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Abstract

This dissertation proposes a two-layer approach for formalhardware ver-

ification using symbolic ternary simulation of gate-level circuit models.

At the core of our approach we follow the methodology of generalized

symbolic trajectory evaluation (GSTE), which has shown considerable

promise for the verification of micro-processor components. Properties

for GSTE have traditionally been expressed using diagrams calledasser-

tion graphs, but the graphical nature of these places limitations on formal

reasoning and scalability. We recast GSTE techniques into aclean general

logical framework for simulation, and use this framework toexplore and

characterize important verification steps.

We introducegeneralized trajectory logic(GTL), a low-level tempo-

ral logic that provides a textual formal basis for specifying and reasoning

about symbolic ternary simulations. We describe model checking for this

logic and derive clean rules for property equivalence, decomposition and

abstraction refinement. We then introduceassertion programs, which de-

scribe abstract specifications as high-level executable models. We show

how term-rewriting based on weakest preconditions can be used to gen-

erate simulations that verify that a circuit refines an assertion program.

Expressing these simulations using GTL, we show how they canbe dy-

namically transformed during the generation process, to create particular

schemes of model checking abstraction. We apply the entire verification

framework to a first-in-first-out buffer and a micro-operation scheduler.
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Chapter 1

Introduction

In this chapter, we provide the context and motivation for developing specification

notations for formal hardware verification by symbolic ternary simulation. Following

an overview of general verification techniques, we introduce symbolic ternary simu-

lation, and the specification problems that we aim to address. We then summarize our

contributions and give an outline of the dissertation.

1.1 Verification

Digital systems are increasing in usage, providing unparalleled degrees of convenience

and automation. They are responsible for performing many critical tasks, from real-

time flight and automotive control, to secure and reliable transmission of sensitive

communications. But as well as growing in number and responsibility, these sys-

tems are also tending to expand in design complexity, fueledby advances in digital

processing and storage, and by the connectedness offered byglobal communications

networks. This complexity is difficult to manage, often leaving the doors open to po-

tential design flaws. To guard against these risks, there is astrong need forverification

methodologies, which demonstrate that the specification ofa system is in fact met by

its design.

The most common form of verification issimulation. Simulation uses an exe-

cutable model of the design to compute how it will respond to certain environmental

scenarios. As well encompassing simple interactive debugging procedures, verifica-

tion by simulation can also describe bulk batch attempts to find bugs by systematically

covering as many system states as possible. A wide range of tools exist to structure

and select such simulation sets, by maximizing the exploration of significantly dis-

tinct design states. But despite applying huge numbers of simulations, bugs are often

missed, simply due to the size of the state-spaces at hand. For the Intel Pentium 4

1



1.2. Introduction - Formal Verification 2

design, tens of bugs were still undetected after a set of over200 billion simulation cy-

cles, requiring the capacity of several thousand machines,operating for many months

[Ben01].

1.2 Formal Verification

Formal verificationuses rigorous mathematical foundations to reliably deduceprop-

erties about how systems behave over ranges of execution conditions. There are many

different approaches to formal verification, each suited tothe particular qualities of

the properties or systems under verification.

Symbolic simulationhas been in use since the late 1970s [CJB79]. It extends tradi-

tional simulation to wider input ranges, by using symbols called variables to represent

arbitrary unknown, but fixed, values. Expressions containing these variables are as-

sociated with components of the system, so that the overall state is represented in a

symbolic encoding. This allows standard simulation to be generalized over the range

of different operating conditions parameterized by these variables. The capacity of

symbolic simulation was greatly enhanced by the introduction of Binary Decision Di-

agrams (BDDs) [Bry92] which provide particularly efficientrepresentations for com-

mon Boolean functions. Despite this, symbolic simulation is still limited in capacity,

as well as in its linear and bounded nature.

Model checking [JGP99] is a different approach, developed independently by

Clarke and Emerson [CE81] and Quielle and Sifakis [QS82]. Inmodel checking,

the validity of some property, typically a formula of temporal logic [Eme90], is sys-

tematically and automatically checked with respect to a model derived from the sys-

tem under analysis. When the property is found not to hold, anillustrative counter-

example is typically generated. Different forms of specification and model checking

algorithms exist, for different classes of models and properties. Unfortunately, stan-

dard model checking techniques are limited to those systemswith state-spaces that are

simple enough to be automatically explored. This is compounded by thestate explo-

sion problem, which says that the number of states of a system can, and often does,

increase exponentially with the size of the design.

Several means of avoiding this problem have been developed.One approach is

to use special data structures and algorithms for the analysis. As with simulation,

the capacity of model checking techniques can be greatly enhanced with the use of

symbolic techniques. Symbolic model checking [BCMD90, McM92] encodes both

the sets of model states, as well as the model’s transition relation, as Boolean formulas
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represented by BDDs. Another approach is to use BDD-based symbolic simulation

for direct state-set image computation [CBM90]. Operations for BDDs are fast, and

their space requirements decrease with the regularity of the predicates they describe.

Since most designs tend to involve a reasonable degree of symmetry and regularity,

the resulting state-set representations can often be kept fairly compact.

Another option for extending capacity is to make use ofabstraction—the process

of losing selected pieces of information that are not relevant to the task at hand. Ab-

straction is often achieved using sound simplifications of the design model. Other

approaches discard information dynamically during the model checking algorithm it-

self. If too much information is lost, known asover-abstraction, then the resulting

reduction in precision can lead to verification failure. Typically, a feedback loop of

iterativeabstraction refinementis used to reach a suitable level of abstraction, where

there is a middle-ground between loss and retention of information. This process is

often automated, although a degree of user interaction can sometimes prove critical to

aid the selection of relevant information.

Theorem proving [GM93] is a type of formal verification that allows for a high de-

gree of manual interactive involvement. Properties are expressed as terms in a logic,

and deductive reasoning rules are progressively applied todetermine term validity. If

required, the user can gain complete control over the rules applied at each step. Since

the terms of the logic can be considered to themselves be abstractions, theorem prov-

ing can therefore be viewed as the ultimate in interactive abstraction control. But due

to the high degree of guidance, skill and time generally required for success, theo-

rem proving can often be prohibitively demanding. As a result, there have been many

attempts to mix theorem proving with other, more automated,techniques, to attain

an efficient balance between the benefits of human intuition and those of automated

deduction. One example of this is the use of interactive theorem provers to decom-

pose large model checking problems into smaller ones. Here the user need only be

concerned with the high-level insights that are key to surpassing the main capacity

barriers.

1.3 Symbolic Ternary Simulation

Verification is of particular importance for microprocessor design, because of the im-

portance that microprocessors play in the foundations of many other products, and

the high cost of any necessary product recalls. As the numberof transistors per pro-

cessor continues to rise exponentially, this extra computation capacity leads to addi-
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tional functional design complexity, enabling increasingly out-of-order, speculative

machines with deeper pipelines, and advanced features, such as Hyper-Threading and

multi-core architectures. This dissertation is based on formal hardware verification

usingsymbolic ternary simulation, a technique that has shown success in verifying

components of next-generation microprocessors beyond thereach of standard model

checking techniques [Sch03].

Symbolic ternary simulation lies at the intersection of symbolic model checking,

symbolic simulation and abstraction techniques. As with symbolic model checking,

BDDs are used to explore the relationship between model and property states. Un-

like traditional symbolic model checking, however, post-images are calculated using a

form of symbolic abstract simulation that takes place directly on a low-level descrip-

tion of the circuit design. This eliminates the need for building a complete model

transition relation, which is prohibitive for many industrial designs.

Symbolic ternary simulation is fundamentally distinguished from many other stan-

dard forms of model checking by the abstract representationthat it uses for sets of

circuit states. Abstraction is introduced by adding the additional simulation value

X, which denotesunknowncircuit charge. This results in what is effectivelypartial

circuit simulation. One key advantage of this approach is that each particular set of

circuit states can be represented by arangeof different approximations. The less pre-

cise an approximation is, the less space it consumes in the model checker. Therefore

an abstraction balance can often be achieved between losingtoo much information

and requiring too much space. In order to do this, user feedback can direct the model

checker on how to pick the best representatives for a given property.

There are several different flavours of model checking basedon symbolic ternary

simulation. We look at each of these in detail in Chapter 2. The most basic form, Sym-

bolic Trajectory Evaluation (STE) [BBS91], uses single simulation sequences to verify

properties written in a small linear temporal logic. The length of the traces checked

by STE match the length of the abstract simulation itself, soproperties are limited to

being bounded in nature.Generalized symbolic trajectory evaluation(GSTE) [YS02]

overcomes this limitation, by using fixed-points to simulate unbounded iterative be-

haviours.Compositional GSTE(CGSTE) [YS04] extends this approach by providing

a mechanism for decomposing a run into separate concurrent blocks of simulation.

Properties for (C)GSTE are expressed usingassertion graphs[YS02], which are

graphical structures that resemble a variety of universal-automata [HCY03b]. Each

path in an assertion graph represents a linear assertion made about which execution
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traces are allowable. These graphs are directly traversed by the model checking algo-

rithms, so their shape can directly affect the simulation strategy. In order to control

abstraction, therefore, manual transformations are applied directly to the graph struc-

tures themselves.

Although the graphical nature of assertion graphs can be useful for displaying

simple properties in a visual manner, it places serious limitations on formal reasoning.

Experience from from STE [AJS98, SJO+05] has shown the benefits of formal rea-

soning for managing high-level verification steps such as property decomposition. In

(C)GSTE, abstraction refinement also requires additional justification. Although some

progress has been made on reasoning with assertion graphs [HCY03b, YYHS05],

the resulting rules tend to be complicated by the graphical nature of the properties.

Cleaner reasoning requires a property representation thatis more structured and con-

trolled.

1.4 Contributions

This dissertation describes a clean formal framework for verification using symbolic

ternary simulation. The framework is split into two layers:a low-level temporal logic

layer, for describing simulation structures, and a high-level synchronous programming

language, for specifying behavioural models. The temporallogic and its associated

reasoning rules have been published inA Logic for GSTE[Smi07]. The language and

methodology for our high-level language is based on our publication A Method for

Generation of GSTE Assertion Graphs[Smi05]. We will now summarize the contri-

butions that we make.

Generalized Trajectory Logic We introducegeneralized trajectory logic(GTL) as

a linear temporal logic for expressing symbolic ternary simulations. The structure

and semantics of GTL unifies the property notations of STE, GSTE and CGSTE, by

aligning itself with the atomic simulation steps common to each. By operating at this

finer level of atomicity, we expose underlying algebraic patterns that have not been

otherwise apparent. This not only provides the fundamentallogical characteristics

necessary for formal reasoning, but also emphasizes the link to propositional logic,

clarifying the nature of symbolic ternary simulation as a whole. Being a textual nota-

tion, GTL is furthermore easy to manipulate, express, and describe rules for.
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Reasoning with GTL By examining the semantic characteristics of our logic, we

develop a series of reasoning rules for applying practical verification management

steps to simulations expressed using GTL. As with GSTE assertion graphs, the speci-

fications describe both the property to be verified, as well asthe verification approach.

Equivalence rules can therefore be used to describe property-preserving transforma-

tions that optimize model checking or refine abstractions. We also introduce rules for

property decomposition, and a rule for temporal induction.

Assertion Programs Since GTL describes simulations at a low level, it is not prac-

tical for expressing complex specifications manually. To surmount this problem, we

introduce the synchronous language ofassertion programsas a user-facing specifi-

cation language. Assertion programs are used to express high-level reference mod-

els of the behaviour expected of a circuit. This approach allows specifications to be

expressed using a familiar imperative programming style with high-level data-types,

such as integers and lists. Unlike GTL, the notation also serves to separate property

specification from model checking approach. The circuits and high-level models are

connected via giveninterface mappingsthat form part of the specification.

Verifying Assertion Programs We provide a means to unify the semantics of GTL

and assertion programs. We then use this to build a rule-based framework for gen-

erating simulation descriptions from assertion program specifications. The simula-

tions produced verify that a circuit refines the given assertion program. Simulations

are progressively built using symbolic backwards state-space exploration, based on

weakest-precondition term-rewriting. By incorporating rules for abstraction and de-

composition into the framework, users can control the resulting simulation approach

through the choice and application of rules.

Case Studies We have implemented both GTL model checking and our simulation

generation framework within the Forte [SJO+05] verification environment, and used

our implementation to verify a first-in-first-out buffer anda simple micro-operation

scheduler.

1.4.1 Significance of Contributions

Our notation for simulations is at least as expressive as GSTE assertion graphs, so

it enables the expression of GSTE simulation techniques. Since it is based around a

formal logic with good algebraic properties, there are manyrules for reasoning about
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the simulations that are otherwise difficult to describe forassertion graphs. Our work

therefore shows significant promise for improving the outlook of symbolic ternary

simulation, by fitting the successful techniques surrounding GSTE into a clean and

manageable formal setting.

1.5 Outline

Chapter 2 provides an introduction to symbolic ternary simulation, explaining its his-

tory, theoretical foundations and usage methodology. We first describe the structure of

our circuit models. Then we explain how regular simulation evolved via STE to GSTE

and, more recently, tocompositional GSTE, driven by demands for increased capacity

and property expressibility. We provide an in-depth look atternary abstraction and the

GSTE specification notation of assertion graphs. We show howthese graphs are used

to control abstraction in practice.

Chapter 3 introduces generalized trajectory logic (GTL), starting with an introduc-

tion to thesymbolically indexed structuresthat we use to model symbolic expressions.

We provide a formal trace-based semantics of GTL, for which we demonstrate mono-

tonicity and continuity. After introducing several shorthand notations, we describe

and justify algorithms for both concrete and abstract modelchecking.

Chapter 4 describes a series ofreasoning rulesfor GTL, illustrated with several

small sample applications. The first section demonstrates simple equivalence rules for

formulas, classified into Boolean, temporal and symbolic types. In the second section,

rules for properties are considered, including several means of decomposition. The

final section formalizes the notation of abstraction refinement for GTL, and expresses

and classifies several common patterns of refinement previously used with GSTE.

Chapter 5 introduces the high-level modeling language ofassertion programs. We

first describe the refinement-based approach that we take to specification. Then, after

providing an overview of the structure of assertion programs, we step through each

language construct in turn, from variables and statements to the interface mappings

that link the high-level models to the circuits. We then provide a formal semantics for

the language, and a formal definition of satisfaction.

Chapter 6 provides a methodology for translating assertionprograms into series

of GTL properties that together verify refinement. We unify the semantics of asser-

tion program expressions and formulas of GTL to allow reasoning between these two

modes of specification. We extend GTL to a form calledvector GTLwhich, although

of a more complex form, scales better to large simulations. We then describe a series
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of compilation rules for building up vector GTL simulationsbased on the transition

structure of an assertion program. We show how different applications of these rules

results in different abstraction approaches during the resulting simulation runs.

In Chapter 7, we apply our verification methodology to two example circuits: a

first-in-first-out (FIFO) buffer and a micro-operation scheduler. In each case, we in-

troduce the circuit specification in English, describe an existing verification approach

based on assertion graphs, and then describe our own approach based on assertion

programs. At the end of the chapter we compare and contrast the two methodologies.

Finally, Chapter 8 provides some concluding remarks, and a discussion of potential

future work.



Chapter 2

Generalized Symbolic Trajectory
Evaluation

Generalized symbolic trajectory evaluation(GSTE) is a formal hardware verification

technique lying at the boundaries of model checking, abstract interpretation, symbolic

execution and circuit simulation. In this chapter, we explain its nature and history.

We first describe the gate-level circuit model used by the model checker, as well

as a more abstract circuit model that is useful for reasoningtheoretically about ver-

ification. We provide a brief introduction to standard binary circuit simulation, and

then introduceternary simulation. Ternary simulation extends the range of binary

simulation by introducing a ‘don’t care’ value, denotedX into the simulation domain.

By viewing the ternary simulation states as abstract representations ofsetsof binary

states, we show how ternary simulation can be compared to other standard forms of

model checking.

We then describeSymbolic Trajectory Evaluation(STE), which uses asymbolic

form of ternary simulation for model checking. STE is sufficiently scalable to have

found many applications in industry, but its range of application is limited to bounded

properties, because of its roots in conventional simulation. This deficiency led to

the development ofgeneralizedSTE (GSTE), which extends STE to unbounded be-

haviours by introducing fixed-points in the simulation. We describe GSTE model

checking, with its graphical specification notation calledassertion graphs. Finally

we describe a further generalization of GSTE, known ascompositionalGSTE that

decomposes simulations of concurrent behaviour.

9
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b = a ∧ d

c′ = b

d = ¬c

a
b c

d

(i) Circuit Netlist (ii) Diagrammatic Representation

Figure 2.1: A Circuit Netlist

2.1 Circuit Models

We will describe two different forms of circuit model. The first of these models, the

circuit netlist, is a gate-level circuit description used directly by the simulation tool.

The second model, the circuitKripke Structure[JGP99], is a more abstract model that

is useful forreasoningabout the verification. The types of circuits that we consider

are synchronous systems, where the outputs at each time-step are functions both of

the current state and the current circuit inputs, classing them asreactive[Hal98]. Each

state in these models represents a particular stable chargeconfiguration in the physical

circuit. We use Boolean values, which are, in the hardware domain, conventionally

written ashigh, 1, andlow, 0, to model the charge that can be held at any one point in

the circuit.

2.1.1 Netlists

The circuit netlist model, used by gate-level simulation-based techniques such as

GSTE, is a collection of logical and statefulgatestogether with a description of their

interconnections. Each gate is itself modeled using a Booleanexcitation functionthat

describes how its output behaves as a function in terms of itsinputs. To allow for

state-holding elements, this map can be a function of thepreviousinputs and output

of the gate, as well as its current inputs. The gates are connected through a finite set

of shared connections, given by the set ofcircuit nodes, N .

Example An example circuit netlist is shown in Figure 2.1, together with its tradi-

tional graphical representation. The circuit nodes are labeleda, b, c andd. The excita-

tion function for each node is listed as a Boolean expression, whereb′ represents the

previous value of nodeb. The delay element, graphically represented as a rectangle,

is a gate whose input,b, always matches the subsequent value of its output, writtenc′.

Nodea has no excitation function, and is therefore a circuit input.
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Notice that netlist models are more structured than typicalmodels used in formal

verification, such as state-transition systems or automata. This is because they encode

the topological layout of the physical circuit as well as itsfunctionality. In this way,

a netlist expresses a circuit model as aproductof systems that each model one of the

gates. This has benefits over a monolithic transition representation, as different parts

of the circuit can be analyzed and simulatedindependently, and the model representa-

tion is kept concise.

2.1.2 Kripke Structures

Although circuit netlists are the models used directly by simulation-based techniques,

it is useful to have alternative abstract models forreasoningabout such techniques.

This is because the properties that we are concerned with typically only depend on the

functionality of the circuit, not its topological layout. For this we model circuits as

Kripke Structures [JGP99].

Definition 2.1.1 (Kripke Structure). A Kripke Structure is a pairK = (S, T ), where

S is a finite set of modelstates, andT ⊆ S × S is a total transition relation.

The set of circuit states used throughout this dissertation, S, consists of those

Boolean vectorss ∈ B
N that are consistent with the constraints imposed by the circuit

gates. We will writes(n) for the value of noden in states. The transition relation

T will hold between those states where the constraints implied by the circuit’s state

elements are satisfied. We will regard the Kripke structure of the circuit under verifi-

cation,KC = (S, T ), to be a fixed constant throughout.

Example We can model the netlist shown in Figure 2.1 as the Kripke Structure shown

in Figure 2.2. States are represented as four-bit vectors, written in the formabcd. The

consistent states,S, are those states that satisfyb = a ∧ d andd = ¬c. The transition

relation holds from states ∈ S to s′ ∈ S whens(b) = s′(c).

Kripke Structures contain no concept of initial state. Thisis in alignment with

hardware systems in particular, where nothing is known about the state of the system

until we start to interact with it. This differs from software, where state is typically

initialized on allocation. Many hardware components do have some form ofreset, to

what might be regarded as an initial state. But many also do not, and reset logic, when

it exists, is often sufficiently complex to require verification in its own right. Therefore

resets are not a part of the circuit models for STE-based verification.
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0001

00101010

1101

S = { 0001, 0010, 1010, 1101 }

T = { (0001, 0001), (0001, 1101),
(0010, 0001), (0010, 1101),
(1010, 0001), (1010, 1101),
(1101, 0010), (1101, 1010) }

Figure 2.2: A Kripke Structure

Definition 2.1.2 (Kripke Post-Image). For Kripke StructureK = (S, T ), we define

the post-image function,postK : 2S → 2S, to map a set of states to the set of its

successors:postK(R) = {s′ ∈ S | ∃s ∈ R . (s, s′) ∈ T}.

Example For the Kripke Structure that represents our example circuit, the post-image

of states in whichb is 0 consists of those states in whichc is 0:

post({0001, 0010, 1010}) = {1101, 0001}

This is what we would expect, seeing as there is a simple delayelement that separates

the two nodes.

We model the possible behaviours of our models astraces, which are non-empty

finite words fromS+ corresponding to paths through the Kripke Structure.

Definition 2.1.3 (Kripke Traces). A finite non-empty sequence of states,σ ∈ S+, is

a trace ofK if each step in the trace is a possible transition:(σi, σi+1) ∈ T for

0 ≤ i < |σ| − 1. We will writetr(K) for the set of all traces ofK.

Throughout the dissertation we will uselast(t) to refer to the last element in the

sequencet, and front(t) to refer to the prefix consisting oft with its last element

removed.

2.2 Binary Simulation

Binary circuit simulation is a complete software emulationof a circuit. Given a start-

ing state and a sequence of concrete inputs, it determines exactly how a circuit will

react by finding the complete state of the circuit at each time-step. For netlists, this is

done by evaluating the excitation function for each gate in turn until a complete circuit

state is reached.
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(ii) Simulation Calculation

Figure 2.3: Binary Circuit Simulation

Example Figure 2.3 illustrates the simulation of a simple gate-level circuit model.

The four stages of simulation are:

• The inputs and state at time zero are assigned to their corresponding netlist

nodes.

• The values are propagated forward to the rest of the circuit,by calculating the

output of each gate in turn.

• A time-step is simulated by copying the values on delay gate inputs to their

outputs, and then clearing the values assigned to all other nodes.

• Another propagation is then performed for the subsequent time-step.

The result of binary simulation is that the Boolean value of every node is calculated

for the entire bounded time-frame for which the inputs were provided.

2.3 Ternary Simulation

As we have seen, binary circuit simulation allows us to calculate how a circuit will

react toone particularconcrete input trace over time. Verifying more interesting

properties, however, typically requires us to reason over many input traces at once.

For instance, if a property requires us to try all possible input values for a circuit, then
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Figure 2.5: Ternary Circuit Simulation

the number of simulations required will be exponential in the number of these inputs,

making binary simulation impractical.

Ternary simulation introduces an extraunknownvalue (or ‘don’t care’ value), writ-

tenX, that indicates that nothing is known about the charge held on a particular node.

Each simulation step assigns aternary valuefrom the setT = {0, 1, X} to each node.

Simulation states are therefore elements ofT
N , which can also be seen aspartial

circuit states.

Ternary simulation proceeds in the same format as binary simulation, but with a

new interpretation of excitation functions based on a three-valued logic over ternary

values. The output of a gate can only be assigned0 or 1 if enough information is

known to deduce this output, given the partial information we have about its inputs. If

there is not enough information thenX is assigned instead. For example, if one input

of an OR-gate is high, then we know that its output must also behigh, soX ∨ 1 = 1.

The same input conditions, however, are not enough to deduceanything about the

output of an AND-gate, soX ∧ 1 is evaluated toX. This is equivalent to interpreting

the standard logic gates with the ternary logic shown in Figure 2.4.

Example Suppose we would like to verify, for the circuit in Figure 2.5(ii), that if node

a is low at Time 0 then the outputo must be low at Time 1. To use binary simulation,

we would have to run a simulation for each of the possible input combinations, totaling
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Figure 2.6: Ternary Simulation Steps

26 = 64 simulations. We can, however, instead verify all of these traces in a single

ternary run, as shown in Figure 2.5.

2.3.1 Modeling Ternary Simulation

We introduce some notation in order to describe the steps in ternary simulation. Figure

2.6 (i) shows the ternary vectors that represents all consistent circuit states where the

node marked0 is low. Maximal propagation of these constraints, within a single time-

frame, is formalized by the propagation operator| · |, which is illustrated in Figure

2.6(ii). This operator has been described in detail in [RC06a], where it is referred to as

theforwards closure functionof the circuit. Its effect is to assign to the output of each

node the least approximate output of each gate that can be deduced from the ternary

inputs currently assigned to it. The abstract post-image function, post♯, represents

first performing this propagation, then passing the resulting constraints across delay

elements and marking every other node asX, as shown in Figure 2.6(iii). This results

in a post-image state containing all the constraints that can be deduced by forward

propagation from its predecessor.

2.3.2 Ternary Abstraction

Unlike binary simulation, ternary simulation can be seen asoperating withsetsof

circuit states, much like many standard forms of model checking. This is because

ternary states can be seen as abstract representations of sets of circuit states. For

example, the ternary stateX0X can be seen as an abstract representation of the set

{000, 001, 100, 101}. In ternary simulation, these representations are used asupper-

approximations, whose precision can be controlled by controlling the number of Xs.

