
9/20/2005 1

Mark D. Aagaard, Robert B. Jones, Thomas F. Melham*,
John W. O’Leary, Carl-Johan H. Seger

Strategic CAD Labs, Intel Architecture Group
Intel Corporation, Hillsboro, OR

*Dept. of Computing Science, Univ. of Glasgow
Glasgow, Scotland

A Methodology for
Large-Scale Hardware Verification

Why Methodology?

Theory by itself is not usable (in practice)
Theory with a system is not usable (in practice)
A methodology is required for theory and a system to
be usable in practice

9/20/2005 2

Outline

Motivating Example: Floating-Point Adder
Proof Overview

Methodology Requirements
Methodology Description: datapath verification with
STE

Wiggling
Targeted Scalar Verification
Symbolic Verification
Theorem Proving

Conclusion

Motivating Example: FP Adder

IEEE-compliant floating-point addition and
subtraction
Multiple precisions

single, double, extended
Multiple rounding modes

toward 0, +∞, -∞, to nearest

FPU from Intel Pentium® Pro processor
Large block of RTL code written by architects and
logic designers
No modification from design database

9/20/2005 3

Proof Overview

FADD RTL
Proof target: RTL model

(register transfer level)
Design activity centers on RTL
It is the “golden” functional
reference model for the
implementation
RTL is the primary focus of
validation efforts

Proof Overview

FADD RTL

High-level Specification
IEEE 754

RTL should implement IEEE
754 floating-point specification
IEEE 754 not formal, many
pages of English descriptions
Huge abstraction gap between
specification and
implementation
How can we bridge the gap?

9/20/2005 4

Proof Overview

FADD RTL

Reference Model

High-level Specification
IEEE 754

We create a reference model
It must be formal
It must be executable
It should be functionally
equivalent to the RTL
It should satisfy IEEE
specification

Technical Issues

FADD RTL

Reference Model

High-level Specification
IEEE 754

IEEE 754 is not expressed
formally
What abstraction level for the
reference model?
Where do we get a reference
model?
How do we connect the
reference model to the RTL?
Production RTL is huge
RTL saddled with
implementation considerations
How do we manage complexity
of the proof itself?

9/20/2005 5

Suppose we find solutions...

“Top 10” reasons we can still fail...

Spend all your time finding bugs in the spec
Can’t keep up with daily design evolution
System crashes while printing final BDD order
At the end, you have no idea what you’ve actually
proved
And neither does your manager
Design changes break structural decomposition
“120,000” line proof little (or no) use for next project
Spell checker removed those funny ∀ & ∃ characters
You’re the only one who knows how to do this--do
you want to verify adders until retirement?
After three years of effort, project canned because
project was “all-or-nothing”, and you have ...

9/20/2005 6

We Must Also Have ...

A systematic, pragmatic approach to organizing
large-scale hardware verification efforts

Methodology: a systematic approach to problem
solving

Scope can be very broad (the scientific method)
Or quite narrow (BDD variable ordering)

Methodologies are familiar in CAD
Sometimes called flows
Dictate the order and scope of design activities
Often involve multiple tools and data
representations

Key Messages

FADD RTL

Reference Model

High-level Specification
IEEE 754

Realistic
Complete specifications are
usually not available
Access to design engineers
is always limited

Incremental
Must be able to measure
progress
Effort should develop
“debugging value” early

9/20/2005 7

Key Messages

FADD RTL

Reference Model

High-level Specification
IEEE 754

Transparent
Should indicate what has
(not) been proved
Must be sound (no false
positives)

Structured
Helps new users learn
Increases productivity of
experienced users

Key Messages

FADD RTL

Reference Model

High-level Specification
IEEE 754

Works top-down and bottom-
up

Top-down for problem
reduction
Bottom-up for design under-
standing and tool capacity
limits

Optimized for common case
Bulk of verification effort is
debugging
Optimize for proof failure,
not success

9/20/2005 8

Key Messages

FADD RTL

Reference Model

High-level Specification
IEEE 754

Supports regression efficiently
Verification artifacts should
be maintainable
And reusable after design or
specification changes

Allows effort reuse
Verification is human-
intensive (expensive)
Amortize cost over changes or
multiple designs
Proof effort should be
relatively circuit independent

