Think of \checkmark as a signal that the process has terminated, rather than an
event like ordinary ones which required the environment to cooperate.

$$
\Sigma^{\checkmark} \text { is the set } \Sigma \cup\{\checkmark\} .
$$

Handing over control

Further laws (e.g. associative, distributive and step) will be given later.
Sequential composition in a declarative world
One might expect the following to be true:

The use of sequential composition
The declarative semantics means that there is no direct way to pass
information from P to Q in $P ; Q$.
This usually restricts the cases in which we can use sequencing to cases
where Q is independent of what P does.
(The alternative is to put $P ; Q$ in parallel with a process which holds
the state: P can output to it and Q input.)
The result is that; is less used than you might expect given the role of
sequential composition in sequential languages.

Another counter

$$
\begin{aligned}
& Z E R O=u p \rightarrow P O S ; \text { ZERO, where } \\
& \qquad P O S=u p \rightarrow P O S ; P O S \\
& \quad \square \text { down } \rightarrow S K I P \\
& \text { ss that terminates as soon as it has communicated one }
\end{aligned}
$$

Iteration

$$
\begin{aligned}
& \qquad P^{*}=P ; P^{*} \\
& \text { runs } P \text { over and over again, ad infinititum..... } \\
& \text { Note that this makes more sense in a communicating process world than } \\
& \text { in situations where a program only gives results when it terminates. } \\
& \text { For example, }(a \rightarrow S K I P)^{*} \text { is is indistinguishable from } \mu \text { p.a } \rightarrow p . \\
& \text { Similarly, } \\
& \qquad C O P Y=(l e f t ? x \rightarrow \text { right }!x \rightarrow S K I P)^{*}
\end{aligned}
$$

Distributed termination
How should $P_{X} \|_{Y} Q$ terminate? If \checkmark were a possible member of X
and Y there would be four answers:
Termination and other operators

$(P \sqcap Q) ; R=(P ; R) \sqcap(Q ; R)$	$\langle;$－dist－I〉
$P ;(Q \sqcap R)=(P ; Q) \sqcap(P ; R)$	$\langle;$－dist－r〉
$P ;(Q ; R)=(P ; Q) ; R$	$\langle;$－assoc \rangle
$S K I P ; P=P$	$\langle;$－unit－l〉
$P ; S K I P=P$	$\langle;$－unit－r〉
The last of the above laws，though intuitively obvious，requires a good	
deal of care in modelling to make it true．	

A less obvious law

$$
P \square S K I P=P \triangleright S K I P \quad\langle\square-S K I P \text { resolve }\rangle
$$

$P \triangleright Q$ is the process that can choose to act like Q but can offer the
initial choices of P.
This law says that any process that has the option to terminate is
refined by SKIP.
$\langle S K I P-;-s$
Two step laws
Step laws now have to account for initial \checkmark^{\prime} 's. Consider ;
First, the case where no \checkmark is possible.
Provided x is not free in Q,

When \checkmark is possible we use $\langle\square-S K I P$ resolve \rangle and the following. When x is not free in Q,

$$
\begin{array}{c}((? x: A \rightarrow P) \triangleright S K I P) ; Q= \\ (? x: A \rightarrow(P ; Q)) \triangleright Q\end{array}
$$

Understanding Concurrent Systems. 7: Further operators
Laws of distributed termination

〈//-termination〉

See book for more laws involving ; and SKIP.
$\left\langle{ }_{X} \|_{Y^{-t e r m i n a t i o n}}\right\rangle$

Understanding Concurrent Systems. 7: Further operators

Z_{n}

$$
\begin{array}{l}=u p \rightarrow Z_{n+2} \\ \square \text { down } \rightarrow Z_{n}\end{array}
$$

This completes the proof.
$\stackrel{n}{1}$

$\operatorname{traces}(S K I P)=$	$\{\rangle,\langle\checkmark\rangle\}$
$\operatorname{traces}(P ; Q)=$	$\left(\operatorname{traces}(P) \cap \Sigma^{*}\right)$
	$\cup\left\{\hat{s^{\wedge} t \mid \hat{s^{\prime}}\langle\checkmark\rangle \in \operatorname{traces}(P)}\right.$
	$\wedge t \in \operatorname{traces}(Q)\}$

Understanding Concurrent Systems. 7: Further operators
\checkmark and failures
See book for details.
Interrupt
$P \triangle Q$ is a process that behaves like P until an initial event of Q
occurs, at which point Q takes over.
Somewhere between $\|($ for P) and $\square($ for $Q)$.
Almost invariably Q takes the form ? $x: A \rightarrow Q^{\prime}$ or $a \rightarrow Q^{\prime}$, because
otherwise Q might perform τ actions while P is running.
So (over $\mathcal{N}) P \triangle$ div $=\operatorname{div}$, and in general $P \triangle \operatorname{div}$ is never stable.
\triangle can introduce nondeterminism when $\operatorname{initials}(Q) \cap \alpha P \neq\{ \}$.

Understanding Concurrent Systems. 7: Further operators
Resetting
For example,
Example
\triangle useful for controlled faults: for example
\rightarrow STOP
Suppose we can control spikes but not $\downarrow \mathrm{s}$. Under what circumstances
can we build an operator $\operatorname{recover}(\cdot)$ so that
$\operatorname{recover}\left(P^{\text {\& }}\right)=P\| \|(\mu p \cdot$ 立 $\rightarrow p)$

$P \Theta_{A} Q$ behaves like P until P performs an action in A, at which point
it starts Q.
Like P throwing an exception, hence the throw operator.
Both useful for programming, and also for theory.....

Not in FDR till 2.91.