For example, the set{0011, 0001} can be represented precisely using the ternary vec-

tor00X1, and approximately by0XX1 or evenXXXX. Some sets cannot be represented

exactly. For example, the most precise representation for{0011, 0101} is 0XX1. STE

has a symbolic mechanism for dealing with such cases, which we will come to later.
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The state-set abstraction in ternary simulation is an example of a Cartesian ab-

straction[CC95], which is used to abstract away dependencies betweenmodel sub-

systems. Using ternary vectors forces the simulation toignore dependenciesbetween

the circuit nodes. In effect, it represents each set of circuit states as the product of the

set of states of each node, or, equivalently, hyper-cuboidsin the space of circuit state

bit-vectors.

This abstraction is successful in hardware verification because useful properties

often correspond to simple constraints on a small number of circuit nodes, which

can be efficiently and precisely encoded as ternary vectors.Furthermore, the vector

representation fits naturally with gate-level simulation,since it assigns values to circuit

nodes in the netlist. This allows post-image calculations to proceed via simulations,

which are fast to calculate.

2.3.3 Abstract Interpretation Framework

The relation between ternary vectors and sets of circuit states has been described in

[Cho99, Pre04], using the theory of abstract interpretation [BG00, Cou01] to formalize

the approximation. Concrete sets of circuit states are related to their corresponding

abstract ternary vector representations via aGalois connection.

To describe this connection it is first necessary to model ourabstract and concrete

domains using partial orders that capture their internal degrees of approximation. For

concrete sets of circuit states, this is simply modeled by set inclusion,⊆. We model

approximation over ternary vectors using the partial order⊑, which is interpreted as

‘is less approximate than’.

Definition 2.3.1. The ternary approximation order on ternary values is the least re-

flexive relation where0 and1 are both less approximate thanX: 0 ⊑ X and1 ⊑ X.

Extending⊑ point-wise to vectors and adding a bottom element⊥, to represent

the case of an over-constraint, creates a complete lattice of ternary vectors,TN
⊥ . This

lattice is illustrated for vectors of length one in Figure 2.7(i), and vectors of length

two in Figure 2.8 (page 18). Notice thatXX . . .X is the top element of such a lattice,

representing the set of all consistent circuit states.

The join and meet operations for the binary state-set lattice are trivially∪ and∩

respectively. For the ternary vectors the join is written⊔ and the meet⊓. Informally,

the join takes those constraints that are common to both its operands, and the meet

takes all those constraints that exist in either of its operands. For vectors of size

one, these operations are shown in Figure 2.7. Higher-dimensional vectors follow the



2.3. GSTE - Ternary Simulation 17

0 1

X

⊥

⊔ X 0 1 ⊥
X X X X X

0 X 0 X 0

1 X X 1 1

⊥ X 0 1 ⊥

⊓ X 0 1 ⊥
X X 0 1 ⊥
0 0 0 ⊥ ⊥
1 1 ⊥ 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥

(i) Hasse Diagram (ii) Join (iii) Meet

Figure 2.7: Ternary Lattice

point-wise application of this join and meet with a coalesced bottom (i.e. 01 ⊓ 1X

equals⊥).

A Galois connection [CC79] is a pair of functions(α : C → A, γ : A → C)

that can be used to link the ordered concrete domain,(C,⊆), to an ordered abstract

domain,(A,⊑). Theabstraction map, α, maps elements of the concrete domain to

their most precise abstract representation. Theconcretization mapγ : A → C maps

abstract representations to the least upper bound of the concrete set of elements that

they represent. In order to be a Galois connection, the two maps must satisfy the

condition that for alla ∈ A and for allc ∈ C:

α(c) ⊑ a if and only if c ⊆ γ(a)

In ternary simulation theory, such a Galois connection is used to demonstrate that the

ternary states are sound upper-approximations of the relevant sets of concrete binary

states.

In previous models of ternary simulation [Cho99], the concrete domain has been

based on all possible bit-vectors inBN . We find instead that it is more appropriate

to connect ternary vectors only to those sets ofconsistentbit-vectors, fromS ⊂ B
N ,

which agree with the constraints imposed by the circuit logic. This provides a more

accurate representation of ternary simulation, since our concrete domain is in one-to-

one correspondence with the possible physical states of thecircuit. It is also more

faithful to actual implementations, where, for example, values are automatically as-

signed to circuit nodes that are marked as logically constant. Such a step can only be

justified in our model.

Definition 2.3.2. The Galois connection between ternary vectors and sets of binary

valued circuit states is uniquely defined by the following concretization map:

γ(a) =

{

∅ for a = ⊥
{s ∈ S | ∀n ∈ N : s(n) ⊑ a(n)} for a ∈ T

N
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Figure 2.8: Galois Connection for Ternary Vectors

In this map, bottom represents the empty set of states, and each ternary vector

represents the set of states that can be obtained by replacing X with any choice of

Boolean values. Such a Galois connection is illustrated in Figure 2.8, for a model

where00 is the only 2-bit-vector that is not a consistent state.

2.4 Symbolic Trajectory Evaluation

In Symbolic Trajectory Evaluation (STE) [SB95, BBS91] Boolean-valued variables

are incorporated into ternary simulations to parameterizedifferent circuit operating

conditions. STE has shown considerable success in practice, and has been used on

industrial hardware designs at Intel, Compaq, IBM and Motorola [AJS98, OZGS99,

BMAA01, PRBA97, Kai05]. Where standard symbolic simulation uses variables to

represent differentbinary simulations, Symbolic Trajectory Evaluation (STE) uses

variables to represent differentternarysimulations. We will call this techniquesym-

bolic ternary simulation.

For example, in a memory verification, we might like to check that a particular

location of memory correctly storesanyn-bit data value. Using ordinary ternary sim-

ulation will require2n runs—one for each possible data value. With STE, however,

we can represent an arbitrary data value by using variables in the simulation. The

verification can then proceed in one single symbolic simulation run.

STE uses a finite set,Var, of variables, calledindexing variables1, that parameter-

ize the different simulations. Simulation then takes placeover a domain of symbolic

representations of ternary values [BBS91]. For the purposes of this dissertation, we

1Indexing variables are sometimes referred to assymbolic variablesin (G)STE literature.
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1
u → 1 |X
u → X | 1

(i) Symbolic Run

u = true: 1
1

X

u = false: 1
1

X

(ii) Equivalent Individual Runs

Figure 2.9: A Run of STE

will write symbolic ternary values as either one of the ternary constants,0, 1 or X, or

as a conditional expressions of the formQ → f | g , meaning ‘ifQ then f elseg ’,

whereQ is a predicate overVar andf andg are also symbolic ternary vectors.

STE simulation lifts ternary simulation to the symbolic domain. Simulation propa-

gation remains the same over ternary constants:X∧1 = X andX∨1 = 1. Symbolically

conditional inputs, however, result in symbolically conditional outputs, calculated on

a case-by-case basis. For example,

(Q → 1 |X) ∧ 1 = (Q → (1 ∧ 1) | (X ∧ 1)) = Q → 1 |X

Since the simulation for each variable valuation is effectively treated independently, a

symbolic run of STE effectively encodes multiple ternary simulations, as illustrated in

Figure 2.9.

The interplay betweenXs and symbolic simulation in STE allows the user to gain

fine control over the precision with which state-sets are represented. The introduction

of X values can be used to lose irrelevant information, whereas variables can be used

to retain useful dependencies that are otherwise lost by theCartesian abstraction. For

example, with ternary vectors alone, the best approximation of {01, 10} is XX. With

symbolic ternary simulation, however, we can introduce a fresh variable,u, and use the

symbolic ternary vector(u → 0 | 1)(u → 1 | 0) to parameterize the two cases exactly.

In the extreme, symbolic ternary representations can be complete representations of

sets of states, when a unique variable is placed on every circuit node. The combination

of Xs and variables can be used creatively in a variety of cases tobalance loss of

information against the cost of simulation [MJ02, PRBA97, VB98, ABMS07]. Goel

has developed some theory to unify this interplay [Goe04, GB04].

The use of variables can be particularly effective when theyare used for repre-

senting values ondatapathswithin a circuit. Datapaths carry the information being

processed by the circuit, as distinct fromcontrol buses, which govern the circuit’s

mode of operation. In cases where there is little feedback from data to control, the use
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of variables enforces separation between the data and control aspects of verification.

Furthermore, when no data transformation occurs, such as inmemories and buffers,

the symbolic data expressions remain constant in size.

The use of symbolic representations also increases the effectiveness of STE by

allowing forsharingwithin the simulation. For example, suppose we wish to simulate

a circuit which calculatesf(x, g(y)), for inputs(x, y) in {(1, 0), (0, 0)}. This can be

encoded as the single symbolic run wherex = (u → 1 | 0) andy = 0. As a result,

the simulation ofg only takes place once, even though we actually calculate theresult

of two different input pairs. Given thatg might represent an arbitrarily large piece of

circuitry, this sharing can have a large impact on verification time.

2.4.1 Implementation

The implementation of STE inside the Forte verification platform [SJO+05] uses a

canonicaldual-rail encodingof symbolic ternary values for fast simulation. Each

symbolic ternary value is represented by a pair(p, q) of Boolean predicates. Pred-

icatep encodes the symbolic cases under which the expression may behigh, andq

encodes the symbolic cases under which the expression may below. For example,

X is represented by(true, true), 1 by (true, false), u by (u,¬u) andu → 1 |X by

(true,¬u).

Each logic gate can then be quickly simulated by its appropriate interpretation on

dual-rail values. In particular, the common logical operations from Figures 2.4 and

2.7 map to the following implementations for dual-rail representations:

¬(p, q) := (q, p) (p, q) ⊔ (r, s) := (p ∨ r, q ∨ s)
(p, q) ∧ (r, s) := (p ∧ r, q ∨ s) (p, q) ⊓ (r, s) := (p ∧ r, q ∧ s)
(p, q) ∨ (r, s) := (p ∨ r, q ∧ s) (p, q) ⊑ (r, s) := (p ⇒ r) ∧ (q ⇒ s)

A dual-rail value(p, q) is inconsistent when¬p ∧ ¬q. Under such conditions, the

node value represented can be neither high nor low. Such a condition therefore signals

an inconsistency within the circuit and simulation assumptions.

To avoid over-approximation during simulation, such inconsistencies need to be

propagated between time-steps. But an inconsistent value such as this may ‘fall off’

the edge of the simulation when it is assigned to a circuit output node. To rectify this

situation, the STE simulator also keeps a global persistentover-constraintpredicate

that keeps track of the symbolic valuations that are inconsistent.

The dual-rail predicates are traditionally represented using Ordered Binary Deci-

sion Diagram (OBBDs) [Bry92] for compact and efficient operation implementations.
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More recently, there have been attempts to use other forms Boolean reasoning, such

as SAT-based STE [RC05, GSY07].

2.5 Generalized Symbolic Trajectory Evaluation

STE is an effective technique that scales to industrial sizeverification efforts. But

STE can only check bounded properties of fixed temporal length because of its ba-

sis in scalar simulation. In contrast, many other standard model checking techniques

verify more expressive properties, such as liveness properties [JGP99, McM92]. Gen-

eralized symbolic trajectory evaluation (GSTE) extends the principles of symbolic

ternary simulation to handle such richer classes of properties.

The first step toward GSTE was by Seger and Hazelhurst, who added anuntil op-

erator [Haz96] to their specification descriptions. Seger and Bryant proposed a means

for checking iterative simulations of arbitrary length [SB95] using simple specifica-

tions based on regular expressions. Specifications were first generalized to arbitrary

transition systems by Beatty [BB94], and a generalized model checking algorithm for

these specifications was proposed by Nelson and Jain in [NJB97]. This algorithm

was subtly refined by Chou [Cho99], leading to introduction of GSTE by Yang and

Seger using the graphical specification notation of assertion graphs [YS03, YS00].

GSTE has a high capacity beyond the scope of traditional model checking techniques,

because of its approach to the state-explosion problem [YS02, Sch03].

2.5.1 Set-Based Assertion Graphs

Properties for verification by GSTE are traditionally specified usingassertion graphs

[YS00, YS03, YS02, YG02]. An assertion graph is a directed graph with an initial

vertex, where each edge is labeled withantecedentandconsequentconditions. The

antecedent conditions drive the simulation by providing the input stimulus, whereas

the consequent conditions describe the resulting circuit responses to be asserted. As-

sertion graphs resemble input-output automata, where the antecedent resembles the

input, and the consequent resembles the asserted output. They most closely align with

the variety of automata known asforall automata [MP87], owing to the fact that a

word is accepted only if it satisfied by the assertions made ineverypath through the

graph. We will start off by describing set-based assertion graphs, where antecedent

and consequent conditions are defined in terms of sets of circuit states.
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Definition 2.5.1 (Set-Based Assertion Graphs). For a given Kripke StructureK =

(S, T ), an assertion graph is a tripletG = (V, v0, E) whereV is a set of vertices,

v0 ∈ V is an initial vertex, andE ⊆ V × 2S × 2S × V is a set of doubly-labeled

edges. For a given edgee = (v, a, c, v′), we say thatsource(e) = v is the source

vertex,ant(e) = a is the antecedent,con(e) = c is the consequent, andsink(e) = v′

is the sink vertex.

Example An example assertion graph that might be used to verify a simple memory

cell is shown in Figure 2.10. The edges are labeled with characteristic predicates in

the formantecedent/consequent. This graph expresses that if write nodewr is enabled

with input 3, then the output of the memory cell should subsequently be3, as long as

no further writes take place.

in = 3 ∧ wr / true

¬wr / true

true / out = 3

Figure 2.10: Set-Based Assertion Graph

The property described by an assertion graph can be understood by consideringall

finite paths that start at the initial vertex. Each of these paths expresses an assertion

about all circuit traces of the same length.

Definition 2.5.2 (Initial Edge). For assertion graphG = (V, v0, E), we will say that

an edgee ∈ E is initial if source(e) = v0.

Definition 2.5.3(Assertion Graph Path). A path of an assertion graph is a non-empty

finite sequence of edgesρ = e0e1 . . . en ∈ E+, wheree0 is an initial edge and

sink(ei) = source(ei+1) for 0 ≤ i < n.

Definition 2.5.4 (Path Satisfaction). A model traceσ ∈ tr(K) is said to satisfy path

ρ, of the same length, written(K, σ) |= (G, ρ), if and only if wheneverσ satisfies all

the antecedents alongρ, it also satisfies all the consequents alongρ:

(∀i : 0 ≤ i < |ρ| . σi ∈ ant(ρi)) implies (∀i : 0 ≤ i < |ρ| . σi ∈ con(ρi))

Definition 2.5.5 (Assertion Graph Satisfaction). A Kripke StructureK satisfies an

assertion graphG, writtenK |= G, if and only if every traceσ of K satisfies every

pathρ of G of the same length.
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in

wr

out

Figure 2.11: A Simple Memory Cell Circuit

Example We will consider whether the simple memory cell circuit shown in Fig-

ure 2.11 satisfies the example assertion graph from Figure 2.10. The possible paths

through the assertion graph are of the form:

Antecedent in = 3 ∧ wr

Consequent out = 3

Antecedent in = 3 ∧ wr ¬wr

Consequent out = 3

Antecedent in = 3 ∧ wr ¬wr ¬wr

Consequent out = 3

Antecedent in = 3 ∧ wr ¬wr · · · ¬wr

Consequent out = 3

In order to satisfy the assertion graph, the circuit must satisfy all these bounded

assertions. A trace satisfies one of these assertions if every time the antecedent con-

ditions are satisfied, the consequent conditions are also satisfied. Table 2.1 shows the

path of length 3 against some of the possible traces for the simple memory circuit.

Trace 1 satisfies the path because the antecedent is not satisfied at the first edge. Trace

2 satisfies the path because the antecedent is not satisfied atthe second edge. Trace

3 satisfies the path because both the antecedents and the consequents are satisfied at

every edge. If we continue in this way for every trace and paththen we will discover

that the circuit satisfies the assertion graph.

Antecedent in = 3 ∧ wr ¬wr

Consequent out = 3

Node wr in out wr in out wr in out Satisfied
Trace 1 0 3 4 0 6 4 0 7 4 ✓

Trace 2 1 3 4 1 6 3 0 7 6 ✓

Trace 3 1 3 4 0 6 3 0 7 3 ✓

Table 2.1: Path Satisfaction Example
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2.5.2 Model Checking

The standard GSTE model checking algorithm [YS03] associates a set of model states,

sim[e], with each assertion graph edgee. This set collects the states that are reachable

via a trace that satisfies the antecedent conditions along some path from the initial

vertex toe. Intuitively sim[e] holds the combined post-image for the antecedent paths

that precede it.

Like many forms of reachability analysis, the algorithm proceeds by repeatedly

calculating and including the post-image of each transition in turn, until a fixed-point

is attained. The algorithm keeps a queue of edges,queue, whose set of states has been

updated but whose image remains to be computed. Initially, this queue is set to hold

all the initial edges, andsim[e] is set toant(e) for each of these edges.

To reach the required fixed-point, the algorithm repeats thefollowing steps. First

an edgee is removed fromqueue. Then the post-image ofsim[e] is computed. For

each edgee′ succeedinge, sim[e′] is assignedsim[e′]∪ (post(sim[e]) ∩ ant(e′)). This

adds those states from the post-image that satisfy the successor edge’s antecedent. If

this assignment adds new states, thene′ is enqueued to have its own post-image re-

calculated. Once the fixed-point is complete, the containment checksim[e] ⊆ con(e)

is performed for each edge of the graph. This completes the algorithm, which is

summarized in Figure 2.12.

It has been shown in [SSTV04] that the GSTE algorithm withoutternary abstrac-

tion corresponds to apartitioned form of standard symbolic model checking (SMC)

[McM92]. The difference concerns the way in which the connection between property

states and model states is represented. In SMC, each symbolic predicate represents a

subset of the property-model product state-space. In contrast, GSTE maintains a map,

sim, from property states to model state-sets. Thus the GSTE approach partitions the

representations according to property states. The two representations are isomorphic,

but it has been shown that GSTE-style property partitioningis often advantageous

[STV05].

2.5.2.1 Justifying Model Checking

We will briefly describe why model checking is sound and complete. First, to demon-

strate completeness, suppose that model checking fails. Then there is some edgee

such thatsim[e] 6⊆ con(e). Therefore there is some states such thats ∈ sim[e] and

s 6∈ con(e). There is a model checking invariant that states thats ∈ sim[e] only if there

is some circuit traceσ that satisfies all the antecedents along an initial pathρ that ends
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// Initialization:
queue = empty
foreach e ∈ E

if source(e) = v0

sim[e] := ant(e)
queue.push(e)

else
sim[e] := ∅

endif
endfor

// Fixed point calculation:
while queue 6= empty

e := queue.pop()
foreach successore′ of e

update := sim[e′] ∪ (post(sim[e]) ∩ ant(e′))
if update 6= sim[e′]

sim[e′] := update
queue.push(e′)

endif
endfor

endwhile

// Consequent check:
for e ∈ E

assertsim[e] ⊆ con(e)
endfor

Figure 2.12: Set-Based Model Checking Algorithm

in s. But such a path cannot satisfyρ since it does not satisfy the last consequent.

Hence the model does not satisfy the assertion graph.

Now suppose that the circuit model does not satisfy the assertion graph. Then there

must be some pathρ and traceσ of minimal length such thatσ does not satisfyρ. This

means thatσ satisfies all the antecedents alongρ, but not all the consequents. Now,

sinceρ andσ are of minimal length, it must be on the last edge that the consequent

fails, otherwise there would be a shorter prefix path and trace that also fails. After

the fixed-point computation, we have by the model checking invariant thatlast(σ) ∈

sim[last(ρ)], sinceσ satisfies all the antecedents up to edgelast(ρ). Therefore, it must

be thatsim[last(ρ)] 6⊆ con(last(ρ)) and so model checking must fail.
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in = u ∧ wr / true

¬wr / true

true / out = u

Figure 2.13: A Symbolic Assertion Graph

2.5.3 Using Symbolic Ternary Simulation

Like STE, GSTE is implemented via symbolic ternary simulation of the circuit netlist

to combat the state-explosion problem. We show how the set-based algorithm pre-

sented so far can be adapted to this style of simulation.

2.5.3.1 GSTE Assertion Graphs

GSTE assertion graphs are just like set-based assertion graphs, except that the an-

tecedent and consequent predicate labels are given as symbolic ternary vectors. We

will write V = (Var → B) for the set of variable valuations. Symbolic ternary vectors

then correspond to elements ofV → T
N
⊥ .

Definition 2.5.6(GSTE Assertion Graph). For a given Kripke StructureK = (S, T ),

a GSTE assertion graph is a tripletG = (V, v0, E) whereV is a set of vertices,v0 ∈ V

is the initial vertex,E ⊆ V × (V → T
N
⊥ ) × (V → T

N
⊥ ) × V is a set of edges.

As with STE, the use of symbolic ternary vectors allows simulations to be gener-

alized over different variable valuations. For example, the set-style assertion graph in

Figure 2.10 can only test the memory cell with a single data value,3. By encoding an

arbitrary data value as a vector of variables,u, of appropriate size, the GSTE assertion

graph in Figure 2.13 expresses thatanydata value is stored correctly.

2.5.3.2 Symbolic Ternary Model Checking

We update the model checking algorithm to use symbolic ternary simulation. It is

necessary simply only to replace each operation on sets of states by the corresponding

abstract operation, lifted to symbolic ternary vectors. Toapproximate union and inter-

section, GSTE uses thejoin ⊔ andmeet⊓ respectively, of the lattice of ternary prop-

agations (see Figure 2.7). The post-image functionpost is replaced with the abstract

post-image simulationpost♯. Finally, the set inclusion test is replaced by checking the

approximation order on the lattice of ternary vectors,⊑.

The resulting algorithm is shown in Figure 2.14, where the operator symbols for

ternary vectors have been overloaded with their symbolic counterparts. Notice that
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it has exactly the same flow as the algorithm for set-based model checking in Figure

2.12. All that has changed is that concrete set operations have been replaced with their

symbolic abstract counterparts.

// Initialization:
queue = empty
foreach e ∈ E

if source(e) = v0

sim[e] := ant(e)
queue.push(e)

else
sim[e] := ⊥

endif
endfor

// Fixed point calculation:
while queue 6= empty

e := queue.pop()
foreach successore′ of e

update := sim[e′] ⊔ (post♯(sim[e]) ⊓ ant(e′))
if update 6= sim[e′]

sim[e′] := update
queue.push(e′)

endif
endfor

endwhile

// Consequent check:
for e ∈ E

assertsim[e] ⊑ con(e)
endfor

Figure 2.14: Abstract Model Checking Algorithm

2.5.4 Controlling Abstraction

Since both GSTE and STE model checking are based on symbolic ternary simulation,

they both share many characteristics. Model checking is sound but not complete,

and manual control over the property specification affects which parts of the circuit

structure are simulated and what state information is retained. Although little has

been written on abstraction in GSTE, the connection betweenthese abstractions and

cone-of-influence abstraction techniques has been explored in [YT00].
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False negatives occur when a property holds, but there are too manyX values in the

simulation. The GSTE approach for dealing with false negatives is to refine the level

of simulation abstraction by making changes to the structure of the specification of the

property. Since the model checking flow is defined directly over the structure of the

property, these changes can directly influence the precision with which state-sets are

represented. Of course, such changes must also ensure that an equivalent or stronger

property is verified as a result.

2.5.4.1 Case-splitting Edges

Over-abstraction most often occurs when model checking takes the union of two sets

of states using the join operation⊔. This operation is often responsible for loss of

precision because it carries forward only those state constraints that are common to

bothof the operands. The most common approach to prevent such information loss

is to split a single assertion graph edge into two, separating out the approximations.

This is akin to instructing the model checker to keeptwo ternary vectors to represent

the union, rather than merging them together and losing information.

Example Consider the run of GSTE that is depicted in Figure 2.15. The aim is to

verify the behaviour of a twice-delayed XNOR-gate shown in (i). We write ternary

vectors in the formabcdefg. The first run, shown in Figure 2.15(ii), produces a false

negative result, due to the over-abstraction that occurs atthe second segment of the

graph. During simulation, this edge is assignedXX10XXX ⊔ XX01XXX, which is

XXXXXXX. Therefore, all information about the required post-condition is lost due to

the ternary abstract representation.

In order to overcome this false negative, a case-split transformation can be applied

to the second time-slice of the assertion graph. The case-split distinguishes the two

possible input cases occurring in the preceding time-frame. Following such a trans-

formation, GSTE returns a positive result, as shown in Figure 2.15(iii).

2.5.4.2 Unrolling Loops

Another example of an abstraction refinement transformation is theunrollingof asser-

tion graphs loops. Whenever a loop occurs in an assertion graph, the corresponding

fixed-point calculation collects an approximation of the satisfying circuit states. Each

step calculates the abstract union,⊔, of the previous state and the result of the next

loop iteration. Since⊔ loses information, however, these types of fixed-points can

over-approximate.
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a

b

c

d

e

f

g

(i) Delayed XNOR Circuit

a ∧ ¬b / true
10XXXXX

¬a ∧ b / true
01XXXXX

true / true

XXXXXXX

true / g

XXXXXXX

(ii) False Negative by Over-Abstraction

a ∧ ¬b / true
10XXXXX

¬a ∧ b / true
01XXXXX

true / true
XX10XXX

true / true
XX01XXX

true / g

XXXXXX1

(iii) Successful Refinement

Figure 2.15: Refining an Assertion Graph
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(i) Original Assertion Graph (ii) First Iteration Split

A

A

B
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C

A
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C
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(iii) Last Iteration Split (iv) Alternate Iterations Split

Figure 2.16: Refinements by Unrolling

By unrolling an assertion graph loop, the states that correspond to different it-

erations in the fixed-point can be separated from each other and represented more

precisely. A loop-unrolling therefore corresponds to a form of temporal case-split.