The Methodology

Intended for datapath verification based on
symbolic trajectory evaluation (STE)
Assumes a comprehensive verification framework
Our (internal) framework is called Forte

Formerly known as Voss [Seger UBC]
Programmable interface (FL)
Multiple verification engines
Debugging support

9/20/2005 9

The Methodology

Four primary stages:
Wiggling
Targeted Scalar Verification
Symbolic Verification
Theorem Proving

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Circuit API

The “glue” between our datapath
reference models and the RTL
Captures signal names, interface,
timing, protocol, etc.
Programmed in FL
Challenges:

Complex interface
Complex internal behavior
Protocols are poorly
documented, and will change

Specification

Reference Model

Circuit API

FADD RTL

Specification

9/20/2005 10

Challenge: Complex Interface

This abstracted interface looks quite simple
The real interface has several hundred signals!

FADD RTL resultpc+rc flagssrc1
src2

opcode
valid

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Interface Abstraction
Ta

rg
et

ed
 S

ca
la

r V
er

if.
Sy

m
bo

lic
 V

er
if.

Th
eo

re
m

 P
ro

vi
ng

W
ig

gl
in

g
Define a mapping from abstract transaction packet
to concrete signal names and timing

let Inputs(vld,opcode,pc,rc,src1,src2)=
// valid bit
(“op_vld” is vld in_phase (clk, t)) and

// opcode
(“op_code” isv opcode in_phase (clk, t)) and

// precision and rounding control
(“pre_ctl” isv pc in_phase (clk, t+1)) and
(“rnd_ctl” isv rc in_phase (clk, t+1)) and

// sources
(“in_data1” isv src1 in_phase (clk, t+1)) and
(“in_data2” isv src2 in_phase (clk, t+1)) ;

9/20/2005 11

Developing Circuit APIs

Use STE as a scalar simulator
Begin with trivial inputs

We started by adding 0E0 + 0E0
Observe the simplest outputs

We started by looking at the sign bit of the result
We expect the sign bit of 0E0 + 0E0 to be 0

Appearance of X on an output is symptomatic of
incomplete/missing/wrong information in the API

Fix API
Lather, rinse, and repeat

For example ...

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Example Want 0 at this output in cycle 6 (sign bit of result)

X at output is
caused by X here

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 12

Summary: Wiggling

Artifact: Circuit API that defines circuit interface:
Signals
Timing

Artifact: Primitive specification

Time to move on when: circuit outputs can be driven
non-X

Wiggling
Targeted Scalar Verification
Symbolic Verification
Theorem Proving

The Methodology
Ta

rg
et

ed
 S

ca
la

r V
er

if.
Sy

m
bo

lic
 V

er
if.

Th
eo

re
m

 P
ro

vi
ng

W
ig

gl
in

g

9/20/2005 13

Developing the Reference Model

Incrementally craft a specification
Start with simple behaviors
Captures numerical function of
the datapath
Purely algorithmic
Written in FL

Adapted a textbook algorithm as a
first approximation
Debug with scalar values:

inspection
comparison with circuit
pencil-and-paper computations

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Specification

Reference Model

Circuit API

FADD RTL

Specification

Developing the Reference Model
Ta

rg
et

ed
 S

ca
la

r V
er

if.
Sy

m
bo

lic
 V

er
if.

Th
eo

re
m

 P
ro

vi
ng

W
ig

gl
in

g
Result in the textbook algorithm was rounded toward
0 (truncated)
Rounding in the completed reference model:
let RND pc rc s sgf =

// Extract lsb, guard, round sticky bits.
let L = Lsb pc sgf in
let G = Guard pc sgf in
let RS = RoundS pc sgf in

// Conditionally add one to LSB
let rbit =

(rc '=' TO_ZERO) => F
| (rc '=' TO_POS_INF) => ((NOT s) AND (G OR RS))
| (rc '=' TO_NEG_INF) => (s AND (G OR RS))
| (rc '=' TO_NEAREST) => (RS => G | (L AND G))
| F in

// Result truncates mantissa to precision specified
// by pc, adds rbit and pads result with zeros.

