S , i.e., the greatest lower bound of S . This explains the coincidence
in symbols between greatest lower bound and nondeterministic choice. In a model
like this, greatest lower bounds have to exist for all sets of processes over which we
expect to be able to take nondeterministic choices. Depending on whether or not
you expect to be able to handle unbounded nondeterminism, these will either be all
the non-empty sets, or all the non-empty finite sets.

Exercise A.1.1 There are two essentially different partial orders with two elements:

one where they are comparable and one where they are not. How many are there with 3 and

4 elements respectively? Draw Hasse diagrams of all the possibilities. For higher numbers

than 4 elements it is better to use a computer to enumerate the number of different orders.

A.1.2 Functions and fixed points

If P and Q are partial orders with least elements ⊥P and ⊥Q , then the function
f : P → Q is said to be strict if f (⊥P) = ⊥Q .

A function from one partial order to another is called monotonic (or mono-
tone) if

x ≤ y ⇒ f (x) ≤ f (y)

In other words, the larger the input to the function, the larger the output. It turns
out that, provided a partial order with a ⊥ has a reasonably rich structure of least
upper bounds, any monotone function from a partial order to itself has a fixed point.
Indeed, it has a least fixed point, and this is in most cases the correct one to assign
as the value of a recursively defined program. Note that the least fixed point of any
strict function from a partial order to itself has least fixed point ⊥.

There are numerous versions of this theorem proved by many people, but
they are all traditionally collected together under the name ‘Tarski’s theorem’,
or sometimes ‘Knaster-Tarski’. The strongest possible assumption we could make
about an order is that it is a complete lattice; in this case the theorem has a simple
if clever proof.

Theorem 2 (tarski’s theorem for complete lattices) If P is a complete

lattice and f : P → P is monotonic, then f has a least fixed point.

Proof The least fixed point is given by the following formula

x = 	{y ∈ P | f (y) ≤ y}

A.1 Partial orders 491

Call the set on the right-hand side above Y : the set of all points that are mapped
down by f . (Though this is not important for the proof, this set is clearly non-empty
since it contains .) If y ∈ Y then x ≤ y, so

f (x) ≤ f (y) as f is monotonic
≤ y by definition of Y

It follows that f (x) is a lower bound of Y , and hence

f (x) ≤ x as x is the greatest lower bound
⇒ f (f (x)) ≤ f (x) as f is monotonic
⇒ f (x) ∈ Y

We can thus conclude that f (x) ≥ x and, putting this together with the above, that
x = f (x). The least-ness of x is an easy consequence of the fact that Y contains
every fixed point.

We need to weaken the assumption that the underlying order is a complete
lattice, since we will often need to find fixed points in orders that do not satisfy it.
It turns out that we can still prove Tarski’s theorem provided that certain subsets
that look as though they ought to have least upper bounds actually do.

Definition A subset D of P is said to be directed if each finite subset F of D has
an upper bound in D ; in other words, there is y ∈ D such that x ≤ y for all x ∈ F .

The concept of a directed set generalizes that of a chain, a subset in which
every pair of elements is ordered, i.e., a totally ordered subset. Every chain C is
directed, since a finite subset F of C necessarily has a greatest element. There are
many directed sets that are not chains, for example

• in P(N) with the subset order, the set of all finite subsets is directed;

• any set with a greatest element is directed (whether a chain or not).

You should think of a directed set D as an abstract picture of how a system
of elements of P ‘converges’ from below to a limit (that may or may not actually
exist in P). The higher an element is in D , the closer it is to the place we are
converging to. This is easiest to understand for an increasing sequence

x0 ≤ x1 ≤ x2 ≤ . . .

which simply converges upwards towards a supposed limit. A directed set with a
greatest element is just like a converging sequence that is eventually constant.

The limit of a directed set is thus its least upper bound, where this exists.
Not all directed subsets of partial orders have limits, since for example the natural

492 Mathematical background

numbers N have no least upper bound in R. Putting the condition on a partial order
that all directed sets do have limits is therefore a definite restriction. It characterizes
an extremely important class of partial orders.
Definition A complete partial order (often abbreviated cpo) is one in which every
directed set2 has a least upper bound, and which has a ⊥.

Clearly every complete lattice is a cpo, but the reverse does not hold. The
most obvious distinction is that cpo’s need not have ’s. For example, since every
finite directed set D has a greatest element (the one in D that bounds the whole of
D), which is necessarily

⊔
D , any finite partial order with a ⊥ is complete.

Σ∗ is not complete under the prefix order, since directed sets such as

{〈〉, 〈a〉, 〈a, a〉, 〈a, a, a〉, . . .}

have no upper bound. It becomes complete, however, if we add in the infinite traces:
Seq = Σ∗∪Σω . Each infinite trace u is then maximal in the order, in the sense that
there is no v such that v > u.

Two interesting examples of cpo’s are (i) the set FXY of all partial and total
functions from X to Y (arbitrary sets) and (ii) the set OX of all strict (i.e., < rather
than ≤) partial orders on any set X . In each case the order is subset (⊆) on the
respective representation as a set of pairs. Both of these have least elements (the
empty set, representing respectively the partial function with no mappings and the
order in which no distinct objects are comparable). The arguments why these two
orders are closed under the limits of directed sets depend crucially on directedness.
If Δ ⊆ FXY is directed, then

⋃
Δ is its least upper bound, because it is a function.

This is because the only way it could fail to be a function would be if there were
x and y, y ′ with y = y ′ such that (x , y), (x , y ′) ∈

⋃
Δ; but then there would be

f , g ∈ Δ such that (x , y) ∈ f and (x , y ′) ∈ g. Directedness of Δ then tells us that
there is h ∈ Δ such that f , g ⊆ h, contradicting the fact that h, as a function,
cannot contain both (x , y) and (x , y ′). The very similar argument for OX is left as
an exercise.

Both FXY and OX have interesting classes of maximal elements. The max-
imal elements of FXY are precisely the total functions (as any non-total function
can clearly be extended, and a total function cannot be extended without losing
the property of being a function) and those of OX are the total orders (see Exercise
A.1.5).

2Directed sets are sometimes replaced by chains in this definition. It is possible, but far from

easy, to show that this substitution does not matter, in the sense that an order is directed-set closed

if and only if it is chain closed. These equivalent concepts are both strictly stronger than another

definition one frequently encounters, namely ω-completeness, in which only countable increasing

sequences x0 ≤ x1 ≤ . . . are obliged to have limits. For example, the set of all countable subsets

of an uncountable set such as R is (under the subset order) ω-complete but not complete.

A.1 Partial orders 493

Not all partial orders have maximal elements: this happens when, as in N

and R, we can find a way of moving upwards through the order so that there is no
element greater than all the ones we pass through. This means we are ‘converging’
out of the top of the order with some chain or perhaps other directed set. This
cannot happen in a cpo since every directed set has an upper bound in the order,
meaning that however far we move up through it we can never find this sort of
behaviour. Thus, we would expect every cpo to have maximal elements. This
principle, which is known as Zorn’s lemma, is a subtle and important result of
advanced mathematics.3 Clearly it is extremely important in understanding the
structures of cpo’s. For proofs of Zorn’s lemma and discussion of its position in
mathematics, the interested reader should consult a book on set theory such as
[36].

We are now in a position where we can state and prove perhaps the most
general version of Tarski’s theorem.

Theorem 3 (tarski’s theorem for complete partial orders)

Suppose P is a cpo and f : P → P is monotonic. Then f has a least fixed point.

Proof We begin this proof with two observations that are frequently useful when
reasoning about monotonic functions between cpo’s:

• If D is a directed set, then f (D) = {f (x) | x ∈ D} is also directed, since any
finite subset of f (D) is f (F) for some finite subset of D , and monotonicity
implies that f (y) is an upper bound for f (F) where y ∈ D is chosen to be
an upper bound for F .

• If X is any set for which both
⊔

X and
⊔

f (X) are defined (something that
is true for any directed X by the above), then

⊔
f (X) ≤ f (

⊔
X). This is be-

cause x ≤
⊔

X for all x ∈ X , which implies f (x) ≤ f (
⊔

X) by monotonicity.

Now, let Fix be the set of f ’s fixed points in P . For all we know so far, this
might be empty. This is used to define a subset Q of P :

Q = {x ∈ P | x ≤ f (x) ∧ ∀ y ∈ Fix . x ≤ y}

Q is the set of all points that are mapped up by f and are less than or equal to every
fixed point of f . Q is non-empty, since it contains ⊥. If we look at the partial order
structure Q inherits from P , it is actually complete. To show this, it is enough to

3It is one of the standard equivalents of the Axiom of Choice. Zorn’s lemma is usually quoted

as the statement that any partial order in which every chain has a (not necessarily least) upper

bound has maximal elements. The version given here (that every cpo has maximal elements) can

readily be shown equivalent.

494 Mathematical background

establish that whenever D ⊆ Q is directed then
⊔

D ∈ Q (where the upper bound
is taken in P). Since each y ∈ Fix is an upper bound for D , it follows that

⊔
D ≤ y

also. And f (D) is a directed set such that
⊔

D ≤
⊔

f (D) as x ≤ f (x) for x ∈ D
≤ f (

⊔
D) by the second observation above

These two things show
⊔

D ∈ Q .

If x ∈ Q then f (x) ∈ Q since (i) x ≤ f (x)⇒ f (x) ≤ f (f (x)) by monotonicity
and (ii) if y ∈ Fix then x ≤ y ⇒ f (x) ≤ f (y) = y. So if we choose x to be one of the
maximal elements of Q that Zorn’s lemma tells us exist, then necessarily x = f (x)
since x < f (x) would contradict x ’s maximality. Thus x is a fixed point and, by
definition of Q , is plainly the least one. (Incidentally, this proves that Q actually
only has one maximal element.)

The least fixed point of a function f is frequently written μ f .

The two proofs of versions of Tarski’s theorem we have seen to date are
stylistically rather similar, though understandably the second required a little more
machinery. In essence they are clever manipulations of the ordering that give little
or no idea why it might be reasonable to use the least fixed point as the natural
denotation of recursively defined programs. This can be remedied for an important
subclass of the monotonic functions, to which we can frequently restrict our atten-
tion. The concept of a function whose value at a limit point can be determined
from its values on a sequence converging to that point is familiar to students of real
analysis and topology: it is said to be continuous. Recalling that we are thinking of
a directed set in a cpo as being a generalized convergent sequence, we can extend
the idea of continuity to partial orders.

Definition If P and Q are two cpo’s and f : P → Q , then f is said to be
continuous if, whenever Δ ⊆ P is directed,

⊔
{f (x) | x ∈ Δ} exists and equals

f (
⊔

Δ).

Notice that this definition does not assume f is monotonic. It does, however,
imply this, for if x ≤ y then

⊔
{x , y} = y, so if f is continuous

⊔
{f (x), f (y)} exists

and equals f (y), which of course implies that f (x) ≤ f (y). (If this had not been
provable, we would certainly just have added a condition that f was monotone into
the definition of continuity. Almost invariably the first thing one does when trying
to prove that a function is continuous is to prove it is monotone.)

Because we already know that monotone functions preserve directedness,
this shows that continuous functions map ‘convergent sequences’ to ‘convergent
sequences’, and by definition map the limit of one to the limit of the other.4 Not

4These properties define what it means for a function to be continuous in real analysis or over

metric spaces.

A.1 Partial orders 495

•

•
P Qf

•

•

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

�

�

not monotone

•

•

•

•

•

•
P Qf

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.
��	�

�

monotone but
not continuous

•

•

•

•

•

P Qf

•

•

•

•

•

•

.

.

.
.
.
.
.
.
.
.
.

.

.

�

�

�

�

continuous

Figure A.2: Monotonicity and continuity.

all monotonic functions are continuous: consider P = P(N) under the subset order,
and the function f : P → P defined

f (x) =
{
{} if x is finite
N if x is infinite.

Continuity fails for this function whenever Δ is an infinite directed set of finite sets,
for example Δ = {X ∈ P | X is finite}.

Figure A.2 illustrates the definitions of monotonicity and continuity by three
simple examples. The partial orders with ‘and so on’ dots (ellipsis) all consist of an
infinite increasing sequence below a single limit point.

Both monotonicity and continuity are preserved under function composition,
in the sense that if f : Q → R and g : P → Q both have one of these properties,
then the composition f ◦ g : P → R has the same one.

Since continuous functions are all monotone, the theorem proved above estab-
lishes that they have least fixed points. There is, however, a very different proof
that is highly suggestive of how to build the fixed point, as might be done by a
recursive definition.

496 Mathematical background

Proof of Tarski’s theorem for continuous functions on a cpo P Since
⊥ is the least element, we have⊥ ≤ f (⊥). Now suppose f n(⊥) ≤ f n+1(⊥). It follows
immediately from the fact that f is monotone that f n+1(⊥) ≤ f n+2(⊥). We have
thus proved by induction that 〈f n(⊥) | n ∈ N〉 is an increasing sequence in P .

But f is continuous, so

f (
⊔
{f n(⊥) | n ∈ N}) =

⊔
{f n+1(⊥) | n ∈ N} .

It is obvious that if Δ is any directed set then
⊔

Δ =
⊔

(Δ ∪ {⊥}). (Clearly any
upper bound of one set is an upper bound of the other!) Therefore

⊔
{f n+1(⊥) |

n ∈ N} =
⊔
{f n(⊥) | n ∈ N}, and it follows that x =

⊔
{f n(⊥) | n ∈ N} is a fixed

point of f .

Now, if y is any other fixed point then clearly ⊥ ≤ y. Suppose f n(⊥) ≤ y.
Then

f n+1(⊥) ≤ f (y) = y

as f is monotone and y is a fixed point. It follows that f n(⊥) ≤ y for all n and
hence that y is an upper bound for {f n(⊥) | n ∈ N}. But x is the least upper
bound, so x ≤ y.

The least fixed point of a continuous function is thus the limit of the in-
creasing sequence we get by applying f over and over to ⊥. This is a much more
constructive picture of μ f than that produced by the earlier proofs, but unfortu-
nately it only applies to continuous functions.5

There are a great many ways in which we can establish properties of the least
fixed point. Some of the simplest are described below and more can be found in
Section 9.2.

If x is any point in a cpo P then it is easy to see that the sets

Ux = {y ∈ P | x ≤ y}
Lx = {y ∈ P | y ≤ x}

are themselves both cpo’s (under P ’s order) with least elements x and ⊥ respec-
tively. Thus, if the monotone function f : P → P maps either of these sets to
itself (i.e., f (Ux) ⊆ Ux or f (Lx) ⊆ Lx) then f has a fixed point in the given set.
If f (x) ≤ x then f (Lx) ⊆ Lx (by monotonicity), so f has a fixed point less than x
(meaning, of course, that the least fixed point is less than x). Such an x is called

5In fact, the more usual proof of the monotone function on cpo version works on the same

principle with potentially much longer sequences than these merely infinite ones! It requires

some advanced mathematical concepts such as ordinal numbers, which is why we gave the less

constructive but easier to understand Zorn’s lemma proof.

A.1 Partial orders 497

a post-fixed point. Similarly if f (x) ≥ x then f (Ux) ⊆ Ux so f has a fixed point
greater than x , and x is termed a pre-fixed point.

If it is known, for whatever reason, that f has a unique fixed point, and
x ≤ f (x), the above of course implies that x ≤ μ f . The main way of showing the
uniqueness of fixed points is discussed in Section A.2 below, but there are others,
such as the simple observation that if the least fixed point is maximal in P then it
is necessarily unique.

Exercise A.1.2 Suppose f : A × B → P , where A and B are sets and P is a partial

order, such that

•
⊔
{f (a, b) | a ∈ A ∧ b ∈ B} exists, and

• F (b) =
⊔
{f (a, b) | a ∈ A} exists for all b ∈ B .

Show that
⊔
{F (b) | b ∈ B} exists and equals

⊔
{f (a, b) | a ∈ A ∧ b ∈ B}. (This shows

that it does not matter whether one takes a complex upper bound ‘all at once’ or takes

the upper bounds of suitable cross-sections first and then bounds these. Of course, if the

opposite cross-sectional upper bounds F ′(a) =
⊔
{f (a, b) | b ∈ B} also exist, the above

result establishes⊔
{
⊔
{f (a, b) | b ∈ B} | a ∈ A} =

⊔
{
⊔
{f (a, b) | a ∈ A} | b ∈ B}

or, in other words, we can take upper bounds with respect to a and b in either order.)

Exercise A.1.3 Which of the following partial orders are complete lattices or cpo’s?

(a) The natural numbers N = {0, 1, 2, 3, . . .} under the divisibility order n ≤ m ≡ n |
m.

(b) The closed interval [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}.
(c) [0, 1] �{ 1

2
}

(d) C = {X ⊆ N | a, b ∈ X ∧ a �= b ⇒ gcd(a, b) = 1} under the subset order, where

gcd(a, b) is the greatest common divisor of a and b. C ⊂ P(N) is the set of coprime

subsets of N.

Exercise A.1.4 Find a complete partial order that has a � but is not a complete

lattice. Hint: find a finite partial order with � and ⊥ where not all subsets have least

upper bounds.

Exercise A.1.5 Recall that OX is the set of all strict partial orders of a set X .

(a) Show that OX is a cpo under the subset order.

(b) Show that the maximal elements of OX are precisely the total orders on X . Hint:

show that if < is a partial order and x , y are incomparable under < (x �= y, x �< y

and y �< x) then there is an order <′ which extends < and in which x <′ y. Be

careful to ensure that the <′ you build is transitive.

498 Mathematical background

Exercise A.1.6 Consider the complete partial order Σ∗∪Σω. Let a and b be distinct

members of Σ. Show carefully that the functions

f (s) = 〈a 〉̂ s

g(s) = 〈a 〉̂ (s[a, b/b, a])

are continuous, where s[a, b/b, a] means the trace s with all a’s replaced by b’s and vice-

versa.

What are μ f and μ g?

A.1.3 Product spaces

A product space is one where objects have a number of components, each from some
smaller space. The simplest product space is the Cartesian product P × Q of the
sets P and Q – consisting of all pairs (x , y) where x ∈ P and y ∈ Q .

If P and Q are both partially ordered then P × Q can be given an order
in several different ways. The standard order (which we will always use except,
perhaps, in a few exercises) is defined

(x , y) ≤ (x ′, y ′) ⇔ x ≤ x ′ ∧ y ≤ y ′ .

It is sometimes called the component-wise order because one pair is less than another
if and only if each of its components is less than the corresponding component of
the other pair.

We will sometimes need to use product spaces where there are many or even
infinitely many components. The elements of such a space can be thought of as
vectors or tuples with the appropriate number of components, or alternatively as
functions from an indexing set to the union of the sets from which the components
are taken. Thus, for ordered pairs in P ×Q , we would choose an indexing set with
two elements (say {1, 2}) and think of pairs as being functions from {1, 2} to P ∪Q ,
where the image of 1 is in P , and the image of 2 is in Q .

The most obvious case where this need arises is in defining the semantics of
a mutual or parameterized recursion, since instead of defining a single process as a
fixed point, we have to compute a whole system of processes.

A typical example of an infinite product space is Pω, the infinite sequences
of elements of P ; this is identified with the functions from N to P . Another is the
{0, 1}X for any set X – this is naturally isomorphic to the powerset P(X) since we
can identify a tuple with the set of all components with value 1, and the product
order becomes the usual subset order ⊆.

Note that we have used the ‘to-the-power-of’ notation XY to denote the
function space Y → X where this means the product of Y copies of X . This is

A.1 Partial orders 499

justified by the observation that if X has n elements and Y has m elements, then
the product space XY has nm elements. A more general notation is

∏
λ∈Λ Pλ

which denotes the product space with indexing set Λ in which λth components of
tuples are picked from Pλ.

It is often convenient to use vector notation for product spaces (especially
large ones): a typical element of PΛ will be underlined, x and its λ component is
xλ. In ‘tuple’ notation we then have x = 〈xλ | λ ∈ Λ〉.

The partial order on an arbitrary product space is a straightforward extension
of the one above:

〈xλ | λ ∈ Λ〉 ≤ 〈yλ | λ ∈ Λ〉 ⇔ ∀λ .xλ ≤ yλ .

With the exception of total ordering, which is not preserved (for example,
the product of a two-point total order with itself has two incomparable points),
almost all of the properties identified in earlier sections are preserved by product.
This is shown by the following result.

Theorem 4 If each of Pλ has (the same) one of the following properties, then∏
λ∈Λ Pλ also has that property.

(a) complete

(b) lattice

(c) complete lattice

Proof Suppose that X ⊆
∏

λ∈Λ Pλ and that, for each λ ∈ Λ, the set Xλ = {xλ |
x ∈ X } has a least upper bound yλ. Then y = 〈yλ | λ ∈ Λ〉 is an upper bound for
X – since if x ∈ X we know xλ ≤ yλ for all λ – and if z is any other upper bound
then zλ is an upper bound for Xλ for all λ, and so y ≤ z . In other words, y is the
least upper bound of X .

The same component-wise construction also works for greatest lower bounds.