Examples of loop-unrollings are shown in Figure 2.16.

2.5.4.3 Introducing Variables

As with STE, ternary vectors can also be case-split by introducing fresh symbolic vari-

ables, to capture dependencies between circuit nodes that are lost by the ternary vector

representation. Unlike STE, a problem arises when such variables are introduced in

assertion graph cycles. Since the variables are never quantified-out, their values are

scoped over the entire simulation, and not just over each cycle iteration. But when

variables are being used purely for the purpose of abstraction control, a fresh variable

is required for each time-step, otherwise extra state dependencies can be unintention-

ally introduced. To cater for such cases, Yang and Seger define a special class of

variables, for use in only antecedents, that are automatically removed via existential

quantification at the end of each simulation step [YS02]. This quantification is sound,

because the variables all occur negatively with respect to model checking satisfaction.

The effect of this is that these variables are scoped only to the edge in which they

appear.
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2.5.4.4 Knots

In some cases, the precision needed requires that case-splits within fixed-point persist

for longer than a single simulation step. This can be overcome via manual specifica-

tion of variable quantification points to avoid name conflicts. These points are called

knots[NHY04] in GSTE terminology, because they conceptually permit the tying to-

gether of an infinite line of case-splits into a loop.

2.5.4.5 Precise Nodes

If the precision introduced by case-splitting needs to persist even longer, then variable

renaming with fresh names can be used to avoid conflicts between temporally over-

lapping scopes. If fresh variables are introduced at every iteration, however, then a

fixed-point may never be attained.

This difficulty is resolved in GSTE through the use of what aretermedprecise

nodes[YS02]. The general idea is as follows, but we will revisit itin some detail in

Section 4.3.4. The set of precise nodes for a run of GSTE is a set of circuit nodes

for which temporary anonymous variables are automaticallyintroduced to maintain

interdependencies. The use of such a set allows us to direct the model checker to

increase the level of detail with which certain segments of the circuit are represented.

As an example, suppose a circuit has two 2-bit counters progressing in synchrony.

The set of states in which the second counter is one ahead of the first can be de-

scribed explicitly as{(00, 01), (01, 10), (10, 11), (11, 00)}. If the counters are marked

as precise nodes, to avoid over-abstraction to(XX, XX), the state of the counters is

automatically encoded using extra variablest1 andt2:

¬t1 ∧ ¬t2 7→ (00, 01)
¬t1 ∧ t2 7→ (01, 10)
t1 ∧ ¬t2 7→ (10, 11)
t1 ∧ t2 7→ (11, 00)

If we simulate such an encoding one step forward to find its post-image, then the

result will be:

¬t1 ∧ ¬t2 7→ (01, 10)
¬t1 ∧ t2 7→ (10, 11)
t1 ∧ ¬t2 7→ (11, 00)
t1 ∧ t2 7→ (00, 01)

Although this representation describes the same set of states, it uses a different

variable indexing. For fixed-point detection, these differences can be overcome using
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a canonical re-parameterization based on the algorithm in [AJS99]. Since the vari-

ables affected are anonymous, this re-parameterization does not affect the soundness

of model checking.

2.6 Compositional GSTE

GSTE has also been further generalized to a form known ascompositional(or con-

current) GSTE (CGSTE) [YS04, YGT05]. This extension allows different areas of

a circuit to be independently simulated, and then have theirsimulations merged to-

gether. Performing these smaller simulations can greatly increase the capacity of the

model checker since the maximum state space being explored at any one time is re-

duced. It does, however, require some insight into the design implementation or circuit

structure.

Instead of using a single assertion graph, CGSTE specifications consist of multi-

ple named assertion graphs, representing the sub-simulations. These assertion graphs

can be seen as executing concurrently, effectively specifying a property as a product

of individual machines. To allow for composition, the conditions on edge antecedents

can contain terms calledcompositional conditions. Each composition condition ref-

erences a given edge on any one of the group of assertion graphs. A trace satisfies a

path containing such an antecedent condition if it satisfiesthe standard condition for

normal assertion graphs, and all prefixes of the trace that match a path ending at a

composition condition also satisfy some initial path of thegraph referenced by that

condition that ends at the referenced edge.

Example Suppose we have two memory cells whose outputs are attached to a com-

parator (Figure 2.17). In order to verify this circuit usinga run of conventional GSTE,

we must create a single assertion graph such as that shown in Figure 2.18. This spec-

ification must simulate both memory cells at the same time, considering all ways of

wra

wrb

ina

inb

out=

Figure 2.17: A Memory Cell Comparator
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ina = u∧
wra ∧ ¬wrb

ina = u∧
wra ∧ ¬wrb

inb = v∧
¬wra ∧ wrb

inb = v∧
¬wra ∧ wrb

¬wra ∧ ¬wrb

¬wra ∧ ¬wrb

¬wra ∧ ¬wrb

ina = u ∧ wra∧
inb = v ∧ wrb

/ out = (u = v)

Figure 2.18: Comparator Assertion Graph

interleaving writes of datau to the first memory cell andv to the second. Under these

conditions it would then be expected that the circuit outputmatches the value ofu = v.

By using compositional GSTE we can simulate each of the two memory cells

independently. We create assertion graphsA andB for each of the cells, each with an

edge namedDone, to capture the conditions under which each of the memory cells

should hold their respective symbolic values (Figure 2.19). We create a third graph,

Main, to compose the two simulations and check the operation of the comparator. In

compositional GSTE, edge antecedents may include predicates of the form “G ONE”,

which describe those states reachable from a path in the graph namedG which ends

at the edge namedE. In our example, the first antecedent of theMain graph asserts

the compositional condition(A ONDone) ∧ (B ONDone). Under this condition, we

would expect the output of the comparator to beu = v in the subsequent time-step.

During compositional model checking, each assertion graphis simulated in turn,

and the compositional constraints from each are forwarded from one graph to another

as symbolic ternary circuit states. Conjunction of the compositional conditions is

interpreted using the meet on the lattice of ternary vectors. In the case where two

graphs mutually refer to each other, the algorithm finds the corresponding fixed-point.

2.7 Other Variants

The framework for symbolic ternary simulation that we will present in the follow-

ing chapters is sufficient to capture each of the simulation techniques that we have
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A:

¬wra

ina = u ∧ wra

Done

B:

¬wrb

inb = v ∧ wrb

Done

Main:
(AONDone) ∧ (BON Done) / out = (u = v)

Figure 2.19: Comparator Compositional Assertion Graphs

introduced so far. There are several additional techniquesthat we will not cover. In

particular, GSTE has been extended to liveness properties [YS00], specified using fair-

ness constraints for assertion graphs. A form of backwards circuit simulation has also

been proposed [YS02] that propagates circuit constraints bidirectionally. Although

our framework will not cater for these approaches, we do not consider this to be a se-

vere restriction, since compositional GSTE is sufficient for the majority of verification

cases to which GSTE is applied in practice.



Chapter 3

Generalized Trajectory Logic

In this chapter, we address the problem of how runs of symbolic ternary simulation

are best specified. A specification notation is required for two key roles. First, the

notation needs to formally express thepropertyof interest. This is necessary to com-

municate exactlywhat the verification demonstrates. Secondly, the notation mustde-

scribe a simulation outline, giving information onhow the verification takes place.

Many model checking specification languages are concerned with the property alone,

but manual guidance is paramount for symbolic ternary simulation, to allow for ab-

straction control and optimization strategies.

A successful specification notation achieves these roles ina way that makes all

relevant aspects of the verification easy to manage. Most importantly, the notation

needs to represent simulations directly and concisely witha clean semantics, so that

their interpretations are as clear as possible. As well as this, it should provide good

scope for formal reasoning, by existing in a form amenable tomanipulation, and by

preferably exhibiting compositional algebraic qualitiesthat show promise for useful

reasoning rules.

We introduce a specification language calledgeneralized trajectory logic(GTL),

which is a linear temporal logic that achieves these required qualities. We choose

our notation to be expressive and detailed enough to expressthe common simulation

patterns that we have explored in Chapter 2. An important quality of GTL is that

each logical construct corresponds exactly with each of theatomic steps used within

traditional symbolic ternary simulation techniques like STE and GSTE. By making

the constructs of our logic in alignment with these steps, weallow our notation to

describe both the simulation and the property in a single clean setting. By relating

the constructs to propositional logic, we obtain a detailedand clear representation of

simulations and their associated properties. As we will describe in Chapter 4, this fine

level of simulation specification leads to clean reasoning rules.

35
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To our knowledge, our logic is the first attempt at defining a formal property lan-

guage capable of expressing all compositional GSTE runs. Byproviding a textual

logical foundation, it greatly improves the outlook for formal reasoning about GSTE-

style simulations. On top of this, we believe that GTL provides a good perspective

from which to understand the model checking techniques thatuse symbolic ternary

simulation, and in particular, GSTE.

3.1 Symbolic Indexing Notation

Before we define our specification, we introduce some notations for dealing with the

symbolic mathematical structures used extensively by STE-based verification tech-

niques. We will use the termsymbolically indexed representationto describe a struc-

ture containingindex variablesymbols. These structures represent different values

depending on the contextual valuation of the index variables that they contain. As

we have seen in Chapter 2, STE-based techniques use symbolically indexed repre-

sentations of sets of circuit states during verification. Asa result of this, much of its

underlying theory and notations are also built using these indexed representations.

We will assume that the indexing variables are Boolean-valued and drawn from a

finite setVar. They therefore have associated set of valuationsV = Var → B. We

will model the symbolic representations of a setX using the setXV of maps from

valuations toX, and writes〈ν〉 for the value ofs under valuationν ∈ V.

Given a functionf : X → Y , its indexed liftingis the functionfV : XV → Y V

that appliesf independently in each valuation:

(fV(x))〈ν〉 := f(x〈ν〉) (3.1)

We will lift an n-ary relationR ⊆ Xn in three different ways. Theindexed liftingof

R ⊆ Xn is the mapRV : (XV)n → B
V that provides the Boolean predicate that is

true in those valuations where the relation is satisfied. Theuniversal liftingof R is the

relationR∀V ⊆ (XV)n that is true for those symbolic representations whereR holds in

everyindex valuation. Dually, theexistential liftingof R is the relationR∃V ⊆ (XV)n

that is true of those representations in whichR holds insomevaluation. In summary:

(RV(x))〈ν〉 iff R(x〈ν〉)

R∀V(x) iff ∀ν ∈ V . R(x〈ν〉)

R∃V(x) iff ∃ν ∈ V . R(x〈ν〉)
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f ::= tt True
| ff False
| n Node is high n ∈ N
| ¬n Node is low n ∈ N
| f ∧ f Conjunction
| f ∨ f Disjunction
| Yf Yesterday
| Z Recursion variable Z ∈ F
| µZ . f Least fixed-point Z ∈ F
| Q → f | f Symbolic conditional Q ∈ pred(Var)
| f (u := Q) Explicit substitution u ∈ Var, Q ∈ pred(Var)

Figure 3.1: Syntax of GTL

Example Binary Decision Diagrams (BDDs) [Bry92] can be viewed as a form of

symbolically indexed representation, commonly used to represent Boolean predicates

overVar in model checking. Using our terminology, BDD conjunction is the symbolic

lifting of Boolean conjunction. Similarly, implication onBDDs is the symbolic lifting

of Boolean implication. The universal lifting of implication corresponds to Boolean

implication followed by a validity check.

3.2 Formal Definition

This section provides a formal definition of generalized trajectory logic, and describes

how it can be used to specify properties for symbolic ternarysimulation.

3.2.1 Syntax

The syntax of GTL contains two different types of variables.First, we use Boolean-

valued index variablesu ∈ Var for the layer of symbolic representation that is main-

tained symbolic throughout the simulation process. Second, we userecursion vari-

ables, of the formZ ∈ F , to capture fixed-point iteration in the style of theµ-calculi

[BS01]. These variables correspond to intermediate simulation states.

Definition 3.2.1. Formulas of GTL are those strings that satisfy the grammar shown

in Figure 3.1, and that meet the syntactical requirement that within any fixed-point,

µZ . f , every occurrence of the recursion variableZ in f is bound by an occurrence

of the temporal Yesterday operatorY.
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‖ tt ‖ν
ρ = S+

‖ ff ‖ν
ρ = ∅

‖ n ‖ν
ρ = { t ∈ S+ | last(t)(n) = 1 }

‖ ¬n ‖ν
ρ = { t ∈ S+ | last(t)(n) = 0 }

‖ f ∧ g ‖ν
ρ = ‖ f ‖ν

ρ ∩ ‖ g ‖ν
ρ

‖ f ∨ g ‖ν
ρ = ‖ f ‖ν

ρ ∪ ‖ g ‖ν
ρ

‖ Yf ‖ν
ρ = { t.s ∈ S+ | t ∈ ‖ f ‖ν

ρ }
‖ Z ‖ν

ρ = ρ(Z)〈ν〉
‖ µZ . f ‖ν

ρ =
⋂

{ T 〈ν〉 | ‖ f ‖ν
ρ[Z 7→T ] ⊆

∀V T }

‖ Q → f | g ‖ν
ρ = if Q〈ν〉 then‖ f ‖ν

ρ else‖ g ‖ν
ρ

‖ f (u := Q) ‖ν
ρ = ‖ f ‖ν[u 7→Q〈ν〉]

ρ

Figure 3.2: Semantics of GTL

3.2.2 Semantics

The semantics for GTL is given in terms of non-empty finite words of states from the

circuit model, which is assumed throughout to be the Kripke structureKC = (S, T ),

as described in Section 2.1.2. Recall thatS is the finite set of bit-vectors that repre-

sent consistent circuit states, and thatT is the model transition relation between these

states. Each formula of GTL satisfies a particular set of words for each indexing vari-

able valuation. This allows us to use indexing variables in formulas which correspond

directly with the indexing variables in GSTE simulations. To model this, the semantic

domain we use consists of maps from index valuations to sets of words,(2S+
)V .

To capture recursion, we use arecursion context, ρ : F → (2S+
)V , that provides

semantic values for the free recursion variables in the formula being evaluated. We

provide the semantics of GTL by giving a value to each formulaof GTL in each

possible fixed-point recursion context.

Definition 3.2.2. The semantics of GTL are defined in Figure 3.2. The notation‖ f ‖ν
ρ

denotes the set of finite non-empty words fromS+ satisfied by formulaf in symbolic

indexing valuationν ∈ V and recursion contextρ.

We describe each construct of the logic in turn. Every word satisfies truth,tt, and

no word satisfies falsity,ff. A word satisfies the atomic propositionn, or ¬n, if node

n is high, or low, respectively, in thefinal stateof the word. The connectives∧ and

∨ behave exactly as their equivalents in propositional logic, but notice that we do not

allow for negation of arbitrary formulas.

The only temporal operator is theYesterdayoperator, writtenY. Intuitively, Yf

expresses thatf held one time-step ago. A wordt.s ending in states satisfiesYf
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if word t satisfiesf . We handle fixed-point recursion in the standard manner of the

µ-calculi. For example,µZ . f ∨ YZ expresses thatf has held at some point in the

past.

Finally, GTL has constructs for managing symbolically indexed representations.

Thesymbolic conditionalQ → f | g is equivalent tof in valuations whereQ holds,

andg otherwise. As an example, the formulau → n | ¬n describes the symbolic

words ending in states where noden has valueu. Thesymbolic substitutionoperator,

written f (u := Q), explicitly changes the current variable valuation context. Index-

ing variables used within these constructs remain symbolicduring model checking,

providing us with a handle to control the balance between theexplicit and symbolic

simulation. For example,(Y(u → n | ¬n))(u := T) specifies the run that symboli-

cally simulates the circuit with variableu, and subsequently uses this symbolic result

to reference the state indexed by the case whereu is true.

3.3 Semantic Characteristics

In this section, we explore some important characteristicsof GTL that provide a basis

for model checking. In particular, we show that GTL formulasarecontinuouswith

respect to their recursion context. This allows us to apply the Knaster-Tarski Theorem

to deduce that the GTL fixed-point can be attained by a finite number of simulation

iterations.

In order to reason about the effects of the recursion context, we will define the

following map, which interprets the semantics of a formula as a function of a given

recursion variable context:

Definition 3.3.1. The functionRf ,ρ,Z maps valueU ∈ (2S+
)V to the semantic value

of f in formula contextρ extended by mapping variableZ to U :

Rf ,ρ,Z(U) = ‖ f ‖ρ[Z 7→U ]

This map then models the effect of passing once through a single iteration of a

fixed-point computation.

3.3.1 Monotonicity

We show than any formula of GTL is monotonic with respect to the value of each

recursion variable. As well as being a step on the way to demonstrating continuity,

this property will also allow us to derive many useful reasoning rules about GTL in
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Chapter 4. The property states that if the set of words satisfied by recursion variable

Z increases, then we also increase the words satisfied byf .

Theorem 3.3.2(Monotonicity). Rf ,ρ,Z is monotonically increasing with respect to the

symbolic containment relation,⊆∀V .

Proof. The proof is by structural induction overf and is given in Appendix A.1.

3.3.2 Continuity

We demonstrate that the semantics of GTL arefinitary, which is a sufficient condition

for continuity. This corresponds to the statement that if a given wordσ is satisfied by

a formula recursion contextρ, there must be another recursion contextρ′ such that the

value of each recursion variableρ′(Z) is a finite subset ofρ(Z), and in whichσ is also

satisfied.

In order to show that this property is true for GTL, we will usethe following

observation. Whether or not a word of lengthn satisfies a formula depends only on

which words of length less than or equal ton are satisfied by the recursion variables in

the evaluation context. Informally, this expresses that GTL only looks backwards in

time a finite distance for each finite word. We formalize this argument, with a function

that restricts a set of symbolic words to those words of length n or less:

Definition 3.3.3. Let thenth length restriction, wheren ∈ Z ∪ {+∞,−∞}, be the

mapL≤n : (2S+
)V → (2S+

)V defined by:

L≤n(X)〈ν〉 := { σ ∈ X〈ν〉 | |σ| ≤ n }

Notice thatn need not be positive, and thatL≤i(X), for upwards of anyi, is chain

when ordered by⊆∀V . It is simple to show that:

Lemma 3.3.4.L≤n is chain-continuous.

Proof. Let Xi be a chain with respect to⊆∀V . Then:

L≤n(
⋃

i

V
Xi)〈ν〉 = {x ∈ (2S+

)V | ∃ i . x ∈ Xi〈ν〉 ∧ |x| ≤ n}

=
⋃

i

V
L≤n(Xi)〈ν〉
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We will say that a function on symbolic sets isconsistently lengtheningwhen it is

both monotonic, and the words of lengthn in its image are completely determined by

the words of length less than or equal ton in its argument. Intuitively, this means that

as we iterate through the fixed-point, the words that are covered are of ever-growing

length.

Definition 3.3.5. The mapF : (2S+
)V → (2S+

)V is termed consistently lengthening

iff F is both monotonic, and

L≤n(F (X)) ⊆∀V F (L≤n(X))

for everyn ∈ Z andX ∈ (2S+
)V .

We can now show that any consistently lengthening map is continuous, by demon-

strating that each word in the image of the map is determined by a finite number of

words in the argument. These are the those words that are bounded by the same length.

Lemma 3.3.6.Every consistently lengthening map is chain-continuous.

Proof. Let F : (2S+
)V → (2S+

)V be a consistently lengthening map andXi ∈ (2S+
)V

be a chain with respect to⊆∀V . Now suppose that wordσ is in F (
⋃

i
VXi). It

must be thatσ is in the restriction of this set to words less than or equal toits own

length: σ ∈ L≤|σ|(F (
⋃

i
VXi)). It follows sinceF is consistently lengthening that

σ ∈ F (L≤|σ|(
⋃

i

VXi)). By Lemma 3.3.4, this equalsF (
⋃

i

VL≤|σ|(Xi)). Now, since
⋃

i
VL≤|σ|(Xi) is finite, there must exist somej ∈ N such thatσ ∈ F (L≤|σ|(Xj)).

SinceF is monotonic, it follows thatσ ∈ F (Xj) and soσ ∈
⋃

i

VF (Xi). It is trivial

to show that monotonicity also guarantees that
⋃

i
VF (Xi) ⊆

∀V F (
⋃

i
VXi). Therefore

⋃

i

VF (Xi) = F (
⋃

i

VXi) and soF is chain-continuous.

In order to demonstrate thatRf ,ρ,Z is consistently lengthening, and therefore con-

tinuous, we use the concept of thetemporal depthof a formula:

Definition 3.3.7. Let the temporal depth of formula variableZ in formula f , written

depth(Z, f ), be the least number ofY operators binding any free occurrence ofZ in

f , and+∞ whenZ does not occur free inf .

The temporal depth of a formula gives a measure of the difference in length be-

tween corresponding words that satisfy a formulaf andZ. For example, sinceYZ has

temporal depth one, each word that satisfiesZ corresponds to wordsoneletter larger

satisfyingYZ. The temporal depth of a formula therefore gives a minimum measure

of how much longer words will be after one recursive iteration through a formula.
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We can show thatRf ,ρ,Z is consistently lengthening by structural induction over

f in the following theorem. We use a stronger inductive invariant than is strictly

necessary, so that we can reuse the condition later, in Section 4.1.2.

Theorem 3.3.8(Continuity). For every recursion contextρ and GTL formulaf where

every instance of recursion variableZ is bound by at least one instance ofY, Rf ,ρ,Z

is consistently lengthening, and therefore continuous.

Proof. The proof of this lemma is by structural induction overf and is given in Ap-

pendix A.2. For each formula it is shown in Appendix A.2 that the following condition

holds:

L≤n(Rf ,ρ,Z(R))) ⊆∀V Rf ,ρ,Z(L≤n−depth(Z,f )(R))

Due to the given requirement,depth(Z, f ) ≥ 1. Therefore each formula is consis-

tently lengthening map by virtue of this and Theorem 3.3.2. Hence by Lemma 3.3.6,

it is chain-continuous.

The importance of this theorem is in demonstrating that fixed-points can be at-

tained through finite iteration, providing a basis for modelchecking. We will define

theapproximantsof a GTL fixed-point as follows:

Definition 3.3.9(Approximants). Let thenth approximant ofµZ . f , writtenµnZ . f ,

be defined inductively as:

µ0Z . f := ff

µn+1Z . f := f [(µnZ . f )/Z]

Continuity allows us to apply the Knaster-Tarski Theorem toshow that these ap-

proximants converge to the corresponding fixed-point:

Corollary 3.3.10 (to Theorem 3.3.8). By the Knaster-Tarski Theorem on continuous

maps, the GTL fixed-pointµZ . f is the least fixed-point ofRf ,ρ,Z, and the symbolically

lifted union of the approximants:

(fix(Rf ,ρ,Z))〈ν〉 = ‖ µZ . g ‖ρ〈ν〉

=
⋃

n≥0

(‖ µnZ . f ‖ρ〈ν〉)
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3.4 Syntactic Sugar

To describe some common temporal patterns, we define the past-time equivalents of

the Linear Temporal Logic [Pnu77] operatorsFinally and strongUntil. Previouslyf ,

writtenPf , asserts thatf held at some point in the past. The formulaf Sinceg , written

f S g , requires thatf holds at every point backward in time until some point whereg

has held.

Definition 3.4.1. The two temporal operatorsP and S are defined by:

Pf := µZ . f ∨ YZ

f S g := µZ . g ∨ (f ∧YZ)

Notice that we cannot define an equivalent to LTL’sGlobally operator, since our

logic cannot express greatest fixed-points. This is in keeping with current applications

of GSTE, which do not calculate any greatest fixed-points.

We define the following notations for symbolic quantification:

(∃u . f ) for f (u := T) ∨ f (u := F)

(∀u . f ) for f (u := T) ∧ f (u := F)

We will also write ‘n is Q’ as short-hand forQ → n | ¬n. It is also useful to

have a notation for describing the values on data buses. Databuses are commonly

modeled as vectors of nodes, and conventionally written in the formb[n : 0], which

represents the groupb[n], b[n − 1], . . . , b[0] of nodes. We will similarly writev[n : 0]

for the vector of variables consisting ofv[n], v[n − 1], . . . , v[0]. We can then use the

following syntax for the values on buses:

b[n : 0] is v[n : 0] for (b[n] is v[n]) ∧ . . . ∧ (b[0] is v[0])

3.5 Expressing Properties

We will use GTL in order to describe the outlines of symbolic ternary simulations,

as well as to provide a sound semantics for the properties being verified by those

simulations. The top level of simulation must be described with formulas that are

closedwith respect to recursion variables, since the fixed-point simulation iterations

must be closed for us to be able to simulate them.

Definition 3.5.1. A GTL formula is closed if every occurrence of a recursion variable

is bound by a correspondingµ-expression.
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To be able to use GTL to express runs of symbolic ternary simulation, it is nec-

essary to introduce a construct to separate out theantecedentandconsequentparts of

the property. This allows us to differentiate those constraints that should be used to

drive and define the circuit simulation, versus those constraints that are to be asserted

about the simulation result.

