
SVA Manual

David Hopkins

Contents

1 Script Contents 1

1.1 Variable Declarations . 1
1.2 Processes . 2

1.2.1 Local Variables . 3
1.2.2 Macros . 3
1.2.3 Variable Assignments . 3

1.3 Signals . 3
1.4 CSP Statements . 4
1.5 Programs . 4

1.5.1 Overseers . 4
1.6 Assertions . 4

1.6.1 Re�nement . 5

2 Using the GUI 5

3 Requirements 6

1 Script Contents

An SVL script contains a series of declarations and assertions. Any line starting // will be ignored
as a comment.

1.1 Variable Declarations

All variables must be declared before they can be used. Variables declared at the global level are
shared between all processes. There are two basic data-types, integers and booleans and we also
allow arrays of either.

int i, j;

bool b;

int [] is;

bool [] choosing;

int%10 [4] js;

In the last declaration above, the size of the array and the size of the integers in it are both
speci�ed. It declares j to be an array of length 4 containing integers from the set 0..9. If this
mechanism is not used to provide size information, the defaults (see section 1.4) will be used.
Non-default initial values can also be provided.

int count = 0, init = 1, slot;

bool[] flags = { true , false , false };

Additionally variables can be declared as dirty.

1

dirty int reading;

dirty bool[] okread;

Dirty variables are explained in section 19.1 of [1]. Model the fact that variable writes may not
be atomic. If one process tries to read from a variable while another is writing to it, the outcome
is non-deterministic. As well as variables, it is also sometimes useful to declare global constants.

const N = 5;

const maxTurns = 10;

1.2 Processes

The individual thread processes must be named and de�ned before they can be combined together.

P(i,j,k) = { body }

The identi�ers i,j and k will be integer parameters to the process P. In the body they can be
used as constants, but they cannot be assigned to or modi�ed. The body itself will be made up
of a sequence of imperative commands.

skip;

if b then c;

if b then c else d;

while b do c;

iter c;

a := v;

atomic c;

sig(channel);

isig(ichannel , i);

The meanings of most of these commands should be clear. The use of signals is discussed in
section 1.3. iter iterates a command forever. It is equivalent to while true do. atomic executes
a section of code atomically, blocking all other threads from proceeding.

Any boolean or integer expressions are built up from variables and constants using common
operators.

true

false

! b1

b1 && b2

b1 || b2

i1 = 12

i1 != 12

i1 > i2

i1 >= i2

i1 < i2

i1 <= i2

i1 + i2

i1 - i2

i1 * i2

i1 / i2

i1 % i2

-i1

max(i1 ,i2)

min(i1 ,i2)

a[i1]

2

1.2.1 Local Variables

Processes can also declare their own local variables within their de�nition. The syntax for doing so
is the same as for declaring global variables, except that they are not allowed to take non-default
sizes or initial values, or be dirty. A process cannot declare two variables with the same name,
even if they are in di�erent scopes â�� once a variable has been declared it is visible throughout
that process. It should be noted that the compiler handles local variables by creating fresh global
variables for each instantiation of each process used in the script. This may create unexpected
results if a process is placed in parallel with itself using the same arguments - < P(1),P(2)> is �ne,
but <P(1),P(1)> may cause problems. There is also the potential for large numbers of unwanted
variables to be created if a single script contains a large number of di�erent programs.

1.2.2 Macros

Within the body of a process, we can �call� another process.

P(i) = a[i] := 0

Q(i) = while b do P(i)

This is handled by copying the body of the called process into the calling process. This can
cause scoping issues if the macro uses local variables. As mentioned in section 1.2.1, a process
cannot contain multiple local variables with the same name, even in di�erent scopes. Hence, if
the caller and callee both have local variables with the same name, or if a process needs to call
another process in multiple places, this can cause a parse error.

It should also be noted that the arguments passed in to a process have to be constants.

1.2.3 Variable Assignments

Section 18.2 of [1] explains that in order to improve compression, the user may wish to specify that
certain variables should be associated with a particular process. We allow this using the syntax
below.

P(i) = { body } with { a[i],a[i + 1], b}

1.3 Signals

In order to make speci�cation easier, processes can send CSP-like communications to the envi-
ronment. We di�erentiate Signals, in which the process simply sends a prespeci�ed event, and
ISignals in which the process �rst evaluates an integer-valued expression and the sends that on a
prespeci�ed channel.

It is required that the set of signals each process uses must be disjoint. To prevent this being
an awkward restriction, both Signals and ISignals can be parameterised with a number of indices.
These indices must be constant

Before they can be used, signals must be declared in the global scope

sig wrongval;

isig result;

sig css : int , cse : int;

isig send : int.int;

Note that the speci�cation of a type de�nes how many constant indices each channel has, not
how many integer expressions can be communicated along it.

Sending a signal then takes the form

sig(css.i);

isig(send.i.j, a[i] + b[j]);

3

The reason we syntactically di�erentiate between Signals and ISignals is due to the restriction
that the signals used by di�erent processes must be disjoint. Using the channels described above,
if P() contains sig(css.1), then no other process can use the event css.1, but they are free to
use say, css.2. Conversely, if P() contains isig(result,1), then the entire channel result is
claimed by P() so another process would not be allowed to communicate result.2.