Result rbit pc sgf;

9/20/2005 14

Summary: Scalar Verification

Artifact: Functional specification
Artifact: Improved circuit API
Artifact: Scalar test vectors (useful for regression)

Time to move on when: difficult to find discrepancies
between circuit and specification

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

The Methodology

Wiggling
Targeted Scalar Verification
Symbolic Verification
Theorem Proving

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 15

Verifying RTL Against Ref. Model

Used symbolic trajectory evaluation (STE)
Complexity issues:

data-dependent shifts in reference
algorithm and RTL
BDD blowup in RTL’s LZA circuitry

Specification

Reference Model

Circuit API

FADD RTL Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Challenge: Tool Capacity (BDDs)

-

s1

s2

e1

e2

<
<

+

--

n
o
r
m

++

r
o
u
n
d

e

s

Adder BDDs blow up
because of variable shift

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 16

Verifying RTL Against Ref. Model

Used symbolic trajectory evaluation (STE)
Complexity issues:

data-dependent shifts in reference
algorithm and RTL
BDD blowup in RTL’s LZA circuitry

Specification

Reference Model

Circuit API

FADD RTL Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Verifying RTL Against Ref. Model

Used symbolic trajectory evaluation (STE)
Complexity issues:

data-dependent shifts in reference
algorithm and RTL
BDD blowup in RTL’s LZA circuitry

Key insights:
split input data space to avoid data-
dependent shifts (exploits parametric
representation)
employ two STE verifications w/different
BDD orderings (one for LZA circuit, one
for result)
dynamic weakening of symbolic values

342 cases verified in parallel on workstation
network

Specification

Reference Model

Circuit API

FADD RTL Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 17

How do we generate the cases?
Split according to the difference between the
input exponents of A and B
For exponent difference of 0 or 1, further split on
number of leading zeros in mantissa

Did we forget a case?

Easily checked in FL by a BDD computation

Case Splitting

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

let true_add_case n =
TrueAdd AND (ExpDiff n);

TrueAdd ==>
(OR_list true_add_cases);

Summary: Symbolic Verification

Artifact: improved specification
Artifact: input-space partitioning

Feasible model checking
Artifact: BDD variable orderings

Time to move on when: complexity management
techniques provide diminishing returns

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 18

The Methodology

Wiggling
Targeted Scalar Verification
Symbolic Verification
Theorem Proving

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Theorem Proving

Verify reference model against an
external benchmark (in this case, a
formalization of IEEE compliance)
Algorithm verification, done in a
higher order logic theorem prover
Finds bugs:

Proof bugs: incorrect reasoning,
incomplete case splits
Model bugs: missing behavior,
corner cases
Fixing bugs may require model-
checking modification--which
may reveal circuit bugs Ta

rg
et

ed
 S

ca
la

r V
er

if.
Sy

m
bo

lic
 V

er
if.

Th
eo

re
m

 P
ro

vi
ng

W
ig

gl
in

g

Specification

Reference Model

Circuit API

FADD RTL

9/20/2005 19

Summary: Theorem Proving

Artifact: Final version of functional specification
Artifact: Top-level correctness statement
Artifact: Collection of model-checking runs
Artifact: Mechanized proof

Connects correctness statement to STE runs

Time to move on when: the top-level specification has
been formally linked with the STE runs

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

The Bigger Picture

In practice of course, methodology stages are not
strictly sequential

Fair amount of overlap
And backtracking
And more backtracking ...

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 20

Regression

Finishing theorem proving doesn’t mean verification is
finished

A “live” design is still changing
Architecture changes for performance enhancements
ECOs for circuit implementation issues

Regression is a significant overhead in an on-going
verification effort

We were surprised by this finding
Optimize both platform and methodology for
failing cases

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

Regression

An effective methodology localizes changes
textually

Greatly assisted by programmable interface to
verification engines

Closely related to regression is proof re-use

Time to move on when: Your manager tells you
you’re “done”

Ta
rg

et
ed

 S
ca

la
r V

er
if.

Sy
m

bo
lic

 V
er

if.
Th

eo
re

m
 P

ro
vi

ng
W

ig
gl

in
g

9/20/2005 21

Conclusions

An effective methodology is key to successful
verification “in the large”
An effective methodology must fit skill set of
verification team
We have presented a four-stage methodology for
STE datapath verification

Proven through many large industrial
verifications
Applicable in other verification approaches

Still a work in progress
Technology advances require (and enable)
advances in methodology
Tension between tool capability and usability