Definition 3.5.2(GTL Properties). A GTL property is of the form ‘antecedentA leads

to consequentC’, written A ⇒ C, whereA andC are closed formulas of GTL.

We can now formally define what it means for a model to satisfy aGTL property. A

model satisfies a property if every trace of it that satisfies the antecedent also satisfies

the consequent.

Definition 3.5.3 (Trace Satisfaction). A model traceσ ∈ S+ satisfies GTL property

A ⇒ C if under every indexing variable valuation, the antecedentbeing satisfied by

σ implies that the consequent is satisfied byσ:

σ |= A ⇒ C iff ∀ν ∈ V . (σ ∈ ‖ A ‖ν ⇒ σ ∈ ‖ C ‖ν)

Definition 3.5.4(Property Satisfaction). A Kripke structure circuit modelKC satisfies

GTL propertyP if every trace of the model satisfiesP:

KC |= P iff ∀σ ∈ tr(KC) . σ |= P

Example The following property can be used to verify a delayed AND-gate with

inputsa andb and outputo:

Y((a is u) ∧ (b is v)) ⇒ o is (u ∧ v)

The property can be read as ‘whenever nodea had valueu and nodeb had valuev in

the previous time-step, nodeo should be(u ∧ v)’. Notice that the property uses two

different forms of conjunction. The first is that of GTL, and expresses that two tem-

poral events have both occurred. The second instance is thatof Boolean conjunction,

that defines the Boolean function describing the expected value on nodeo.

Example As another example, consider the following property that wemight expect

to hold of a simple memory cell, which has write enable inputwr, data input nodein

and outputout:

Y((¬wr) S (wr ∧ in is u)) ⇒ out is u

This property says that if from the previous time-step backwards no write has occurred

since some time when a write occurred with inputu, then the output should equalu.

This property is equivalent to that of the assertion graph shown in Figure 2.13 (page

26).
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3.6 Set-Based Model Checking

This section introduces set-based model checking for GTL properties, illustrating the

algorithm behind our intended simulation approach, whilstkeeping issues of abstrac-

tion aside. The algorithm will then be adapted in the subsequent section, for the

ternary vector data structures required for abstract simulation.

The GTL propertyA ⇒ C is verified by using the shape of antecedent formulaA

to control and drive the flow of simulation. The resulting setof states is then checked

for containment against the consequentC. Since the logical constructs of GTL are

in one-to-one correspondence with the atomic steps of symbolic ternary simulation,

the model checking procedure follows the shape of the formula directly. Like each

formula of GTL, each intermediate set of states produced is symbolically indexed.

3.6.1 Preliminaries

First of all, we formally define theimageof a formula to describe what it is that the

simulation of a formula actually calculates.

Definition 3.6.1 (Formula Image). The image of formulaf , with respect to Kripke

structureKC and contextρ, is the symbolic set of states that are the last states in those

model traces ofKC that satisfyf in ρ:

imKC,ρ(f )〈ν〉 := last(tr(KC) ∩ ‖ f ‖ν
ρ)

We will often omitKC, since it is assumed to be constant throughout. The states

of a ternary simulation consist of representations of the set of states satisfied by an

antecedent up until a particular time point. Once simulation is complete, each of these

sets can be checked for containment against some consequentcondition. For this

reason, the consequents that we can use must not be temporal.We will call this class

of formulasatemporal.

Definition 3.6.2(Atemporal). A GTL formula is atemporal if it does not contain any

instances ofY.

Recall that every recursion variable used within a fixed-point expression must be

bound by an instance ofY (Definition 3.2.1). Therefore any fixed-point variables used

within a atemporal formula must not contain recursion variables, so each such fixed-

point may therefore be replaced by its inner expression. Forexample,µZ . f may be

replaced byf if Z does not occur freely inf .
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As would be expected, whether or not a word satisfies an atemporal formula is

determined purely by the last state in the word:

Lemma 3.6.3.For any atemporal formulaf and wordt ∈ S+, t satisfiesf if and only

if last(t) satisfiesf as a singleton word.

Proof. The proof is in Appendix A.3.

GTL verification is different from either STE or assertion graph verification be-

cause we only check for conditions using theend-stateof the simulation. In STE

the consequent can refer to any point along a fixed-length finite trace of simulation

states. But this approach is not possible in general for GTL,because properties can be

unbounded.

In GSTE assertion graphs, consequents can be applied at any point in the simu-

lation, and not just at the end. We have avoided this for GTL properties because we

believe that it simplifies the structure of properties and makes them more amenable to

reasoning. Since consequents in GTL properties are only linked to theendof simula-

tion, and not the intermediate states, we are freer to transform the simulation without

being concerned about additional side-effects. If we stillwish to verify multiple con-

sequent conditions then we can instead do so by using multiple properties.

3.6.2 Set-Based Simulation

Similar to the standard model checking approach for calculating the set of states that

satisfy a formula of Computation Tree Logic (CTL) [CES86], we define simulation for

GTL by structural recursion on the syntax of the antecedent formula. The algorithm

results in a symbolic set of states fromV → 2S that is an upper-approximation of the

image of a formula. We use asimulation contextτ : F → (V → 2S) to assign values

to the free recursion variables in a formula and accumulate fixed-point values.

Definition 3.6.4 (GTL Simulation). Figure 3.3 defines simulation for GTL formulas.

The result of simulation is written[ f ]ντ , wheref is the formula being simulated,ν

is the indexing variables valuation, andτ is the simulation context. Fixed-points are

calculated using the recursive functionfix, defined by:

fix f x = if ((f x) = x) then x else (fix f (fx))
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[ tt ]ντ = S
[ ff ]ντ = ∅
[ n ]ντ = {s ∈ S | s(n) = 1}
[¬n ]ντ = {s ∈ S | s(n) = 0}
[ f ∨ g ]ντ = [ f ]ντ ∪ [ g ]ντ
[ f ∧ g ]ντ = [ f ]ντ ∩ [ g ]ντ
[Yf ]ντ = post([ f ]ντ )
[ Z ]ντ = τ(Z)
[ µZ . f ]τ = fix (λS . [ f ]τ [Z 7→S]) (λν ′.∅)

[ Q → f | g ]ντ = if Q〈ν〉 then[ f ]ντ else[ g ]ντ
[ f (u := Q) ]ντ = [ f ]

ν[u 7→Q〈ν〉]
τ

Figure 3.3: Set-Based Simulation

3.6.2.1 Termination

For fixed-pointµZ . f , we first simulatef in a context in whichZ is assigned the empty

set of states in every index valuation. We then use this result as a new assignment to

Z to re-simulatef . This is repeated until equality is reached between iterations. Since

our domain is finite, termination is ensured by the monotonicity of each simulation:

Lemma 3.6.5. For every formulaf , simulation terminates and is monotonic in the

simulation context of each recursion variable.

Proof. This is shown by induction, first on the number of fixed-pointsin a formula,

and second by the length of the formula, and is given in full inAppendix A.3

3.6.3 Checking Properties

In order to use simulation to verify a GTL property, we simulate both the antecedent

and the atemporal consequent of the property, and then assert containment:

Definition 3.6.6 (Set-Based Model Checking). Set-based model checking of a GTL

property succeeds if and only if the antecedent simulation is contained within the

consequent simulation:

MCset(KC, A ⇒ C) iff [ A ] ⊆∀V [ C ]

We will now justify this model checking procedure. We do thisby demonstrating

relationships between the results of simulation and the simulated formula’s image.
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Lemma 3.6.7.The simulation of any closed formula,f , is an upper-approximation of

its image:

im(f ) ⊆∀V [ f ]

Proof. In order to demonstrate this for closed formulas of GTL, we require the follow-

ing inductive property of sub-formulas: for any formulaf , trace recursion contextρ

and simulation recursion contextτ , if imρ(Z) ⊆∀V [ Z ]τ for every recursion variable

Z, thenimρ(f ) ⊆∀V [ f ]τ .

This property extends the lemma to formulas with free recursion variables, which

requires the given simulation context to also contain upper-approximations of the im-

age of the given corresponding semantic recursion context.A detailed proof of this

property is in Appendix A.3, and proceeds by induction, ordering first by the length

of a formula, and secondly by the number ofµ-expressions in a formula.

Lemma 3.6.8.For any atemporal GTL formulaf , the simulation and image are equal:

im(f ) = [ f ]

Proof. The proof is very similar to that of Lemma 3.6.7, and is given in full in Ap-

pendix A.3.1.

These two lemmas allow us to use a simulation containment check in order to

verify that a circuit model satisfies a given GTL property:

Theorem 3.6.9. If set-based model checking succeeds for propertyA ⇒ C, with

atemporal consequentC, then the circuit satisfiesA ⇒ C.

MCset(KC, A ⇒ C) implies KC |= A ⇒ C

Proof. Model checking succeeds when[ A ] ⊆∀V [ C ]. Lemma 3.6.7 ensures that

im(A) ⊆∀V [ A ]. SinceC is atemporal thenim(C) = [ C ] by Lemma 3.6.8. There-

fore im(A) ⊆∀V im(C). Now supposeσ is a trace of the model that satisfies the

antecedent in valuationν: σ ∈ tr(KC) ∩ ‖ A ‖ν . Then last(σ) ∈ im(A)〈ν〉, so

last(σ) ∈ im(C)〈ν〉. Now since the consequent is atemporal,σ ∈ im(C)〈ν〉 by

Lemma3.6.3. Hence every trace of the model satisfies the property in every valua-

tion, soKC |= A ⇒ C.



3.7. GTL - Abstract Model Checking 49

f f ♯

γ

γ

T
N
⊥2S

Figure 3.4: Soundness of an Abstract Operation

3.7 Abstract Model Checking

Abstract model checking is the modification of set-based model checking to make use

of symbolic ternary simulation. These changes counter the prohibitive state-explosion

problem that would accompany explicit set-based model checking of sizable designs.

Using the ternary vector abstract state set representations requires abstract interpreta-

tions of∪,∩ andpost. The next section describes how each of these operations are

calculated in practice, and demonstrates their soundness,and, in some cases, com-

pleteness. This will allow us to justify abstract model checking.

3.7.1 Abstract Simulation Operations

The foundations for the abstract operations in ternary simulation have already been

given in Section 2.5.3.2, using the terminology of abstractinterpretation theory (Sec-

tion 2.3.3). Recall that elements in the lattice of ternary vectors,TN
⊥ are used to

represent sets of circuit states,2S, and that we can reason about abstraction using the

Galois connection(α, γ).

We will say that an abstract mapf ♯ : T
N
⊥ → T

N
⊥ , on ternary vectors, is asound

approximationof a concrete mapf : 2S → 2S, on sets of circuit states, if, for every

a ∈ T
N
⊥ , the set represented byf ♯(a) is a superset of the image underf of the set

represented bya: f(γ(a)) ⊆ γ(f ♯(a)). This is illustrated in Figure 3.4. We will say

that an abstract map is furthermorecompleteif, f(γ(a)) = γ(f ♯(a)).

Throughout this section, in order to describe ternary vectors succinctly, we chose

to define them using a lambda-expression notation. We will write λn.f(n) for the

ternary vectora that satisfiesa(n) = f(n) for all n in N .

We will describe the calculation of each simulation operation in detail, with the

exception of the propagation operator,| · | (see Section 2.3.1), which is beyond the

scope of our work. We will merely make the assumption that this operation does not

change the set of sets being represented:γ(|s|) = γ(s). This is fair in practice, since
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propagation adds information to the ternary vectors that can be deduced directly from

the circuit constraints. We will also describe in detail howover-constraint conditions

interact with simulations—something which is not covered in detail by other STE

literature.

3.7.1.1 True and False

We will use⊥ to represent the empty set of states. Sinceγ(⊥) = ∅, it is clear that

this is a sound and complete representation. For the set of all consistent states, we will

use the propagation of the ternary vector that consists ofX at every node. Again, this

representation is sound and complete sinceγ(XX . . . X) = S.

3.7.1.2 Atomic Propositions

For the image of GTL’s atomic propositions, we use the following abstract represen-

tation:

Definition 3.7.1. Letn is♯ b be the propagation of the ternary vector that has Boolean

valueb at noden andX everywhere else:

n is♯ b :=

∣

∣

∣

∣

λm.

{

b if n = m

X otherwise

∣

∣

∣

∣

Lemma 3.7.2.n is♯ 1 andn is♯ 0 are sound and complete representations for[ n ]ν ,

and[¬n ]ν , respectively.

Proof.

γ(n is♯ 1) = γ

(∣

∣

∣

∣

λm.

{

1 if n = m

X otherwise

∣

∣

∣

∣

)

(Definition 3.7.1)

= γ

(

λm.

{

1 if n = m

X otherwise

)

(Assumption)

= {s ∈ S | s(n) ⊑ 1 ∧ ∀m 6= n . s(m) ⊑ X} (Definition 2.3.2)

= {s ∈ S | s(n) = 1} (Definition 2.3.1)

= [ n ]ν (Definition 3.6.4)

The same proof outline holds for0.
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3.7.1.3 Union

To approximate union and intersection, we use thejoin ⊔ andmeet⊓, respectively, of

the lattice of ternary vectors. These operations have already been defined for single

quaternary valuesX, 0, 1 and⊥ in Figure 2.7. For elements of the ternary lattice, the

join for vectors can be calculated as the point-wise join of the ternary value assigned

to each circuit node:

Definition 3.7.3. Join on the ternary vector lattice for ternary vectorsa, b ∈ T
N
⊥ is

defined by:

a ⊔ b :=







a if b = ⊥
b if a = ⊥
λn . a(n) ⊔ b(n) otherwise

Lemma 3.7.4.Join is a sound, but not complete, abstract interpretation of set union.

Proof. Let a andb be elements of the ternary vector lattice,T
N
⊥ .

Case a = ⊥. Thenγ(a) ∪ γ(b) = ∅ ∪ γ(b) = γ(b) = γ(a ⊔ b).

Case b = ⊥. Thenγ(a) ∪ γ(b) = γ(a) ∪ ∅ = γ(a) = γ(a ⊔ b).

Case a 6= ⊥ ∧ b 6= ⊥. Then:

s ∈ γ(a) ∪ γ(b) ⇒ (∀n . s(n) ⊑ a(n)) ∨ (∀n . s(n) ⊑ b(n))

⇒ (∀n . s(n) ⊑ a(n) ⊔ b(n))

⇒ s ∈ γ(a ⊔ b)

Henceγ(a)∪ γ(b) ⊆ γ(a⊔ b), as required for soundness. The following case demon-

strates that⊔ is not complete:

γ(10) ∪ γ(01) = {10, 01} ⊂ {00, 10, 01, 11} = γ(XX) = γ(10 ⊔ 01)

3.7.1.4 Intersection

As a form of abstract set intersection, we use the meet of the lattice of propagations of

ternary vectors. The meet is calculated by performing the point-wise meet on nodes,

and then a propagation step. We use a propagation step at thisstage, because we

can deduce new information about the values of circuit nodes. This is because the

knowledge that two conditionsbothhold allows us to increase the frontier of what we
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know about the circuit state. For example, consider the simple case of an AND-gate.

If we know thatbothof its inputs are high, then a propagation step allows us to deduce

the additional constraint that the output must be high. The meet is⊥ when either of

its arguments is⊥, or if it introduces an inconsistency. This is summarized inthe

following definition:

Definition 3.7.5. Meet on the ternary lattice is calculated by:

a ⊓ b :=















⊥
if a = ⊥ ∨ b = ⊥

∨ ∃n . a(n) ⊓ b(n) = ⊥
∨ (|λn.a(n) ⊓ b(n)| = ⊥)

|λn . a(n) ⊓ b(n)| otherwise

Lemma 3.7.6.Meet is a sound and complete abstract interpretation of set intersec-

tion.

Proof. We show thatγ(a) ∩ γ(b) = γ(a ⊓ b).

Case a = ⊥ ∨ b = ⊥. Thenγ(a) ∩ γ(b) = ∅ = γ(⊥) = γ(a ⊓ b).

Case ∃n . a(n) ⊓ b(n) = ⊥. Then sincea andb disagree at noden, the sets of states

represented do not overlap, soγ(a) ∩ γ(b) = ∅ = γ(⊥) = γ(a ⊓ b).

Case |λn.a(n) ⊓ b(n)| = ⊥. Then by the assumption on| · |, γ(λn.a(n) ⊓ b(n)) = ∅,

so no consistent states satisfy the conditions of botha andb. Therefore,γ(a)∩γ(b) =

∅ = γ(⊥) = γ(a ⊓ b).

Case Otherwise:

s ∈ γ(a) ∩ γ(b) ⇐⇒ (∀n . s(n) ⊑ a(n)) ∧ (∀n . s(n) ⊑ b(n))

⇐⇒ ∀n . (s(n) ⊑ a(n) ∧ s(n) ⊑ b(n))

⇐⇒ ∀n . (s(n) ⊑ a(n) ⊓ b(n))

⇐⇒ s ∈ γ(a ⊓ b)

3.7.1.5 Post-Image

The post-image functionpost is interpreted using the abstract post-image function

post♯ that applies one step of forward symbolic ternary simulation. Recall from Sec-

tion 2.3.1 that this calculation consists of propagating information through the circuit

using the ternary logic, and then simulating a time-step by transferring values across

delay elements. We will not formally demonstrate thatpost♯ is a sound abstract in-

terpretation ofpost, due to the additional work required to formally model gate-level
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Figure 3.5: Example of Post-Image Over-Approximation

simulation. The thrust of the argument, however, is thatγ(post♯(a)) includes all the

successor states ofγ(a), since the abstract post-image calculation transfers constraints

across from the input of delay nodes to their output.

We note thatpost♯ is not a complete interpretation ofpost, since it is possible to

lose information due to the lack of backwards constraint propagation. For example,

consider the ternary vectora illustrated in Figure 3.5. Since the output of the AND

gate is1, it follows that the second input,b, must also be1. Therefore, in every state

of post(γ(a)), it must be that the outputd is 1. Because simulation only propagates

values forward, however, this constraint is not maintained.

3.7.1.6 Containment

Finally, the set inclusion test for the consequent is replaced by a point-wise application

of the ‘is less approximate than’ order on the lattice of ternary values,⊑. We interpret

this relation into the abstract Boolean domain wherefalse is more approximate than

true, since model checking will be sound, but not complete.

Definition 3.7.7. The abstract containment operation,⊆♯, is defined by:

a ⊆♯ c :=







true if a = ⊥
false if a 6= ⊥∧ c = ⊥
∀n ∈ N . a(n) ⊑ c(n) otherwise

Lemma 3.7.8.The abstract containment operation is sound.

a ⊆♯ c implies γ(a) ⊆ γ(c)

Proof. We examine the cases in whicha ⊆♯ c holds.

Case a = ⊥: Thenγ(a) = ∅, so the result holds trivially.

Case a 6= ⊥ ∧ c 6= ⊥ ∧ (∀n ∈ N . a(n) ⊑ c(n)):

∀n ∈ N . a(n) ⊑ c(n)

⇒ ∀s ∈ S . (∀n ∈ N . s(n) ⊑ a(n)) ⇒ (∀n ∈ N . s(n) ⊑ c(n))

⇐⇒ ∀s ∈ S . s ∈ γ(a) ⇒ s ∈ γ(c)

⇐⇒ γ(a) ⊆ γ(c)
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Set Construct Abstract Interpretation Sound Complete
S λn.X ✓ ✓

∅ ⊥ ✓ ✓

[ n ]ν n is♯ 1 ✓ ✓

[¬n ]ν n is♯ 0 ✓ ✓

∪ ⊔ ✓ ✕

∩ ⊓ ✓ ✓

post post♯ ✓ ✕

⊆ ⊆♯ ✓ ✕

Table 3.1: Abstract Interpretation of Set Operations

Lemma 3.7.9.The abstract containment operation is not complete.

Proof. Consider the case whereS = {00}, a = 01 and c = ⊥. Here the ternary

vectora is inconsistent with the circuit constraints described byS, soγ(a) = ∅. But

γ(c) = ∅. Thereforeγ(a) ⊆ γ(c), even thougha ⊆♯ b does not hold.

For STE, containment for ternary traces can be made completeby making use of

bounded model checking instead of point-wise ternary checks [TG06]. We expect that

containment can also be made complete in our set-based view of GTL simulation, by

introducing similar forms of reasoning.

3.7.2 Abstract Simulation

We now have all the abstract operations necessary in order toperform abstract model

checking. Table 3.1 shows a summary of the atomic set operations used, together with

their abstract interpretations and characteristics. We adapt the set-based algorithm to

use these abstract interpretations, resulting inabstract simulation, defined in Fig. 3.6.

3.7.2.1 Termination

As with set-based simulation, we demonstrate the termination of fixed-point calcula-

tions by showing that abstract simulation is monotonic overa finite domain.

Lemma 3.7.10.Abstract simulation terminates and is monotonic in each recursion

variable, i.e.⌊ f ⌋ν
σ[Z 7→U ] is monotonic with respect to⊑∀V as a function ofU .

Proof. Proof is by induction, ordering first by the number of fixed-points in f , and

secondly by the length off , and is given in Appendix A.4.
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⌊ tt ⌋ν
σ = λm.X

⌊ ff ⌋ν
σ = ⊥

⌊ n ⌋ν
σ = n is♯ 1

⌊ ¬n ⌋ν
σ = n is♯ 0

⌊ f ∨ g ⌋ν
σ = ⌊ f ⌋ν

σ ⊔ ⌊ g ⌋ν
σ

⌊ f ∧ g ⌋ν
σ = ⌊ f ⌋ν

σ ⊓ ⌊ g ⌋ν
σ

⌊Yf ⌋ν
σ = post♯(⌊ f ⌋ν

σ)
⌊µZ . f ⌋ν

σ = fix (λS . ⌊ f ⌋τ [Z 7→S]) (λν ′.⊥)

⌊Q → f | g ⌋ν
σ = if Q〈ν〉 then⌊ f ⌋ν

σ else⌊ g ⌋ν
σ

⌊ f (u := Q) ⌋ν
σ = ⌊ f ⌋ν[u 7→Q]

σ

Figure 3.6: Abstract Simulation

3.7.3 Checking Properties

We can now define what it means for abstract model checking to succeed:

Definition 3.7.11. Abstract model checking succeeds when the abstract simulation of

the antecedent is contained within the abstract simulationof the consequent for every

variable valuation:

MC(KC, A ⇒ C) iff ⌊A ⌋ν ⊆♯ ⌊C ⌋ν for everyν ∈ V

Using our results on the soundness of our abstract operations, we can show that

abstract simulation consistently over-approximates:

Lemma 3.7.12.If the value assigned to each recursion variableZ ∈ F in abstract

simulation contextσ is an upper-approximation of its value in concrete simulation

contextτ , then abstract simulation of any formulaf in this context will result in an

upper-approximation of the concrete simulation of the sameformula:

(∀Z ∈ F . [ Z ]τ ⊆∀V γ(⌊Z ⌋σ)) implies [ f ]τ ⊆∀V γ(⌊ f ⌋σ)

Proof. The previous section has shown that every operation of abstract simulation is a

sound approximation of set-based simulation. This lemma isa direct result of applying

this observation inductively over the length of the simulation.

Model checking verifies that every trace which satisfies the antecendent must also

satisfy the consequent. Therefore the consequent restricts the accepted set of be-

haviours, so the simulation of the abstract consequent image must not approximate.

Since⊔ is not a complete interpretation of∨, it follows that abstract model checking

is sound only when the consequent under consideration does not contain disjunction.



3.7. GTL - Abstract Model Checking 56

This requirement rules out properties that express non-deterministic outcomes us-

ing disjunction. Since we are performing verification usingsimulation over a deter-

ministic model, these types of properties typically require us to ‘determinize’ them via

case-splitting. For example, consider a reverse OR-gate property such as:

input ⇒ (output1) ∨ (output2)

Simulating the consequent condition(output1) ∨ (output2) for the two outputs in-

volved will result inX being assigned to both of them, so that model checking suc-

ceeds no matter what the input. Unlike antecedent simulation, this form of consequent

over-approximation is unsound, because it weakens the verification. Such a property

might instead be soundly verified by

MC(KC, input ∧ A ⇒ output1) ∨ MC(KC, input ∧ ¬A ⇒ output2)

whereA is the case-split condition required to determine a concrete outcome for the

circuit at-hand.

Lemma 3.7.13.If the value assigned to each recursion variableZ ∈ F in abstract

simulation contextσ is an exact representation of its value in concrete simulation

contextτ , then abstract simulation of any formulaf that does not contain disjunction

or Yesterday will result in an exact representation of the concrete simulation of the

same formula:

(∀Z ∈ F . [ Z ]τ = γ(⌊Z ⌋σ)) implies [ f ]τ = γ(⌊ f ⌋σ)

Proof. Every operation of abstraction simulation is complete, with the exception of

those for disjunction and post-image calculation. This lemma is a direct result of

applying this observation inductively over the length of the simulation.

Finally, we can use this to demonstrate that abstract model checking is sound.

Theorem 3.7.14.If C is atemporal and does not contain disjunction then

MC(KC, A ⇒ C) implies KC |= A ⇒ C

Proof. By Lemma 3.7.12,[ A ]ν ⊆ γ(⌊A ⌋ν) for any formulaA. For atemporal conse-

quents without disjunction, Lemma 3.7.13 ensures[ C ]ν = γ(⌊C ⌋ν). Now, if model

checking succeeds, then⌊A ⌋ν⊆♯⌊C ⌋ν , which impliesγ(⌊A ⌋ν) ⊆ γ(⌊C ⌋ν) by

Lemma 3.7.8. Combining these, we have that[ A ]ν ⊆ γ(⌊A ⌋ν) ⊆ γ(⌊C ⌋ν) = [ C ]ν .