These observations essentially prove each of (a), (b) and (c) since if X ⊆∏
λ∈Λ Pλ is (a) directed or (b) finite then it is clear that all Xλ also have the

corresponding property. The only thing left to show is that the product of cpo’s
has a bottom element: this is obviously 〈⊥λ | λ ∈ Λ〉 where ⊥λ is the bottom of
Pλ.

500 Mathematical background

Clearly a function such as f (x , y) that has more than one argument drawn
from partial orders can be thought of as a function with a single argument drawn
from some product space. This identification defines what it means for such a
function to be monotone or continuous. The following result shows that where
there are two (and hence, inductively, any finite number of) arguments, there is a
straightforward test for these properties.

Lemma 5 Suppose P ,Q ,R are partial orders and f : P × Q → R. Then we may

define two functions f ′x : Q → R and f ′′y : P → R for any x ∈ P and y ∈ Q by

f ′x (y) = f ′′y (x) = f (x , y) .

The continuity and monotonicity of f is related to that of f ′x and f ′′y as follows.

(a) f is monotone if and only if all f ′x and f ′′y are (i.e., if f is monotone in each

argument separately).

(b) f is continuous6 if and only if all f ′x and f ′′y are (i.e., if f is continuous in each

argument separately).

Proof The fact that f being monotone implies all f ′x and f ′′y are is trivial, so
suppose that all f ′x and f ′′y are monotone and that (x , y) ≤ (x ′, y ′). Then x ≤ x ′

and y ≤ y ′, so

f (x , y) = f ′x (y)
≤ f ′x (y ′) as f ′x monotone
= f ′′y′ (x)
≤ f ′′y′ (x ′) as f ′′y′ monotone
= f (x ′, y ′)

This proves part (a).

If Δ1, Δ2 are directed subsets of P and Q respectively then {(x , y) | x ∈ Δ1}
and {(x , y) | y ∈ Δ2} are directed in P × Q with respective limits (

⊔
Δ1, y) and

(x ,
⊔

Δ2). It follows immediately that if f is continuous then all f ′x and f ′
y are. So

suppose all f ′x and f ′′y are continuous and that Δ ⊆ P ×Q is directed. Define

Δ1 = {x | (x , y) ∈ Δ} and Δ2 = {y | (x , y) ∈ Δ} .

We know already from the proof of Theorem 4 that
⊔

Δ = (
⊔

Δ1,
⊔

Δ2). It is clear
that Δ∗ = Δ1 × Δ2 is directed with the same limit as Δ, and that Δ ⊆ Δ∗. If
(x , y) ∈ Δ∗ then there are x ′, y ′ such that (x , y ′) and (x ′, y) are in Δ and hence, by

6Continuity only makes sense if P , Q and R are cpo’s.

A.1 Partial orders 501

directedness, there is (x ′′, y ′′) ∈ Δ with (x , y) ≤ (x ′′, y ′′) and so by monotonicity of
f :

⊔
{f (x , y) | (x , y) ∈ Δ∗} ≤

⊔
{f (x , y) | (x , y) ∈ Δ}

and the reverse inequality holds because Δ ⊆ Δ∗, so that in fact the terms are
equal. But we then have

⊔
{f (x , y) | (x , y) ∈ Δ} =

⊔
{f (x , y) | (x , y) ∈ Δ∗}

=
⊔
{f (x , y) | y ∈ Δ2 ∧ x ∈ Δ1}

=
⊔
{
⊔
{f (x , y) | y ∈ Δ2} | x ∈ Δ1} (1)

=
⊔
{f (x ,

⊔
Δ2)} | x ∈ Δ1} (2)

= f (
⊔

Δ1,
⊔

Δ2) (3)
= f (

⊔
Δ∗)

Line (1) is an application of the result established in Exercise A.1.2. Lines (2) and
(3) follow respectively from the continuity of f ′x and f ′′�Δ2

. This completes the proof.

This result does not generalize to the case of infinite product spaces: if
f : {0, 1}ω → {0, 1} is defined

f (x) =
{

0 if infinitely many xn equal 1
1 otherwise

then f is not monotone but all the fn are (being constant functions, since the value
of f (x) is unaffected by a change to a single component of x). A trivial modification
to this example (defining g(x) = 1− f (x)) produces a monotone but discontinuous
function all of whose ‘sections’ gn are continuous.

However, the corresponding result for functions to product spaces is not
restricted in this way. All parts of the following result are easy to prove.

Lemma 6 The function f : P →
∏

λ∈Λ Qλ is (a) monotone or (b) continuous if

and only if all of the component functions fλ : P → Qλ are (a) monotone or (b)

continuous, where fλ(x) = f (x)λ.

Function spaces as product spaces

We have already seen how product spaces can be thought of as the sets of functions
from some indexing set to a partial order (or several partial orders). These spaces
pay no attention to any partial order structure that may be present in the indexing
set, but we have already met two classes of functions that do, namely the monotonic

502 Mathematical background

ones and the continuous ones. In this subsection we will examine the partial orders
these restricted function spaces inherit from the full product space. Notice that the
partial order can be written

f ≤ g ⇔ ∀ x .f (x) ≤ g(x) .

Definitions If P and Q are two cpo’s, define P m→ Q and P c→ Q respectively
to be the sets of all monotone and continuous functions from P to Q .

Both of these constructions preserve the two main categories of cpo’s we have
defined:

Lemma 7 Both of the spaces P m→ Q and P c→ Q are cpo’s if P and Q are. If Q
is, in addition, a complete lattice, then both function spaces are, too.

Proof The least upper bound of a set Φ of functions (directed in the case where
Q is a cpo rather than a complete lattice) is, in all cases we have to consider, the
same as that in the full product space, namely

(
⊔

Φ)(x) =
⊔
{f (x) | f ∈ Φ} .

To prove the result we must simply prove that if all elements of Φ are respectively
monotone or continuous then so is

⊔
Φ.

The monotone case is very straightforward since, if x ≤ y, then f (x) ≤ f (y)
for all f ∈ Φ, so certainly

⊔
{f (x) | f ∈ Φ} ≤

⊔
{f (y) | f ∈ Φ} .

For the continuous case, suppose Δ ⊆ P is directed. Then we have

(
⊔

Φ)(
⊔

Δ) =
⊔
{f (

⊔
Δ) | f ∈ Φ}

=
⊔
{
⊔
{f (x) | x ∈ Δ} | f ∈ Φ} (1)

=
⊔
{
⊔
{f (x) | f ∈ Φ} | x ∈ Δ} (2)

=
⊔
{(

⊔
Φ)(x) | x ∈ Δ} (3)

where line (1) is by continuity of the f ’s, line (2) is a general property of partial
orders (see Exercise A.1.2) and line (3) is by definition of

⊔
Φ.

The final result of this section is important because it is needed to justify
the application of versions of Tarski’s theorem to functions which have themselves
been defined using least fixed points (i.e., finding the value of a recursive construct
which has another recursion nested within it). For example, in order to show that

F (p) = μ q.(a → (p ‖
{a}

q))

A.1 Partial orders 503

is a continuous function, you need to have not only that the operations of prefixing
and parallel composition are continuous over the chosen semantic model, but also
that the very process of extracting fixed points is continuous.

Lemma 8 Let P be a cpo. Then (a) the least fixed point operator μ : (P m→ P) → P
on the space of monotonic functions is itself monotonic, and (b) restricted to the

space of continuous functions μ : (P c→ P)→ P it is continuous.

Proof For part (a), we note that if f is any monotone function then

μ f = 	{x | f (x) ≤ x}

since we know that μ f belongs to the set on the right-hand side and have already
observed that if y belongs to this set then μ f ≤ y. But now if f ≤ f ′ in the
function-space order, then trivially

{x | f (x) ≤ x} ⊇ {x | f ′(x) ≤ x}

so the greatest lower bound of the left-hand side is necessarily less than or equal to
the greatest lower bound of the right-hand side, which is what we require.

For part (b), suppose Φ ⊆ P c→ P is directed. We know from the proof of
Tarski’s theorem on page 496 that, for any continuous f ,

μ f =
⊔
{f n(⊥) | n ∈ N} .

Claim that for all n we have

(
⊔

Φ)n(⊥) =
⊔
{f n(⊥) | f ∈ Φ} .

This is certainly true when n = 0 (both sides are ⊥), so suppose it holds for n.
Then by induction, the definition of

⊔
Φ and the continuity of all g ∈ Φ we have

(
⊔

Φ)n+1(⊥) =
⊔
{g(f n(⊥)) | g, f ∈ Φ} .

But since all f , g ∈ Φ have k ∈ Φ with k ≥ f , g this is in turn equal to
⊔
{kn+1(⊥) | k ∈ Φ}

as claimed.

Given this, we have

μ(
⊔

Φ) =
⊔
{(

⊔
Φ)n(⊥) | n ∈ N}

=
⊔
{
⊔
{f n(⊥) | f ∈ Φ} | n ∈ N}

=
⊔
{
⊔
{f n(⊥) | n ∈ N} | f ∈ Φ}

=
⊔
{μ f | f ∈ Φ}

504 Mathematical background

which proves the lemma.

Exercise A.1.7 Suppose P , Q and R are cpo’s. Prove that the following pair of

partial orders are order isomorphic when → is interpreted as (i) the full function space

(equivalently product space) operator, (ii)
m→ and (iii)

c→.

(P × Q) → R and P → (Q → R)

This is the identity underlying the functional programming construct of Currying;7 to

prove these isomorphisms you should show that the maps

curry : ((P × Q) → R) → (P → (Q → R)) and

uncurry : (P → (Q → R)) → ((P × Q) → R)

are (well-defined) order isomorphisms in each of the three cases.

Exercise A.1.8 If X is any partial order, show that X ω and (X ω)ω are order isomor-

phic.

Exercise A.1.9 Let P = N ∪ {a, b} be ordered with the usual order on N and such

that n < a < b for all n ∈ N. Construct a directed set Δ of functions in P
m→ P such that⊔

{μ f | f ∈ Δ} �= μ(
⊔

Δ). What does this demonstrate?

Exercise A.1.10 Suppose P and Q are cpo’s. The mutual recursion

p0 = F (p0, q0)

q0 = G(p0, q0)

for monotonic functions f : P × Q
m→ P and g : P × Q

m→ Q is naturally identified

with the least fixed point of the composite function H (p, q) = (F (p, q),G(p, q)). We can

alternatively interpret the recursion as an iterated fixed point: let

p1 = μ p.F (p, μ q .G(p, q))

q1 = μ q .G(p1, q)

Show that (p1, q1) is a fixed point of H and hence that (p0, q0) ≤ (p1, q1). Next, show that

q0 ≥ μ q .G(p0, q) and hence that

F (p0, μ q .G(p0, q)) ≤ q0

Deduce that p1 = p0 and q1 = q0,

7Currying (named after H.B. Curry) involves taking a function f (x , y) of two arguments and

turning it into a function which takes them separately: curry(f)(x) is the function which takes any

y and returns the value f (x , y). Thus, if plus is the function that adds two numbers, curry(plus)(1)

is the function that adds one to any number.

A.2 Metric spaces 505

A.2 Metric spaces

The concept of distance should be familiar to readers, both through everyday ex-
perience and through the mathematical study of ordinary Euclidean space. For
example, if a = (x , y, z) and a′ = (x ′, y ′, z ′) are two members of R

3 (Euclidean
3-space), the distance between them would ordinarily be defined to be

de(a,a′) =
√

((x − x ′)2 + (y − y ′)2 + (z − z ′)2)

As with many other phenomena, mathematicians have sought to identify
and axiomatize the essential properties which make a distance function like this
one work. A metric is a function from any two points in a space X to R

+ (the
non-negative real numbers) which satisfies the following three laws:

d(x , y) = 0 ⇔ x = y diagonal
d(x , y) = d(y, x) symmetry
d(x , z) ≤ d(x , y) + d(y, z) triangle inequality

These just say that the distance from any point to itself is 0 but the distance between
any two distinct points is strictly positive; that the distance from y back to x is the
same as that from x to y; and that the distance from x to z via y must be at least
that of the direct route.

All of these are either obvious or well known for de .

It is possible to have many different metrics on the same space. For example,
if d is any metric then so is any multiple of d , and if X is any set then the following
discrete metric always satisfies the axioms:

d(x , y) =
{

0 if x = y
1 otherwise

A metric space is just the pair (X , d) for a space X and metric d on X . Just
as with partial orders, we will usually be happy to refer to X alone as a metric
space as long as the metric d can be understood from the context.

Example A.2.1 The metric spaces used in CSP (and other process algebras) bear

remarkably little resemblance to ordinary Euclidean space. In many ways they are

simpler to reason about. Consider the example of finite and infinite traces over a

set Σ:

Seq = Σ∗ ∪ Σω

We can define a distance function on this set by examining how far down the

sequences we have to look to tell two of them apart. This can conveniently be done

506 Mathematical background

by defining restriction functions ↓ n that give a standardized view of any sequence

to a chosen depth n ∈ N:

s ↓ n = s if s ∈ Σ∗ and #s ≤ n
s t̂ ↓ n = s if s ∈ Σn and t ∈ Seq

The important features of these functions are

(a) s ↓ 0 = t ↓ 0 for all s , t ;

(b) s ↓ n ↓ m = s ↓ min(n,m) for all s ,n,m;

(c) if s = t , then there is n such that s ↓ n = t ↓ n

Together, these imply that whenever s = t there is n ∈ N such that s ↓ m = t ↓ m
if and only if m ≤ n. A set together with a family of restriction operators satisfying

(a), (b) and (c) will be called a restriction space.

The distance between two points of a restriction space can be defined to be

inf {2−n | s ↓ n = t ↓ n}

(the choice of 2 being arbitrary). This is just 2−n where n is the length of their

longest common prefix when s = t , and 0 when s = t . This is a strange measure

of distance, not least since the range of possible distances is restricted to powers of
1
2 . It obviously satisfies the first two conditions for a metric, so the only remaining

thing we have to check is the triangle inequality. This is trivial to check in the case

that any two of the points x , y and z are equal, so we can assume

d(x , y) = 2−n and d(y, z) = 2−m

If k = min(n,m), it follows that x ↓ k = y ↓ k and y ↓ k = z ↓ k , and hence that

x ↓ k = z ↓ k . Thus

d(x , z) ≤ 2−k = max (d(x , y), d(y, z)) (≤ d(x , y) + d(y, z))

which is actually a much stronger inequality than the triangle law.8 This inequality

is very hard to visualize since it says that the distance from x to z is no longer than

the greater of the two legs of this journey via y, for arbitrary y!

The metrics used for CSP models are almost invariably derived from restric-

tion spaces in this way.

8Metrics satisfying it are sometimes called either ultra-metrics or non-Archimedean metrics.

A.2 Metric spaces 507

Metric spaces allow us to transfer understanding about things like conver-
gence – derived from distance over Euclidean space – to a more general setting
where we have any well-behaved distance function. Firstly, it is simple to define
what it means for a sequence of points 〈xi | i ∈ N〉 to converge to a point y: for any
positive distance ε > 0, if we go far enough down the sequence the entire remainder
of the sequence must lie within ε of y:

ε > 0 ⇒ ∃N . ∀n ≥ N .d(y, xn) < ε

The limit point y is unique, because if there were another, say y ′, then you could
set ε = d(y, y ′)/2 which would lead quickly to a contradiction.

Notice that the only convergent sequences under the discrete metric are those
that are eventually constant, since otherwise there would be no way of getting ε

below 1. This is also true of sequences with a finite trace as limit in Seq, since if
#s = n then the only point within 2−(n+1) of s is s itself. However, all members
of Σω have many ‘interesting’ sequences converging to them. For example, the
sequences

〈〉, 〈a〉, 〈a, a〉, 〈a, a, a〉, . . . and
〈b, b, . . .〉, 〈a, b, b, . . .〉, 〈a, a, b, b, . . .〉, 〈a, a, a, b, . . .〉

both converge to 〈a, a, a, . . .〉.
The subset C of a metric space X is said to be closed if, whenever 〈xi | i ∈ N〉

is a sequence of points in C that converges to a point y of X , then y ∈ C . In other
words, the process of convergence cannot take us outside C . Closed sets have the
following crucial properties:

• The empty set {} is closed (having no convergent sequences); the whole space
X is closed, and any one-point set {x} is closed as the sequence 〈x , x , x , . . .〉
converges to x .

• If C and D are closed, then so is C ∪ D since if 〈xi | i ∈ N〉 is a convergent
sequence of points in it then an infinite subsequence must belong either to C
or D . It is easy to see that any infinite subsequence of a convergent sequence
is convergent with the same limit; and since C and D are closed it follows
that the limit of our sequence is contained in one of them.

• If C is any non-empty set of closed sets, then
⋂
C is closed, because the limit

of each infinite sequence in this set clearly belongs to each C ∈ C.

An open set U is one whose complement is closed. This is equivalent to saying that
whenever x ∈ U there is no convergent sequence in X �U with limit x . An elegant

508 Mathematical background

way of re-phrasing this is to say that for each x ∈ U there is a ball (of sufficiently
small positive radius ε) about x contained in U :

Bε(x) = {y ∈ X | d(x , y) < ε} ⊆ U

Just as the set of closed sets is closed under finite union and arbitrary inter-
section, the open sets are closed under finite intersection and arbitrary union.9

(This follows, amongst other things, from de Morgan’s laws.)

Every subset of the discrete metric space is closed (and open). A prefix-
closed subset C of Seq is closed if, and only if, each s ∈ Σω is in C whenever all its
finite prefixes are.

A sequence of points 〈xi | i ∈ N〉 is said to be a Cauchy sequence if it looks
as though it ought to be converging in the following tightly defined sense: for every
positive distance δ > 0, if we go far enough down the sequence the points are
all within δ of each other. And this means all points beyond some N , not just
consecutive ones:

δ > 0 ⇒ ∃N . ∀n,m ≥ N .d(xn , xm) < δ

Every converging sequence is a Cauchy sequence: this follows by taking the
N obtained for ε = δ/2 in the definition of convergence, and using the symmetry
and triangle properties of a metric.

Cauchy sequences play exactly the same role in metric spaces as directed sets
do in partial orders: they are the ‘formally convergent’ structures, and we judge
completeness by seeing if they really all do converge.

Definition A metric space is said to be complete if, and only if, all Cauchy
sequences converge to some point.

Not all metric spaces are complete: a good example is the set of all rational
numbers (n

m where n ∈ N and m ∈ Z �{0}) with its usual distance function (| x−y |).
If you take the decimal expansion of any irrational number such as π (a number being
irrational when it is not rational, of course), then the sequence of finite truncations
of this, for example

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . .

9Mathematicians’ love of abstraction is shown by the fact that, just as metric spaces put

distance into a general setting, a whole subject has been built up from these properties of open

and closed sets. A topology on a set X is any collection of subsets containing {} and X , and closed

under finite intersection and arbitrary union. This is just a yet-more-abstract way of looking at

the idea of convergence and, in fact, it is sufficiently general to encompass the partial order notions

of convergence we have previously seen. We do not pursue this subject here, since it is not needed

for a basic treatment of the theory of CSP.

A.2 Metric spaces 509

is a Cauchy sequence of rationals that fails to converge to a rational.

Seq is complete: if 〈xi | i ∈ N〉 is a Cauchy sequence then for any r we can
find Nr such that n,m ≥ Nr implies xn ↓ r = xm ↓ r . The limit of the sequence is
constructed as the unique sequence which agrees with xNr up to depth r for all r .

In general we say a restriction space is complete if its associated metric is also
complete, which turns out to be equivalent to the property that for every sequence
of points 〈x0, x1, x2, . . .〉 such that xn+1 ↓ n = xn , there is a (necessarily unique)
point x such that x ↓ n = xn for all n.

The most important property of complete metric spaces, at least for us,
bears a striking similarity to the corresponding property of complete partial orders:
a useful class of functions can be shown always to have fixed points.

Suppose f : X → Y is a function between two metric spaces. f is said to be

• non-expanding if d(f (x), f (y)) ≤ d(x , y) for all x , y ∈ X , and

• a contraction map if there is a positive constant α < 1 such that

d(f (x), f (y)) ≤ αd(x , y)

for all x , y ∈ X . (α must be independent of x and y.)

Thus a non-expanding function is one that guarantees not to increase the distance
between points, and a contraction is one that decreases the distance in a uniform
way. Obviously

• each contraction map is non-expanding;

• the composition f ◦ g of two non-expanding functions is non-expanding, and

• if f and g are both non-expanding and one is a contraction, then f ◦ g is a
contraction.

The following result is certainly the most widely-used fixed point theorem in math-
ematics, even though it is not quite as frequently used as Tarski’s theorem in com-
puter science. The proof has much in common with that for the continuous function
version of Tarski’s theorem, since both involve constructing the fixed point as the
limit of a sequence formed by iterating the function we are extracting the fixed
point from.

Theorem 9 (contraction mapping theorem or banach’s theorem)

Suppose X is a complete metric space and f : X → X is a contraction map. Then

f has a unique fixed point (i.e., exactly one y ∈ X such that f (y) = y).