1.4 CSP Statements

Any line which starts %%, will be copied straight into the CSP �le. This allows speci�cations to
be constructed in CSP which the SVL programs can be compared to.

This mechanism also need to be used to de�ne a number of constants used to con�gure the
compiler. These are

• MinI and MaxI, the default minimum and maximum values of the integer type.

• ditype and dctype, the default sets from which the indices and contents of integer arrays
come from.

• InitB and InitI, the default initial values for booleans and integers.

• ext_atomic, used during re�nement checking to determine whether the external thread can
go into atomic sections. See section 1.6.1 (or section 19.3 of [1]).

1.5 Programs

Individual processes are combined in parallel to form programs.

Prog = <P(1),P(2),Q() >

As explained in section 18.2 of [1], we may wish to apply either a leaf compression or a
hierarchical compression. To take full advantage of this we may need to be able to combine our
processes together in a tree like manner.

Struct =

hierarchCompress <<P(0),P(1)>,<P(2),P(3)>,<P(4),P(5)>,P(6)>

WideStruct = leafCompress < PP(2),PP(4), Dummy()>

To simplify constructing large parameterised networks, we allow the following syntax.

WideStruct = hierarchCompress < PP(i) | i from 1 to N>

1.5.1 Overseers

Overseers are described in section 19.5 of [1]. The are special processes which run with priority
whenever any of their variables are written to. This can be used to maintain data invariants in
order to model more complex data-types than those present in SVL.

WideStructOS =

hierarchCompress < PP(2),PP(4),Dummy(),overseer LO()>

1.6 Assertions

Once we have combined processes together in parallel, we will wish to prove or disprove properties
of the resulting system. We do this by making assertions which we then get FDR to check.
Assertions can take a number of forms. One of the simplest is to assert that some boolean
property always holds (or never holds) on any possible execution path.

assert always count <= 5 in Struct1

assert never cs[1] && cs[2] in Struct2

4

We can also assert that a particular signal never occurs.

assert nosignal {error} in Struct1

assert nosignal{ result.1, result .2} in Struct2

Often we may wish to use the %% notation to de�ne a CSP speci�cation and then compare our
programs to it.

assert %-SPEC [T= WideStructOS \{|error ,verror |}-% in WideStructOS

Everything between %- and -% will be copied straight into the CSP script. Since we do not attempt
to parse it, this allows all sorts of assertions to be made. However, because the contents is not
parsed, the annotation in WideStructOS is required so that the GUI can correctly interpret any
resulting counterexample.

1.6.1 Re�nement

Re�nement between processes is discussed in detail in section 19.3 of [1]. There are three kinds of
re�nement considered, depending on the context a process is to be used in: sequential, parallel,
and general. Sequential contexts are those when a process Pis to be run atomically. No other
process will be able to read or write to any variables while P runs, but we assume that they could
set the values beforehand and detect any modi�cations P makes. Parallel contexts are when P is
to be run at the level of �nal parallel composition. In this case, nothing runs before or after P, but
while it is running other processes may be able to read or write to some of its variables. Finally,
a general context is a combination of the two. This represents the case when P is part of a larger
thread but is not forced to be atomic. Some of its variables may be accessed before and after by
the preceding or subsequent code in its thread, while others may be accessed by other processes.

In order to use this feature, the user has to de�ne which variables can be read or written to.
We di�erentiate between accesses arising from sequential and parallel contexts.

SeqWrites = {turn [3]}

SeqReads = {turn [3]}

ParReads = {turn}

ParWrites = {turn[1],turn[2],turn [4]}

The boolean parameter ext_atomic, (which the user must set using %%) also a�ects re�nements
in parallel or general contexts. If it is true, then the parallel processes are allowed to enter atomic
sections, blocking P and allowing them to get a snapshot of the current state of all variables.

Having set these parameters, re�nement assertions have the following form:

assert MaxA (3) [S= MaxB (3)

assert MaxB (3) [P= MaxC (3)

assert MaxD (3) [G= MaxA (3)

2 Using the GUI

From SVA's directory, the GUI can be compiled by running ant, after which it can be launched
with the command ant run.

Once running, an SVL �le can be loaded. The buttons �Check Assertion� and �Check All
Assertions� can be used to run FDR and interpret the results. If FDR �nds a counterexample to
an assertion, this will be displayed in the lower part of the window. The checkboxes can be used
to hide some of the events occurring in a trace � while these events can be crucial to why an
assertion fails, but often just clutter up the trace and make it harder to read.

To prevent having to repeat long runs of FDR, once results have been obtained they can be
saved and loaded again later.

5

In order to allow the CSP generated to be analysed separately in FDR, there is an option to
save the CSP �le. This should be saved to a directory containing svacomp.csp, refsva.csp and
compression09.csp.

The status window shows everything with FDR outputs on its error stream. This can be useful
for monitoring the status of FDR and debugging. However, to get more useful information, it may
be necessary to modify fdrDirect.tcl to read either config report medium or config report

full.

3 Requirements

SVA requires at least Java 1.6, FDR2.90 and ant. Binaries for these must be in the PATH.

References

[1] A. W. Roscoe, Understanding Concurrent Systems. Springer, 1st Edition, 2010.

6