Thus set-based model checking also succeeds, which in turn impliesKC |= A ⇒ C

by Theorem 3.6.9.
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As described for STE in [TG06], it is possible to obtain more than justs ‘pass’

or ‘fail’ from the ternary containment check if required. Ifa failure is due to over-

approximation, then the failed comparisons will be of the form X ⊑ 0 or X ⊑ 1. But

if we have demonstrated a genuine error in the design then there will be a check of the

form 1 ⊑ 0 or 0 ⊑ 1.

3.8 Related Work

We have presented a specification notation and model checking algorithm for sym-

bolic ternary simulation, using a pure-past linear temporal logic with constructs for

symbolic indexing. This section explores how GTL relates toexisting notations, both

inside and outside the domain of STE-based simulation.

3.8.1 STE Specifications

The most commonly used specification notation for traditional STE is Trajectory

Evaluation Logic (TEL) [BS91, SB95]. Like GTL, TEL takes theform of a re-

stricted linear temporal logic, with formulas of the formTRUE, n is 0, n is 1, f and f ,

Q → f , andnext f , written Nf . Assertions are written in the form[antecedent ⇒

consequent ]. The considerable success of TEL for describing and managing STE

verifications [SJO+05, PRBA97] was one factor that inspired us to use similar foun-

dations for GTL.

Unlike GTL, TEL does not use past time. This does not pose the same problems

with composition as exist for GSTE, since past and future time operands are easily

interchangeable in a bounded setting. The logic also differs in its use of anif-then

construct, rather than theif-then-elseconstruct of GTL. One reason for this is that

TEL specifications intuitively feel more like assertions about sets of traces, whereas

GTL formulas feel more like the sets of states that they describe. In practice we believe

that our approach better represents common simulation cases such as symbolic case-

splitting. The semantics of TEL also differs significantly from GTL, as the nodes in

TEL circuits models themselves themselves have ternary states. This model structure

derives from early use of STE for switch-level circuitry, where charge is not modeled

as binary, but can include an extra logically neutral physical state corresponding to a

node that is driven neither high nor low. This was part of the origin of the use of the

valueX. But binary models suffice at the gate-level targeted by GSTE, and there are

significant benefits to staying within in a binary model.
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As STE evolved to deal with richer classes of properties, there were several in-

termediate specification notations proposed. Hazelhurst describes a variant of TEL

with arbitrary negation and an additionaluntil operator, implemented via a fixed-point

calculation. This goes some way toward the expressiveness of GSTE and our own

approach. But like TEL, the semantics of Hazelhurst’s language are also based on

partially ordered model states, leading to a four-valued logic semantics that compli-

cates reasoning.

STE was also adapted to include fixed-points by Seger and Bryant in [SB95]. In

their notation, TEL assertions are sequentially composed with a ‘;’ operator, and a

Kleene star syntax is used for iteration. For example, the property[A1 ⇒ C1]
∗; [A2 ⇒

C2], is interpreted as “A trace which initially satisfies any number of iterations of

A1 must satisfy the same number of iterations asC2 and then subsequently satisfy

[A2 ⇒ C2]”. In order to model check such properties directly, fixed-points were

introduced into the STE simulation flow.

Regular expressions are not so suitable for GSTE. First, there is no equivalent for

GTL conjunction, which is used to describe the branching simulations of composi-

tional GSTE. This does not limit the expressibility of properties, but does limit the

description of how a simulation can take place. Second, the representation of fixed-

points using the Kleene star approach is less compact. This is because it does not

allow shared references to fixed-points as GTLµ-expressions can. This means that

regular expressions require nested fixed-points to be repeated explicitly in-line.

The main remaining difference is that regular expressions use concatenation to

represent the progression of time, whereas GTL uses theY operator. For simple

properties the two notations are easily interchangeable, and this largely comes down

to a question of aesthetics. The use of the concatenation operator enforces temporal

conditions to follow from left to right as they pass from pastto future, and is likely

to require reduced use of parenthesis. But when we consider what happens during

substitution, concatenation andY behave quite differently.

For example, consider the condition(Yreset) ∧ init , which, we might express as

the regular expressionreset .init . Suppose we would now like to substitute the con-

dition init with the initialization condition given by(Yinit1 ) ∧ init2 , or init1 .init2 .

Direct substitution will give us(Yreset) ∧ (Yinit1 ) ∧ init2 andreset .init1 .init2 ,

respectively, which are quite different conditions. This shows that GTL formulas are

better suited to independent backwards-looking temporal conditions, whereas regular

expression concatenation is better suited to describing temporal events with defined
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start and end points. We believe that the former is more relevant for hardware ver-

ification because circuits exhibit a high-degree of branching parallel behaviour with

relatively little synchronization between components.

3.8.2 GSTE Specifications

Work by Beatty [BB94] laid the foundations for GSTE by relating circuits to arbitrary

state transition graphs and using an individual run of STE toverify each transition in

turn. In this work, each transition is specified as an STE assertion containing abstract

state that is manually mapped into circuit state. Nelson andJain [NJB97] introduced

labeled transition graphs to connect these assertions, andproposed a generalized STE

algorithm to model check multiple transitions in a single model checking run. In

[Cho99], Chou shows that this algorithm is incomplete, and proposes an alternative

graph satisfaction criterion that better fits the implementation. These graph structures

were further formalized and extended to form GSTEassertion graphs(see Section

2.5.3.1) by Yang and Seger [YS02, YS03].

Although assertion graphs can be useful for displaying simple properties in a visual

manner, the notation suffers from several drawbacks in comparison to GTL. It places

strict limitations on the amount of formal reasoning that can be achieved, due to its

graphical nature. Some progress has been made on formal reasoning with assertion

graphs, but the resulting rules, and their proofs, tend to becomplicated, because they

deal with unstructured flat representation of what is naturally a graphical concept. In

contrast, as we will see in the subsequent chapter, there exist simple reasoning rules

for GTL that are clear and intuitive.

Assertion graphs also introduce problems associated with indexing variables. In

particular, the variable scoping conventions are difficultto visually parse because the

notations used do not positionally enclose the defined boundaries of scope. There

are two areas where this is especially true: the use of variable classes with different

scoping rules (see Section 2.5.4.3), and the use of knots (see Section 2.5.4.4). In both

of these cases, the scoping rules are, in practice, dislocated from the assertion graph

structure itself. In contrast, GTL variable scoping is morenatural because the notation

directly encloses a variable’s lexicographical scope. Since it follows conventional

logical syntax, the notation is also more familiar.

The forall-semantics of assertion graphs can also cause confusion, because it dif-

fers from the typical semantics of standard automata. Some considerable effort is

sometimes required to understand the interplay between theconditions asserted by
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different concurrent paths in a graph. Another common misinterpretation of the asser-

tion graph semantics is that the initial assertion graph state must align with some form

of initial hardware state.

3.8.3 CGSTE Specifications

As well as the problems with formal reasoning, the notation of assertion graphs cannot

describe thecompositional extensionsof GSTE that have been discussed in Section

2.6. These extensions are currently expressed with one of two different notations. The

first is by using the language ofcompositional specification[YS04]. This language

was primarily introduced as a theoretical notation, in the form of a process algebra,

to explain the compositional GSTE technique. Because of this, it does not cater for

certain aspects of GSTE, such as its symbolic nature. UnlikeGTL, antecedents and

consequents are mixed together in this language within the same temporal structure.

We believe this complicates the resulting semantics, sinceeach formula corresponds

to both a verification check as well as a simulation description. As a result, the logical

constructs are complex and unfamiliar. In contrast, GTL separates antecedent and

consequent concerns to maintain the familiar form of propositional logic.

A second specification notation for compositional GSTE is provided by the com-

positional assertion graph data-types for the properties accepted by Intel’s composi-

tional GSTE model checker, provided with the Forte verification platform [SJO+05].

This notation suffers from the opposite problem to thespecification language—it is

suitably expressive for practical use, but it does not have aformal semantics beyond

that of the model checker’s implementation. Furthermore, our initial experiments have

shown that the notation is not closed with respect to certainfundamental forms of

composition, and suffers from some counter-intuitive irregularities.

3.8.4 Temporal Logics

Outside the realm of STE, temporal logics [Eme90, MP92] are widely used for the

specification of properties for formal verification, as wellas for controlling some

forms of simulation [BC96]. Of these logics, GTL is most similar to the linear-time

mu-calculus [Sti92]. In particular, when GTL’s two symbolic indexing operators are

removed, the remaining constructs form the negation-free pure-past fragment of the

linear-time mu-calculus over finite traces. GTL’s particular qualities are born out of

the need to align the logic closely with the existing simulation methodology of GSTE.

We will comment on each of the logic’s aspects in turn.
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The most striking feature of our logic is that we only refer topast time. The

use of both past and future temporal operators is relativelycommon in other logics,

such as in LTL+Past [Eme90] and the ForSpec temporal property specification lan-

guage [AFF+02]. It has been shown that the addition of these past time operators does

not affect expressibility [Gab87], although logics with past time can be exponentially

more succinct [LMS02]. There are also arguments that the useof past time operators

make specifications more natural to write [LPZ85]. Logics that reference only the past

are more rare, although some pure-past temporal logics on finite traces have been used

recently for characterizing attacks on security protocols[RLSC05]. Despite it being

more conventional to think of properties defined using the future, we believe that past

time is the natural way to express properties for GSTE. Sincesimulations proceed

forward in time, the simulation state is a reflection on the events that have occurred

in the past, not those that will occur in the future. This means that by using a past

operator, simulation patterns become compositional. For example,Yf can be simu-

lated first by simulatingf and then calculating the post-image of this simulation step.

In contrast, a future time operator would introduce a requirement for us to tempo-

rally invert properties before we are able to model check them. Furthermore, since we

cannot simulate backwards, a future time operator would introduce predicates that be

cannot simulated. The correspondence between past-time logics and executable spec-

ifications has been explored by Gabby [Gab87], and work in other fields has resulted

in similar observations [FW93].

We have chosen to use a finite trace semantics for GTL. An infinite semantics is

often more appropriate for reasoning about ongoing, nonterminating behaviour. There

are, however, two reasons why an infinite semantics is not appropriate for GTL. First,

since we are reasoning with respect to the past, we are obliged to consider finite words,

otherwise traces that start with a state with no predecessorare not included in our

analysis. Second, since we are only considering forms of GSTE that describe safety

properties, there is no need for us to consider infinite words, and by restricting our-

selves to finite words, we obtain a simpler and cleaner semantics, which is one of our

main aims. One example of this is that GTL fixed-points are unique, as we will show

in detail in the next chapter. This is because the finite lengths of traces enforce bounds

on the depth of fixed-point recursion. If we instead considera logic equivalent to GTL

but defined over infinite traces then fixed-point are no longerunique. For example, the

equationZ = n ∧ YZ would have the empty set as a least fixed-point, as well as the

greatest fixed-point{ σ | ∀i ∈ N . σi(n) }. With finite traces, the least and greatest

fixed-points are equal. The result of this is that we can use uniqueness to reason about
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GTL formula. Such reasoning is used by various rules in the subsequent chapter, as

well as for the verification methodology that we propose in Chapter 6.

Finite forms of linear-time temporal logic have been used elsewhere [GP02], in-

cluding for the verification of sizable industrial systems where the abstractions re-

quired for liveness reasoning are infeasible [HR01]. Generally these logics raise ques-

tions about how temporal operators should be interpreted once they reach the end of

a trace. The most common way to deal with this is to introduce weak and strong op-

erators that are true and false, respectively, when a trace is exhausted. Alternatively,

an extra undetermined value can be used for the end of traces [RHKR00], but this

requires the use of a three-valued meta-logic. In GTL, the absence of negation above

temporal operators prevents us from requiring these extra operators.

Another property of GTL is that it is negation free. This aligns the logic with the

use of upper-approximation in ternary simulation, where the best approximation of

a negated ternary vector is truth itself. By excluding negation, we also limit the ex-

pressibility of our logic to those states that we can approximate using simulation. For

instance, if we were to adapt our logic and semantics to include arbitrary negation,

then the hypothetical formula¬Ytrue, would ideally correspond to the set of states

without a predecessor. It is not clear how forward abstract simulation could be used

to find such states. Furthermore, our avoidance of negation brings about monotonicity

rules in the subsequent chapter that are useful for reasoning about property decom-

position and abstraction refinement. We note that similar lack of negation occurs

in other logics deriving from abstract interpretations, such as in Schmidt’s approach

to reasoning about abstraction-interpretation-based static analysis [Sch07]. The con-

structive aspect of our logic also provides a similar feel tomany process algebras

[Hoa85, Bar93, Mil82].



Chapter 4

Reasoning With GTL

In this chapter, we use the GTL specification language to develop and categorizerea-

soning rulesfor managing symbolic ternary simulation. Such rules are ofvital im-

portance for enabling large-scale verifications, serving as the glue between different

model checking runs and ensuring property reductions are sound. As well as being a

contribution in its own right, the development of these rules also validates the work of

Chapter 3, by demonstrating that GTL can express the types oftransformations that

are useful for refining typical GSTE verification approaches.

The first section considers simple rules forproperty equivalencein GTL. These

rules form the foundations for simulation optimization, since they express how a sim-

ulation can be transformed without changing the property being represented. The sec-

ond section considers rules fordecomposition. By splitting a run into several smaller

runs that together imply the first, verification can become practically possible. The

third and final section explores rules forabstraction refinement. Such rules transform

a simulation to change the precision with which states are represented.

4.1 Equivalence Rules

In this section, we describe some fundamental rules for GTL that can be used to

demonstrate property equivalence. Since formulas of GTL determine both the shape

of simulation flow as well as the property being checked, these equivalence rules ef-

fectively describe property-preserving simulation transformations. Simulation trans-

formations are useful in practice because they can affect both the efficiency and ab-

straction level with which the simulation is carried out.

63
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4.1.1 Boolean Connectives

First, we show that GTL follows the normal rules of logic thatwe would expect from

a propositional temporal logic. GTL formulas form a distributive lattice with respect

to∧,∨, tt andff:

tt ∧ f = f ff ∨ f = f Ones
ff ∧ f = ff tt ∨ f = tt Zeros

f ∧ (g ∧ h) = (f ∧ g) ∧ h f ∨ (g ∨ h) = (f ∨ g) ∨ h Associativity
f ∧ g = g ∧ f f ∨ g = g ∨ f Commutativity

f ∨ (f ∧ g) = f f ∧ (f ∨ g) = f Absorption
f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h)

Distributivity
f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h)

These rules all follow directly from the trace-set semantics of GTL, and the corre-

sponding rules for set arithmetic. For example,

‖ f ∨ (g ∧ h) ‖ν
ρ = ‖ f ‖ν

ρ ∪ (‖ g ‖ν
ρ ∩ ‖ h ‖ν

ρ)
= (‖ f ‖ν

ρ ∪ ‖ g ‖ν
ρ) ∩ (‖ f ‖ν

ρ ∪ ‖ h ‖ν
ρ)

= ‖ (f ∨ g) ∧ (f ∨ h) ‖ν
ρ

The built-in semantics for negated propositions behaves aswe would expect nega-

tion to, since the value of a node in the final state of a trace isBoolean:

n ∧ ¬n = ff n ∨ ¬n = tt

Although these logical rules are simple, they are useful forsimulation simplifica-

tion, as well as for describing the abstraction refinement transformations to be covered

in Section 4.3. Furthermore, these rules are not evident forthe existing specification

notations of assertion graphs.

4.1.2 Fixed-Points

As we have already shown, GTL fixed-points are the limit of their approximants from

below (Corollary 3.3.10). Hence fixed-points can be unrolled with the rule:

µZ . f = f [(µZ . f )/Z] (µ-unroll)

Applying this rule does not directly change the result of simulating the fixed-point. It

does, however, mean that last iteration of the fixed-point can be distinguished from

the other iterations during the application of subsequent rules, since it has been taken

outside of theµ-expression.
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Example Suppose we are trying to demonstrate the property¬n ∧ (m S n) ⇒ m.

Using the definition ofSinceand the fixed-point unrolling rule, we can rewrite the

antecedent as follows:

¬n ∧ (m S n) = ¬n ∧ (µZ . n ∨ (m ∧ YZ)) (Def. 3.4.1)

= ¬n ∧ (n ∨ (m ∧ Y(µZ . n ∨ (m ∧ YZ)))) (µ-unroll)

= (¬n ∧ n) ∨ (¬n ∧ m ∧ Y(µZ . n ∨ (m ∧ YZ))))

= ff ∨ (¬n ∧ m ∧ Y(µZ . n ∨ (m ∧ YZ))))

= m ∧ ¬n ∧Y(µZ . n ∨ (m ∧YZ)))

It is quite clear thatm ∧ ¬n ∧ Y(µZ . n ∨ (m ∧ YZ))) ⇒ m holds, so the original

property must also hold.

By splitting off the last iteration in this way, the unroll rule will also allow us to

selectively apply the rules that we will present for abstraction refinement and property

decomposition.

GTL fixed points also have the property that they areunique, so if Z = f (YZ)

andW = f (YW ) then it follows thatZ = W :

Theorem 4.1.1(Unique Fixed-Point). If every free occurrence ofZ in f occurs within

a Y operator, thenRf ,ρ,Z has a unique fixed-point.

Proof. Since every instance ofZ is bound byY, the temporal depth ofZ in f must be

greater than or equal to one. Therefore, by the intermediateresult of Theorem 3.3.8:

L≤n(Rf ,ρ,Z(R)) ⊆V Rf ,ρ,Z(L≤n−1(R))

SinceL≤n is a lower-closure,

L≤n(Rf ,ρ,Z(R)) ⊆V L≤n(Rf ,ρ,Z(L≤n−1(R))) (4.1)

Now,Rf ,ρ,Z is monotonic, so:

Rf ,ρ,Z(R) ⊇V Rf ,ρ,Z(L≤n−1(R))

so, by applying the monotonic functionL≤n to both sides,

L≤n(Rf ,ρ,Z(R)) ⊇V L≤n(Rf ,ρ,Z(L≤n−1(R))) (4.2)

Therefore by Equations 4.1 and 4.2,

L≤n(Rf ,ρ,Z(R)) = L≤n(Rf ,ρ,Z(L≤n−1(R))) (4.3)
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Now supposeR andQ are fixed-points ofRf ,ρ,Z andR 6= Q. Then w.l.o.g. there

is some wordσ and valuationν ∈ V such thatσ ∈ R〈ν〉 \ Q〈ν〉. Then it must be that

σ ∈ (L≤|σ|(R))〈ν〉 \ (L≤|σ|(Q))〈ν〉, so{m ∈ N | L≤m(Q) 6= L≤m(R)} is non-empty.

Let n = min{m ∈ N | L≤m(R) 6= L≤m(Q)}. n is therefore the shortest length trace

for whichR andQ differ.

Now L≤n(Q) 6= L≤n(R) implies L≤n(‖ f ‖ρ[Z 7→Q]) 6= L≤n(‖ f ‖ρ[Z 7→R]) since

bothQ andR are fixed-points. Therefore

L≤n(Rf ,ρ,Z(L≤n−1(Q))) 6= L≤n(Rf ,ρ,Z(L≤n−1(R)))

by Equation 4.3. This in turn impliesL≤n−1(Q) 6= L≤n−1(R), contradicting minimal-

ity of n.

This theorem is useful for demonstrating equivalence between two fixed-point for-

mulas, as we will show in the next section.

4.1.3 Temporal Operators

In this section we will consider rules that apply to the temporal operatorsY, P andS.

As a consequence of GTL being a linear logic, the Yesterday operator distributes over

the other connectives. For example:

Yf ∧ Yg = Y(f ∧ g) (Y-dist-∧)

Yf ∨ Yg = Y(f ∨ g) (Y-dist-∨)

AlthoughYff = ff, Ytt is not equivalent tott, sincett satisfies all traces of length

one, butYtt does not. This may seem a counter-intuitive rule, but it is infact useful,

because it accurately matches the characteristics of ternary simulation. Since not every

state has a pre-image in our circuit model, the set of all states may differ from its own

post-image.

BecausePreviousandSinceare defined in terms of fixed-points, fixed-point un-

rolling directly induces the following rules for them:

Pf = f ∨YPf (P-unroll)

f S g = g ∨ (f ∧ Y(f S g)) ( S -unroll)

The first of these rules might, for example, be used to case-split based on whether

the event described byf occurred in the most recent time-step or not. These also allow
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us to instantly derive that:

Ptt = tt (P-tt)

f S tt = tt ( S -tt-2)

ff S f = f ( S -ff-1)

The distributive law for disjunction, together with the uniqueness of fixed-points,

allows us to demonstrate some interesting properties ofP and S . For example, the

following two equations forYPf and PYf are obtained by simple unrolling and

distribution:

PYf = Yf ∨ Y(PYf ) (P-unroll)

YPf = Y(f ∨ YPf ) (P-unroll)

= Yf ∨ Y(YPf ) (Y-dist-∨)

Therefore bothYPf andPYf satisfy the equationZ = Yf ∨ YZ. Applying the

Unique Fixed-Point Theorem, this demonstrates, as we wouldexpect, that

PYf = YPf (Y-dist-P)

This result can be used, for example, for us to case-split andindependently simulate

thefirst step of an iteration, sincePf = f ∨YPg = f ∨ PYf .

We can also use the uniqueness of fixed-points to derive the following similar

results:

Pff = ff (P-ff)

P(f ∨ g) = Pf ∨ Pg (P-dist-∨)

f S ff = ff ( S -ff-2)

tt S g = Pg ( S -tt-1)

Y(f S g) = (Yf ) S (Yg) (Y-dist-S )

f S (g ∨ h) = (f S g) ∨ (f S h) ( S -dist-∨)

(f ∧ g) S h = (f S h) ∧ (g S h) ( S -dist-∧)
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4.1.4 Symbolic Constructs

The symbolic constructs of GTL are orthogonal to the other types of constructs, since

they are the only constructs that affect the differences between each of the symbolic

indices. As a result, the other logical operations distribute over symbolic ones. For

example,

(Q → f | g) ∧ h = Q → (g ∧ h) | (f ∧ h) (∧-dist-→)

(Q → f | g) ∨ h = Q → (g ∨ h) | (f ∨ h) (∨-dist-→)

Y(u → f | g) = u → Yf |Yg (Y-dist-→)

(f ∧ g)(u := Q) = (f (u := Q)) ∧ (g(u := Q)) (:=-dist-∧)

(f ∨ g)(u := Q) = (f (u := Q)) ∨ (g(u := Q)) (:=-dist-∨)

Y(f (u := Q)) = (Yf )(u := Q) (Y-dist-:=)

The conditional follows a few simple rules that we would expect it to:

(true → f | g) = f (→-true)

(false → f | g) = g (→-false)

(¬Q → f | g) = Q → g | f (→-neg)

(Q → f | f ) = f (→-equal)

Rules for introducing and removing variables are useful because they allow control

over whether properties are model checked explicitly or symbolically. This is impor-

tant because some property aspects, such as values on datapaths, can be more effi-

ciently represented symbolically. For example, we have theoption of representing

disjunction either explicitly or symbolically by introducing a fresh variableu:

f ∨ g = (∃u . u → f | g) (sym-disj)

This rule can be combined with the distributive laws for disjunction in order to affect

the model checking process. For example, the rule allows us to change the two explicit

post-image calculations represented byYf ∨Yg into the single symbolic post-image

calculation given by(∃u . Y(u → f | g)).

We can also go in the reverse direction and make model checking more explicit.

The following rule states that symbolic substitution is equivalent to textual substitution

on its operand.

f (u := Q) = f [Q/u] (subst)
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We can use this rule to flatten symbolic model checking into explicit model checking,

as the following example demonstrates.

Example Suppose we would like to verify that a 4-step clock generatorsignalsclk

when reset with signalr, and every fourth time interval afterward. We can model

check this behaviour explicitly with the following formula:

µCount0 . r ∨ (¬r ∧Y(¬r ∧Y(¬r ∧Y(¬r ∧YCount0))))

Model checking calculates the set of states where either a reset occurs, or has last

occurred a multiple of four time-steps ago. Now suppose thatwe know that the timer

is implemented using a two-bit counter, and we would like to use a more efficient

symbolic model checking approach. The following property finds the symbolic set of

states in which the value of the counter isu:

(µCount . ((u = 0) → r | ff) ∨ (¬r ∧ YCount(u := u − 1)))(u := 0)

It is not immediately obvious that the two properties are equivalent. We can repeatedly

use the substitution rule, however, to flatten-out the symbolic states and demonstrate

equivalence:

Count[0/u] =(((u = 0) → r | ff) ∨ (¬r ∧ YCount(u := u− 1)))(u := 0)

=(((u = 0) → r | ff) ∨ (¬r ∧ YCount(u := u− 1)))[0/u]

=((0 = 0) → r | ff) ∨ (¬r ∧YCount(u := 0 − 1))

=r ∨ (¬r ∧ YCount[3/u])

=r ∨ (¬r ∧ Y(¬r ∧ YCount[2/u]))

=r ∨ (¬r ∧ Y(¬r ∧ Y(¬r ∧ YCount[1/u])))

=r ∨ (¬r ∧ Y(¬r ∧ Y(¬r ∧ Y(¬r ∧ YCount[0/u]))))

We can now use the unique fixed-point theorem to deduce thatCount0 = Count[0/u].