510 Mathematical background

Proof It turns out that sequence obtained by applying f over and over to any
point converges to a fixed point: if we choose any x0 ∈ X and define xn+1 = f (xn),
then if α is the contraction factor of f , we have

d(xn+2, xn+1) = d(f (xn+1), f (xn)) ≤ αd(xn+1, xn)

and hence d(xn+1, xn) ≤ αnd(x1, x0) for all n. Thus the distance between con-
secutive points in this series decreases (at least) like powers of α starting from
whatever happens to be the distance K = d(x1, x0) between the first two. The
series K , Kα, Kα2, . . . is known as a geometric progression and has a finite sum:
K/(1−α). This easily leads to the conclusion that 〈xi | i ∈ N〉 is a Cauchy sequence:

d(xr , xr+n) ≤ d(xr , xr+1) + . . . + d(xr+n−1, xr+n)

≤
r+n−1∑

j=r

Kαj

≤
∞∑

j=r

Kαj

=
Kαr

1− α

The first line of the above follows from the triangle inequality, and the last line
can be made as small as we please by choosing large enough r . Thus this sequence
converges on a point y. This is certain to be a fixed point: to show this we suppose
the contrary, i.e., d(y, f (y)) > 0. The fact that 〈xi | i ∈ N〉 converges to y implies we
can find r such that d(xr , y) and d(xr , xr+1) are both strictly less than d(y, f (y))/3.
Then

d(y, f (y)) ≤ d(y, xr) + d(xr , xr+1) + d(xr+1, f (y))
≤ d(y, xr) + d(xr , xr+1) + αd(xr , y)
< (2 + α)d(y, f (y))/3

which is a contradiction. Here, the first line is just the triangle inequality and the
second follows as xr+1 = f (xr).

We can thus conclude y = f (y). If z is any fixed point, then

d(y, z) = d(f (y), f (z)) as y and z are fixed points
≤ αd(y, z) as f is a contraction

which implies d(y, z) = 0, proving that y = z . Thus y is the unique fixed point.

A.2 Metric spaces 511

A particularly simple example is given over the complete metric space R by
the contraction map x �→ x/2. Wherever we start iterating this function from we
end up with a sequence converging to 0, for example 〈1, 1/2, 1/4, 1/8, . . .〉.

Notice that it was much easier to show in the proof that the fixed point is
unique than to show it exists in the first place. All we really need, to show that there
is no more than one fixed point, is that d(f (x), f (y)) < d(x , y) whenever x = y:
neither the uniformity of α nor the completeness of X is required. Both of these are
necessary to get us a fixed point: in the incomplete space {x ∈ R | x > 0} (with the
usual metric | x − y |), the contraction map f : x �→ x/2 has no fixed point. And
similarly, in the complete space {x ∈ R | x ≥ 1}, again with the usual metric, the
function g : x �→ x + 1/x has no fixed point even though | g(x) − g(y) |<| x − y |
when x = y.

The structure of the metric on Seq means that d(f (x), f (y)) < d(x , y) implies
that d(f (x), f (y)) ≤ d(x , y)/2, so that any function that brings distinct points closer
together is bound to be a contraction. Remembering that the distance between two
points is determined by the depth up to which they look the same, for a function
f to be a contraction over Seq it must be that, to whatever depth x and y look
identical, f (x) and f (y) must look the same to a strictly greater depth. If x ↓ n =
y ↓ n, then f (x) ↓ n+1 = f (y) ↓ n+1. This is the formal definition of f being a
constructive function over any restriction space. Similarly, non-expanding functions
correspond to non-destructive functions: ones such that if x ↓ n = y ↓ n, then
f (x) ↓ n = f (y) ↓ n.

A simple example of a constructive function over Seq is the one defined

f (s) = 〈a 〉̂ s

We can infer from the proof of the fixed point theorem that from wherever you begin
to construct the sequence 〈xi | i ∈ N〉, a sequence will be found that converges to
the same fixed point. If we iterate this from the starting points 〈〉 and 〈b, b, b, . . .〉
we get precisely the two sequences seen earlier that converge to 〈a, a, a, . . .〉, which
is obviously this function’s fixed point.

The structure of the metric means that any constructive function whose fixed
point is a finite sequence with length n must reach this fixed point after no more
than n + 1 iterations.

Non-destructive functions might have many fixed points (for example, the
identity function fixes all points) or none at all. An example of the latter for Seq
when Σ = {a, b} is given by

f (〈〉) = 〈a〉
f (〈a 〉̂ s) = 〈b〉̂ s
f (〈b〉̂ s) = 〈a 〉̂ s

512 Mathematical background

Thus constructiveness is clearly required to get us the unique fixed point result.

The great advantage of the contraction mapping theorem over Tarski’s theo-
rem, where both can be applied, is the uniqueness of the fixed point it generates.
It is, of course, the justification of the UFP rule that we have used to good effect
over several CSP models.

A good general introduction to the simpler topics in metric spaces and topol-
ogy can be found in [128].

Exercise A.2.1 Show that a closed, non-empty subset Y of a complete metric space

X is itself a complete metric space under the restriction of X ’s metric to Y .

Now suppose that f is a contraction mapping on X such that f (Y) ⊆ Y . Show

that the unique fixed point of f lies in Y .

Exercise A.2.2 Show that the infinite traces Σω are a closed subset of Seq . Use the

result of the previous question to show that if f : Seq → Seq is a constructive function

that maps infinite traces to infinite traces (i.e., f (s) ∈ Σω when s ∈ Σω) then its fixed

point is infinite.

Can Σω be replaced by Σ∗ in this result. If not, why not?

Exercise A.2.3 Find a constructive function from Seq to itself which is not monotonic

in the sense described in Section A.1.2.

Appendix B

A guide to machine-readable CSP

B.1 Introduction

The machine-readable dialect of CSP (CSPM) is one result of a research effort1

with the primary aim of encouraging the creation of tools for CSP. FDR was the
first tool to utilize the dialect, and to some extent FDR and CSPM continue to
evolve in parallel, but the basic research results are publicly available (see later for
more details). The language described here is that implemented by the 2.1 release
of FDR and has many features not present in FDR1.

CSPM combines the CSP process algebra with an expression language which,
while inspired by languages like Miranda/Orwell and Haskell/Gofer, has been modi-
fied to support the idioms of CSP. The fundamental features of those languages are,
however, retained: the lack of any notion of assignment, the ability to treat functions
as first-class objects, and a lazy reduction strategy.

Scripts

Programming languages are used to describe algorithms in a form which can be
executed. CSPM includes a functional programming language, but its primary
purpose is different: it is there to support the description of parallel systems in
a form which can be automatically manipulated. CSPM scripts should, therefore,
be regarded as defining a number of processes rather than a program in the usual
sense.

1This Appendix was written by Bryan Scattergood, of Formal Systems (Europe) Ltd. He is

the main developer and implementor of this version of CSP. Comments and queries about the

notation, and potential tool developers who wish to use his results, should contact him by email:

bryan@fsel.com .

514 A guide to machine-readable CSP

B.2 Expressions

At a basic level, a CSPM script defines processes, along with supporting functions
and expressions. CSP draws freely on mathematics for these supporting terms, so
the CSPM expression-language is rich and includes direct support for sequences,
sets, booleans, tuples, user-defined types, local definitions, pattern matching and
lambda terms.

We will use the following variables to stand for expressions of various types.

m, n numbers
s , t sequences
a, A sets (the latter a set of sets)
b boolean
p, q processes
e events
c channel
x general expression

When writing out equivalences, z and z’ are assumed to be fresh variables
which do not introduce conflicts with the surrounding expressions.

Identifiers

Identifiers in CSPM begin with an alphabetic character and are followed by any
number of alphanumeric characters or underscores optionally followed by any num-
ber of prime characters (’). There is no limit on the length of identifiers and case
is significant. Identifiers with a trailing underscore (such as fnargle_) are reserved
for machine-generated code such as that produced by Casper [73].

CSPM enforces no restrictions on the use of upper/lower-case letters in iden-
tifiers (unlike some functional languages where only data type constructors can have
initial capital letters.) It is, however, common for users to adopt some convention
on the use of identifiers. For example

• Processes all in capitals (BUTTON, ELEVATOR_TWO)

• Types and type constructors with initial capitals (User, Dial, DropLine)

• Functions and channels all in lower-case (sum, reverse, in, out, open_door)

Note that while it is reasonable to use single character identifiers (P, c, T) for small
illustrative examples, real scripts should use longer and more descriptive names.

B.2 Expressions 515

Numbers

Syntax

12 integer literal
m+n, m-n sum and difference
-m unary minus
m*n product
m/n, m%n quotient and remainder

Remarks

Integer arithmetic is defined to support values between -2147483647 and 2147483647
inclusive, that is those numbers representable by an underlying 32-bit representation
(either signed or twos-complement.) The effect of overflow is not defined: it may
produce an error, or it may silently wrap in unpredictable ways and so should not
be relied upon.

The division and remainder operations are defined so that, for n = 0,

m = n ∗ (m/n) + m%n

| m%n | < | n |
m%n � 0 (provided n > 0)

so that, for positive divisors, division rounds down and the remainder operation
yields a positive result.

Floating point numbers (introduced experimentally for Pravda [70]) are not
currently supported by FDR. Although the syntax for them is still enabled, it is
not documented here.

516 A guide to machine-readable CSP

Sequences

Syntax

<>, <1,2,3> sequence literals
<m..n> closed range (from integer m to n inclusive)
<m..> open range (from integer m upwards)
s^t sequence catenation
#s, length(s) length of a sequence
null(s) test if a sequence is empty
head(s) the first element of a non-empty sequence
tail(s) all but the first element of a non-empty sequence
concat(s) join together a sequence of sequences
elem(x,s) test if an element occurs in a sequence
<x1,..., xn| x<-s, b> comprehension

Equivalences

null(s) ≡ s==<>

<m..n> ≡ if m<=n then <m>^<m+1..n> else <>

elem(x,s) ≡ not null(< z | z<-s, z==x >)

< x | > ≡ < x >

< x | b, ...> ≡ if b then < x | ...> else <>

< x | x ′<-s, ...> ≡ concat(< < x | ...> | x ′<-s >)

Remarks

All the elements of a sequence must have the same type. concat and elem behave
as if defined by

concat(s) = if null(s) then <> else head(s)^concat(tail(s))

elem(_, <>) = false

elem(e, <x>^s) = e==x or elem(e,s)

The following function tests if a sequence reads the same forwards and backwards

palindrome(<x>^s^<y>) = x==y and palindrome(s)

palindrome(_) = true

B.2 Expressions 517

Sets

Syntax

{1,2,3} set literal
{m..n} closed range (between integers m and n inclusive)
{m..} open range (from integer m upwards)
union(a1,a2) set union
inter(a1,a2) set intersection
diff(a1,a2) set difference
Union(A) distributed union
Inter(A) distributed intersection (A must be non-empty)
member(x,a) membership test
card(a) cardinality (count elements)
empty(a) check for empty set
set(s) convert a sequence to a set
Set(a) all subsets of a (powerset construction)
Seq(a) set of sequences over a (infinite if a is not empty)
{x1,..., xn| x<-a, b} comprehension

Equivalences

union(a1,a2) ≡ { z,z’ | z<-a1, z’<-a2 }

inter(a1,a2) ≡ { z | z<-a1, member(z,a2) }

diff(a1,a2) ≡ { z | z<-a1, not member(z,a2) }

Union(A) ≡ { z | z’<-A, z<-z’ }

member(x,a) ≡ not empty({ z | z<-a, z==x })

Seq(a) ≡ union({<>}, {<z>^z’ | z<-a, z’<-Seq(a)})

{ x | } ≡ { x }

{ x | b, ...} ≡ if b then { x | ...} else {}

{ x | x ′<-a, ...} ≡ Union({ { x | ...} | x ′<-a })

Remarks

In order to remove duplicates, sets need to compare their elements for equality, so
only those types where equality is defined may be placed in sets. In particular, sets
of processes are not permitted. See the section on pattern matching for an example
of how to convert a set into a sequence by sorting.

518 A guide to machine-readable CSP

Sets of negative numbers ({ -2}) require a space between the opening bracket
and minus sign to prevent it being confused with block comment.

Booleans

Syntax

true, false boolean literals
b1 and b2 boolean and (shortcut)
b1 or b2 boolean or (shortcut)
not b boolean not
x1==x2, x1!=x2 equality operations
x1<x2, x1>x2, x1<=x2, x1>=x2 ordering operations
if b then x1 else x2 conditional expression

Equivalences

b1 and b2 ≡ if b1 then b2 else false

b1 or b2 ≡ if b1 then true else b2

not b ≡ if b then false else true

Remarks

Equality operations are defined on all types except those containing processes and
functions (lambda terms).

Ordering operations are defined on sets, sequences and tuples as follows

x1 >= x2 ≡ x2 <= x1

x1 < x2 ≡ x1 <= x2 and x1 != x2

a1 <= a2 ≡ a1 is a subset of a2

s1 <= s2 ≡ s1 is a prefix of s2
(x1,y1) <= (x2,y2) ≡ x1 < x2 or (x1 == x2 and y1 <= y2)

Ordering operations are not defined on booleans or user-defined types.

if b then {1} else <2>

B.2 Expressions 519

is an error2 because both branches of a conditional expression must have the same
type.

Tuples

Syntax

(1,2), (4,<>,{7}) pair and triple

Remarks

Function application also uses parentheses, so functions which take a tuple as their
argument need two sets of parentheses. For example the function which adds to-
gether the elements of a pair can be written either as

plus((x,y)) = x+y

or as

plus(p) = let (x,y) = p within x + y

The same notation is used in type definitions to denote the corresponding
product type. For example, if we have

nametype T = ({0..2},{1,3})

then T is

{ (0,1), (0,3), (1,1), (1,3), (2,1), (2,3) }

Local definitions

Definitions can be made local to an expression by enclosing them in a ‘let within’
clause.

primes =

let

factors(n) = < m | m <- <2..n-1>, n%m == 0 >

is_prime(n) = null(factors(n))
within < n | n <- <2..>, is_prime(n) >

2At the time of writing no type-checker has yet been produced for CSPM (though the devel-

opment of one is undoubtedly desirable). The parser does some limited type checking (it would

reject the above example), but sometimes type errors are only caught at run-time in FDR.

520 A guide to machine-readable CSP

Local definitions are mutually recursive, just like top-level definitions. Not
all definitions can be scoped in this way: channel and datatype definitions are only
permitted at the top-level. Transparent definitions can be localized, and this can
be used to import FDR’s compression operations on a selective basis. For example,

my_compress(p) =

let

transparent normal, diamond

within normal(diamond(p))

Lambda terms

Syntax

\ x1, ...xn @ x lambda term (nameless function)

Equivalences

The definition

f(x,y,z) = x+y+z

is equivalent to the definition

f = \ x, y, z @ x+y+z

Remarks

There is no direct way of defining an anonymous function with multiple branches.
The same effect can be achieved by using a local definition and the above equiva-
lence. Functions can both take functions as arguments and return them as results.

map(f)(s) = < f(x) | x <- s >

twice(n) = n*2

assert map(\ n @ n+1)(<3,7,2>) == <4,8,3>

assert map(map(twice))(< <9,2>, <1> >) == < <18,4>, <2> >

B.3 Pattern matching

Many of the above examples made use of pattern matching to decompose values.
The version of CSPM used by FDR2.1 introduced much better support for pattern
matching; for example, we can write

B.3 Pattern matching 521

reverse(<>) = <>

reverse(<x>^s) = reverse(s)^<x>

as well as

reverse(s) = if null(s) then <> else reverse(tail(s)) ^ <head(s)>

The branches of a function definition must be adjacent in the script, otherwise
the function name will be reported as multiply defined.

Patterns can occur in many places within CSPM scripts

• Function definitions (reverse above)

• Direct definitions (x,y) = (7,2)

• Comprehensions { x+y | (x,y) <- {(1,2),(2,3)} }

• Replicated operators ||| (x,y):{(1,2),(2,3)} @ c!x+y->STOP

• Communications d?(x,y)->c!x+y->STOP

The patterns which are handled in these cases are the same, but the behaviour
in the first two cases is different. During comprehensions, replicated operators and
communications we can simply discard values which fail to match the pattern: we
have a number of such values to consider so this is natural. When a function fails
to match its argument (or a definition its value) silently ignoring it is not an option
so an error is raised. On the other hand, functions can have multiple branches (as
in the case of reverse) which are tried in top to bottom order while the other
constructs only allow a single pattern. For example,

f(0,x) = x

f(1,x) = x+1

print f(1,2) -- gives 3

print f(2,1) -- gives an error

print { x+1 | (1,x) <- { (1,2), (2,7) } } -- gives {3}

The space of patterns is defined by

1. Integer literals match only the corresponding numeric value.

2. Underscore (_) always matches.

3. An identifier always matches, binding the identifier to the value.

4. A tuple of patterns is a pattern matching tuples of the same size. Attempting
to match tuples of a different size is an error rather than a match failure.

522 A guide to machine-readable CSP

5. A simple sequence of patterns is a pattern (<x,y,z>) matching sequences of
that length.

6. The catenation of two patterns is a pattern matching a sequence which is
long enough, provided at least one of the sub-patterns has a fixed length.

7. The empty set is a pattern matching only empty sets.

8. A singleton set of a pattern is a pattern matching sets with one element.

9. A data type tag (or channel name) is a pattern matching only that tag.

10. The dot of two patterns is a pattern. (A.x)

11. The combination of two patterns using @@ is a pattern which matches a value
only when both patterns do.

12. A pattern may not contain any identifier more than once.

For example, {}, ({x},{y}) and <x,y>^_^<u,v> are valid patterns. How-
ever, {x,y} and <x>^s^t are not valid patterns since the decomposition of the value
matched is not uniquely defined. Also (x,x) is not a valid pattern by rule 12: the
effect that this achieves in some functional languages requires an explicit equality
check in CSPM .

When a pattern matches a value, all of the (non-tag) identifiers in the pattern
are bound to the corresponding part of the value.

The fact that tags are treated as patterns rather than identifiers can cause
confusion if common identifiers are used as tags. For example, given

channel n : {0..9}

f(n) = n+1

attempting to evaluate the expression f(3) will report that the function \ n @ n+1
does not accept the value 3. (It accepts only the tag n.)

Only names defined as tags are special when used for pattern matching. For
example, given

datatype T = A | B

x = A

f(x) = 0

f(_) = 1

g(A) = 0

g(_) = 1

B.4 Types 523

then f is not the same as g since f(B) is 0 while g(B) is 1.

The singleton-set pattern allows us to define the function which picks the
unique element from a set as

pick({x}) = x

This function is surprisingly powerful. For example, it allows us to define a sort

function from sets to sequences.

sort(f,a) =

let

below(x) = card({ y | y<-a, f(y,x) })

pairs = { (x, below(x)) | x <- a }
select(i) = pick({ x | (x,n)<-pairs, i==n })

within < select(i) | i <-<1..card(a)> >

where the first argument represents a <= relation on the elements of the second.
Because pick works only when presented with the singleton set, the sort function
is defined only when the function f provides a total ordering on the set a.

B.4 Types

Simple types

Types are associated at a fundamental level with the set of elements that the type
contains. Type expressions can occur only as part of the definition of channels or
other types, but the name of a type can be used anywhere that a set is required.

For example, the type of integer values is Int and the type of boolean values
is Bool, so

{0..3} <= Int

{true, false} == Bool

In type expressions the tuple syntax denotes a product type and the dot
operation denotes a composite type so that

({0,1},{2,3}) denotes {(0,2),(0,3),(1,2),(1,3)}

{0,1}.{2,3} denotes {0.2, 0.3, 1.2, 1.3}

The Set and Seq functions which return the powerset and sequence space of
their arguments are also useful in type expressions.

524 A guide to machine-readable CSP

Named types

Nametype definitions associate a name with a type expression, meaning that ‘.’
and ‘(, ,)’ operate on it as type constructors rather than value expressions. For
example,

nametype Values = {0..199}

nametype Ranges = Values . Values

has the same effect as

Values = {0..199}

Ranges = { x.y | x<-Values, y<-Values }

If, on the other hand, we had left Values as an ordinary set, Values . Values

would have had the entirely different meaning of two copies of the set Values

joined by the infix dot. Similarly the expression (Values,Values) means either
the Cartesian product of Values with itself or a pair of two sets depending on the
same distinction.

Data types

Syntax

datatype T = A.{0..3} | B.Set({0,1}) | C definition of type
A.0, B.{0}, B.{0,1}, C four uses of type

Remarks

Data types may not be parameterized (T may not have arguments).

The datatype corresponds to the variant-record construct of languages like
Pascal. At the simplest level it can be used to define a number of atomic constants

datatype SimpleColour = Red | Green | Blue

but values can also be associated with the tags

Gun = {0..15}

datatype ComplexColour = RGB.Gun.Gun.Gun | Grey.Gun | Black | White

Values are combined with ‘.’ and labelled using the appropriate tag, so that
we could write

B.4 Types 525

make_colour((r.g.b)@@x) =

if r!=g or g!=b then RGB.x else

if r==0 then Black else
if r==15 then White else Grey.r

to encode a colour as briefly as possible.