4.2 Decomposition Rules

We now consider rules that enable decomposition of a property into multiple model

checking runs. Such rules can be employed in cases where the original property re-

quires excess resources, but splitting it up allows each piece to be verified successfully.
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4.2.1 Logical Decomposition

There are some straightforward rules for decomposing GTL properties by splitting

antecedents or consequents. For example, if an antecedent can be case-split into con-

ditionsA1 andA2, then we can verify each of these conditions in turn:

A1 ⇒ C A2 ⇒ C
A1 ∨ A2 ⇒ C (∨-split)

This rule follows directly from the semantics of GTL. Dually, if the consequent of a

property requires us to verify two independent responses, then we can verify each of

these separately:

A ⇒ C1 A ⇒ C2

A ⇒ C1 ∧ C2 (∧-split)

Recall that the GTL propertyA ⇒ C is satisfied if and only if every model trace that

satisfiesA also satisfiesC. Therefore, for any circuit model, the leads-to relation is

reflexive and transitive:

A ⇒ A (⇒-refl)

A ⇒ B B ⇒ C
A ⇒ C (⇒-trans)

Transitivity allows us to split a simulation in half by introducing an intermediate state,

B. The new verification approach first shows that simulating from A results inB.

Secondly it verifies that simulating fromB results inC. These two properties will

typically simulate different adjacent segments of the circuit, with the formulaB cor-

responding to a ‘cut-point’ between them. This is illustrated in Figure 4.1(i). In

logical terms, it can also be seen as expressing the soundness of either weakening an

antecedent, or strengthening a consequent.

The transitivity rule is linear in nature, but we can extend the approach to branch-

ing simulations, given that the GTL semantics is monotonic.We can express mono-

tonicity (Theorem 3.3.2) with the rule

A ⇒ C
f [A/X] ⇒ f [C/X] (mono)

Or equivalently as

A1 ⇒ C1

f [A1/C1] ⇒ f

A1 ⇒ C1

f ⇒ f [C1/A1]
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A B C

⇒⇒

A1 C1

A2 C2

⇒
⇒

A1 C1

A2 C2

⇒
⇒

(i) Leads-to Transitivity (ii) Pre-composition (iii) Post-composition

Figure 4.1: Decomposing a Simulation

Using these rules combined with transitivity, we can show that it is sound to weaken,

or strengthen, anysub-formulaof an antecedent, or consequent, respectively:

A1 ⇒ C1 A2 ⇒ C2

A2[A1/C1] ⇒ C2 (pre-composition)

A1 ⇒ C1 A2 ⇒ C2

A1 ⇒ C1[C2/A2] (post-composition)

Because these substitutions can take place at any place within a formula, these

rules express that branching simulations can be split aparton any branch. The first

rule is termedpre-composition, because it effectively adds a simulation before some

part of the antecedent condition. Similarly, thepost-compositioneffectively places

an extra simulation after one part of the consequent of another. Figures 4.1 (ii) and

(iii) illustrate the possible layout of the segments of a circuit corresponding to such

decompositions.

Monotonicity and transitivity allow us to derive other rules for decomposition. For

example, the following derived rule can be used to compose simulations conjunctively:

A1 ⇒ C1

A1 ∧ A2 ⇒ C1 ∧ A2
(mono)

A2 ⇒ C2

C1 ∧ A2 ⇒ C1 ∧ C2
(mono)

A1 ∧ A2 ⇒ C1 ∧ C2
(⇒-trans)

This can be useful if two parallel independent circuit segments can be simulated in-

dependently. Since monotonicity holds for every formula, we can equally well derive

this result for any function of two recursion variables. Forexample, we can show that

A1 ⇒ C1 andA2 ⇒ C2 implies

(YA1) S A2 ⇒ (YC1) S C2

Properties can also be split based on the value of a symbolic variable. For example,

if we can verify a property for both valuations of a particular variable, then the entire

property must hold:

(A ⇒ C)[true/u] (A ⇒ C)[false/u]

A ⇒ C
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4.2.2 Temporal Decomposition

In this section, we examine decomposition relating to temporal aspects of a property.

4.2.2.1 Temporal Shifting

Since GTL properties have no notion of a starting state, we can temporally shift prop-

erties without affecting their meaning, i.e. for a given model:

(A ⇒ C) iff (YA ⇒ YC) (Y-shift)

Proof. By monotonicity ofYZ, it is clear thatA ⇒ C impliesYA ⇒ YC.

Now supposeK |= YA ⇒ YC and pick some traceσ ∈ tr(K) that satisfies

A. Since every Kripke structure has a total transition relation, there is some trace

σ.s ∈ tr(K), wheres is some state of the system. By the semantics of Yesterday,σ.s

satisfiesYA, and so, by our assumption, also satisfiesYC. Now by the semantics of

Yesterday, it must be thatσ satisfiesC. HenceK |= A ⇒ C.

Section 3.7.3 introduced a model checking algorithm for GTLproperties with

atemporal consequent (containing noY). Using the temporal shifting rule allows

us extend this algorithm to those properties that may contain Y in their consequent.

Properties that are bounded and linear, like those of STE, can be re-written into a form

where both the antecedent and consequent are a conjunction of formulas that refer to

distinct time-slices, such as:

Yf ∧ g ⇒ Yh ∧ i

The consequent conjuncts can then be split up. For this example there is one to check

the final time-step,i, and one which checks the preceding condition,h:

Yf ∧ g ⇒ i

Yf ∧ g ⇒ Yf

f ⇒ h

Yf ⇒ Yh
Y-shift

Yf ∧ g ⇒ Yh
⇒-trans

Yf ∧ g ⇒ Yh ∧ i
∧-split

Example Suppose a 16-bit adder should deliver the first 8-bits of its output in one

time-step, and the remainder in the subsequent time step. This can be captured by the

property:

Y(Y(opA is a ∧ opB is b))
⇒

Y(out1 is (a + b)[7 : 0]) ∧ out2 is (a + b)[15 : 8]
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We can verify this property by showing independently that both outputs are correct,

using the two properties

Y(opA is a ∧ opB is b) ⇒ out1 is (a + b)[7 : 0]

Y(Y(opA is a ∧ opB is b)) ⇒ out2 is (a + b)[15 : 8]

In practical implementations, the model checking process for such simulations can be

shared, since the simulation of the second property will include that of the first.

4.2.2.2 Induction

Since GTL fixed-points represent finite iteration, we can usean induction rule to de-

compose them. For formulasf where every free instance ofZ is bound byY, such a

rule is captured by:

f [ff/X] ⇒ C f [C/Z] ⇒ C

µZ . f ⇒ C (µ-induct)

In effect, this rule states that fixed-points satisfy their inductive invariants.

Proof. We show by induction that the assumptions are sufficient to conclude that each

approximant ‘leads to’C.

Case n = 0: µ0Z . f = ff andff ⇒ C is vacuously true.

Case n = 1: µ1Z . f = f [ff/X], which is covered by the first assumption.

Case n + 1 given casen: SupposeµnZ . f ⇒ C. Then sincef [C/Z] ⇒ C, by

monotonicity we have thatf [C/Z][µnZ . f /C] ⇒ C. But f [C/Z][µnZ . f /C] =

f [µnZ . f /Z] = µn+1Z . f . Henceµn+1Z . f ⇒ C.

Since the traces that satisfy each approximant also satisfyC, and the fixed-point is

the union of these approximants, it must be that traces satisfying the fixed-point also

satisfyC, as required.

This induction principle allows us to derive some powerful high-level temporal

patterns. For example, we can verify that some invariantI holds perpetually after

resetR, by first showing that the reset establishes the invariant, and then that the

invariant inductively holds:

R ⇒ I YI ⇒ I
PR ⇒ I
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Proof.

R ⇒ I
R ∨Yff ⇒ I

YI ⇒ I R ⇒ I
R ∨YI ⇒ I

∨-split

µZ . (R ∨ YZ) ⇒ I
µ-induct

PR ⇒ I
P-def

Example To illustrate the use of one of these rules, we will examine the decom-

position of the verification of an industrial memory design previously described in

[HCY03b]. The design consists of two blocks: a memory block for storing incoming

data, and a processing block that performs selection, alignment and masking on the

data being read.

Verification aims to show that if dataD has been written to addressA, and not

overwritten since, then if addressA is accessed with appropriate options, the correct

selection, alignment and mask ofD is returned. The selection and alignment options

must be provided with the read request, and the mask options provided one cycle

later, when the read completes. Introducing extra names to describe the simple input

predicates required, the property can be specified with GTL as:

Y(Y(no_overwrite S write) ∧ read ∧ sel_align)
∧ mask ⇒ data_correct

(4.4)

The decomposition approximately halves verification time [HCY03b] by introducing

an internal predicate,read_result, to assert that the data is correctly transmitted on

the bus between memory and processing blocks. The first stageof verification checks

that the memory correctly stores the data and sends it on thisbus:

Y(no_overwrite S write) ∧ read ⇒ read_result (4.5)

The second stage verifies that if the processing block correctly receives the data then

it is processed correctly:

Y(read_result ∧ sel_align) ∧ mask ⇒ data_correct (4.6)

To justify such decomposition it is necessary to show that Equation 4.4 is implied

by Equation 4.5 and Equation 4.6 together. This condition isexactly captured by the

branching pre-composition rule, since substituting the antecedent of Equation 4.5 in

for read_result in the antecedent of Equation 4.6 results in the original property of

Equation 4.4.
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4.3 Abstraction Refinement Rules

As well as expressingwhat is being checked, GTL specifications also express the

model checking approach that will be used to check it. This means that the shape of a

formula can be used to control the degree of precision employed. Abstraction refine-

ment can therefore be described using property-preservingrewrite rules that change

the model checking direction. Since every atomic step of simulation can be described

precisely using GTL, we have complete control over model checking. We will formal-

ize abstraction refinement as follows:

Definition 4.3.1. The transformation of GTL formulaf to GTL formulag is an ab-

straction refinement, written f % g , if f andg are semantically equivalent, and the

abstract simulation ofg is more precise than the abstract simulation off , ⌊ f ⌋σ ⊒∀V

⌊ g ⌋σ, for every circuit model.

Any abstraction refinement rule can be soundly applied to anysub-formula in order

to create another abstraction refinement rule:

f % g implies h[f /Z] % h[g/Z]

This is a result of the monotonicity of abstract simulation,given by Lemma 3.7.10. In

practical terms, this allows us to refine the abstraction of any intermediatesimulation

state.

There are two ways in which a ternary simulation can over-approximate the im-

age of an antecedent. First, set-based simulation itself isnot complete for certain

antecedents. Second, the ternary representation introduces information loss due to its

approximation of disjunction and post-image calculation.We will consider rules for

each of these effects in turn.

4.3.1 Refining Disjunction

Supposef does not contain any fixed-points, and model checkingf (g ∨ h) ⇒ C fails

due to over-abstraction. If the loss of required information is caused by this disjunction

alone, then it must be that bothf (g) ⇒ C andf (h) ⇒ C would succeed individually.

One way of avoiding such information loss is torepeatthe simulationf for both

disjuncts independently. By doing this, we effectively make model checking more ex-

plicit. This refinement is captured by distributingf , where possible, over disjunction:

f (g ∨ h) % f (g) ∨ f (h) (∨-dist)
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Proof. By definition of⊔,

⌊ g ⌋ν
σ ⊔ ⌊ h ⌋ν

σ ⊒ ⌊ g ⌋ν
σ

⌊ g ⌋ν
σ ⊔ ⌊ h ⌋ν

σ ⊒ ⌊ h ⌋ν
σ

so by monotonicity of abstract simulation off (Z),

⌊ f ⌋ν
σ[Z 7→⌊ g ⌋ν

σ⊔⌊ h ⌋ν
σ ] ⊒ ⌊ f ⌋ν

σ[Z 7→⌊ g ⌋ν
σ ]

⌊ f ⌋ν
σ[Z 7→⌊ g ⌋ν

σ⊔⌊ h ⌋ν
σ ] ⊒ ⌊ f ⌋ν

σ[Z 7→⌊ h ⌋ν
σ ]

Hence

⌊ f ⌋ν
σ[Z 7→⌊ g ⌋ν

σ⊔⌊ h ⌋ν
σ ] ⊒ ⌊ f ⌋ν

σ[Z 7→⌊h ⌋ν
σ ] ⊔ ⌊ f ⌋ν

σ[Z 7→⌊ g ⌋ν
σ ]

or, equivalently

f (g ∨ h) % f (g) ∨ f (h)

Intuitively, this rule is an abstraction refinement becauseit delays the stage at

which information is lost until later in the simulation. This allows more to be deduced

from this information, increasing the precision with whichmodel checking runs. Un-

fortunately, this increases the number of simulation stepsthat occur during model

checking, giving a performance penalty.

Symbolic representation can allow us to reduce this penaltyby sharingthe com-

mon elements between two repeated steps. We will term this techniquesymbolic dis-

junctive completiondue to the correspondence with disjunctive completion in abstract

interpretation theory [CC79]. Symbolic disjunctive completion usesu → g | h to

representg ∨ h, whereu is existentially quantified at the top level of simulation. The

symbolic states capture circuit node dependencies that would otherwise have been lost

by the abstract disjunction. This induces the following form of abstraction refinement:

f (g ∨ h) % ∃u . f (u → g | h) (∨-sym-dist)

In abstract interpretation theory, using the set of downwards closed abstract elements

to express disjunction is known asdisjunctive completion[GRS00]. When computing

oversetsof representatives ofsetsof states, union is a complete abstract interpretation

of disjunction. The symbolic representation can be viewed as indexing such sets.

Under this interpretation, the symbolic indexing encodes the disjunctive completion

of ternary propagations.
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Example Consider the XOR-gate with delayed inputs shown in Figure 4.2. We

would like to verify that if the inputs were mutually exclusive in the preceding time

step, then the output should now be high. The most obvious option to simulate this,

Y((a∧¬b)∨ (¬a∧b)), loses all information in the first time-step, as shown in Figure

4.2(i). This is because we are specifying a dependency between circuit nodes that

ternary vectors cannot capture. Applying the (∨-dist) rule distributes the disjunction so

that the information about the mutual exclusion case is retained in the post-image, as

shown in Figure 4.2(ii). If we apply the rule for symbolic disjunctive completion, (∨-

sym-dist), then we achieve the same effect with a single simulation (Figure 4.2(iii)).

The variableu captures the required dependency, and the output can be shown to be

high.

4.3.2 Product Reduction

It is often possible to simplify a model checking run by forcing separate parts of

the circuit to be exercised independently. This is the motivation behind compositional

GSTE, described in Section 2.6. The result of such a transformation is that, rather than

simulating an entire systemQ1×Q2× . . .×Qn, simulation takes place independently

within each componentQ1, Q2, . . . , Qn in turn. For this reason, we will term this type

of transformationproduct reduction.

In terms of GTL, the degree of product reduction is determined by the point in the

simulation where the result of two sub-simulations are conjoined. Since GTL model

checking keeps track of only the final states, or images, of each formula, a product

reduction effectively allows formoretraces than required, since they are not limited

by the constraining interaction between the system components. Product reduction

can be expressed as the abstraction refinement rule:

Yf ∧ Yg % Y(f ∧ g) (prod. red.)

Proof. By definition of⊓,

⌊ f ⌋ν
σ ⊓ ⌊ g ⌋ν

σ ⊑ ⌊ f ⌋ν
σ

⌊ f ⌋ν
σ ⊓ ⌊ g ⌋ν

σ ⊑ ⌊ g ⌋ν
σ

so by monotonicity ofpost♯,

post♯(⌊ f ⌋ν
σ ⊓ ⌊ g ⌋ν

σ) ⊑ post♯(⌊ f ⌋ν
σ)

post♯(⌊ f ⌋ν
σ ⊓ ⌊ g ⌋ν

σ) ⊑ post♯(⌊ g ⌋ν
σ)
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Figure 4.2: Two Methods of Refining Abstract Disjunction
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Hence

post♯(⌊ f ⌋ν
σ ⊓ ⌊ g ⌋ν

σ) ⊑ post♯(⌊ f ⌋ν
σ) ⊓ post♯(⌊ g ⌋ν

σ)

which exactly corresponds to

Y(f ∧ g) - Yf ∧Yg

Example Consider verifying a three-stage pipeline that independently decrements

its two binary inputs,a andb, then adds them together. We can try to simulate the two

inputs independently, and combine the results at the final stage using:(YY(a is u))∧

(YY(b is v)). Suppose this run fails due to over-abstraction and we discover that, in

fact, the two inputs start to interact at the second stage. Werefine the simulation to

Y(Y(a is u) ∧ Y(b is v)) (or evenYY(a is u ∧ b is v)). This simulation may have

greater space requirements, but may now maintain enough information for verification

to succeed.

4.3.2.1 Partial Order Reduction

When simulation with fixed-points is involved, product reduction can correspond to

partial order reduction. Partial order reduction helps improve the performance of

model checking by eliminating the interleaving of independent actions.

For example, suppose that we wish to simulate the condition under which eventf

andg have both occurred in the past. The most obvious way to simulate this condition

is to use the formulaPf ∧ Pg . When this is given to the model checker, it simulates

the results off andg independently. This is perfectly acceptable iff andg simulate

different parts of the circuit, but if there is any dependency between the effects of the

two formulas, then they will not be captured.

An alternative way to simulate the condition is to case-split on which event oc-

curred first. This is captured by the simulation

P(f ∧ Pg) ∨ P(Pf ∧ g)

that is capable of capturing the interaction between the twoevents.

4.3.3 Refinement by Case-Splitting

Due to the nature of abstract simulation, there are several other ways in which in-

formation can be lost, leading to over-abstraction. First,propagation is calculated
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Figure 4.3: Multiplexer

locally, on a node-by-node basis. Because of this, the algorithm does not take account

of global patterns that affect the dependencies between nodes. For example, consider

the multiplexer in Figure 4.3. The output should be the same as a whensel is 1, and

the same asb whensel is 0. It follows that if botha andb are high then the output

should also be high. The propagation shown in this figure doesnot derive this global

outcome, however, as it simulates each gate locally.

Second, propagation only takes place in a forward direction, although backwards

propagation is sometimes required to attain new constraints. An example of this has

already been illustrated in Figure 3.5.

In both such cases, the required precision can be retained bysuitably case-splitting

the simulation. This is captured by the abstraction refinement rule:

f % (f ∧ n) ∨ (f ∧ ¬n) (case-split)

It is easy to show that this is a refinement rule, sincef is equivalent tof ∧(n∨¬n), and

we can then apply the rule for refinement via distribution of disjunction. Typically,n

is some circuit node whose simulation directly affects the segment of interest.

Example Figure 4.4 shows the result of applying the rule case-split on a multiplexer

by splitting on thesel input node. The two scalar inputs of1 and0 are each considered

in turn (Figures 4.4 (i) and (ii)) and the simulator maintains that the output is always

high when the two cases are merged in (iii).

As with disjunctive completion, we also have the option of using a variable to

index the two cases symbolically:

f % ∃u . (f ∧ n is u) (sym-case-split)

This powerful transformation effectively allows us to pepper the simulation with extra

detail, by introducing pieces of complete symbolic simulation within a predominantly

ternary run.
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Figure 4.5: Case-Splitting to Avoid Backwards Simulation

Example Figure 4.5 (i) shows an example where information is lost because con-

straints are not propagated backwards. Since the AND-gate outputc is 1, it must be

that both its inputs are also high. By introducing the variable u on nodeb in Figure

4.5 (ii), this forces an over-constraint in the case thatu is false. Whenu is quantified

out in Figure 4.5 (iii), we maintain the constraint that nodeb must be high.

4.3.4 Emulating Precise Nodes

As described in Section 2.5.4.5, the GSTE simulator for assertion graphs allows a set

of precise nodesto be specified. Ghost variables are created to mirror the value of

these nodes, thus maintaining their dependencies precisely. This allows us to select

aspects of the circuit that we believe require a more concrete representation. In this

section, we describe a GTL transformation that achieves thesame effect.

The transformation works by using a set of ghost variables,pi to encode the val-

ues on precise nodesni. Similar to symbolic model checking [McM92], the simulator

keeps a Boolean predicate, containing these ghost variables, that precisely charac-

terizes the set of possible node states associated with eachsimulation state. This is

encoded using theover-constraintpredicate (see 2.4.1). The connection between the

values on the nodes and the constraints on the ghost variables is maintained by assert-

ing that the two match in each simulation step.
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In symbolic model checking, the variables used to encode state are effectively

scoped locally to each time-step. Typically the transitionrelation,T , is a predicate

over the current-state variables,pi, and the next-state variables,p′i. The image of a

state predicateS is then calculated as(∃i pi . T ∧ S)[pi/p
′
i]. This use of substitution

and quantification eliminates the need to use one set of variables for each time-step.

Our precise nodes transformation uses substitution and quantification in a similar way,

so that variables can be used by each property state independently.

Let us use the example from Section 2.5.4.5, of a circuit withtwo 2-bit counters,

c1 andc2, that increment in synchrony. When a reset occurs, by signaling noder, both

counters are reset to zero. Suppose that both counters are attached to a comparator,

and we would like to verify that this comparator always returns true.

If we simulate the circuit with the formulaµZ . r∨¬r∧YZ then the values of both

counters are quickly abstracted toXX. In the first iteration,(a1a0, b1b0) = (00, 00).

In the second iteration(a1a0, b1b0) = (00, 00) ⊔ (01, 01) = (0X, 0X). In the third

iteration,(a1a0, b1b0) = (0X, 0X) ⊔ (XX, XX) = (XX, XX). The final output of the

comparator isX and so verification fails.

Now we will aim to use variables to index these different cases. The situation is

different from symbolic model checking because we will use current-state variables,

pi, andprevious-state variables,p−i . Given any simulation state, we can add variables

to the state to encode the precise nodes,ni, with the formula

D = (
∧

i

ni is pi)

In our example, the formular resets the counters to zero. ThereforeD ∧ r sets the

counters to zero, and asserts that the ghost variables matchthese zero counts. Now

suppose that stateZ is already indexed in terms of the counters’ ghost variablesfor the

current state. Then we can capture the relationship betweenthe states by substituting

the current state variables for previous state variables during the post-image calcula-

tion, then asserting the new current state variables and quantifying out the previous

state variables:

µZ . ∃i p−i . ((D ∧ r) ∨ (D ∧ ¬r ∧ Y(Z(pi := p−i )i)))

Let us step though this simulation for the dual-counter example with set of precise

nodes{a1, a0, b1, b0}. In the first iteration, simulatingr drives(a1a0, b1b0) to (00, 00),

and thenD asserts that(pa1pa0 , pb1pb0) = (00, 00). Therefore the ternary vector asso-

ciated with each symbolic valuation is⊥ (over-constrained) except for the state where

(pa1pa0 , pb1pb0) = (00, 00)
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for which it is (00, 00).

We then substitute and take the post-image, giving us a simulation state where

every symbolic valuation is⊥ except for

(p−a1
p−a0

, p−b1p
−
b0

) = (00, 00)

which is assigned ternary vector(01, 01). Now D again asserts that the current-state

variables encode the post-image,

(pa1pa0 , pb1pb0) = (01, 01)

Following quantification of the previous-state variables,every symbolic valuation is

assigned⊥ except for when

(pa1pa0 , pb1pb0) = (00, 00) ∨ (pa1pa0 , pb1pb0) = (01, 01)

which are assigned(00, 00) and (01, 01) respectively. This process continues un-

til a fixed-point is reached where the only symbolic values that are not⊥ satisfy

(pa1 = pb1)∧ (pa0 = pb0) and have assigned ternary vector(pa1pa0 , pb1pb0). In each of

these consistent states, the output of the comparator is true. Therefore the verification

succeeds.

This method generalizes to arbitrary GTL formulas, although the matter becomes

more complicated when the formula is made up from more than one recursion variable.

One way around this is to create a family of ghost variables, so that there is one for

each of the occurrences of the variable being simulated.

4.4 Related Work

Although limited reasoning techniques currently exist forGSTE, the development of

reasoning rules and associated theorem proving infrastructure has in the past played

an important role within the more restricted setting of STE verification.

4.4.1 STE Reasoning

Seger and Joyce [SJ92] first formally reason about STE runs byembedding their se-

mantics in Higher-Order Logic (HOL), and using HOL’s associated theorem proving

environment [GM93] to manipulate properties. They describe STE assertions as a set

of tuples, each tuple of which encodes the timing and value information about a par-

ticular event in the circuit. The connection to STE simulation is then performed using
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a decision procedure tool called Voss. Manual reasoning is then used to connect STE

assertion tuples to custom higher-level specification definitions in HOL.

Seger and Hazelhurst [Haz96] structure and simplify this approach, by describing

runs in terms of the simple domain specific logic, TrajectoryEvaluation Logic (TEL).

They develop a simple set of rules for this logic that can be applied directly within their

lightweight proof tool, VossProver. This makes reasoning more accessible, since it no

longer requires either low-level reasoning at the level of assertion tuples, or an under-

standing of reasoning with HOL. The rule-base [SC95] contains rules for equivalence

and decomposition, and have shown to be useful in industrialverification [AS95]. A

range of extra reasoning rules for TEL have also been presented to complement par-

ticular advances in STE verification techniques. For instance, Aagaard et al. [AJS98]

describe extra rules for temporal induction and case-splitting. Kaivola and Aagaard

describe a range of rules used in an industrial divider circuit in [KA00]. TEL is also

used to express symbolic indexing transformations [AJS99,MJ02], which can dra-

matically reduce memory verifications [PRBA97], as well as play a part in automatic

abstraction refinement [RC06b, ABMS07, TG06, CHXY07].