Note that while it is possible to write

datatype SlowComplexCol = RGB.{r.g.b | r<-Gun, g<-Gun, b<-Gun} | ...

this is less efficient and the resulting type must still be rectangular, that is express-
ible as a simple product type. Hence it is not legal to write

datatype BrokenComplexColour = -- NOT RECTANGULAR

RGB.{r.g.b | r<-Gun, g<-Gun, b<-Gun, r+g+b < 128 } | ...

Channels

Syntax

channel flip, flop simple channels
channel c, d : {0..3}.LEVEL channels with more complex protocol
Events the type of all defined events

Remarks

Channels are tags which form the basis for events. A channel becomes an event
when enough values have been supplied to complete it (for example flop above is
an event). In the same way, given

datatype T = A.{0..3} | ...

we know that A.1 is a value of type T, given

channel c : {0..3}

we know that c.1 is a value of type Event. Indeed, the channel definitions in a
script can be regarded as a distributed definition for the built-in Events data type.

Channels must also be rectangular in the same sense as used for data types.
It is common in FDR2 to make channels finite although it is possible to declare
infinite channels and use only a finite proportion of them.

526 A guide to machine-readable CSP

Channels interact naturally with data types to give the functionality pro-
vided by variant channels in occam2 (and channels of variants in occam3.) For
example, given ComplexColour as above, we can write a process which strips out
the redundant colour encodings (undoing the work performed by make_colour)

channel colour : ComplexColour

channel standard : Gun.Gun.Gun

Standardize =
colour.RGB?x -> standard!x -> Standardize

[]

colour.Grey?x -> standard!x.x.x -> Standardize

[]

colour.Black -> standard!0.0.0 -> Standardize

[]

colour.White -> standard!15.15.15 -> Standardize

Closure operations

Syntax

extensions(x) The set of values which will ‘complete’ x
productions(x) The set of values which begin with x
{|x1,x2|} The productions of x1 and x2

Equivalences

productions(x) ≡ { x.z | z<-extensions(x) }

{|x | ...|} ≡ Union({ productions(x) | ...})

Remarks

The main use for the {| |} syntax is in writing communication sets as part of the
various parallel operators. For example, given

channel c : {0..9}

P = c!7->SKIP [| {| c |} |] c?x->Q(x)

we cannot use {c} as the synchronization set; it denotes the singleton set containing
the channel c, not the set of events associated with that channel.

B.5 Processes 527

All of the closure operations can be used on data type values as well as
channels. They are defined even when the supplied values are complete. (In that
case extensions will supply the singleton set consisting of the identity value for
the ‘.’ operation.)

B.5 Processes

Syntax

STOP no actions
SKIP successful termination
c->p simple prefix
c?x?x ′:a!y->p complex prefix
p;q sequential composition
p/\q interrupt
p\a hiding
p[]q external choice
p|~|q internal choice
p[>q untimed time-out
b & p boolean guard
p[[a<- b]] renaming
p|||q interleaving
p[|a|]q sharing
p[a||a′]q alphabetized parallel
p[c<->c′]q linked parallel
;x:s@p replicated sequential composition
[]x:a@p replicated external choice
|~|x:a@p replicated internal choice (a must be non-empty)
|||x:a@p replicated interleave
[|a′|]x:a@p replicated sharing
||x:a@[a′]p replicated alphabetized parallel
[c<->c′]x:s@p replicated linked parallel (s must be non-null)

Equivalences

As a consequence of the laws of CSP,

p|||q ≡ p[| {} |]q

;x:<>@p ≡ SKIP

[]x:{}@p ≡ STOP

528 A guide to machine-readable CSP

|||x:{}@p ≡ SKIP

[|a|]x:{}@p ≡ SKIP

||x:{}[a]p ≡ SKIP

By definition

p[>q ≡ (p[]q)|~|q

Remarks

The general form of the prefix operator is cf ->p where c is a communication chan-
nel, f a number of communication fields and p is the process which is the scope of
the prefix. A communication field can be

!x Output
?x:A Constrained input
?x Unconstrained input

Fields are processed left to right with the binding produced by any input fields
available to any subsequent fields. For example, we can write

channel ints : Int.Int

P = ints?x?y:{x-1..x+1} -> SKIP

Output fields behave as suggested by the equivalence

c !x f -> p ≡ c.x f -> p

The proportion of the channel matched by an input fields is based only on
the input pattern. There is no lookahead, so if

channel c : {0..9}.{0..9}.Bool

P = c?x!true -> SKIP -- this will not work

Q = c?x.y!true -> SKIP -- but this will

then P is not correctly defined. The input pattern x will match the next complete
value from the channel ({0..9}) and true will then fail to match the next copy
of {0..9}. In the case of @@ patterns, the decomposition is based on the left-hand
side of the pattern.

If an input occurs as the final communication field it will match any remaining
values, as in

B.5 Processes 529

channel c : Bool.{0..9}.{0..9}

P = c!true?x -> SKIP -- this will work

Q = c!true?x.y -> SKIP -- this will also work

This special case allows for the construction of generic buffers.

BUFF(in,out) = in?x -> out!x -> BUFF(in, out)

is a one place buffer for any pair of channels.

Dots do not directly form part of a prefix: any which do occur are either
part of the channel c, or the communication fields. (FDR1 took the approach that
dots simply repeated the direction of the preceding communication field. This is a
simplification which holds only in the absence of data type tags.)

The guard construct ‘b & P’ is a convenient shorthand for

if b then P else STOP

and is commonly used with the external choice operator ([]), as

COUNT(lo,n,hi) =

lo < n & down -> COUNT(lo,n-1,hi)

[]

n < hi & up -> COUNT(lo,n+1, hi)

This exploits the CSP law that p[]STOP = p.

The linked parallel and renaming operations both use the comprehension
syntax for expressing complex linkages and renamings. For example,

p [right.i<->left.((i+1)%n), send<->recv | i<-{0..n-1}] q
p [[left.i <- left.((i+1)%n), left.0<-send | i<-{0..n-1}]]

Both the links (c<->c’) and the renaming pairs (c<-c’, read ‘becomes’) take
channels of the same type on each side and extend these pointwise as required. For
example

p [[c <- d]]

is defined when extensions(c) is the same as extensions(d) and is then the same
as

p [[c.x <- d.x | x<-extensions(c)]]

530 A guide to machine-readable CSP

The replicated operators allow multiple generators between the operator and
the @ sign in the same way as comprehensions. The terms are evaluated left to
right, with the rightmost term varying most quickly. So

; x:<1..3>, y:<1..3>, x!=y @ c!x.y->SKIP

is the same as

c.1.2->c.1.3->c.2.1->c.2.3->c.3.1->c.3.2->SKIP

The linked parallel operator generalizes the chaining operator >>. For ex-
ample, if COPY implements a single place buffer,

COPY(in,out) =

in?x -> out!x -> COPY(in,out)

then we can implement an n-place buffer by

BUFF(n,in,out) =

[out<->in] i : <1..n> @ COPY(in, out)

The precedence rules for operators (both process and expression level) are
set out in Table B.1. The replicated versions of the process operators have the
lowest precedence of all. The @@ pattern operator has a precedence just below that
of function application.

B.6 Special definitions

External

External definitions are used to enable additional ‘magic’ functions supported by
a specific tool. Requiring a definition, rather than silently inserting names into
the initial environment, has two advantages: any dependencies on such functions
are made explicit and there is no possibility that users will introduce conflicting
definitions without being aware of it. For example, to make use of an (imaginary)
frobnicate external function, we might say

external frobnicate

P(s) = c!frobnicate(s^<0>, 7) -> STOP

Without the external definition, frobnicate would be reported as an unde-
clared identifier. Tools should report as an error any attempt to define an external
name which they do not recognize.

B.6 Special definitions 531

Class Operators Description Associativity
Application f(0) function application

[[<-]] renaming
Arithmetic - unary minus

*, /, % multiplication left
+, - addition left

Sequence ^ catenation
length

Comparison <, >, <=, >= ordering none
==, != equality none

Boolean not negation
and conjunction
or disjunction

Sequential -> prefix
& guard
; sequence

Choice [> untimed time-out
/\ interrupt
[] external choice
|~| internal choice

Parallel [| |], [||], [<->], parallel none
||| interleave

Other if then else conditional
let within local definitions
\ @ lambda term

Table B.1: Operator precedence.: the operators at the top of the
table bind more tightly than those lower down.

532 A guide to machine-readable CSP

Transparent

As described in Section C.2, FDR uses a number of operators that are used to
reduce the state space or otherwise optimize the underlying representation of a
process within the tool. While these could be defined using external definitions,
they are required to be semantically neutral. It is thus safe for tools which do
not understand the compression operations to ignore them. By defining them as
transparent, tools are able to do so; unrecognized external operations would be
treated as errors. As an example,

transparent diamond, normal

squidge(P) = normal(diamond(P))

enables the diamond and normal compression operators in FDR2, while other tools
see definitions of the identity functions, as if we had written

diamond(P) = P

normal(P) = P

squidge(P) = normal(diamond(P))

Assert

Assertions are used to state properties which are believed to hold of the other
definitions in a script. (FDR1 scripts adopted a convention of defining two processes
SPEC and SYSTEM, with the understanding that the check SPEC[=SYSTEM should be
performed. This has weaknesses: the correct model for the check is not always
apparent, and some scripts require multiple checks.) The most basic form of the
definition is

assert b

where b is a boolean expression. For example,

primes = ...

take(0,_) = <>

take(n,<x>^s) = <x> ^ take(n-1,s)

assert <2,3,5,7,11> == take(5, primes)

It is also possible to express refinement checks (typically for use by FDR)

assert p [m= q

B.7 Mechanics 533

where p and q are processes and m denotes the model (T, F or FD for trace, failures
and failures/divergences respectively.) Note that refinement checks cannot be used
in any other context. The (refinement) assertions in a script are used to initialize
the list of checks in FDR2.

Similarly, we have

assert p :[deterministic [FD]]

assert p :[deadlock free [F]]

assert p :[divergence free]

for the other supported checks within FDR. Only the models F and FD may be used
with the first two, with FD assumed if the model is omitted.

Note that process tests cannot be used in any other context. The process
assertions in a script are used to initialize the list of checks in FDR2.

Print

Print definitions indicate expressions to be evaluated. The standard tools in the
CSPM distribution include ‘check’ which evaluates all (non-refinement) assertions
and print definitions in a script. This can be useful when debugging problems with
scripts. FDR2 uses any print definitions to initialize the list of expressions for the
evaluator panel.

B.7 Mechanics

CSPM scripts are expressible using the 7-bit ASCII character set (which forms part
of all the ISO 8859-x character sets.) While this can make the representation of
some operators ugly, it makes it possible to handle the scripts using many existing
tools including editors, email systems and web-browsers.

Comments can be embedded within the script using either end-of-line com-
ments preceded by ‘--’ or by block comments enclosed inside ‘{-’ and ‘-}’. The
latter nest, so they can be safely used to comment out sections of a script.

If it is necessary to exploit an existing library of definitions, the ‘include’
directive performs a simple textual inclusion of another script file. The directive
must start at the beginning of a line and takes a filename enclosed in double quotes.
Block comments may not straddle file boundaries (comments cannot be opened in
one file and closed in another.)

Definitions within in a script are separated by newlines. Lines may be split
before or after any binary token and before any unary token. (There are exceptions
to this rule, but they do not occur in practice.)

534 A guide to machine-readable CSP

The attribute, embed, module and subtype keywords are currently reserved
for experimental language features.

B.8 Missing features

Those familiar with functional languages such as Haskell will notice several omis-
sions in CSPM .

Floating point

Floating point numbers are a natural part of the timed and probabilistic variants
of CSP, and the machine-readable dialect has a syntax to support them. However,
as the current generation of tools have concentrated on the simpler variants of the
notation, the underlying semantics have not been implemented.

Strings

Real programming languages have string and character types, along with an in-
put/output system. CSPM is not a programming language: input and output
introduce unnecessary complications when performing analysis of scripts.

Characters and strings could be useful for modelling some problem domains,
but no compelling example has yet to be demonstrated. Integers and sequences
provide workable alternatives.

Sections and composition

Operator sections and functional composition are a convenient shorthand allowing
the terse expression of some powerful constructs. This terseness conflicts with the
need for CSP process descriptions to be readable, often by new users of the language.
For now, it is felt that their utility is outweighed by their unreadability.

B.9 Availability

The research into tools for CSP has been sponsored by the US Office of Naval Re-
search under N00014-87-J1242 and as such the basic results from that research are
freely available on request. It is hoped that this will help encourage a common input
syntax between CSP-based tools. The results include the machine-readable form
of CSP complete with both denotational and operational semantics, a congruence
proof between the two semantic models using a bridging semantics, an implemen-
tation of a parser for the language using flex and bison to produce a syntax-tree

B.9 Availability 535

in C++ and methods defined over that tree which are sufficient to implement the
operational semantics.

536 A guide to machine-readable CSP

Appendix C

The operation of FDR

Though the basic concept of what FDR does, namely refinement checking, is simple,
the mechanisms it uses to make this efficient are much more complex. Understand-
ing them undoubtedly helps one to use the tool effectively. This appendix, therefore,
seeks to give the interested user some insight, frequently guided by the theory devel-
oped in Part II, about how it works. It is in no sense, however, a manual. The first
part looks at the basic principles; the second deals with the compression functions
FDR provides to enable the user to check larger networks of processes than would
otherwise be in range.

C.1 Basic operation

C.1.1 Running the operational semantics efficiently

With the exception of its potential support for the prioritized view of time (as dis-
cussed in Sections 14.6 and 14.7) everything FDR does is rooted in the denotational
models of CSP described in Chapter 8. These are refinement checking, determinism
checking and looking for deadlocks and divergences. There is, however, no direct
sense in which the tool calculates sets of traces, failures etc.; it manipulates processes
at the level of operational semantics and labelled transition systems, borrowing one
important idea (normalization) from the algebraic semantics. Thus all three of the
semantic methods described in Part II of this book are involved in its design.

While the operational semantics presented in Chapter 7 allow one to calculate
the transitions of any process at all, any implementation which treats all processes
the same is likely to be more inefficient than one would like in both space and
time when running checks involving millions of states. The problem is, that in
order to treat such features as unfolding recursions properly, it is necessary to use

538 The operation of FDR

a symbolic representation of each state (probably as a syntax tree) and to use a
method probably not unlike the basic inference system over syntax seen in Chapter
7 in order to calculate transitions.

FDR therefore uses a two-level approach to calculating operational semantics;
it is important to appreciate the differences between these levels if you want to use
it effectively. The low level is fully general but relatively inefficient, whereas the
high level is restricted (specifically, it cannot handle recursion) but much more
efficient in space and time. When you ask FDR to perform a check it analyzes
the structure of the process or processes it is given and decides on an appropriate
cut-off point between the low and high levels. Everything below this level is fully
evaluated using the low-level compiler (i.e., each individual low-level component
has its full operational semantics evaluated). What the compiler outputs for the
high-level structure is a series of recipes for combining together the transitions of
these low-level components into transitions of the whole.

At the time of writing the division between low and high levels is decided by
a complex algorithm which is closely approximated by the following.

• All true recursions are low level. A true recursion is a process name (pos-
sibly parameterized) whose value depends (possibly through other recursive
expansions) on itself (where parameterized, with the same arguments). Thus
the recursion

P(n) = a -> P(if n==0 then N else n-1)

is low level (for 0 ≤ n ≤ N) but

Q(n) = a -> if n==0 then STOP else Q(n-1)

is not.

• Subject to the above over-riding principle, as many ‘high-level’ operators (all
parallel operators, renaming and hiding) as possible are high level, but any
other operators are treated at low level unless they are forced to high level1

by being outside one of these. Thus, in the unlikely combination

LevelExample = a -> ((b -> STOP)

|~|

((c -> STOP) ||| Q))

(where the identifier LevelExample does not appear in Q), the processes
b -> STOP and c -> STOP are both compiled at low level, while the internal

1At the time of writing there is no high-level implementation of �, so this forces a process to

low level irrespective.

C.1 Basic operation 539

choice |~| and the a -> construct are both high level because they are
outside the |||.

The first principle arises from necessity: the high-level approach only works where
the set of basic structures a process might have is predictable and finite. The second
is pragmatic and designed to keep the number of these structures generated as small
as possible for typical examples.

Indeed, for a majority of practical examples this approach will produce just
one structure. These well-behaved examples fall into two categories: processes
(often designed as specifications) with no high-level operators which are entirely
compiled at low level, and combinations of low-level processes using parallel, hiding
and renaming operations. The crucial point about a combination using only these
operators is that the overall process structure is unaffected by any action it performs.
Consider, for example, the solitaire board described in Section 15.1: for the standard
board, the process Puzzle on page 433 is a parallel composition of 34 processes at
the outset, and keeps the same basic structure throughout. It is only the states
of the individual components that change: every single state it goes through is
equivalent to

(|| (i,j):BoardCoords @ [Alpha(i,j)] Slot’(i,j))

[|OffBoardMoves|] STOP

where Slot’(i,j) is one of the states of the original process Slot(i,j). In this
case, of course, most of the processes have just two states2 and the other one, STOP,
has only one.

For this example, and any other with a single structure, the compiler in
FDR works out the complete state spaces of the component processes and the rules
under which actions of the components combine to give actions of the whole. In
this case you would get a rule that allowed a τ action of any individual process
to be promoted to a τ action of the whole, and rules for each visible action. For
each move in RealMoves the rule would simply say that it can happen just when
the three processes whose alphabet it is in can. (The introduction of hiding and
renaming operators can make these relationships more complex.) Except in rare
pathological cases the number of rules has the same order of magnitude3 as the
alphabet of actions being used (including any hidden actions).

2The operational semantics in Chapter 7 would give them four, the extra ones being created

by τ actions introduced on unfolding recursions. By default these are omitted by FDR since they

serve no purpose except in making sense of very badly defined recursions as described on page 168.
3In particular, this approach, based on combinations of events as opposed to states of the com-

ponent processes, works well for many-way synchronization. The earlier version, FDR1, used the

latter approach which frequently caused a combinatorial explosion on timed systems (as described

in Chapter 14) where many processes have to synchronize on tock.

540 The operation of FDR

If there is more than one structure the system could go through as it evolved,
the rules have to encompass the transitions from one to another. For example, on
the assumption that Q is a process compiled at low level, the process LevelExample
defined above would give four structures: the initial one (prefix), one in which the
choice is unresolved, and one each for after it has been resolved each way. Then,
for example, the second of these would have two available τ actions, which resolve
it into the third or fourth.

Within the terminology of FDR, the individual structures the system can go
through are termed configurations, or formats and the rules which allow it to infer
the actions of one of these from those of its components are called supercombinators.
In the version of the tool current at the time of writing it is possible to switch off
the use of supercombinators, whereupon a mechanism rather closer to the basic
operational semantics is used to derive transitions. The slow-down this creates is
generally spectacular.

Because all the low-level processes have been fully evaluated at compile time,
as have all the potential structures, a single state of the complete system can be
represented by an indication of which structure this is and the indexes of the states
the components are in. Since in a typical run you may encounter a huge number
of states, it is desirable to store them as compactly as possible. Therefore FDR
packs this information so that each component process Pi with Si states only oc-
cupies k bits, where k is minimal such that 2k ≥ Si . Thus each of the two state
Slot processes in Puzzle occupies one bit. Some versions of the tool offer further
compressions which exploit similarities between collections of states.

Once a process has been compiled the recipe for running it (i.e., the state
spaces of its components, its configurations and supercombinators, and of course
its initial state) are passed to another program which runs it. This might be to
evaluate it for normalization, to check it against a specification, or for compression.
The later sections of this appendix describe all of these possibilities.

A recipe like this is an implicit representation of an LTS, since it gives the
initial state and sufficient information to calculate all the transitions and all the
other states. This is in contrast to the compiled low-level components, which are
included as explicit LTSs (i.e., a list of states and transitions). It does not, of
course, matter to such a recipe how its components were generated, only that they
are explicit LTSs. You can think of such a recipe as some CSP context applied to
some processes represented as explicit LTSs.

In deciding how to structure a process for input into FDR, you should bear in
mind the distinction between how it deals with high- and low-level state evaluation.
High level is many times more efficient. At the time of writing a reasonable limit
on the size of a low-level component to compile is in the range 1,000–5,000 states
depending on example.

C.1 Basic operation 541

The most likely source of problems in compiling (as opposed to any of the
post-compilation functions) a process on FDR is an over-large (perhaps infinite)
low-level component. Bear in mind that since these components are evaluated in
full, the fact that the context they are put in means they never reach most states
would not help in this (the archetypal example of this is the sequential coding of
the Spy1 process on page 472). It is also possible, but much rarer, for combinatorial
problems to arise in the enumeration of configurations or supercombinator rules.

C.1.2 Normalization

Suppose we have asked FDR to check the refinement P
 Q (the precise model is
more or less irrelevant). The first thing it does is to compile P and Q , as described
in the previous section. It cannot do the refinement check directly on the raw state
machines these would give when run: it has to transform P (only) into a normal
form. The normal form it aims at is essentially of the type described on page 291,
i.e., a state machine in which all states are semantically distinct (thanks to the
factorization by bisimulation) and which follows normal form structure rules. The
exact shape of the nodes varies depending on which model is being used, but they
always satisfy the basic principles that (i) there are no τ actions and (ii) each node
has a unique successor on each visible initial action it can perform.

The crucial point about normal form state machines is that they have a
unique state for each trace: once we are told the present trace, there is only one
state it can be in.

There are two main differences with the normal forms seen in Chapter 11.
Firstly, they are now stored as state machines, with a node represented solely by
its index, its transitions, and perhaps refusal/divergence information, rather than
as highly stylized pieces of syntax. Secondly, rather than normalizing a process
by algebraic transformation using laws, FDR performs this function (rather more
efficiently) by directly manipulating the transition diagram of the process.

If you carry out a normalization as described in Chapter 11 you will find that
the process you are left with to normalize after a trace s , namely P/s , ends up being
the nondeterministic choice of a number of states P can get into – namely, all those
states it can be in after s . When we directly normalize an LTS, this corresponds to
the decision below to form a graph whose nodes are sets of nodes of the original.
Each set node of the normal form behaves like the nondeterministic choice of the
original nodes it contains. The normalization algorithm that FDR uses comes in
two stages.

Stage 1 Given a finite labelled transition system L = (V ,E , v0), we form a graph
PL whose nodes are members of P(V) as follows

542 The operation of FDR

• The initial node is τ∗(v0), where τ∗(v) is defined to be {w | v 〈〉
=⇒ w}, the

nodes reachable under some sequence of τ ’s from v0.

• For each node generated we have (if using the failures/divergences model
N) to decide whether it is divergent: this is true if and only if it contains a
divergent node of L. Techniques for deciding this are discussed in the next
section. A divergent normal form node over N has no successors. (Over
other models divergence is ignored.)

• If a node N is not divergent, we determine the set of non-τ actions possible
for v ∈ N . For each such action a we form a new node, the set

⋃
{τ∗(w) |

∃ v ∈ N .v a−→ w}, the set of all nodes reachable after action a and any
number of τ ’s from members of N .

• The search is completed when all ‘new’ nodes generated are ones that have
been previously expanded.

The resulting graph will be termed the pre-normal form of L. It coincides with the
output of the procedure for looking for a finite algebraic normal form described on
page 291, but it suffers from the same drawback, namely (as was the case with the
normal form N ′ derived for P1 there) that it may have equivalent nodes. FDR uses
the same solution as adopted there, namely to factor the pre-normal form by a strong
bisimulation calculated taking account of divergence and refusal information (where
relevant to the model). This strong bisimulation calculation comprises Stage 2.

The possible refusals of a pre-normal form node v are just the sets refused
by the stable v ∈ N . (Refusals are represented by the set of minimal acceptances,
the complements of maximal refusals.)

The normalization process of an LTS corresponding to a data-free version of
COPY >>COPY >>COPY is shown in in Figure C.1. The left-hand graph shows
the states and transitions of the basic process, and the sets of nodes identified by
pre-normalization. These are mapped to the normal form transition diagram on
the right. Each node on the right is marked with its set of minimal acceptances (in
this case, as this is a deterministic process, there is just one of these for each node,
namely its set of initials).

In this case the pre-normal form nodes are all semantically distinct, and so
the final bisimulation makes no further identification.

The complexity of normalization

Given that the pre-normalization process builds a transition system over the power-
space of the original one, there is the possibility that the normal form will be
exponential in the size of the original system. This can indeed occur, as is shown

C.1 Basic operation 543

left

right

τ left

left τ

left

right

right
rightτ

left

left

left
right

right

right

τ

{{left}}

{{left,right}}

{{left,right}}

{{right}}

Figure C.1: Normalizing a transition system.

544 The operation of FDR

by the example below. This possibility is to be expected given the result [63] that
checking failures/divergences refinement of transition systems is PSPACE-hard (a
complexity class at least as hard as NP).

Fortunately there are two mitigating factors that work in our favour, making
this particular obstacle more or less disappear.

1. ‘Real’ process definitions simply do not behave as badly as the pathological
example below. In practice it is rare for the normal form of a naturally
occurring process to have more states than the original transition system.
Indeed, the normal form is frequently significantly smaller, offering scope for
intermediate compression. It seems that deciding refinement is one of that
large class of NP-complete and similar problems where the hard cases are
rare.

2. It is only the specification end of the refinement that we have to normalize.
In practice the simpler process is usually that one rather than the imple-
mentation. Frequently, indeed, the specification is a representation of an
abstract property such as two events alternating or deadlock freedom, and
has a trivial number of states.

One would usually expect that a process playing the role of a ‘speci-
fication’ is reasonably clearly and cleanly constructed, with understandable
behaviour. These aims are more-or-less inconsistent with the sort of nonde-
terminism that leads to an explosion in the normal form.

Example C.1.1 The potential for state explosion on normalization is shown in

extreme form by the following pathological system, defined for any n > 0. We

construct a transition system with n + 1 states and n events {1, . . . ,n} = B . If the

kth state is Pk we define

P0 = STOP
Pk = ?r : B → Pk+1 k ∈ {1, . . . ,n − 1}
Pn = ?r : B → P0

�?r : B → P1

�?r : B → Pr

This system is illustrated in Figure C.2. The pre-normal and normal forms

of this system (with initial state P1) both have precisely 2n − 1 states (one for each

non-empty subset A of the states P1, . . . ,Pn since, as can be proved by induction on

the size of A, there is for each such subset a trace sA such that the states reachable

on sA are A and perhaps P0). The role of the state P0 is to allow us to distinguish

between these sets: if it is in the set reachable after a given trace, then P1 can

deadlock after that trace, otherwise not. If the state P0 is removed we get a system

C.1 Basic operation 545

= all events

P

P

P

P

P

P

1

2

3

n-1

n

0

2

3

n-1

Figure C.2: Transition system with pathological normalization.

546 The operation of FDR

with the same number of pre-normal form states but only one normal form state,

since every one is then semantically equal to RUNB . (End of example)

The pragmatics of normalization

While you are never likely to happen upon a system which behaves as badly as the
one above by accident, you are likely to come across some where normalization is
slow and expands rather than contracts the process it is applied to. Fortunately
this happens much more often when normalization is being used as a compression
function (as described in the Section C.2) where it is optional, rather than when it
is being used on a specification, where it is compulsory and automatic.

The size of system it is possible to normalize depends on the size of the
underlying system, the size of the sets comprising the pre-normal form nodes, and
the number of transitions and minimal acceptance sets, amongst other things. Thus
while you may have no problem normalizing a 50,000-state process, another one
of 5,000 can turn out to be too slow or demanding of memory. In any case the
substantial transformation performed by normalization means that it can only be
applied to systems which are, at best, one or two orders of magnitude smaller than
those which can be used on the right-hand sides of refinement checks.

Bear in mind that hierarchical compression, as described in the next section,
is at least as useful in helping the normalization of complex specifications as it is
on the implementation side.

C.1.3 Checking refinement

Given that determinism checking is reduced by the algorithm given on page 229
to refinement checking, and both divergence freedom and deadlock freedom are
naturally expressed as refinement checks, the only basic function of FDR we have
to detail further is refinement checking.

Once the specification end of a refinement check has been normalized, the
following two phases are necessary to establish failures/divergence refinement.

• Establish which states of the implementation transition system are divergent,
marking them as such.

• Model-check the implementation, thus marked, against the normal form.

Only the latter is necessary for refinement checks over F and T . For N these two
phases can (as was the case in early versions of FDR) be done one after the other,
or interleaved.

C.1 Basic operation 547

A state P of a finite LTS is divergent if, and only if, the directed graph
formed by considering only τ actions has a cycle reachable from P . There are two
standard algorithmic approaches to this problem: computing the transitive closure
of the graph or taking advantage of the properties of depth-first search (DFS).
A DFS algorithm can be used to find the strongly connected components of the
directed graph formed by an LTS under τ actions: the maximal collections of nodes
which are mutually reachable. Subject to various assumptions about speed of array
access, etc., there are algorithms to do this, such as Tarjan’s algorithm, which
are essentially linear. Since any cycle is necessarily contained in a single strongly
connected component, this easily yields a method for identifying divergent nodes.

In the main, model-checking phase we have to discover whether all the be-
haviours of each implementation state are allowable in all the normal form states
such that they have a trace in common. This is done by exploring the Cartesian
product4 of the normal form and implementation state machines as follows. (Here
we describe what is done for the failures/divergences model N ; the other models do
essentially the same on the behaviours relevant to them. For simplicity we do not
cover here the special cases required to deal with � actions.)

We maintain a set of checked pairs and a set of pending pairs; initially the
former is empty and the latter is the singleton set of the pair of initial states of the
two systems. Until it is empty, we repeatedly inspect pairs from pending. The pair
〈ν,w〉 checks if (i) the normal-form state ν is divergent or (ii) the implementation
state w is non-divergent and

• the set of initial actions of w is a subset of those of ν and

• either w is unstable (has a τ -action) or the set of actions it refuses (the
complement of its initials) is a subset of one of the maximal refusals of ν.

The set of all pairs reachable from 〈ν,w〉 and not in checked is added to pending. A
pair 〈ν′,w ′〉 is reachable from 〈ν,w〉 if either

(a) w τ−→ w ′ and ν = ν′, or

(b) w a−→ w ′ and ν
a−→ ν′ for a = τ ; noting that whenever w a−→ w ′, then this

ν′ must exist and be unique.

If a pair is found which fails to check, then the proposed refinement does not
hold. If the above process completes without finding such a pair, then refinement
does hold.

4The fact that you are exploring the Cartesian product means that occasionally the model-

checking phase visits more ‘states’ than there are states in the implementation. This happens when

proving refinement demands that a single implementation state refines more than one specification

state. This is relatively rare in practice.

548 The operation of FDR

The first case (failure of refinement) is easy to see: the implementation has
a trace (the sequence of visible actions used to bring the Cartesian product to the
failing state-pair), which can bring it into a state with behaviours not possible for
the normal form. This means there is a divergence, a trace or a refusal of the
implementation that is not allowed in the specification. Provided we have a way
of finding the trace that led to a specific pair 〈ν,w〉 being considered, it is thus
possible to report not only the failure of refinement but also a reason.

Conciseness being a virtue, it is as well to report the shortest possible se-
quence of actions that can lead to an error. This is achieved if we perform a
breadth-first search (BFS) during the model-checking phase. We will see later that
this brings other advantages.

The case of successful proof is a little more subtle. One can justify the
claim that refinement always holds in these circumstances either operationally or
abstractly. If refinement fails then, from an operational perspective, this is because
the implementation has some behaviour that is banned by the normal form. There
is therefore some sequence of actions which exhibit this, potentially bringing the
implementation into some state w where it can (a) diverge illegally, (b) perform
an event that takes the traces outside the set permitted by the normal form or (c)
refuse a set not refused by the normal form. It is clear that the unique normal form
state ν corresponding to this trace is such that 〈ν,w〉 will be found in the search
above, leading to a failure to check.

Abstractly, one can show that the refinement-checking process is simultane-
ously formulating and proving a sort of mutual recursion induction over the state
space of the implementation akin to those analyzed in Section 9.2.

Breadth-first searching

In a large refinement check you may have to search through state spaces with many
millions of states, with similar numbers of transitions being found for the states at
each level. It is of vital importance to manage these efficiently.

The algorithms FDR uses show an interesting difference between the DFS
used for divergence checking and the BFS used for model checking. Both of these
algorithms rely on the maintenance of sets of which states have been visited before.
In a DFS we need a constantly updated representation of this set so that we can
discover whether the state we are looking at has been visited before. Since we
immediately look at the children of the most recently visited node, there is no
potential for grouping these tests. In order to perform this you either need a much
larger and more complex representation of the LTS (such as that generated by the
explicate function described in the next section) or a hash table.

In performing a BFS there is a high latency between generating a pending

C.1 Basic operation 549

state and actually visiting it, if it is new. The test of whether it is new can be
performed at any time during this interval. A natural way of doing this is to look
at all successor states generated during a particular ‘layer’ of the search. If the
current list of visited states is stored as a sorted structure (a list or a B-tree5), then
we can find out which of the successors are new by sorting the successors (naturally,
removing duplicates) and then merging them into the established structure. Obvi-
ously the successors of each genuinely new state can be generated as it is merged
in.

This latter method has been found to be faster and more memory-efficient
than the former. The greatest benefit appears when the set of states becomes too
large to fit within the physical memory of the computer. Hash table representations
of sets map so badly onto virtual memory that they are effectively unusable at this
level. The sorted representation maps onto virtual memory extremely well: access
into the lists or B-trees is sequential. Especially with the B-tree version, we have
found very little degradation in performance in checks when they are forced to use
virtual memory.

This fact has meant that it is often significantly quicker to perform the model-
checking phase than the divergence-checking, and indeed the former can frequently
be performed on systems when the latter is not within reach. This is why it is fre-
quently better to factor a
FD check in FDR into a proof (perhaps not automated)
of divergence freedom and a failures-only refinement check.

One of the primary reasons for the introduction of the B-tree method of
storing states in recent versions of FDR was the fact that the speed and memory
capacity of modern machines was making it all to easy to exceed the maximum
process size that operating systems permit (typcially 1 or 2 Gb) when all states
were contained within a single process. The B-trees make it easier to spread the
accumulated state space across a number of temporary files on disc, and indeed that
is what the latest versions of FDR do. The application of data-compression methods
on these files overcomes the inefficiency that B-trees are, by their nature, typically
only part-full. The space per state used by checks varies substantially depending
on the complexity of the processes being stored, but with this data compression
on reasonably simple process structures you might typically use 11 or 12 bytes per
state-pair, on a large check.

C.1.4 Parallel FDR

FDR has been modified to run on a cluster of PC’s. State-pairs are distributed
across a number of PC’s by using a hash function, and each processor is responsible

5Versions of FDR2 before 2.60 used lists, and versions after have used B-trees, which has been

found to carry significant advantages in terms of efficiency.

550 The operation of FDR

for looking after and working out the successors of the ones it is allocated. Peri-
odically it sends those successors which do not belong to it over to the appropriate
processor in blocks. At the time of writing it is only the traces and failures re-
finement checks that are parallelised, but more aspects such as divergence checking
may follow.

Experience has shown that the speed-up obtained is usually close to linear.
Readers wanting to know more about this development are advised to contact For-
mal Systems.

C.2 Hierarchical compression

The state spaces of systems described in CSP or any similar notation can grow very
quickly as the number of parallel components increases. In the worst case – one
that is unfortunately often experienced – this growth is exponential. Anyone who
experiments with many variable-sized systems on FDR will quickly encounter it and
discover that it is all too easy to build networks which exceed the order 106–107

states that can conveniently be handled on a typical workstation or PC.

If one wants to deal with larger state spaces then it is necessary to find
some way of avoiding visiting each state explicitly. Several clever approaches have
been taken to this in the model-checking community as a whole; the ones that have
been successfully used for refinement checking CSP are Binary Decision Diagrams
(BDDs), and hierarchical compression. BDDs provide a radically different method
of refinement checking to the one outlined in the previous section: in it, the state
machines and refinement relations are encoded as logical formulae and checked in
that form. BDDs have proved very successful in many hardware design applications,
see [23], for example. Several people have developed BDD-based tools for CSP, for
example [139]: it is hoped to include an up-to-date list of these in the web site site
referenced in the Preface.

At the time of writing, FDR does not include BDD capability, though this
may change in the long term. It does, however, support hierarchical compression,
which is a technique directly rooted in the semantic theory of CSP6. The basic idea
is to take the description of a complex CSP process, say P ‖

X
Q , and instead of

calculating the state space given it by the operational semantics, finding smaller
LTSs representing P and Q and combining these. This is done by calculating the
complete state spaces of P and Q and applying a compression function. If, for
example, P and Q are both 1,000 state processes but can be compressed to 100

6It is possible to base similar compression methods on congruences for other languages than

CSP, as shown, for exmaple, in [43], and we were by no means the first people to point out the

advantages of CSP equivalences for this purpose [133].

C.2 Hierarchical compression 551

each, this may have reduced the states of the complete system from 106 to 104.
The crucial results which support this technique are the congruences between the
operational and denotational semantics (see Section 9.4), since that means that the
overall denotational semantics of any context C [P1,P2, . . . ,Pk] depends only on the
denotational semantics of P1, . . . ,Pk , not on the precise LTSs chosen to represent
them. Thus, if you have evaluated the operational semantics of the Pi , in building a
recipe for an implicit machine to represent the complete context you can replace the
resulting component LTSs with any smaller ones which happen to have equivalent
semantics.

C.2.1 Methods of compression

At the time of writing, FDR2 uses five different methods of taking one LTS and
attempting to compress it into a smaller one. Each of these is called by simply
applying a function to the process you want to compress. Since these do not change
the semantic value of the process they are applied to, FDR terms them transparent
functions. Each one you want to use has to be declared as such.

1. Normalization (normal(P)) is as discussed in Section C.1.2. It can give
significant gains, but it suffers from the disadvantage that by going through
powerspace nodes it can be expensive and lead to expansion.

2. Strong bisimulation (sbisim(P)): the standard notion defined in Section 7.2
enriched (as necessary) by any labellings of minimal acceptances and/or di-
vergences found on the nodes. FDR computes this relation by using explicit
iteration based on the proof of Tarski’s theorem for continuous functions (see
page 496) to find the maximal bisimulation on the input LTS, which is then
factored by this relation. Ordinarily, bisimulation is faster than normaliza-
tion and can be applied to larger systems. The size of system it can be
applied to still depends somewhat an the application, though less so than
with normalization.

Applied to the process shown in Figure C.1, strong bisimulation would
give no compression at all: it would not identify any nodes. The sort of
behaviour it can compress is shown in Figure 7.4 on page 162.

3. τ -loop elimination (tau loop factor(P)): since a process may choose auto-
matically to follow a τ action, it follows that all the processes on a τ -loop
(or, more properly, a strongly connected component under τ -reachability) are
equivalent. Therefore all the nodes on such a component can be identified.
As discussed in the previous section, this calculation is done via depth-first
search algorithms.

552 The operation of FDR

Since this can only compress divergent processes, its stand-alone uses
are necessarily rather specialized. It exists mainly as a precursor to diamond,
described below.

4. Diamond elimination (diamond(P)): this carries out a transformation which
cuts out all τ actions from an LTS. Like normalization, it produces an LTS
with explicitly marked minimal acceptance and divergence information, but
unlike normalization it never increases the number of nodes. (It can, on
occasion, have the drawback of creating large numbers of transitions between
states.)

It applies τ -loop elimination as its first step. A detailed description of
the diamond transformation can be found in [119].

Applied to the system of Figure C.1, diamond compression will pro-
duce identical results to normal, i.e., the four-state process.

It is often a good idea to apply strong bisimulation to the result of a
diamond compression.

5. Factoring by semantic equivalence (model compress): the compositional
models of CSP we are using all represent much weaker congruences than
bisimulation. Therefore if we can afford to compute the semantic equivalence
relation over states it will be at least as good a compression as bisimulation to
factor by this equivalence relation. A formal justification of this method can
be found in [119]. As with normal, the degree of compression this function
gives depends on which model is being used.

The algorithm used to compute these equivalences is based on an ex-
tension to normalization. On the basis of our experience so far the cost of
this function (it is the slowest of all the compressions to compute) is not
usually worth the usually small extra benefits. Therefore we will not discuss
it further here.

Some of these functions, if given an ordinary LTS, will return a Generalized LTS,
an LTS where nodes may be marked with divergence or minimal acceptance infor-
mation. In fact, therefore, the whole of FDR is programmed to operate with these
GLTSs rather than the basic sort.

The range of options is supplied because the one that is most effective varies
with example. In the author’s experience, the most effective is usually either
normal(P) or sbisim(diamond(P)). Normalization tends to work well where the
internal choices present in P do not result in a lot of externally visible nondeter-
minism arising for subtle reasons. Diamond elimination, and to a lesser extent
normalization, work best on processes with many τ actions.

None of the compression techniques will affect a normalized process: not only
the semantic value but also the transition system will be identical.

C.2 Hierarchical compression 553

There is another transparent function supported by FDR that should be
mentioned, though not a compression function in the sense described above:

• explicate(P) takes any description FDR can understand of a (G)LTS and
turns it into an explicit list of states, transitions and minimal acceptance/
divergence markings. This is usually applied to any machine implemented
as an implicit supercombinator machine as described on page 540 before
carrying out other transformations. All of the compressions above explicate
their arguments before doing anything else.

It is typically benificial to explicate a transition system when, like
the compressions, you need to perform a reasonably complex calculation or
transformation of it.

Though chase, described on page 479, is used as a compression function, it
does not (as discussed there) preserve the semantics of nondeterministic processes.
It is therefore declared as external rather than transparent. The same is true of
the prioritize function discussed on page 426, where implemented.