Since TEL is close to being a sub-language of GTL, these rulesare similar to some

of our own. For instance, some are closely related to our rules for transitivity, tempo-

ral shifts, weakening and strengthening, and some aspects of symbolic reasoning. One

significant difference is that TEL is defined in terms of a partial model structure, and

so does not allow a law of the excluded middle. When using TEL in a binary setting,

its partially ordered state-space models must be connectedwith additional Boolean

relational models [AMO99] in order to derive such rules. In contrast, the semantic ap-

proach of GTL models the circuit as Boolean from the start, thus simplifying both our

specification notation semantics as well as our theory. Of course, the main advantage

of our reasoning system is that the rules are generalized to an unbounded setting.

4.4.2 GSTE Reasoning

In contrast to STE, reasoning techniques for GSTE are fewer in number, and are less

formally specified. We suspect that this is primarily due to the difficulties that ac-

company reasoning with assertion graphs. Systematic transformations for abstraction

control in GSTE were first described by Yang and Seger [YS02],where it is noted

that case-splitting of assertion graph edges, and unrolling of edge loops, are often

sufficient for abstraction refinement. In GTL, equivalent transformations to these are
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captured cleanly by a combination of case-splits, fixed-point unrolling and distribu-

tive operations. Our abstraction rules are, to our knowledge, the first general-purpose

formalization of abstraction refinement applicable to GSTEsimulation approaches.

Jain [Jai97] describes some similar forms of transformation and composition for

his graphical simulation specification notations—the fore-runners of assertion graphs.

Like assertion graphs, reasoning with and manipulating these forms requires lengthly

proofs and algorithms. Hu et al. [HCY03b] are the first to formally reason with the

currently accepted specification notation of assertion graphs, by providing decision

procedures for both implication and verification under assumption. The methods rely

on constructing monitor circuits [HCY03a] from assertion graphs, which signal when

an assertion on their inputs fails. GSTE itself is then used on such monitor circuits to

verify the required characteristics. An alternative approach to checking implication is

provided by in [YYSX06], via an algorithm for explicit calculation of maximal models

for assertion graphs. Although both these approaches are sound, they are long-winded

when compared to some of the options available with GTL. For instance, at the end

of Section 4.2, we demonstrate a GTL decomposition that is shown to be sound via

a simple syntactic proof rule in our logic. The same decomposition verified using

monitor circuits [HCY03b] requires an entirely separate GSTE verification effort.

As well as approaches that use decision procedures to reasonformally about as-

sertion graphs, some progress has also been made with exhaustive manual reason-

ing. A series of results regarding implication between assertion graphs is provided

in [YYHS05]. These rules and proofs are long and involved, because they deal di-

rectly with flat mathematical representations of assertiongraphs. Furthermore, the

rules have a very limited range of applicability, with comparisons typically requiring

equal assertion graph structures. When translated into GTLspecifications, many of

these rules become trivial instances of monotonicity.

Our product reduction abstraction refinement rule characterizes the motivation be-

hind compositional GSTE [YS04]. This rule amounts to a universal abstraction of the

dependencies between the parallel processes of which the circuit is composed. Similar

abstractions between parallel processes have also been explored in [KDG95].



Chapter 5

Assertion Programs

This chapter introduces the language ofassertion programs, which can be used to de-

scribe GSTE specifications at a higher level of abstraction than generalized trajectory

logic. This enables more succinct specifications that can connect and make sense of

the often numerous and complex simulation patterns required to fully verify a non-

trivial hardware component.

There are several reasons why a language such as this is required above-and-

beyond GTL. Most importantly, GTL formulas operate at the bit-level, so operations

like arithmetic are generally obscured beyond the point of easy recognition. Assertion

programs get around this problem by providing standard datatypes to capture these

patterns directly. Another problem with GTL is the low limiton nestedµ-expressions

before a simulation becomes unintelligible to the human eye. In contrast, recursion

in assertion programs is captured in a more scalable style, based on familiar pro-

gramming notations. Furthermore, GTL specifications must sometimes be written in

unintuitive forms to enforce a particular model checking strategy. In contrast, asser-

tion programs are independent of model checking, so can be written in the best way

to represent the properties most clearly.

Traditionally, GSTE specifications are complete forms of component specifica-

tion. A single GTL property, however, expresses a single cause-of-effect relation, so

a multiplicity of properties are typically required to verify the complete functional-

ity of a hardware component. For example, several distinct GSTE simulations may

be used for each different output signal of a particular circuit. Although these simu-

lations are distinct, they often share some of their structure, since they are intended

to drive the same device. It therefore makes sense to collatethese common factors

into a unified component specification. For this reason, we choose to use assertion

programs to describe high-level model specifications that capture the required circuit

86
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Figure 5.1: Conceptual Framework

behaviour. GSTE simulations for different aspects of the specification can then be

generated directly from these specifications.

5.1 Specification Approach

In the conceptual view of our framework, the high-level model and the circuit design

receive the same input data from the environment at each time-step. Both execute

independently with these inputs, and produce their own responses. A set of assertions

are then used to verify that the outputs of the circuit match the expectations from

the specification, meaning that the circuit is considered a refinement of the high-level

model. This is illustrated in Figure 5.1.

One apparent disadvantage of our approach is that the high-level models will be

susceptible to the same human error as the circuit designs themselves. But verification

does plug a significant abstraction gap, since factors otherthan pure functionality drive

practical circuit designs to higher levels of complexity. For instance, nondeterminism

is often introduced by design optimizations such as resource sharing, power reduc-

tion features and pipelines with additional control state.Symmetries in the functional

specification are often not mirrored in the design, for reasons of layout placement or

even electrical interference with neighbouring components.

5.2 Language Overview

Assertion programs are cycle-accurate executable representations of circuit specifica-

tions, so the language of assertion programs subscribes to the same temporal charac-

teristics as the hardware itself. Time is modeled as a seriesof discrete steps, each of

which contains some amount of synchronous parallel computation. So that we can



5.2. Assertion Programs - Language Overview 88

describe any timing characteristics that might be possiblein hardware, we follow its

reactive nature. Therefore the current output values and the subsequent circuit state in

our high-level model are determined by the current state andcurrent input values.

5.2.1 Structure

Each program is split into four different blocks:

• Thevariable declaration blockdefines the types and variables used by the pro-

gram.

• Themodel blockdescribes the transition system of the specification in terms of

statements that assign values to variables.

• The interface blockdescribes how the inputs to the circuit relate to those of the

high-level model.

• Finally, theassertion blockdescribes properties to verify, regarding how the

circuit output relates to that of the high-level model.

5.2.2 Types

Assertion programs make use of higher-level data types, andtheir associated func-

tional operators, in order to represent complex patterns ofspecification succinctly.

The language is strongly typed, to support the semantics, aswell as for type-checking

and aiding reasoning. In principle, any relevant range of data types and operators may

be used within our framework, matching the specific requirements of the design at

hand. For the purposes of this chapter, however, we will limit our data types to the

Boolean type,bool, and the family of bounded non-negative integer typesint(n) for

n ∈ N, whereint(n) describes those non-negative integers that are strictly less than

n. As operators on these types, we will allow the standard Boolean operators, together

with conventional operators for arithmetic modulon.

5.2.3 Variables and Declarations

Assertion programs contain two classes of variables: program variables and indexing

variables.Program variablescapture the state of the high-level model in a given time-

step.Indexing variablesare used for defining locally scoped generalizations, such as

generalized parallel composition and Boolean quantification. Only program variables

are evaluated with respect to the current temporal context.For instance, it makes sense
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to refer to the value that a program variable held in the last time-step, but not to the

previous value of an indexing variable.

For clarity and typing, program variables, constants and type aliases are declared at

the beginning of a program, in thedeclaration block. Program variables are declared

with thevar keyword, as such:

var variable_name : variable_type

Constant declarations provide a simple and useful means of easily parameterizing

specifications. In practice, parameterization would be better serviced by a complete

module system, but this is beyond the scope of our work. Constants are defined with

theconst keyword. For example:

const SIZE = 10

It is also useful to be able to define type constants, or aliases, via declarations of the

form

type index = int(SIZE)

5.2.4 Expressions

Assertion program expressions allow us to describe how to compute the values with

which to update the program state. Expressions can consist of literal constant values,

program or indexing variables, or be constructed using Boolean operators, equality or

other data-specific functions. This allows us to build expressions such as

((1 + count) = max) ∧ done

We will also allow conditional expressions, using the same syntax as the GTL condi-

tional construct:

guard → if _expression | else_expression

We introduce the special operatorlast which modifies an expression to refer to

its value in the preceding time-frame. For example,last(input + 1) refers to the

value assigned to program variableinput in the preceding synchronous time-step,

incremented by one.

This form of temporal expression is useful for several reasons. First, since our out-

put may be functionally dependent either the current or pastvalues of other signals, we
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require a means of specifying temporal references. Second,being able to temporally

shift signal specifications is useful, since hardware interfaces are frequently affected

by pipelining adjustments. Third, the use oflast expressions conveniently mirrors the

Yesterdayoperator of GTL. This correspondence is vital in the translation which we

will present from programs to GTL properties.

5.2.5 Statements

The state transitions for our high-level models are described using assignment state-

ments that set the values of program variables at each synchronous time-step. State-

ments can be viewed either imperatively or declaratively. Interpreted imperatively,

the statements provide instructions that describe how to update the state of the model.

This gives the specifications an intuitive feeling, and mimics many common program-

ming languages. In contrast, assignments can also be vieweddeclaratively, as defining

constraints on the model’s possible state transitions. This alternative viewpoint also

forms a logical basis for our translation to GTL properties,presented in the subsequent

chapter.

Setting a program variable is described by anassignmentstatement of the form:

identifier := expr

whereidentifier is the variable to be set andexpr is the expression to evaluate for

the update value. For example,count := last(count) + 1 stipulates that the program

variablecount is be incremented at every time-step. From the declarative viewpoint,

the statement can be viewed as the constraint given by the corresponding equality:

count = last(count) + 1. Such an equation says that in any model transition, the

value ofcount is one greater in the successor state than in the original state.

Statements are composed viaparallel composition, written using the infix symbol

‘ ‖ ’, or, alternatively, as a line-break. For example, the statement

count′ := last(count) ‖ count := count′ + 1

says thatcount′ should be set to the previous value ofcount andcount should be set

to the current value ofcount′ plus one. In terms of logical specification, parallel com-

position can be seen as the conjunction of the logical constraints of its two component

statements.

Since parallel updates take place simultaneously, two potential problems are raised

by this form of composition. First, it is possible to construct inconsistent programs
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var reset : bool

var count : int(256)

model

if reset then

count := 0
else

count := last(count) + 1

Figure 5.2: Program for an 8-bit Counter

that assign different values to the same variable. For example, a := 1 ‖ a := 2 does

not have a clear interpretation. We will judge such multipleassignments to be ill-

formed statements, which it is the responsibility of the user to avoid. Second, mutually

recursive dependency loops such asa := b ‖b := a can be created, which do not have

a well-founded evaluation strategy. We will avoid this problem by requiring of the

user that there are no dependency loops in the programs.

Programs also include conditional statements for specifying control, using theif ,

then andelse keywords. Such statement follow the standard expectationsof a con-

ditional. An example of this is shown in the assertion program in Figure 5.2, which

models a simple 8-bit counter.

5.2.6 Arrays

We include arrays as built-in composite data types in assertion programs, as they are

frequently useful for the describing common hardware specification patterns that mir-

ror structural circuit duplication and memories. Array types consist of an element type

and a index type, written in the form

element_type [index_type ]

Array-lookup expressions are written in the form

array_name[index_expression]

Notice that we allow arrays to be indexed over any type, and not just the integers.

In this sense, they resemble arbitrary value maps. For example, we might describe an

address to be an array of8-bit values, and describe a memory to be an array of data
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type data = int(256)
type addr = int(8)

model

var mem : data[addr]
var data_in, data_out : data
var write_addr, read_addr : addr
var write_enable, read_enable : bool

for i : addr do

if write_enable ∧ (i = write_addr) then

mem[i] := data_in
else

mem[i] := last(mem)[i]
if read_enable then

data_out := last(mem)[read_addr]

Figure 5.3: Program Segment for an 8-Place 32-bit Memory

indexed by addresses:

type addr = bool[int(8)]
type mem = data[addr]

Modeling often requires simultaneous assignment to array indices within a single

time-step. To express this, we usefor statements to describe indexed parallel compo-

sition, generalizing parallel composition over typed indexing variables. As an example

Figure 5.3 shows a program that models an 8-place memory for 32-bit integers, using

a for statement to update each index of the memory array model at every time-step.

In order to achieve a clean semantics, we will place the restriction that assignment

statements can only assign the primitive types of Boolean and integers. This enforces

the degree of atomicity with which variables can be set. As a result, an array cannot be

copied directly with a single assignment of the forma := b. We can, however, always

introducefor statements to handle such cases:

for i : type do a[i] := b[i]

5.2.7 Circuit Interface

Theinterface blockdescribes how the inputs to the high-level model relate to the input

nodes of the circuit implementation. Circuit input nodes are represented by special
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Boolean program variables, declared with lines of the form:

node reset, write_en

The names of these variables correspond with the string identifiers used by circuit

netlist models, and necessarily have typebool. Since they represent environmental

input, they may not be assigned to. Buses of nodes may be declared using the conven-

tional square bracket hardware notation for defining vectorindex ranges. For example,

the declaration

node data_in[7 : 0]

declares the array of the nodes nameddata_in[7],data_in[6], ...,data_in[0] in the circuit

model. For such a bus,data_in is assigned the array typebool[int(8)].

By introducing these variables, we can now express the mapping between these

variables and the high-level model inputs using the same types of statements that are

used to define the model. At each time-step, the inputs to the high-level model are set

using assignments evaluated from circuit input expressions. This follows the approach

set out in Figure 5.1.

Since these statements follow the same semantics as statements in high-level mod-

els, the interface block can be seen as merely a parallel extension to the high-level

model. By enforcing the separation between the two, however, we can greatly en-

hance the clarity of the high-level model by separating it from the messy details of

the interface. It is also common for there to be many different hardware designs and

interfaces for different circumstances even though they implement the same functional

purpose. Therefore our separation of model and interface allows for the model to be

reused and only the interface part need be rewritten for different circuit implemen-

tations. The use of a separate interface ensures that the high-level model does not

contain details such as:

• The names of circuit nodes, which, following synthesis, many be long and ob-

scure.

• The binary implementation encodings for high-level data types.

• The timing details about when circuit signals are stable.

• Small aspects of control (termed ‘pre-logic’) that conditionally select, route and

decode parameters in an implementation specific manner.
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interface

node force_bypass_rd_L_335

node res_op_FH_334[35 : 0]
node bypass_H_333[31 : 0]
node res_op_out_H_338[31 : 0]

write_addr := bvn2int_raw(res_op_FH_334[4 : 1])
read_addr := bvn2int_raw(res_op_FH_334[4 : 1])
write_enable := res_op_FH_334[0]
read_enable := ¬res_op_FH_334[0]
if last(force_bypass_rd_L_335) then

data_in := last(last(bypass_H_333))
else

data_in := res_op_FH_334[35 : 4]

Figure 5.4: Example Interface for an 8-Place 32-bit Memory

The methodology surrounding the Forte verification platform has demonstrated the

benefits of separating such hardware interfaces from the core functional specification,

using what it termscircuit APIs [SJO+05].

5.2.7.1 Encoding Mappings

Our programs make use of the library of functions provided byForte [SJO+05] for

mapping between high-level data types and bit-vector representations. Forte includes

functions for bit-vector arithmetic, conversion, extension, contraction and signing.

An example is the useful mapint2bvn, which converts non-negative integers to their

unsigned bit vector encoding, andbvn2int, which converts back again.

Example Suppose we are to use the program in Figure 5.3 to verify a small memory.

In the implementation at hand, the memory receives either a read or write operation

encoded on the busres_op_FH_334[35 : 0]. The noderes_op_FH_334[0] is set true

if this operation is a write, otherwise the operation is a read. The address is encoded

as an unsigned integer inres_op_FH_334[4 : 1]. If this is a write then the data is

in res_op_FH_334[35 : 4], unless a special flagforce_bypass_rd_L_335 was set in

the previous time-step, in which case the data should come from the values on bus

bypass_H_333[31 : 0] two time-steps previously. The assertion program interface for

this is shown in Figure 5.4, and characterizes typical interfaces found during micro-

processor verification.
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5.2.8 Assertions

The final block of an assertion program specifies properties that link the output of the

circuit to the behaviour of the high-level model. Such properties can be seen as an

output interface mapping between the two. Assertions are ofthe form

antecedent ⇒ consequent

where the antecedent and consequent are Boolean expressions, and the consequent is

an expression involving only circuit nodes and indexing variables. Each line asserts

that if the circuit is operating in parallel with the interface mapping and high-level

model, within the same environmental input trace, then at every step, if the antecedent

condition is true, then the consequent condition must also evaluate to true. Typically,

the antecedent corresponds to a particular high-level model state, and the consequent

describes the resulting signals that we would expect to see in the circuit implementa-

tion under such conditions. Often this is used to assert simple output equivalence.

For example, suppose we have a high-level model of a counter,consisting of pro-

gram variablecount. We can assert that under the conditions in which the count is

zero, the circuit under verification should signalempty:

(count = 0) ⇒ empty

When programs are compiled into symbolic ternary simulations, as described in the

subsequent chapter, the antecedents of these assertions are used to calculate those

circuit execution traces that need to be simulated, and the consequents are used to

assert that the right values occur in these traces.

In order to bridge the gap between antecedent and consequent, it is often necessary

to introduce indexing variables that remain symbolic in thecorresponding simulation

run. This is achieved via indexedforall assertions. For example, we might make the

following assertion about the memory model of Figure 5.3:

forall i : data . ((data_out = i) ⇒ (res_op_out_H_338[31 : 0] = i))

5.3 Formal Semantics

This section introduces the formal semantics for assertionprograms. A formal gram-

mar for the programs can also be found in Appendix B.
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Definition 5.3.1. Assertion programs satisfy the grammar in Appendix B together with

the conditions that there are no atemporal cyclic dependencies between the values as-

signed to the program variables and conditional guards cannot depend on the vari-

ables set within either of their branches (i.e. we cannot setsome element of state

conditional upon its future value).

These sanity conditions are used later in order to ensure that the expressions as-

signed to variables can be calculated directly from the inputs available.

We provide a semantics for programs by viewing statements asdeclarative con-

straints on execution traces. A circuit then satisfies each program trace if each of the

assertions holds in every circuit trace with matching inputs.

As we have already described, assertion programs make use ofprogram variables,

which we will denote with the finite setProgVars, andindexing variables, for which

we will use the finite setIndexVars. The circuit nodesN ⊆ ProgVars are described

using special program variables that cannot be assigned to.Let Types be the set of

types in use, containing at least a Boolean type,bool.

We designateValues to be the set of primitive values, which, for illustrative pur-

poses will containtrue, false and the non-negative integers. We will definevalues to

map from the set of types to the sets of values that a particular type represents. For

example, we might have thatvalues(int(4)) = {0, 1, 2, 3}. For our purposes, such

sets are assumed to be finite.

The state of a program is modeled as a finite words of stores, corresponding to ex-

ecution histories, where a store is a map from locations to values. Since an expression

may incorporate arbitrarily manylast expressions, we must keep track of the com-

plete past execution history. A store location consists of aprogram variable, together

with a list of lookup indices, giving us the set:

Locations = ProgVars × Values∗

For example, the location associated with addressa[3][4] is (a, [3, 4]), and the address

for v is (v, []). A store is then a map from locations to values:

Stores = Locations → Values

The possible transitions between such stores are determined by the assignment state-

ments that a program contains.
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5.3.1 Evaluating Expressions

Expression evaluation is performed using two different variable contexts, which cater

for program and indexing variables respectively. Program variables are evaluated us-

ing the store history,σ ∈ Stores+. The index store,ν ∈ IndexVars → Values, is the

local context in which to evaluate indexing variables.

We will define a natural semantics [Kah87] for expression evaluation using the

judgment

E
σ

ν
- e

which means that expressionE evaluates to valuee in store historyσ and index store

ν. To define expression evaluation, we first define how to evaluate locations from

assignable expressions, such as program variables and array indices. These expres-

sions will be evaluated by first evaluating their store location, and then looking up this

location in the current store. The judgment

E
σ,ν

loc

- l

will be used to denote that an expression evaluates to location l ∈ Locations. Program

variables evaluate to the location consisting of themselves with the associated empty

index. Array indices are evaluated by creating a location from the name of the array

and the evaluations of each index expression:

x ∈ ProgVars

x
σ,ν

loc

- (x, [])

A
σ,ν

loc

- (x, π) E
σ

ν
- e

A[E]
σ,ν

loc

- (x, πe)

An expression that can be evaluated to a location can then be evaluated to a value by

being looked up in the current store:

E
σs,ν

loc

- l

E
σs

ν
- s(l)

Indexing variables are simply evaluated by looking up theirvalue in the index store:

u ∈ IndexVars

u
σ

ν
- ν(u)

Functional application is evaluated by first evaluating thearguments in the same con-

text, and then applying the function:

Ei

σ

ν
- ei

f(E0, . . . , En)
σ

ν
- f(e0, . . . , en)



5.3. Assertion Programs - Formal Semantics 98

We will assume that equality and Boolean negation correspond to specific types of

functional application, with their standard definition. Wewill also allow for the other

Boolean operators, as well as conditional expressions, although these are to be in-

terpreted lazily. For example, if the first argument of Boolean conjunction evaluates

to false, then the second argument need not be evaluated. Universal quantification is

defined lazily by:

∀e ∈ values(t) . (E
σ

ν[x7→e]
- true)

(forall x : t . E)
σ

ν
- true

∃e ∈ values(t) . (E
σ

ν[x7→e]
- false)

(forall x : t . E)
σ

ν
- false

and existential quantification is defined dually. Finally, last-expressions are evaluated

by shifting the program variable store context by one time-step backwards:

E
σ

ν
- e

last(E)
σs

ν
- e

Notice that as a result, there is no guarantee that an expression can be evaluated at all,

since the current execution history may not be sufficiently lengthly.

5.3.2 Statements

We will write the judgment

σ
T

ν
- σs

to indicate that statementT is consistent with the transition from state historyσ to σs

in indexing variable contextν. Transitions always corresponds to the addition of one

time-step to the store history. The skip statement poses no constraints on execution:

σ
skip

ν
- σs

Assignment statements assert that current store value for aprogram variable matches

the value of the assigned expression:

E
σs

ν
- e s(x) = e

σ
x := E

ν
- σs

A transition respects a parallel composition of statementsif it respects both statements

at once:

σ
T1

ν
- σs σ

T2

ν
- σs

σ
T1 ‖ T2

ν
- σs



5.3. Assertion Programs - Formal Semantics 99

The branches of conditional statements must only constrainthe state when the guard

evaluates correspondingly:

E
σs

ν
- true σ

T1

ν
- σs

σ
if E then T1 else T2

ν
- σs

E
σs

ν
- false σ

T2

ν
- σs

σ
if E then T1 else T2

ν
- σs

The statements provided by afor expression apply under every valuation of the cor-

responding indexing variable:

e ∈ values(t) σ
T

ν[u 7→e]
- σs

σ
for u : t do T

ν
- σs

Notice that these conditions can result in a nondeterministic transition system. In par-

ticular, if a particular program variable is not constrained by an assignment statement,

then it may take on any value at that time-step.

5.3.3 Transition System

We will say that a statement is deadlock-free if every state history has a successor.

Statements that introduce deadlock are those that assert inconsistent state updates,

such asx := true ‖ x := false.

Definition 5.3.2. A statementT is deadlock-free if for everyσ ∈ Stores+, there exists

somes ∈ Stores such that

σ
T

ν
- σs

Assuming that a given statementT is deadlock-free, then it has associated transi-

tion system given by(Stores+,
T

{}
- ). If the statement has a bounded nesting depth

n of last expressions, we can reduce this infinite state structure to the finite Kripke

Structure(
⋃

i≤n+1 Storesi,
T

{}
- ), since the state is not dependent on the entire ex-

ecution history. Given a programAP, with model blockmodel(AP) and interface

block interface(AP), let its Kripke Structure be given by:

KAP = (
⋃

i≤n+1

Storesi,
model(AP) ‖ interface(AP)

{}
- )
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5.3.4 Satisfaction

Now that we have defined this transition system, we can describe what it means for

a circuit to satisfy the assertions laid down by an assertionprogram. Recall that we

intend to subject the high-level model and circuit to the same input traces, and then

assert that every output guaranteed by the high-level modelis also guaranteed by the

circuit. First, we will define the traces that can be performed when a program runs in

parallel with a circuit:

Definition 5.3.3 (Monitor Traces). Given a traceσ ∈ tr(KC) of circuit modelKC,

then the setmonitorAP(σ) of corresponding monitor traces for programAP is de-

fined by those traces of the same length asσ that are in lock-step agreement over the

circuit nodes:monitorAP(σ) =

{ last(π) | π ∈ tr(KAP) ∧ |σ| = |π| ∧ ∀i < |σ| . (σi = (last(π)i)|N ) }

Definition 5.3.4(Satisfying Traces). For circuit KC, a given circuit traceσ ∈ tr(KC)

satisfies assertionA ⇒ C of programAP when for every indexing contextν ∈

IndexVars → Values , σ satisfiesC whenever every monitor trace ofσ satisfiesA:

(

∀π ∈ monitorAP(σ) . (A
π

ν
- true)

)

implies (C
σ

ν
- true)

Definition 5.3.5(Satisfying Circuits). A circuitKC satisfies programAP when every

trace of the circuit satisfies every assertionA ⇒ C fromAP.