C.2.2 Using compression

The purpose of using these compression functions is to reduce the number of states
explored when checking or normalizing a complete system. Since the cause of state
explosion is almost invariably the multiplication that arises from parallel compo-
sition, the right place to apply compression is to a process that is to be put in
parallel with another. These might either be individual sequential components or
subnetworks consisting of a number of these in parallel. You can of course compress
subnetworks built up of smaller ones that have themselves been compressed, and so
on.

It is difficult to give any hard and fast rules about when compression tech-
niques will work effectively. The author has frequently been surprised both at how
well they work on some examples and at how badly they work on others. Some
examples are given below and the reader will find many more in the files to be
found on the web site, but there is no real substitute for personal experience.

Broadly speaking, you have a reasonable chance of success when the following
are all true:

(a) Part of the alphabet of the process you are compressing has been hidden,
either because the hidden events are true internal actions or because they
have been abstracted as irrelevant to the specification (following the princi-
ples set out in Section 12.2).

554 The operation of FDR

(b) It sometimes helps if these hidden actions represent progress within the pro-
cess, as opposed to the resolution of nondeterminism.

(c) It is not the case that a large part of the state space of the process you are
compressing is never visited when it is put into the complete system. (The
danger here is that you will expend too much effort compressing irrelevant
states, or that the irrelevant states will make the subsystems too large to
compress. Some tricks for getting round this type of problem are illustrated
in example files.)

The following principles7 should generally be followed when you are struc-
turing a network for compression:

1. Put together processes which communicate with each other together early.
For example, in the dining philosophers, you should build up the system out
of consecutive fork/philosopher pairs rather than putting the philosophers all
together, the forks all together and then putting these two processes together
at the highest level.

2. Hide all events at as low a level as is possible. The laws of CSP allow the
movement of hiding inside and outside a parallel operator as long as its
synchronizations are not interfered with. In general, therefore, any event
that is to be hidden should be hidden the first time that (in building up the
process) it no longer has to be synchronized at a higher level. The reason for
this is that the compression techniques all tend to work much more effectively
on systems with many τ actions.

We give three examples here, each of which indicates a different class of
network where compression can be used with considerable success.

Example C.2.1 Compression is likely to work well if some subcomponent of a

network is relatively self-contained. It may have complex internal behaviour, while

its external functionality is comparatively simple.

Imagine, for example, a communication service which uses a number of copies

of the alternating bit protocol to overcome an error-prone medium. We might have

a ring of nodes Ni (i ∈ {0, . . . ,K − 1}) with a channel between Ni and Ni⊕1 being

implemented by an ABP. There would thus be K copies of this process.

7The second of these principles is easy to automate if the description of a network is input

into FDR in a format that allows it to apply the necessary laws. The best choices to follow in

automating the first are rather more subjective, and the success in getting a program to make

what turn out to be the ‘right’ decisions consequently more variable.

C.2 Hierarchical compression 555

Figure C.3: Modular compression strategy.

Each copy of the alternating bit protocol would have many fewer states once

compressed: if the type it operates over has size 2 (as is frequently justifiable

by data-independence as discussed in Section 15.2.2) the reduction (on applying

normal) will typically be from some 100’s or 1000’s of states to just 3 states. Thus

the overall reduction in state-space size is by a factor of perhaps 100K . The structure

of this compression is illustrated in Figure C.3. For obvious reasons we might term

this strategy modular compression.

This specific case is, in a sense, too good in that it is easy to find a di-

rect representation of the process an ABP compresses to (namely COPY) and use

properties of refinement effectively to perform the compressions by hand (simply

substituting a COPY for each ABP in the program text). One does frequently,

however, come across cases where the reduced components are, while significantly

more complex than this, still a great improvement on the originals.

The whole concept of hierarchical compression, but especially modular com-

pression, has a lot in common with the idea of compositional development described

556 The operation of FDR

FORK PHIL

FORK

PHIL

FORK

PHIL

0 0

1

1

2

2

Figure C.4: Inductive compression strategy applied to dining philosophers.

on page 47. The only difference is that here the intermediate specification is com-

puted automatically.

Example C.2.2 A second class of example which tends to work well is provided

by networks whose communication graph is basically one-dimensional, in the sense

that it either is a chain of processes or is built in a simple way by joining a few

chains together. These frequently, though not invariably, compress well provided

it is possible to build up the chains in a way that hides all or nearly all of the

alphabets of the processes that are not at the ends of partially constructed chains.

A typical example of this is provided by the deadlock analysis of the dining

philosophers which can, of course, be built up as a chain until the two ends are

joined together. We use the fact, discussed in Section 8.4, that over the stable

failures model F a process P is deadlock-free if and only if P \ Σ is. The dining

philosophers network with all events hidden can be structured

(‖K−1

i=0
(PandF i ,APi)) \ Σ

C.2 Hierarchical compression 557

where PandF i is the combination

PHILi ‖
AFi

FORK i

We can take the process definitions to be either those used in Section 2.2.1 (which

deadlock) or as revised in Section 13.2.4 (made asymmetric so they do not). The

law 〈hide-X ‖Y -dist〉 (3.7) is then used to push the hiding into the parallel network,

which can then be defined with compression:

C1 = PandF 0

Cn+1 = compress(Cn \ (Σ � In)) In
‖APn

PandF n for n < K

Here, In are the events that the chain Cn of the first n philosopher/fork pairs has

to synchronize with other processes, namely

{picksup.K−1.0, putsdown.K−1.0, picksup.n−1.n, putsdown.n−1.n}

This leaves only APK−1 to hide at the outside. As mentioned earlier, in practice

the manipulation of hiding is done automatically.

If compress is chosen to be normalization, each Cn for n < K reduces to

just four states independent of n (basically one state for each combination of the

fork at either end being up or down). Thus K philosophers can be checked in time

linear8 in K , though the uncompressed network has exponentially many states. The

inductive compression structure used here is shown in Figure C.4.

Example C.2.3 Our final example is taken from Milner’s text [82]. Like the din-

ing philosophers, it is a ring network, but it turns out to have rather different

characteristics. The code given here is translated (trivially) from CCS.

It is a ‘scheduler’ which has the job of arranging two classes of event: a.i and

b.i for i ∈ {0, . . . ,N − 1}. It lets the a.i happen in strict rotation and (for every i)
insists on precisely one b.i occurring between each pair of a.i ’s. Milner’s network

achieves this with a ring of simple cell processes connected using an extra, internal

channel c:

Cell(0) = a.0 → c.1 → b.0 → c.0→ Cell(0)

Cell(i) = c.i → a.i → c.i ⊕ 1→ b.i → Cell(i) if i > 0

8In fact, using a doubling-up technique rather than adding one at a time, you can check 2K

philosophers in O(K) time: see [119].

558 The operation of FDR

The different case for 0 reflects that the rotation of the a.i starts with a.0. The

alphabet ACi is just the four events Cell(i) uses, in the network description

Scheduler = (‖N−1

i=0
(Cell(i),ACi)) \ {| c |}

There are various specifications one might wish to prove of this: that it is

deadlock-free,9 that the a.i do in fact rotate, and something about the relationships

between a’s and b’s. Like the dining philosophers, the number of states in this

network grows exponentially with its size (it is, in fact, N 2N), so in order to deal

with a large one it is necessary to use compressions.

Essentially the same inductive strategy as over the dining philosophers works

reasonably well for proving deadlock freedom: one adds a Cell at a time while hiding

all events not needed for external synchronization. (The external events of the cells

from 0 to n − 1 are {c.0, c.n}.) In this case the number of states of a partially

constructed network grows linearly with size, resulting in an overall quadratic (i.e.,

O(N 2)) check.

To prove that the a.i rotate we use a trace specification with alphabet {| a |}:
ASpec(0) where

ASpec(n) = a.n → ASpec(n ⊕ 1)

leading to the refinement check

ASpec(0)
T Scheduler \ {| b |}

Interestingly, in this case, the inductive strategy fails badly with the state spaces of

the partially constructed networks growing exponentially. The reason for this turns

out to be a possibility we mentioned earlier: it is actually the case that with the

network Scheduler , properties of the entire network prevent partially constructed

chains getting into many of the states they could reach if working by themselves.

The operation of this system is rather like a token ring (as discussed, for example, on

page 315), with the token currently being held by the Cell i that has communicated

c.i more recently than c.i ⊕ 1. The complete ring maintains the invariant that there

is only one token, and this simplifies its state space considerably. The problem is

that, rather like the incomplete railway network in Figure 13.10, the partial networks

built up in the inductive approach do not enjoy this simplifying property.

Fortunately, a simpler approach, which one might term leaf compression
works very well in this case. The only compressions are applied to the individual

9Note that it is, in fact, a cyclic communication network of the type described in Section

13.2.2. The methods given there easily establish deadlock freedom, should you wish to follow that

approach.

C.2 Hierarchical compression 559

components of the network after distributing the abstraction of irrelevant events.

In this case this gives the check:

ASpec(0)
T (‖N−1

i=0
(normal(Cell(i) \ {b.i}),ACi)) \ {| c |}

This gives a linear time check (with 2N states), and in fact the same approach

(where the set hidden on Cell i becomes {a.i , b.i}) works better than inductive

compression for deadlock freedom, since it is now a linear time check (with N
states).

If presented with a specification involving all the events in {| a, b |}, such

as the assertion that the total number of b’s lies between the number of a’s and

that number minus N , there seems to be no compression of Scheduler which will do

much good. Too many essentially different states exist with respect to the alphabet

we need to see to decide the specification. You can, however, successfully deal with

checks involving only a few events, such as showing that the number of a.i and b.j
(for any chosen pair (i , j)) never differ by more than 2. (End of example)

Leaf compression, thanks to its simplicity and the fact that it is very un-
likely to lead to computational problems in the calculation of the compressions
themselves, is probably the first thing you should try on a system for which it is
possible to abstract a reasonable number of events that are specific to individual
components (i.e., unsynchronized with others). This approach would have produced
a substantial reduction in the number of states checked in the dining philosophers
from the uncompressed version, but the number of states would still have grown
exponentially.10 Thus different methods work well in different circumstances: the
examples given here are indicative of the type of places where you can expect the
various strategies to succeed or fail, but as we said earlier it is not possible at the
time of writing to give any hard and fast rules.

The example files contain these examples and more, and include general-
purpose high-level functions for implementing inductive and leaf compression, gen-
eralizations of them using mixed abstraction rather than just hiding, and further
strategies we have not had space to describe here.

10The growth slows from approximately 6N to approximately 2N .

560 The operation of FDR

Notation

This glossary sets out some of the mathematical notation in this book. Descriptions
marked thusI have a reference in the main index, and those marked thusP have one
in the process index; in either case further information can be obtained by referring
to that. For notation, such as initials(P), with an obvious alphabetical place in the
indexes, you should refer directly there.

Many pieces of notation whose use is relatively localized (to a single chapter
or section) are not included below.

Sets and numbers

a ∈ x set membership (true iff a is in x)
x ⊆ y subset (∀ a.a ∈ x ⇒ a ∈ y)
{} the empty set
{a1, . . . , an} set containing these elements
x ∪ y,

⋃
X union

x ∩ y,
⋂

X (X = {}) intersection
x � y difference (= {a ∈ x | a ∈ y})
P(x) powerset (= {y | y ⊆ x})
x × y Cartesian product (= {(a, b) | a ∈ x ∧ b ∈ y})
x → y the space of all functions from x to y

N natural numbers ({0, 1, 2, . . .})
Z integers ({. . . ,−2,−1, 0, 1, 2, . . .})
R real numbers
R

+ non-negative real numbers

⊕,� addition and subtraction modulo the appropriate base

562 Notation

Logic

x ∧ y conjunction (x and y)
x ∨ y disjunction (x or y)
¬x negation (not x)
x ⇒ y implication (≡ (¬x ∨ y))
x ⇔ y double implication ((x ⇒ y) ∧ (y ⇒ x))
∀ x .χ universal quantification (χ holds for all x)
∃ x .χ existential quantification (χ holds for at least one x)

Communications

Σ (SigmaI): alphabet of all communications
� (tick) terminationI signal
τ (tauI): the invisible action
Σ� Σ ∪ {�}
Σ�,τ Σ ∪ {�, τ}
a.b.c compound event (see page 26)
c?x inputI

c!e outputI

{| a, b |} events associated with channels (see page 27)

Sequence/trace notation (see pages 36 and 43)

A∗ set of all finite sequences over A
A∗� A∗ ∪ {s 〈̂�〉 | s ∈ A∗}
Aω set of all infinite sequences over A

〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
s t̂ concatenation of two sequences
s \ X hiding: all members of X deleted from s
s � X restriction: s \ (Σ� �X)
#s length of s
s ↓ a (if a is an event) number of a’s: #(s � {a})
s ↓ c (c a channel) sequence of values communicated on c in s

s ≤ t (≡ ∃ u.s û = t) prefix order
s ‖

X
t (⊆ Σ∗�) generalized parallelI

s ||| t (⊆ Σ∗�) interleavingI

S closureI of S (= S ∪ {u ∈ Σω | ∀ s < u.s ∈ S})

Notation 563

Note that sequence-like notation is also used to denote vectors indexed by arbitrary
sets, usually with reference to mutual recursion, for example 〈B∞

s | s ∈ T ∗〉.

Processes

For machine-readable CSP, see Appendix B.

μ p.P recursionI

a → P prefixingI

?x : A→ P prefix choiceI

(a → P | b → Q) guarded alternativeI

P � Q external choiceI

P 	 Q , 	S nondeterministic choiceI

P<I b>I Q conditional choiceI

P ‖ Q synchronous parallelI

P X ‖Y Q alphabetized parallelI

P ‖
X

Q generalized parallelI

P ||| Q interleavingI

P \ X hidingI

f [P] renamingI (functional)
P [[R]] renamingI (relational)
P [[a/b]] renamingI (relational, by substitution)
a.P process namingI

P ; Q sequential compositionI

P >>Q pipingI (or chaining)
P//X Q enslavementI

P//m : Q enslavementI (of a named process)
P � Q ‘time-out’ operator (sliding choice)I

P !a Q interruptI

P [x/y] substitution (for a free identifier x)
P/s ‘after’I operator
P ↓ n restrictionI to depth n (model dependent)

LH (P) lazy abstractionI

EH (P) eager abstractionI

MS
H (P) mixed abstractionI

564 Notation

Transition systems (see Section 7.2)

Ĉ The set of nodes in transition system C .
P a−→ Q (a ∈ Σ�,τ) single action transition
P s=⇒ Q (s ∈ Σ∗�) multiple action transition with τ ’s removed
P t�−→ Q (t ∈ (Στ)∗�) multiple action transition with τ ’s retained

τ∗(P) ({Q | P 〈〉
=⇒ Q}) τ -expansion of P (see page 541)

P ref B P refuses B
P⇑ P diverges

Semantic models

T traces modelI

N failures/divergences modelI

F stable failures modelI

I infinite traces/divergences modelI

U failures/divergences/infinite traces modelI

⊥N (etc.) bottom elements of modelsP

 F (etc.) top elements of modelsP

T traces refinement

FD failures/divergences refinement

F failures refinement (i.e., over F)

I refinement over I

U refinement over U

 refinement over whatever model is clear from the context

(with a special meaning in parts of Chapter 12, and with
a default of
FD)

P ≤ Q strong orderI (over N or U)

D set of deterministicI processes
T d possibly deterministic members of T (see page 226)

Partial orders⊔
X least upper bound
	X greatest lower bound
μ f least fixed point of f

Bibliography

[1] L. Aceto and M. Hennessy, Termination, deadlock and divergence, Proceed-
ings of MFPS89, Springer LNCS 442, 1989.

[2] P.G. Allen, A comparison of non-interference and non-deducibility using CSP,
Proceedings of the 1991 IEEE Computer Security Workshop, IEEE Computer
Society Press, 1991.

[3] R. Alur and T. Henzinger, Logics and models of real time: a survey, in ‘Real
time: theory in practice’ (de Bakker et al, eds), Springer LNCS 600, 1992.

[4] K.R. Apt and D.C. Kozen, Limits for automatic verification of finite-state
concurrent systems, 307–309, Information Processing Letters 22, 6, 1986.

[5] G. Barrett, The fixed-point theory of unbounded nondeterminism, Formal As-
pects of Computing, 3, 110–128, 1991.

[6] G. Barrett and M.H. Goldsmith, Classifying unbounded nondeterminism in
CSP, in ‘Topology and category theory in computer science’ (Reed, Roscoe
and Wachter, eds), Oxford University Press, 1991.

[7] G. Barrett and A.W. Roscoe, Unbounded nondeterminism in CSP, Proceed-
ings of MFPS89, Springer LNCS 442, 1991.

[8] J.D. Beasley, The ins and outs of peg solitaire, Oxford University Press, 1985.

[9] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communicac-
tion, Information and Control, 60, 109–137, 1984.

[10] J.A. Bergstra and J.W. Klop, Algebra for communicating processes with ab-
straction, Theoretical Computer Science, 37, 1, 77–121, 1985.

[11] R.S. Bird, Introduction to functional programming using Haskell, second edi-
tion, Prentice Hall, 1998.

566 BIBLIOGRAPHY

[12] S.R. Blamey, The soundness and completeness of axioms for CSP processes,
in ‘Topology and category theory in computer science’ (Reed, Roscoe and
Wachter, eds), Oxford University Press, 1991.

[13] P.J. Broadfoot and A.W. Roscoe, Embedding agents within the intruder model
to detect parallel attacks, Journal of Computer Security, 12, 2004.

[14] N.A. Brock and D.M. Jackson, Formal verification of a fault tolerant com-
puter, Proceedings of 1992 Digital Aviation Systems Conference, IEEE Com-
puter Society Press, 1992.

[15] S.D. Brookes, A model for communicating sequential processes, Oxford Uni-
versity D.Phil thesis, 1983. (Published as a Carnegie-Mellon University tech-
nical report.)

[16] S.D. Brookes, Fair communicating processes, in ‘A classical mind: essays in
honour of C.A.R. Hoare’, Prentice Hall, 1994.

[17] S.D. Brookes, The essence of Parallel Algol, Proceedings of the 11th IEEE
LICS, 1996.

[18] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating
sequential processes, Journal of the ACM 31, 3, 560–599, 1984.

[19] S.D. Brookes and A.W. Roscoe, An improved failures model for CSP, Pro-
ceedings of the Pittsburgh seminar on concurrency, Springer LNCS 197, 1985.

[20] S.D. Brookes and A.W. Roscoe, Deadlock analysis in networks of communi-
cating processes, in ‘Logics and models of concurrent systems’ (K.R. Apt, ed.)
NATO ASI series F, Vol. 13, Springer, 1985.

[21] S.D. Brookes and A.W. Roscoe, Deadlock analysis in networks of communi-
cating processes, Distributed Computing, 4 209–230, 1991.

[22] S.D. Brookes, A.W. Roscoe and D.J. Walker, An operational semantics for
CSP, Technical report, 1988.

[23] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang, Symbolic
model checking: 1020 states and beyond, 142–170, Information and Computa-
tion 98, 2, 1992.

[24] E.M. Clarke, R. Enders, T. Filkorn and S. Jha, Exploiting symmetry in tem-
poral logic model checking, Formal Methods in System Design, 9, 77–104,
1996.

[25] G. Colouris, J. Dollimore and T. Kindberg, Distributed systems, concepts and
design, Addison-Wesley, 1994.

BIBLIOGRAPHY 567

[26] S. Creese and A.W. Roscoe, Verifying an infinite family of inductions simulta-
neously using data independence and FDR, Proceedings of Formal Description
Techniques for Distributed Systems and Communication Protocols and Pro-
tocol Specification, Testing and Verification (FORTE/PSTV’99), October 5-8
1999, Beijing, China. Published by Kluwer Academic Publishers.

[27] S. Creese and A.W. Roscoe Data independent induction over stuctured net-
works, Proceedings of PDPTA2000

[28] N. Dathi, Deadlock and deadlock-freedom, Oxford University D.Phil thesis,
1990.

[29] J.W.M. Davies, Specification and proof in real-time CSP, Cambridge Univer-
sity Press, 1993.

[30] J.W.M. Davies, D.M. Jackson, G.M. Reed, A.W. Roscoe and S.A. Schneider,
Timed CSP: theory and applications, in ‘Real time: theory in practice’ (de
Bakker et al, eds), Springer LNCS 600, 1992.

[31] J.W.M. Davies and S.A. Schneider, A brief history of Timed CSP, Oxford
University Computing Laboratory technical monograph PRG-96, 1992.

[32] R. de Nicola and M. Hennessy, Testing equivalences for processes, Theoretical
Computer Science 34, 1, 83–134, 1987.

[33] E.W. Dijkstra and C.S. Scholten, A class of simple communication patterns,
in ‘Selected writings on computing’, EWD643, Springer-Verlag, 1982.

[34] E.A. Emerson and A.P. Sistla, Utilizing symmetry when model checking under
fairness assumptions: an automata-theoretic approach, 309–324, Proceedings
of the 7th CAV, Springer LNCS 939, 1995.

[35] E.A. Emerson and A.P. Sistla, Symmetry and model checking, Formal Meth-
ods in System Design, 9, 105–131, 1996.

[36] H.B. Enderton, Elements of set theory, Academic Press, 1977.

[37] R. Focardi and R. Gorrieri, Comparing two information-flow properties, Pro-
ceedings of 1996 IEEE Computer Security Foundations Workshop, IEEE
Computer Society Press, 1996.

[38] R. Forster, Non-interference properties for nondeterministic systems, Oxford
University D.Phil. thesis, 1999.

[39] Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 Man-
ual, 1997.

[40] N. Francez, Fairness, Springer, 1986.

568 BIBLIOGRAPHY

[41] , H. Garcia-Molina, Elections in a distributed computing system, IEEE trans-
actions on Computers, January 1982.

[42] S. Graf, Verification of a distributed cache memory by using abstractions,
Proceedings of the 6th CAV, Springer LNCS 818, 1994.

[43] S. Graf and B. Steffen, Compositional minimisation of finite-state systems,
Proceedings of CAV ’90, Springer LNCS 531, 1990.

[44] J.C. Graham-Cumming, The formal development of secure systems, Oxford
University D.Phil thesis, 1992.

[45] I. Guessarian, Algebraic semantics, Springer LNCS 99, 1981.

[46] F. Harary, Graph theory, Addison-Wesley, 1969.

[47] He Jifeng and C.A.R. Hoare, From algebra to operational semantics, Infor-
mation Processing Letters, 46, 2, 1993.

[48] He Jifeng, C.A.R. Hoare and A. Sampaio, Normal form approach to compiler
design, Acta Informatica, 30, 701–739, 1993.

[49] C.L. Heitmeyer and R.D. Jeffords, Formal specification and verification of
real-time system requirements: a comparison study, U.S. Naval Research Lab-
oratory technical report, 1993.

[50] A. Hojati and R.K. Brayton, Automatic datapath abstraction in hardware
systems, 98–113, Proceedings of the 7th CAV, Springer LNCS 939, 1995.

[51] M. Hennessy, Algebraic theory of processes, MIT Press, 1988.

[52] M. Hennessy and H. Lin, Symbolic bisimulations, 353–389, Theoretical Com-
puter Science, 138, 2, 1995.

[53] M.G. Hinchey and S.A. Jarvis, Concurrent systems: formal development in
CSP, McGraw-Hill, 1995.

[54] C.A.R. Hoare, Communicating sequential processes, Communications of the
ACM, 21, 8, 666–677, 1978.

[55] C.A.R. Hoare, A model for communicating sequential processes, in ‘On the
construction of programs’ (McKeag and MacNaughten, eds), Cambridge Uni-
versity Press, 1980.

[56] C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.

[57] Inmos Ltd., occam2 reference manual, Prentice Hall, 1988.

[58] C.N. Ip and D.L. Dill, Better verification through symmetry, Formal Methods
in System Design, 9, 41–75, 1996.

BIBLIOGRAPHY 569

[59] K. Jensen, Condensed state spaces for symmetrical coloured Petri nets, Formal
Methods in System Design, 9, 7–40, 1996.

[60] G. Jones and M.H. Goldsmith, Programming in occam2, Prentice Hall, 1988.

[61] B. Jonsson and J. Parrow, Deciding bisimulation equivalences for a class of
non-finite-state programs, Information and Computation 107, 2, 272–302,
1993.

[62] A. Jung, ed, Domains and denotational semantics: history, accomplishments
and open problems, 1996.

[63] P.C. Kanellakis and S.A. Smolka, CCS expressions, finite state processes and
three problems of equivalence, Information and Computation 86, 43–68, 1990.

[64] R.S. Lazić, A semantic study of data-independence with applications to the
mechanical verification of concurrent systems, Oxford University D.Phil the-
sis, to appear in 1997.

[65] R.S. Lazić, Theorems for mechanical verification of data-independent CSP,
Oxford University Computing Laboratory technical report, 1997.

[66] R.S. Lazić, T. Newcomb and A.W. Roscoe, Polymorphic Systems with Arrays,
2-Counter Machines and Multiset Rewriting, Proceedings of INFINITY 2004.

[67] R.S. Lazić and A.W. Roscoe, Using logical relations for automated verification
of data-independent CSP, Proceedings of the Workshop on Automated Formal
Methods (Oxford, U.K.), Electronic Notes in Theoretical Computer Science
5, 1997.

[68] R.S. Lazić and A.W. Roscoe, A study of data-independence in CSP, Submitted
for publication, 1997.

[69] N.G. Leveson and J.L. Stolzy, Analyzing safety and fault tolerance using timed
Petri nets, Proceedings of TAPSOFT, Springer, 1985.

[70] G. Lowe, Pravda: a tool for verifying probabilistic processes, Proceedings of
the Workshop on Process Algebra and Performance Modelling, 1993.

[71] G. Lowe, Breaking and fixing the Needham-Schroeder public-key protocol using
FDR, Proceedings of TACAS ’96, Springer LNCS 1055, 1996.

[72] G. Lowe, Some new attacks upon security protocols, Proceedings of 1996 IEEE
Computer Security Foundations Workshop, IEEE Computer Society Press,
1996.

[73] G. Lowe, Casper: a compiler for the analysis of security protocols, Proceedings
of 1997 IEEE Computer Security Foundations Workshop, IEEE Computer
Society Press, 1997.

570 BIBLIOGRAPHY

[74] G. Lowe, Towards a completeness result for model checking of security pro-
tocols, ournal of Computer Security, Volume 7, Numbers 2, 3, pages 89-146,
1999. An earlier version appeared in Proceedings of 11th IEEE Computer
Security Foundations Workshop, pages 96-105, 1998.

[75] G. Lowe and A.W. Roscoe, Using CSP to detect errors in the TMN protocol,
University of Leicester Dept. of Mathematics and Computer Science technical
report 1996/34, and to appear in the Journal of Computer Security.

[76] W.F. McColl, Scalable computing, in ‘Computer science today: recent trends
and developments’, Springer LNCS 1000, 1995.

[77] K. McMillan, Symbolic model checking, Kluwer Academic Publishers, 1993.

[78] J.M.R. Martin, The design and construction of deadlock-free concurrent sys-
tems, University of Buckingham D.Phil thesis, 1996.

[79] R. Milner, Fully abstract models of typed lambda-calculi, Theoretical Com-
puter Science 4, 1–22, 1977.

[80] R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

[81] R. Milner, Lectures on a calculus for communicating systems, Proceedings of
the Pittsburgh seminar on concurrency, Springer LNCS 197, 1985.

[82] R. Milner, Communication and concurrency, Prentice Hall, 1989.

[83] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, I and II,
Information and Computation 100, 1, 1–77, 1992.

[84] M.W. Mislove, A.W. Roscoe and S.A. Schneider, Fixed points without com-
pleteness, Theoretical Computer Science 138, 2, 273–314, 1995.

[85] J.J. Mitchell, Type systems for programming languages, in ‘Handbook of the-
oretical computer science’ (van Leeuwen, ed), Elsevier, 1990.

[86] Mukkaram, A., A refusal testing model for CSP, Oxford University D.Phil
thesis, 1993.

[87] E.R. Olderog and C.A.R. Hoare, Specification-oriented semantics for commu-
nicating processes, Acta Informatica, 23, 9–66, 1986.

[88] J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent
systems, Oxford University D.Phil thesis, 2001.

[89] D. Park, On the semantics of fair parallelism, in ‘Abstract software specifi-
cations’ (Bjorner, ed), Springer LNCS 86, 1980.

[90] W.W. Peterson and E.J. Weldon, Jr., Error-correcting codes, M.I.T. Press,
1972.

BIBLIOGRAPHY 571

[91] Phillips, I., Refusal testing, Theoretical Computer Science 50 pp241–284
(1987).

[92] G.D. Plotkin, LCF considered as a programming language, Theoretical Com-
puter Science 5, 223–255, 1977.

[93] G.D. Plotkin, Lambda-definability in the full type hierarchy, in ‘To H.B. Curry:
essays on combinatory logic, lambda calculus and formalism’ (Seldin and
Hindley, eds), Academic Press, 1980.

[94] G.D. Plotkin, A structured approach to operational semantics, DAIMI FN–19,
Computer Science Dept., Aarhus University, 1981.

[95] A. Pnueli and E. Shahar, A platform for combining deductive with algorithmic
verification, 184–195, Proceedings of the 8th CAV, Springer LNCS 1102, 1996.

[96] D.K. Probst and H.F. Li, Using partial order semantics to avoid the state
explosion problem in asynchronous systems, Proceedings of CAV ’90, Springer
LNCS 531, 1990.

[97] G.M. Reed, A uniform mathematical theory for real-time distributed comput-
ing, Oxford University D.Phil thesis, 1988.

[98] G.M. Reed and A.W. Roscoe, A timed model for communicating sequential
processes, Theoretical Computer Science 58, 249-261, 1988.

[99] G.M. Reed and A.W. Roscoe, Analysing TMFS : a study of nondeterminism
in real-time concurrency, in ‘Concurrency: theory, language and architecture’
(Yonezawa and Ito, eds), Springer LNCS 491, 1991.

[100] J.C. Reynolds, Types, abstraction and parametric polymorphism, Information
Processing 83, 513–523, North-Holland, 1983.

[101] A.W. Roscoe, A mathematical theory of communicating proceses, Oxford Uni-
versity D.Phil thesis, 1982.

[102] A.W. Roscoe, Denotational semantics for occam, Proceedings of the Pitts-
burgh seminar on concurrency, Springer LNCS 197, 1985.

[103] A.W. Roscoe, Routing messages through networks: an exercise in deadlock
avoidance, Proceedings of 7th occam User Group technical meeting, IOS
B.V., Amsterdam, 1987.

[104] A.W. Roscoe, An alternative order for the failures model, in ‘Two papers
on CSP’, technical monograph PRG-67, Oxford University Computing Lab-
oratory, July 1988. Also Journal of Logic and Computation 2, 5, 557–577,
1992.

572 BIBLIOGRAPHY

[105] A.W. Roscoe, Unbounded nondeterminism in CSP, in ‘Two papers on CSP’,
technical monograph PRG-67, Oxford University Computing Laboratory,
July 1988. Also Journal of Logic and Computation, 3, 2 131–172, 1993.

[106] A.W. Roscoe, Maintaining consistency in distributed databases, Oxford Uni-
versity Computing Laboratory technical monograph PRG-87, 1990.

[107] A.W. Roscoe, Topology, computer science and the mathematics of conver-
gence, in ‘Topology and category theory in computer science’ (Reed, Roscoe
and Wachter, eds), Oxford University Press, 1991.

[108] A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of
C.A.R. Hoare’, Prentice Hall, 1994.

[109] A.W. Roscoe, CSP and determinism in security modelling, Proceedings of
1995 IEEE Symposium on Security and Privacy, IEEE Computer Society
Press, 1995.

[110] A.W. Roscoe, Modelling and verifying key-exchange protocols using CSP and
FDR, Proceedings of 1995 IEEE Computer Security Foundations Workshop,
IEEE Computer Society Press, 1995.

[111] A.W. Roscoe, Intensional specifications of security protocols, Proceedings of
1996 IEEE Computer Security Foundations Workshop, IEEE Computer So-
ciety Press, 1996.

[112] A.W. Roscoe, Finitary refinement checks for infinitary specifications, Pro-
ceedings of CPA 2004.

[113] A.W. Roscoe, Proving security protocols with model checkers by data indepen-
dence techniques, Proceedings of CSFW 1998.

[114] A.W. Roscoe, Seeing beyond divergence, Proceedings of “25 Years of CSP”,
LNCS 3525 (2005).

[115] A.W. Roscoe, On the expressiveness of CSP refinement, to appear in FAC.

[116] A.W. Roscoe, Revivals, stuckness and responsiveness, to appear, 2005

[117] A.W. Roscoe and P.J. Broadfoot, Proving security protocols with model check-
ers by data independence techniques, (expanded version of [113]) Journal of
Computer Security 7, 1999.

[118] A.W. Roscoe and N. Dathi, The pursuit of deadlock freedom, Information and
Computation 75, 3, 289–327, 1987.

[119] A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jack-
son and J.B. Scattergood, Hierarchical compression for model-checking CSP
or how to check 1020 dining philosophers for deadlock, Proceedings of the

BIBLIOGRAPHY 573

1st TACAS, BRICS Notes Series NS-95-2, Department of Computer Science,
University of Aarhus, 1995. (Also Springer LNCS 1019.)

[120] A.W. Roscoe and M.H. Goldsmith, The perfect ‘spy’ for model-checking
crypto-protocols, Proceedings of DIMACS workshop on the design and for-
mal verification of cryptographic protocols, 1997.

[121] A.W. Roscoe and C.A.R. Hoare, The laws of occam programming, Theoret-
ical Computer Science, 60, 177-229, 1988.

[122] A.W. Roscoe and H. MacCarthy, Verifying a replicated database: A case study
in model-checking CSP, Formal Systems technical report, 1994.

[123] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference through de-
terminism, Journal of Computer Security 4, 1, 27–54, 1996 (revised from
Proceedings of ESORICS 94, Springer LNCS 875).

[124] A.W. Roscoe and L. Wulf, Composing and decomposing systems under se-
curity properties, Proceedings of 1995 IEEE Computer Security Foundations
Workshop, IEEE Computer Society Press, 1995.

[125] P.Y.A. Ryan, A CSP formulation of non-interference, Cipher, 19–27. IEEE
Computer Society Press, 1991.

[126] J.B. Scattergood, Tools for CSP and Timed CSP, Oxford University D.Phil
thesis, forthcoming 1997.

[127] S.A. Schneider, Correctness and communication in real-time systems, Oxford
University D.Phil thesis, 1989.

[128] W.A. Sutherland, Introduction to metric and topological spaces, Oxford Uni-
versity Press, 1975.

[129] H. Tej and B. Wolff, A corrected failure-divergence model for CSP in Is-
abelle/HOL, To appear in the Proceedings of FME97.

[130] L.G. Valiant, A bridging model for parallel computation, Communications of
the ACM, 33, 8 103–111, 1990.

[131] A. Valmari, Stubborn sets for reduced state space generation, Proceedings of
10th International conference on theory and applications of Petri nets, 1989.

[132] A. Valmari, The weakest deadlock-preserving congruence, Information Pro-
cessing Letters 53, 341–346, 1995.

[133] A. Valmari and M. Tienari An improved failures equivalence for finite-state
systems with a reduction algorithm, Protocol Specification, Testing and Veri-
fication XI, North-Holland, 1991.

574 BIBLIOGRAPHY

[134] P.L. Wadler, Theorems for free!, 347–359, Proceedings of the 4th ACM
FPLCA, 1989.

[135] D.J. Walker, An operational semantics for CSP, Oxford University M.Sc.
dissertation, 1986.

[136] P.H. Welch, G.R.R. Justo and C.J. Willcock, High-level paradigms for
deadlock-free high-performance systems, Transputer Applications and Systems
’93, IOS Press, 1993.

[137] P. Wolper, Expressing interesting properties of programs in propositional tem-
poral logic, 184–193, Proceedings of the 13th ACM POPL, 1986.

[138] L. Wulf, Interaction and security in distributed computing, Oxford University
D.Phil thesis, 1997.

[139] J.T. Yantchev, ARC – A tool for efficient refinement and equivalence checking
for CSP, IEEE 2nd Int. Conf. on Algorithms and Architectures for Parallel
Processing, 1996.

[140] J.T. Yantchev and C.R. Jesshope, Adaptive, low latency, deadlock-free packet
routing for processor networks, IEE Proc. E, May 1989.

[141] I. Zakiuddin, An FDR analysis of a fault-tolerant information system, Pro-
ceedings of AAS ’97, ACM, 1997.

How to obtain the tools mentioned in this book

The following details are believed to be correct at the time of writing, but potential
users are advised in the case of difficulty to consult the web site given in the Preface.
The web site should also contain details of further tools.

• FDR: this is a product of Formal Systems (Europe) Ltd. At the time of
writing the release is 2.11. Much of what is described in this book does not
apply to the earlier FDR 1. For details please email enquiries@fsel.com.

• ProBE: at the time of writing this animator is under beta-test by Formal
Systems (Europe) Ltd, with a formal release expected later in 1997. For
details please email enquiries@fsel.com.

• Jeremy Martin’s Deadlock Checker (see Section 13.6) operates (at the time of
writing) on the more restricted syntax used by FDR 1. It is hoped to rectify
this. You can obtain it through the web site with URL

http://users.ox.ac.uk/~jeremy/Deadlock/index.html

• Gavin Lowe’s Casper (a security protocol compiler, as discussed in Section
15.3) can be obtained through the web site with URL

BIBLIOGRAPHY 575

http://www.mcs.le.ac.uk/~gl7/Security/Casper/index.html

576 BIBLIOGRAPHY

Main index

Entries in bold face are the primary reference(s) to the item concerned, while italic
entries denote references in exercises. Note that processes have a separate index,
following this one.

abstraction, 24, 84, 91, 303–337, 375,

387–389, 553

eager, 304, 413, 443

lazy, 305–335, 413, 421, 425, 443

mixed, 310–313, 334, 399, 414, 443,

559

over T (hiding), 304, 314

acceptance sets, 286, 542, 552

acknowledgement messages, 132

ACP, 277

actions

invisible (τ), 49, 79, 80, 82, 96, 142,

167, 185, 423, 479, 552

visible, see communications

‘after’ operator (P/s), 47

algebraic semantics, 29–35, 39, 155, 277–

301, 537

alphabet, 13

process, 55, 77

transformation, see renaming

alphabetized parallel (X ‖Y), 55–66, 391

as conjunction of trace specifications,

71–75, 343, 409

in terms of ‖
X
, 69, 71

indexed, 57

laws of, 57, 84, 90, 148, 284

termination of, 145

traces of, 60

with intrinsic alphabets, 77

alternating bit protocol, 132–137, 220–

221, 229, 267, 317–319, 368, 416–

422, 554

animator, 49

articulation point, 383

ASCII version of CSP, see machine-readable

CSP

ATM (Automated Teller Machine), see

cash-point machines

attack (on a crypto-protocol), 464, 465,

470, 475, 478, 480, 482

authentication, 461, 462, 475

axiom, 237

D1, 200, 212, 216, 254

D2, 200, 206, 212, 216, 254

D2′, 254

D3, 200, 205, 254

D4, 254

F1, 200

F2, 200

578 Main index

F3, 200, 227, 259

F4, 200, 206

I1, 261

I1′, 254

I2, 262

T1, 216, 254

T2, 216

T3, 216

axiom of choice, 493

bag, 68, 128

Banach’s theorem, see contraction map-

ping theorem

Barrett, Geoff, 264–265, 275

biconnected components, 383

binary decision diagram (BDD), 550

binary switching network, 374–375, 389

bisimulation, 160–165, 292, 541, 542,

551

Blamey, Stephen, 275

breadth-first search (BFS), 548–549

Brookes, Stephen, 185, 223, 301, 391

BSP (Bulk Synchronous Parallelism), 5

buffer, 18, 80, 83, 87, 107, 117–139

characteristic process, 119

failures/divergences specification of,

118

infinite, 18, 107, 196

laws, 120–126, 130, 215

specification is infinite state, 50

tolerance, 129–132, 137, 445

trace specification of, 44, 46, 108,

117

weak, 120

bully algorithm, 481

busy network, 344, 382, 389

Byzantine failure, 320

cache, 482

coherency, 455–461

miss, 457

replacement policy, 457

cash-point machines, 20–21, 24, 28, 53–

54, 55, 63–64, 65, 68, 84–85,

400, 422

Casper, 478, 574

Cauchy sequence, 508

CCS, 6, 160, 185, 223, 557

chain, 491

chaining, see piping

channels, 18, 26, 27, 103, 344, 387

arrays of, 27, 63

conflict-free, 349

internal and external, 58, 79

type discipline restricts practicality

of >> and //, 114

Chaos , 29, 42, 223, 307, 317, 320, 322,

331–333, 442

is non-divergent, 85

characteristic process, 46, 66, 100, 119

chase(P), 479–480, 553

choice

conditional, see conditional choice

external, see external choice

guarded, see guarded alternative

nondeterministic, see nondetermin-

istic choice

sliding, see ‘time-out’ operator

client/server networks, 357

closed CSP term, 166

closed set, 507–508

closure of trace set, 179

combinatorial exploration, 430, 436

comms(e), 167

communication graph, 58, 62, 345, 352,

353, 363, 373, 381, 556

communication media, 328

insecure, 461

unreliable, 107, 109, 122, 133–134,

220, 268, 317–318, 417

communications, 8–10, 13, 20–21

agreement with environment on, 13,

158

are instantaneous, 13

multi-part, 17, 26

communications protocols, 107, 117, 132,

220

layering of, 107

completeness of a set of laws, 278

Main index 579

compositional development, 47, 556

compression of state spaces, 314, 315, 389,

479, 546, 550–559

inapplicable with priority, 425

concurrency, theory of, 1

concurrent systems, 1

conditional choice, 25–26, 49

for collapsing case definitions, 25

laws of, 30–34

confidentiality, 461, 475

configurations, 540

conflict, 347–349, 351, 375

freedom from, 347, 351, 354, 357,

359, 361, 370, 382

congruence, 188–189, 208, 246, 277

consistency (of distributed data), 439–

444

constraints via parallel composition, 72,

73, 135, 434–436

constructiveness, 39, 53, 86–87, 108, 126–

127, 194–197, 204, 211, 214,

228, 233, 258, 274–275, 511–

512

contexts, 47, 188, 216, 236, 240–246, 425

continuity, 192–194, 212–214, 214, 219,

494–496, 500, 502–504

disappears with unbounded nonde-

terminism, 256

of predicates, 233

contraction map, 509–512

contraction mapping theorem, 190, 232–

233, 509–512

convergence, 491, 507

covert channel, 325

timing, 331

cpo, see partial order, complete

critical regions, 316

crypto-protocols, 461–483

CSP (1978 version), 5

CSP, modern version, 6

cycle of ungranted requests, 346–390

cycle-cutting set, 373

cyclic communication network, 359–363,

368, 371, 373, 377–378, 390, 558

generalized, 360

data structures implemented as networks,

111

data type, 17, 27, 444–455

data types for symbolic encryption, 464

data-independence, 303, 387, 438, 444–

455, 458–461, 476, 481, 554

weak, 449

Dathi, Naiem, 391

Davies, J.W.M. (Jim), 426

de Nicola, Rocco, 223

deadlock, 3, 10, 62, 65, 136, 188, 242–

246, 314, 341–393, 442

compression in checking, 556

failures specification of deadlock free-

dom, 100

fundamental principle of, 352, 353,

357, 376, 383

hereditary deadlock freedom, 384–

385

is static, 342, 345

represented by STOP , 54

Rule 1, 352, 381, 384

Rule 2, 354, 356, 357, 368, 371, 383,

384, 388

Rule 3, 357, 358, 369, 383, 384

Rule 4, 359, 371, 383, 384, 391

Rule 5, 360, 361, 383, 384

Rule 6, 361, 363, 384

Rule 7, 364, 365, 383, 384

Rule 8, 368, 376, 384, 440, 442

Rule 9, 370, 371, 372, 375, 383, 384,

390

Rule 10, 373, 375, 383, 384

Rule 11, 376, 384

Rule 12, 377, 378

Rule 13, 382

Rule 14, 382

Rule 15, 388

Rule 4, 368

Rule 5, 368

state, 345–348, 350–351

Deadlock Checker, 389–390, 574

580 Main index

declarative semantics, 19, 142, 144, 156

deductions(X), 471

denotational semantics, 155, 187–224,

537

denseness, 236

depth-first search (DFS), 547, 548, 551

derived operator, 103

det(P), 227, 262, 263

determinism, 3, 23, 100, 101, 202, 212,

225–230, 251, 260, 265, 266,

307–309, 313, 320, 324–337, 454–

455, 479

algorithm for deciding, 230

FDR as a checker of, 334

over F , 225, 334, 455

diamond elimination, 552

diamond(P), 552

Dijkstra, E.W., 391

dining philosophers, 3, 60–63, 65, 67,

88, 348–349, 363–365

compression of, 554, 556

directed set, 192, 202, 203, 213, 491, 500,

508

disconnecting edge, 381–383

distributed database, 438–445, 481

distributed termination, 145–146, 148,

185

operational semantics of, 171

distributivity (over �), 31, 54, 191–192,

210–211, 214

div, 85, 99, 141, 217

laws of (over N), 283–284

laws of (over T and F), 299

divergences, 3, 10, 85, 95–101, 134–136,

143, 168, 177, 200, 204, 212,

217, 244–246, 442, 542, 546

in timed processes, 411

seeing past, 216, 219

strictness after, 99, 179, 200, 201,

208, 212, 213, 216, 283

divergences(P), 99, 199, 201

calculation of, 205–210

divide and conquer, 112

dynamic networks, 107, 111, 196, 342,

352

usually infinite state, 115

encryption, 461, 470, 482

algebraic identities over, 478

public-key, 462, 463, 467

symbolic representation of, 464

symmetric, 462, 467

enslavement (//), 109–115, 144, 352, 456

builds tree networks, 112

environment (external), 13, 24, 151, 399,

400

environment (semantic), 166, 248

error correcting codes, 133

error correction, 123

essential component, 381–383

Events, 49

events

invisible, see actions, invisible

visible, see communications

events(c), 27

eventuality, 272

evolving process, 398

explicate(P), 548, 553

explode(P), 471

expressibility, 237–240, 261

external choice, 22–23, 98, 191, 214

ambiguous initial events, 23

laws of, 30–34, 88, 92, 147, 284

operational semantics of, 168

fact (data type for encryption), 464

failure modes, 320

failures, 95–101, 200, 259, 411

stable, 199, 215–222

failures(P), 96, 178, 254

calculation of, 218–219

failures⊥(P), 99, 178, 199, 201

calculation of, 205–210

failures/divergences model (N), 99, 150–

152, 199–216, 218, 223, 225–

227, 263, 283, 542, 546

applicability of, 208, 239

Main index 581

expressibility of elements, 239–240

full abstraction, 244–246

lazy abstraction over, 305

normal forms for, 289–293

failures/divergences/infinite traces model

(U), 253–275, 311

lazy abstraction over, 306–307, 313

Fair(A,B), 267

fairness, 135, 267–274

fault tolerance, 317–324, 333, 422, 450

abstract definition of, 322

of replicated processor, 320

FDR, xi, 7, 49–50, 60, 100, 101, 314, 334,

336, 386, 426, 429–483, 537–

559, 574

compiler, 539

finite state machine, see state machine,

transition system

fixed points, 38, 86, 165, 189, 204, 232–

236, 489–498, 509

for mutual recursions, 38

positive and negative, 198, 211–212

fixed-point induction, 126–127, 129, 138,

190, 232–234, 258, 274–275

FOR loop, 144

formats, see configurations

Forster, Richard, 336

full abstraction, 188, 236–246, 251, 261–

263, 297, 299

affected by adding operators, 243

function, 91

injective, 89

spaces, 501–504

strict, 490

functional programming language, 19, 156,

429, 513–535

game theory, 262

generalized parallel (‖
X
), 69–71

laws of, 69, 84, 90, 148, 284, 297

traces of, 70, 150

Gofer, 513

greatest lower bound, 201, 217, 254, 263,

488–490, 499

guarded alternative, 15–17, 18, 22, 49

representable using �, 22

guardedness, see constructiveness

halting problem, 141, 285, 445

handshaken communication, 5, 6, 9, 20,

51, 72, 130

Haskell, 19, 513

Hasse diagram, 486

He, Jifeng, 301

head normal form (hnf), 279–285, 285,

290, 293, 295, 297, 300

Hennessy, Matthew, 223

hiding, 79–88, 207–210, 343, 391, 553

� never hidden, 146

continuity over N , 213

discontinuous over �T , 192, 199

divergences of over U and I, 255

infinite, 85, 183

laws of, 80–84, 90, 147, 284, 296

negates guardedness, 86

operational semantics of, 169

traces of, 85

high level implementation, 538

hnf, see head normal form

Hoare, C.A.R. (Tony), xi, 5, 44, 77, 146,

223, 301, 310

identifiers

non-process, 25, 37, 166

binding of, 19, 34

change of, 280

scope of, 142

process, 14, 168, 236, 247

idling process, 397, 398

independence, 325, 335, 482

lazy, 325, 333

mixed (or transaction), 325

inductive compression, 557, 558

inference system

via parallel composition, 473–480

infinite traces/divergences model (I), 254–

258

infinites(P), 179

582 Main index

calculation of, 255

infix dot, 18, 26

initials(P), 47, 201, 286

initiator, 466

input, 18–19, 27, 103–106, 310, 357, 397,

399

interaction, 2, 51

interface parallel, see generalized parallel

interleaving (|||), 66–68

as abbreviation for disjoint parallel,

67

as abstraction mechanism, 334

in terms of ‖
X
, 69

laws of, 66, 148, 284

operational semantics of, 177

recursion through, 67

traces of, 67, 150

internal choice, see nondeterministic choice

interrupt operator (�), 243, 294

intruder (spy), 461, 463–465, 468–476

invariant (of a network), 385

iteration

parallel, 106

sequential, 143

Jackson, David M., 426

Jategaonkar, Lalita, 224

Jategoankar, Lalita, 251

knowledge, deduction of, 470–480

König’s lemma, 180, 213, 250, 266

labelled transition system, see transition

system

lambda (λ-) calculus, 240

lattice, 489

complete, 190, 217, 254, 489, 492

law, 29, 34, 39, 80, 155, 215, 277, 293,

301, 343, 391

associative, 29, 57

commutative, 29

distributive, 29

idempotence, 29

step, 33, 81–83

symmetry, 29, 57

unit, 29

zero, 29, 283

Lazić, Ranko, 156, 447, 452, 454, 482

lazy spy, 473–480

leaf compression, 558

least upper bound, 202, 217, 488–490,

499

level crossing, 401–410, 426

livelock, see divergences

liveness, see specification, liveness

local non-interference, 336

logical relations, 446, 481

low level implementation, 538

low-deterministic process, 332

Lowe, Gavin, 475, 478, 574

lower bound, 488

LTS, see transition system

machine-readable CSP, 8, 19, 25, 27, 49,

75, 91, 101–102, 114–115, 429,

513–535

Martin, Jeremy, 389–391, 574

matrix multiplication network, 361–363,

373, 387

maximal progress, 424

memory device, 311

memory model, 456–458

mergesort network, 113

message-passing ring, 365–367, 440

metric spaces, 190, 194–195, 228, 232–

233, 258, 505–512

complete, 508

Meyer, Albert, 224, 251

Milner, Robin, 6, 557–559

model checking, 17, 76, 84, 436, 480, 547

model compress(P), 552

modular compression, 556

monitor, 321, 333

monotonicity, 120, 204, 210, 212, 219,

265, 490–498, 500, 502–504

and refinement, 47

is implied by distributivity, 192

mutual exclusion, 4, 316

Main index 583

Needham–Schroeder Public-Key protocol,

462–476

Newton’s method, 106, 108

node ordering, 354

NoEqT (no equality tests), 447

non-Archimedean metric, 506

non-destructiveness, 108, 195, 204, 214,

511–512

non-expanding map, 509–512

non-interference, see independence

nonce, 463, 470

nondeterminism, 2, 10, 23, 24, 158

angelic, 269

finite, 23

inevitable in concurrency theory, 85

introduced by �, 227

introduced by ‖
X
, 228

introduced by abstraction, 24, 304

introduced by external choice, 23

introduced by hiding, 82, 84, 228

introduced by renaming, 91, 228

unbounded, 23, 85, 91, 183, 203,

204, 208, 223, 239, 251, 253–

275, 307

nondeterministic choice, 23–25, 98, 191,

489

fair, 269–270

infinite, 183

laws of, 30–34, 283

operational semantics of, 167

nondeterministic selection ($), 448, 449

nondeterministic systems

are untestable, 3

Norm (normality conditions), 449, 451

normal form, 285–294, 298, 299, 481,

541, 544

one-step, 289, 298

normal(P), 551, 555

normalization, 289, 314, 446, 537, 541–

546, 551, 552

can be exponential, 544

occam, 5, 22, 80, 301, 367, 391

Olderog, E.-R., 251

Ω (Omega): terminated process, 166

open set, 507

operating system, 4

operational semantics, 80, 155–185, 198,

258, 446, 481, 537–541

congruence with denotational seman-

tics, 246–251

via algebraic reduction, 279–285,

300

order isomorphism, 486

output, 18–19, 27, 103–106, 357, 397, 399

as signal events, 310

pantomime horse, 55, 65

parallel communication, 360, 361, 363

parallel computers, 1, 2

parallel networks, 341–353

parallel processes

can be sequentialized, 52, 58

parameterization, 63, 89

parameterized verification problem (PVP),

445, 460

parameters, process, 19, 49, 156, 444

parametricity, 446, 481

partial order, 190, 204, 232, 263–265, 354,

485–504

bottom (⊥), 486

complete (cpo), 202, 203, 492–494

maximal element, 486, 492, 493, 497

minimal element, 486

top (�), 486

partial order methods (in model check-

ing), 480

philosophers, dining, see dining philoso-

phers

piping (>>), 103–109, 114, 120, 215, 352

laws of, 104–106, 148

traces of, 106

Plotkin, Gordon, 185

point-to-point communication, 80, 343

polymorphism, 77, 445

post-fixed point, 265, 497

pre-deterministic process, 264

pre-fixed point, 165, 497

584 Main index

pre-normal form, 542, 544

prefix choice, 17–19, 49

prefix order on sequences, 486

prefixing, 14

laws of, 30–34

operational semantics of, 166

prioritize(P), 426, 553

priority, 423–426

limits applicability of denotational

models, 425

ProBE, 8, 49–50, 115, 184, 574

process algebras, 5, 6, 160, 222, 277

process naming (a.P), 89, 102, 109

product of partial orders, 498–504

projection, 305

promotion (of an action), 169

public key, 462, 465

puzzles, 430

quicksort network, 112, 353

railways, 9, 74, 384–385, 401, 430

recursion, 14–15, 126, 211, 232–236

and fixed points, 38, 189, 196–199,

203, 211, 256–258

equational and μ styles, 15

guarded, see constructiveness

ill-formed, 85, 196–199, 211, 212

is not distributive, 32

laws of, 34

mutual, 14, 38, 41, 59, 127, 498

infinite, 16, 67

operational semantics of, 168, 185

parameterized, 19, 38, 53, 63, 498

tail, see tail recursion

through sequential composition, 143

trace proof rules, 44

reduction strategy, 279

Reed, G.M. (Mike), 426

refinement, 24, 308

checking, 546–548

is PSPACE-hard in worst case,

544

failures, 98, 98, 100

failures/divergences, 99–101, 212

FDR as checker of, 49

over U , 263

properties of, 46

provable algebraically, 47

trace, 46, 48, 100, 190, 192

refinement paradox, 332

reflexivity, 486

refusal set, 95, 97, 178, 200, 213, 215,

223

maximal, 96, 240, 286, 287

may contain �, 151

relationship with acceptance sets, 286

relationship with infinite traces, 262

refusals(P), 95, 201

relation, 91, 190, 486

composition of, 91

domain and range of, 91

relational representations of operators, 190–

196, 210, 213, 214, 215, 219,

262

remote procedure call, 110

renaming, 88–95, 343, 391, 469, 474, 478

� never affected, 146

as an abstraction mechanism, 303,

388–389

infinite-to-one, 183

injective, 89–90

inverse function, 91

laws of, 90, 92–93, 147, 284

non-injective, 90–91

one to many, 93, 245, 414

traces of, 93, 150

request, 345, 351

selective, 376

ungranted, 345–349, 351, 373, 376

resource sharing, 363–365

responder, 466

restriction space, 194–196, 204, 214, 232–

233, 506

complete, 509

routeing algorithms, 354, 358, 374, 387

RUN , 29, 42, 47, 273, 314, 317, 334

Main index 585

safety, see specification, safety

sat, 44, 46, 47

sbisim(P), 551

Scattergood, Bryan, 156, 513

scheduler ring, 557–559

Schneider, Steven, 7, 426

Scholten, C.S., 391

SDD, see state dependency digraph

secret key, 462, 465

security

information flow, 324–337

limitations of CSP models, 331–333

protocols, 461–483

semantic equivalence factoring, 552

semaphore, 4

semi-separable, 333

SemiFair(A,B), 273, 306

separability, 308–310, 326, 330, 332, 333,

335

sequence notation, 36, 43

sequential composition (;), 141–149, 214,

295–298

laws of, 146–149, 284

operational semantics of, 169

traces of, 149, 190, 193

server, 462

session, 467

session key, 462, 467

set process, 111

settle time, 422

shared-variable concurrency, 4

Σ (Sigma), 8, 13, 49, 80

Σ� , 141

signal (undelayable) events, 151, 310–312,

315

signal events, 399

signature, cryptographic, 462–464

SKIP , 141, 295–298

laws of, 146–149, 297

operational semantics of, 165

traces of, 149

sliding choice, see ‘time-out’ operator

snapshot graph (of deadlock), 345

solitaire, 430–436, 539–540

soundness of a set of laws, 278

specification

behavioural, 43, 45, 100, 118, 322

compression of, 546

failures, 98, 100, 314–317, 411, 442

failures/divergences, 100, 118

infinite state, 119–120

infinite trace, 266–267

liveness, 45, 215

timed, 410

of a subset of the alphabet, 314–317

operators primarily for, 10

partial correctness, 45

processes as, 9

safety, 45, 408, 443, 466

timed, 401–410

total correctness, 45

trace, 42–47, 48, 65, 66, 100, 119,

314, 558

limitations of, 45, 117

untimed of timed process, 411–416

spy, see intruder

stable failures model (F), 215–224, 225,

254, 314–315, 350, 389, 546, 556

applicability of, 219

expressibility of elements, 238–239

full abstraction, 242–243, 246

lazy abstraction over, 307–308

normal form for, 300

relationship with algebraic seman-

tics, 298–301

without traces, 246

stable node, 96, 200

cannot perform �, 157, 178

stack, 128, 149

state

exploration, 17, 59, 174, 430, 480,

541

explosion, 75, 434

motivates local analysis of networks,

346

space, 19, 176

state dependency digraph (SDD), 390

state identifiers, see identifiers, non-process

586 Main index

state machine

explicit, 553

finite, 16, 17, 50, 119–120, 160

implicit, 553

normal form, 541

stepwise refinement, 47

STOP , 14, 29, 33, 44, 45, 47, 85, 141,

239, 344

operational semantics of, 165

strictness, 169, 283

strong conflict, 347–349, 351, 375, 389

freedom from, 347, 351, 373

structural induction, 183

sub-process values, 280

subs(a, e,P), 167

supercombinators, 540, 541, 553

synchronization tree, 160

synchronous parallel (‖), 51–55

is not idempotent, 54

laws of, 52

traces of, 54

syntactic approximation, 293

systolic arrays, 359

tactic processes, 434

tail recursion, 19, 41

one step, 19, 290

Tarski’s theorem, 165, 190, 265, 502, 509,

512

for complete lattices, 490–491

for continuous functions, 495–496

for cpo’s, 493–494

τ (tau) action, see actions, invisible

τ -loop elimination, 551

termination (�), 141–152, 157–160, 169,

185, 200, 223, 273, 295–298

as a signal, 151

testing equivalence, 223

theory of concurrency, 6

threshold, 446–455, 459–461

time-out, 21, 134, 417–419, 420

controller, 418

‘time-out’ operator (�), 82, 88, 147, 295,

298, 417

operational semantics of, 172

time-stop, 398

time: discrete vs continuous, 395–396,

426

Timed CSP, 6–7, 35, 395–396, 425, 426

timed systems, 6–7, 395–427, 476

timing consistency check, 399, 408, 421,

423

timing constraints, 396, 402–407

inconsistent, 397, 399

tock , 396

token ring, 315, 366, 558

tools, xi, 7–8, 48–50, 75–76, 101–102, 114–

115, 138–139, 184–185, 334, 386–

390, 426, 454, 478, 513, 537,

574

total order, 486, 492, 497

trace

infinite, 209

notation, see sequence notation

traces, 35–47, 95, 149, 216, 395

are inadequate for reasoning about

deadlock, 341

finite, 36

infinite, 36, 179–184, 253–275, 307

proof rules for, 44

timed and untimed, 35

traces model (T), 37, 46, 48, 86, 149–

150, 190–199, 211, 212, 217,

223, 225, 546

expressibility of elements, 237

full abstraction, 241–242, 246

inadequacy of, 38, 40, 54, 95

is a complete lattice, 489

normal form for, 299

relationship with algebraic seman-

tics, 298–301

Traces(P), 179, 255

traces(P), 36–39, 43, 177, 211, 216

traces⊥(P), 99, 178, 211

transition system, 80, 89, 96, 157–165,

172–175, 177–184, 201, 230, 251,

479, 541, 546

deterministic, 96, 229

Main index 587

explicit, 540

finitely branching, 180, 203, 209

generalized, 552, 553

implicit, 540

transitivity, 486

transitivity of refinement, 46

transparent functions, 551, 552

tree network, 352, 381

triangle inequality, 505, 506

triple-disjoint networks, 342, 345

tuples, 498

UFP rule, see unique fixed points

ultra-metric, 506

unbounded nondeterminism, see nonde-

terminism, unbounded

unique fixed points, 40, 52, 53, 55, 59,

68, 86, 100, 148, 149, 190, 195,

228, 258, 259, 274–275, 497, 512

unstable node, 96, 157

upper bound, 488

urgency of hidden actions, 423

urgent action, 397

urgent process, 398

Valmari, Antti, 224, 245, 251

variants, 369–381, 389

weak, 377–381

vector, 38–41, 44, 148, 195, 498

virtual memory, 455

virtual network routeing, 354, 368, 374,

387–388

VLSI, 1, 9

vocabulary of network, 345

web site, xi, 8, 137, 389

Wolper, Pierre, 481

Woodcock, J.C.P. (Jim), 334

wormhole routeing, 357–359

Wulf, Lars, 334

Yantchev, Jay, 354

Zorn’s lemma, 493, 494