Notice that our assertions require that the consequent holdonly if the antecedent

holds foreverypossible monitor trace of a given circuit (input) trace. Therefore, if

the antecedent nondeterministically holds for a given input trace then no assertion is

made at all. For example, suppose we are modeling a memory cell, that has a non-

deterministic starting state. We assert that if the contents of the memory cell matches

some constantd, then the circuit should output this value. Since the initial state is not

specified, there will be some execution traces where this antecedent holds initially.

Under our definition of satisfaction, however, the assertion only applies after those

input traces thatguaranteethe antecedent under all possible execution traces. There-

fore, the specification will only assert that the memory outputs the correct value after

an input trace occurs that first writes to it.
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model

var count : int(5)
var reset : bool

if last(reset) then

count := 0
else

count := last(count) + 1

interface

node resetnode, signalnode

reset := resetnode

assert

(count = 0) ⇒ signalnode

Figure 5.5: Counter Assertion Program

5.3.5 Example

Consider the program in Figure 5.5, which describes a simplecounter that operates

modulo 5. The circuit under test contains at least a reset node, resetnode, and a node

signalnode that is supposed to signal true whenever the counter is zero.The reset node

should set the counter to zero after a delay of one cycle. We consider exactly what it

means for a circuit to satisfy this specification.

Satisfaction requires that the assertion(count = 0) ⇒ signalnode holds for any

input trace given both to the program and the circuit. First,we will consider input

traces of length one. The input consists solely of whether the reset node is high or

not, so there are only two possible cases. In either case, theinput trace does not force

the value of the count to zero in the current time-step, so theantecedent fails, and the

trace is satisfied.

Now let us consider traces of length two. A similar scenario now holds, with the

exception of the cases whereresetnode is high in the first time-step. Under this condi-

tion, the constraints of the program transition forcecount to be zero in the subsequent

time-step, so that the antecedent condition evaluates to true. We therefore assert that

if resetnode is high thensignalnode must be high in the subsequent time-step.

By the time we reach traces that are longer than length five, another option presents

itself. The antecedent now evaluates to true either ifresetnode is high in the penulti-
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. . . 10

. . . 11
. . . 1000000
. . . 1000001

. . . 100000000000

. . . 100000000001
...

Table 5.1: Antecedent Satisfying Counter Input Traces

mate step, or if it was high six steps previously, and has beenlow for the following

five steps. Clearly, as traces lengthen further, we will assert that signalnode must be

high 1 + 5n steps after the most recent reset. The traces for which we assert a signal

are illustrated in Table 5.1.

5.4 State Variables

When a program variable is not assigned an update in a given time-frame, its value is

effectively nondeterministic. This quality is useful for modeling hardware, since it al-

lows us to write partial specifications. It is often easier, however, to specify transitions

using variables with persistent state, that retain their value if an update is not explic-

itly given. Of course, we can specify such persistence usingassignments of the form

a := last(a), but including a large number of such assignments can cloud the overall

view of the specification. We therefore provide an alternative mechanism for this, by

allowing individual program variables to be marked asstate variables, meaning that

their values persist by default. Figure 5.6 shows a memory cell program that has been

simplified through the use of a state variable.

A program that uses state variables can be changed into an equivalent program that

does not include state variables by adding extra state preservation assignments of the

form a := last(a) at various points in the program. For example, the memory cell

specification in Figure 5.6 (i) can be obtained automatically from the state variables

used in (ii). We do not describe this procedure in detail, butnote that it involves

calculating a symbolic condition under which no assignments update the value of a

state variable, and inserting a top-level state preservation assignment guarded by this

condition.
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var cell : bool
var write, data : bool

if write then

cell := data
else

cell := last(cell)

(i) Using Standard Variables

state cell : bool
var write, data : bool

if write then

cell := data

(ii) Using a State Variable

Figure 5.6: Memory Cell with Persistent State

5.5 Related Work

One of the most common methods of property specification for hardware verification

is to use assertion languages like Property Specification Language (PSL) [PSL05],

ForSpec [AFF+02] or System Verilog Assertions (SVA) included in-line within the

circuit description itself. These linear assertion languages tend to use a mix of tempo-

ral logic and regular expressions, making them useful for checking individual aspects

of a design’s functionality. GSTE verification, however, tends to be based around com-

plete component specifications, and therefore resemblesrefinement checkingrather

more than property verification. For example, the GSTE FIFO property in [YS02]

describesall the requirements of the device, in a single assertion graph,by essentially

describing a complete abstract reference model. Although such abstract states can be

captured usingµ-expressions in GTL, this approach does not scale well, especially in

terms of human legibility. Therefore, because they can succinctly describe these arbi-

trary abstract state transition systems, assertion programs are more suitable for GSTE-

style verifications. We therefore use assertion programs and relate the implementation

to the specification via trace equivalence. Similar approaches using reference models

and trace equivalence for processor verification can be found in [Cyr03, Kai05].

There is a large range of existing languages that may also be suitable for describing

such high-level models. The most important characteristicrequired is the ability to

describe the synchronous parallel behaviour ofreactivesystems [Hal98]. Broadly

speaking, these languages can be divided into: synthesizable hardware description

languages, hardware modeling languages, and languages used purely for specification.
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5.5.1 Hardware Description Languages

Hardware description languages have been widely used to describe systems at all lev-

els of abstraction, and have the benefit of being familiar to many engineers. Some

of the most commonly used include Verilog [TM91], VHDL [Nav97], and SystemC

[GLMS02]. One main drawback of these languages is that they are not defined with

a formal semantics. Formalization attempts have proved difficult [Gor95], although

limited progress has been made [Gor97, PLC94]. These languages also contain sig-

nificantly more complexity than required for our purposes, for example by includ-

ing support for sequentiality, timing, synchronization conditions and recursion. Such

complexity would significantly affect the cleanliness and reasoning ease of our spec-

ifications. Furthermore, since these languages are designed for providing implemen-

tations rather than reference models, they can also tend to over-specify systems, not

allowing for partial specification.

Aside from the most popular hardware description languages, there are other op-

tions built around solid formal semantics. The synchronousprogramming languages

[Hal98], such as Esterel [BC85], Signal [RMC94] and Lustre [HLR92] are particu-

larly relevant for our requirements, due to their alignmentwith the temporal models of

hardware execution. Of these, assertion programs most closely resemble the dataflow

language Lustre [HLR92], which also uses assignment-basedconstraints built from

expressions with a last-time operator. Lustre models include a concept of initial state,

but ternary simulation models do not, so relating the two viarefinement could prove

troublesome. The mutually recursive equation definitions described by both Lustre

and assertion programs can also be embedded as mutually recursive functional def-

initions in a functional programming languages, leading tolanguages such as Lava

[CS00] and the original formulation of Bluespec [HA00].

5.5.2 Modeling Languages

There is also a class of similar languages used to describe design models for verifica-

tion. Like assertion programs, these languages generally declare some form of model

state, and then describe behaviour as a series of transitionconstraints, based around

this state.

One example is the modeling language for the Symbolic Model Verifier (SMV)

[McM99]. As with assertion graphs, assignment in the SMV language can be inter-

preted as a logical equality, allowing reasoning in the flavor of Lamport’s Temporal

Logic of Actions [Lam94]. Unlike assertion programs, temporal aspects in SMV are
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slightly more rigid. Instead of allowing arbitrarylast expressions, there are two forms

of assignment: instantaneous assignment, writtenx := E, and delayed assignment,

writtennext(x) := E. Our use of the last operator is not only more succinct in certain

cases, but also provides a closer fit when we come to translateto GTL properties, as

we will see in the subsequent chapter.

Assertion programs also share much in common with other transition-based mod-

eling languages. Murφ [DDHY92] is one such language, developed for protocol ver-

ification. As with assertion programs, transitions are specified as updates to abstract

state, and assignments can be guarded or composed in indexedparallel. One crucial

difference, however, is that updates are grouped into guarded blocks calledrules (or

transitions), at most oneof which is nondeterministically chosen to execute in each

time-step. Although such nondeterminism in the order of update execution is useful

for simplifying protocol models, it does not help for GSTE verifications, where spec-

ifications are required to be cycle-accurate. Similar languages, such as synchronized

transitions [GS90], CIRCAL [Mil85] and UNITY [CM88] are also structured in this

form. The language of the Symbolic Analysis Library (SAL) [dMOS03] is an example

that includes support for a mixture of both interleaved and truly synchronous updates.

Other hardware modeling languages used to model hardware deviate significantly

from the semantics of assertion programs. In SML [BC86], forexample, timed se-

quential composition is permitted by associating each statement with a given discrete

time length, allowing the modeling of algorithmic state machines that are more prone

to changing mode sequentially.

5.5.3 Specification Languages

There are also languages similar to assertion programs thatexist purely for the abstract

specificationof systems. The Abstract State Machine Language (AsmL) [GRS05] is

an executable specification language for formally specifying and dynamically explor-

ing hardware and software models. As with assertion programs, AsmL programs have

a procedural flavor, modeling systems with sets of synchronous updates to some ab-

stract program state. The main assertion program constructs, such as indexed parallel

composition, are also present. AsmL is primarily intended for software, so it is also

object-oriented, and supports sequential composition. Although these constructs op-

erate at a higher level of abstraction than we are aiming for with assertion programs,

work by Hanna and Melham proposes to link the two levels.

Thee specification language [HMN01] was developed to aid automatic hardware

test-case generation in a richer programming environment than those of traditional
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hardware description languages. Assertions are specified with an assertion language

similar to PSL [PSL05]. The language defines extensive rulesfor test-case selection

heuristics, but allows C-like procedures for writing assertion-based monitors. The

Tempura language [Mos86] is another example of a logic-based specification lan-

guage with similar sequential imperative features. Whilstboth of these languages

permit high-level reference models similar to assertion programs, we believe that their

use of sequentiality is unnecessary for most GSTE properties, and makes them less

amenable to direct reasoning. Furthermore, neither contains constructs such as index-

ing variables, which are of integral importance when we cometo translate assertion

programs into runs of symbolic ternary simulation.

5.5.4 STE-Based Specifications

There are several existing formalisms to express specifications for symbolic ternary

simulation at higher-levels of abstraction. Joyce and Seger [SJ92] connect the HOL

[GM93] theorem prover to an STE model checker so that functional definitions in

HOL can be used to provide more expressive user-defined abstractions. At the same

time, they proposed a basic specification language and a library of pre-defined bit-

vector arithmetic functions to standardize these abstractions. Whilst the original pro-

posals were quite limited in scope, this work has provided a basis for the specification

libraries contained within the Forte verification platform[SJO+05], the use of which

we have proposed for assertion programs.

Beatty [BB94] describes specifications of considerable complexity by using sets

of actions defined in terms of their pre- and post-conditions. Jain and Nelson [NJB97]

extend this specification methodology to unbounded properties, introducing the graph-

ical specifications on which assertion graphs are based. Relatively little work has at-

tempted to abstract above the detail of these assertion graphs. Yang and Goel [YG02]

describe how graphs can be automatically generated using functional programing

scripts. Whilst this does allow the user to progressively build-up parameterizable ab-

stract concepts of assertion patterns, the situation is notmuch improved, since these

scripts are not compositional or standardized, and are often as unstructured as the

graphs themselves.

Another approach is described by Kaivola [Kai05], based on creating STE runs

from high-level models embedded in a functional language. The high-level state is

given as a data type in the function language, and the model isdescribed using Boolean

functions on pairs of states that characterize the model transition relation. This gives
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the specifications a feel somewhat similar to assertion programs, since it encodes con-

straints on the current model state in terms of the current and previous state.



Chapter 6

Verifying Assertion Programs

This chapter describes an approach for generating the simulations structures that can

be used to verify that a circuit satisfies a given assertion program. Simulation gener-

ation is described by defining a collection of rules within aninteractive framework,

allowing us to combine the formalisms and techniques that wehave introduced so far.

Within this framework, we use our low-level logic, generalized trajectory logic

(GTL), to progressively build up an exact representation ofthe simulation being built.

We extend this logic, first by allowing a means of embedding program propositions,

and second by creating a vector form that helps with the management of sizable sim-

ulations.

The core contribution is a set of rules that can be used to create concise representa-

tions of the patterns of input sequences that bring about a given antecedent condition

for a particular program. This is done by using weakest precondition calculations

to progressively rewrite antecedent conditions as formulas of GTL, until a point is

reached where the conditions are expressed solely in terms of the circuit inputs. We

also describe how the techniques for abstraction control, simplification and decom-

position from Chapter 4 can be added as rules in our framework. These can then be

applied throughout the generation process to affect the resulting simulation.

6.1 Extending GTL

For simulation generation it is necessary to extend GTL to beable to capture the

relationship between input traces and the program states they induce. In this section,

we describe how we can unify the semantics of GTL and assertion programs, to allow

Boolean program expressions as GTL propositions. We then goon to describevector

GTL, which uses a set of equations to capture a simulation, rather than nestedµ-

expressions.

108
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6.1.1 Adding Assertion Program Expressions

Recall from Section 5.3.4 that a circuit satisfies an assertion program if the two agree

on outputs when they are running in parallel on the same inputtraces. During sim-

ulation generation, we must therefore reason about the parallel composition of the

program and circuit in question.

We create a connection between input traces and program states by extending GTL

to include formulas that express that given program expressions evaluate to truth. The

connection is natural, owing to the similarities in the temporal and symbolic founda-

tions of the two formalisms.

We first allow GTL’s indexing variables to use the same types that are found in

assertion programs. We can then use the same context for bothGTL and program

index variables, since both classes of variables are semantically independent of time

and used solely for quantification. As a result, the index context in extended GTL

is a map from the set of all index variables,IndexVars, to the set of program values,

Values.

We include Boolean-typed program expressions as propositions in extended GTL.

These are written in the formeval(E), whereE an expression.

Definition 6.1.1. The propositioneval(E) is true only in those combined circuit and

program states whereE evaluates totrue:

π ∈ ‖ eval(E) ‖ν
ρ if and only if E

π

ν
- true

Recall that a program expression is not guaranteed to evaluate at all, for example,

if there is not enough past store data to evaluate the required depth oflast expressions.

Therefore,eval(E) is falseeitherif E evaluates tofalse, or if E does not evaluate at all.

Theeval operator plugs the gap between the three-valued and Booleanmodels, at the

same time allowing GTL formulas to express the requirementsof assertion program

satisfaction (Section 5.3.4).

6.1.1.1 Example

As an example, we will consider the GTL formula

∃i : int(256) . Y(eval((i < 64) ∧ (int2bvn(i) = in[7 : 0])))

that contains the program expression(i < 64)∧(int2bvn(i) = in[7 : 0]). This formula

says that in the previous time-step, the integer encoded by the 8-bit busin[7 : 0] held

a value less than 64. It is semantically equivalent to the formula¬in[7] ∧ ¬in[6].
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6.1.1.2 Transforming Expressions into GTL

We progressively generate our simulation structures, by transforming program ex-

pressions into simulation steps expressed by the constructs of GTL. This is achieved

through a series simple of rules that relate the two. For example, conjunction in an as-

sertion program is equivalent to GTL conjunction:eval(E∧E ′) = eval(E)∧eval(E ′).

This step allows us to simulate the condition represented bythis conjunction by simu-

lating the conditions represented by each conjunct in turn,and then taking the greatest

lower bound, as defined by GTL model checking.

6.1.2 Vector GTL

Because of their flat syntax,µ-expressions are particularly useful simulation represen-

tations for theoretical reasoning and automated manipulation. But nested fixed-point

simulation descriptions can quickly become incomprehensible to the human reader,

making simulations difficult to manually manipulate and debug. Assertion programs

have addressed this problem for high-level specifications,but an alternative represen-

tation is also desirable for the low-level. For this we introducevector GTL, which

has the same syntax and semantics as GTL except that fixed-points are defined using

mutually dependent systems of equations.

For example, consider the standard GTL property

rd ∧ (µWritten.(in is u ∧ wr) ∨ (¬wr ∧YWritten)) ⇒ out is u

An equivalent property in vector GTL is:

Write = in is u ∧ wr
Written = Write ∨ (¬wr ∧ Y(Written))
Reading = rd ∧ Written

Reading ⇒ out is u

Notice that the vector GTL representation uses the same recursion variables as regular

GTL to break up the monolithic syntax graph of the original GTL property. Each of

these fixed-point variables represents the simulation state that is described by the GTL

expression on the right-hand side of the equation.

Vector GTL has several advantages over standard GTL properties. One is that

fixed-point variables can be used as top-level handles to reference particular simula-

tion states. This is useful for simulation introspection and transformation, as well as

for generally improving legibility. Another advantage is that the notation allows for
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sharing, which can be used for common sub-expression elimination. Not only does

this make the specifications more succinct, but it can be usedby the simulator to avoid

duplicate work. In a similar vein, vector GTL also allows us to specify multiple con-

sequent checks at various states within the simulation. In addition to these benefits,

this form is likely to be more familiar to verification engineers thanµ-expressions.

Although the tabular nature of vector GTL generally aids allaspects of human

interaction with simulations, it unfortunately also makesautomated reasoning more

difficult. Deviating from the linear textual form of traditional logic creates a richer

structure that no longer directly fits term-based reasoningsystems. For example, ap-

plying transformations using pattern matching is now not aseasy, as patterns may span

multiple variable definitions, and transformations can affect other sub-simulations.

Scoping of indexing variables is also more complicated. Despite this, we found that

vector GTL is still preferable for real verification efforts, and that these reasoning

problems are largely surmountable through the use of explicit recursion variable sub-

stitutions.

Vector GTL can also be seen as an adaptable hybrid between assertion graphs and

GTL, since states can be optionally explicitly labeled, or else hidden in the syntac-

tical structure of GTL formulas. The degree to which the syntax tree is explicitly

broken into named chunks is determined by the requirements of the particular user or

algorithm.

A GTL vector property is formally defined as follows:

Definition 6.1.2. A vector GTL specificationP consists of a set of recursive equations

and a set of assertions. For each GTL recursion variableZ there must be exactly one

equation of the formZ = f , wheref is any GTL formula. Since GTL requires that each

recursion path passes through aY operation, we require that there is no atemporal

recursive cycle through the definitions that does not pass through aY operator. The

assertions are of the formZ ⇒ C whereC is a closed formula of GTL.

Such systems of equations prescribe a unique semantic valueto each of the recur-

sion variables, as a result of the Unique Fixed-point Theorem (Theorem 4.1.1). These

recursion variable assignments are then used to define what it means for a circuit trace

to satisfy the assertions associated with the same vector property:

Definition 6.1.3. Let ρ̄ : F → (V → S+) be the unique solution to the fixed point

equations in vector specificationP. Then a circuit traceσ ∈ S+ satisfies assertion

A ⇒ C of P, writtenσ |= A ⇒ C, if, for every index contextν ∈ V,

σ ∈ ‖ A ‖ν
ρ̄ implies σ ∈ ‖ C ‖ν
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Definition 6.1.4. A circuit KC satisfies the entire propertyP, written KC |= P, if

every trace of the circuit satisfies every assertion made by the property.

Example Consider the vector property given by:

ZERO = reset ∨ Y(TWO) ∧ ¬reset

ONE = Y(ZERO) ∧ ¬reset

TWO = Y(ONE) ∧ ¬reset

ZERO ⇒ empty

In this property, the dependencies between the recursion variables sets up a simple

three-state cycle. The variable names correspond to the number of steps, modulo 3,

since a reset has occurred. The assertionZERO ⇒ empty therefore requires that

empty is high during a reset and every three subsequent steps wherereset has not held

since.

6.1.2.1 Model Checking

The algorithm for model checking vector GTL differs slightly from that of standard

GTL (Section 3.7). Instead of calculating the fixed-point for µ-expressions indepen-

dently, we calculate a single global vector fixed-point. We will use the same notation

as Chapter 3 to express model checking contexts and simulations.

Definition 6.1.5 (Model Checking Vector GTL). Model checking starts off with the

empty recursion variable contextσ0 whereσ0(Z)〈ν〉 = ⊥ for each recursion variable

Z ∈ τ and index contextν. Model checking steps are then calculated using the

following recurrence:

σi+1(Z) = ⌊ fZ ⌋σi

wherefZ is the GTL simulation associated with variableZ in propertyP. Since

we know that abstract simulation is monotonically increasing over a finite domain, a

fixed-point,̄σ, is eventually reached. Each assertionA ⇒ C of P is then verified by:

⌊A ⌋σ̄ ⊆♯ ⌊C ⌋ for everyν ∈ V

We will say that vector GTL model checking succeeds, writtenMCvec(KC,P) if every

assertion check holds.

Recall from Definition 3.6.1 that the image of a formula,imρ̄(f ) is the set of end-

states of circuit traces that satisfyf in contextρ̄. We will show that model checking is

sound by linking the simulated abstract state with the imageof the antecedent.
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Lemma 6.1.6.The fixed-point recursion contextσ̄(Z) defines a sound approximation

of the set of circuit traces that are satisfied byZ, imρ̄(Z).

Proof. Let the trace semantics fixed-point approximants,ρi, be defined by:

ρ0(Z)〈ν〉 := ∅

ρi+1(Z)〈ν〉 := ‖ fZ ‖ν
ρi

Lemma 3.6.7 states that set-based simulation is a sound approximation of the image

of a formula:

(∀Z ∈ F . imρ(Z) ⊆∀V [ Z ]τ ) implies imρ(f ) ⊆∀V [ f ]τ

Furthermore, Lemma 3.7.12 has stated that abstract simulation is always an upper-

approximation of set-based simulation:

(∀Z ∈ F . [ Z ]ντ ⊆ γ(⌊Z ⌋ν
σ)) implies [ f ]ντ ⊆ γ(⌊ f ⌋ν

σ)

Combining these two Lemmas we therefore have:

(∀Z ∈ F . imρ(Z) ⊆∀V γ(⌊Z ⌋σ)) implies imρ(f ) ⊆∀V γ(⌊ f ⌋σ) (6.1)

We aim to show by induction that the image of each trace approximant is approximated

by the corresponding abstract simulation approximant:

imρi
(Z) ⊆∀V γ(σi(Z))

The base case is trivially satisfied sinceimρ0(Z) = ∅. Let us assume theith case

holds. Then (6.1) gives

imρi
(fZ) ⊆∀V γ(⌊ fZ ⌋σi

)

which is exactly equivalent to:

imρi+1
(Z) ⊆∀V γ(σi+1(Z))

Now, taking the limit of both approximants, we have that

⋃V

i
imρi

(Z) ⊆∀V
⋃V

i
γ(σi(Z))

and so model checking is a sound upper-approximation of the semantics:

imρ̄(Z) ⊆∀V γ(σ̄(Z))
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Theorem 6.1.7.If model checking of vector GTL succeeds, and every assertion con-

sequent is atemporal and does not contain disjunction, thenthe circuit satisfies the

vector GTL property:

MCvec(KC,P) implies KC |= P

Proof. Let A ⇒ C be any assertion in propertyP. Since model checking succeeds,

⌊A ⌋ν
σ̄ ⊆♯ ⌊C ⌋ν for everyν ∈ V, and so by Lemma 3.7.8:

γ(⌊A ⌋ν
σ̄) ⊆ γ(⌊C ⌋ν) (6.2)

Now by Lemma 3.7.13,γ(⌊C ⌋ν) = [ C ]ν = im(C). By the monotonicity of abstract

simulation and Lemma 6.1.6, we haveimρ̄(A) ⊆∀V γ(⌊A ⌋ν
σ̄). Therefore, combining

these two results with (6.2), we have that:

imρ̄(A) ⊆∀V im(C)

So any circuit trace in‖ A ‖ν
ρ̄ must also be in‖ C ‖ν , meeting the requirements of

Definition 6.1.5.

6.2 Simulation Structure Generation

An assertion program describes a high-level specification model, and a series of as-

sertions of the formA ⇒ C that each describe the expected circuit responseC when

a given antecedentA holds of the model state. The aim of simulation generation is

to create a simulation pattern consisting of all possible input sequences that can bring

about a given antecedent condition. Using simulation, it can then be checked that

the circuit state satisfies the associated consequentC, which in turn implies that the

assertion holds.

Our simulation generation approach rewrites antecedent predicates to obtain a de-

scription of the required input traces. Each rewriting stepuses substitutions to calcu-

late theweakest preconditionsfor the antecedent to be satisfied following one step of

execution. In a similar manner to [Dij76], the substitutions are shaped by the program

assignments themselves. By repeating this rewriting procedure, and merging equiv-

alent states, we effectively perform a symbolic backwards traversal of the program’s

state-space.

During this backwards rewriting process, choices about howto arrange the simu-

lation formulas can affect the shape of the resulting simulation. In particular, many



6.2. Verifying Assertion Programs - Simulation Structure Generation 115

of the rules already explored in Chapter 4 can be applied at any stage of the simu-

lation generation process to change the resulting size of the simulation and/or level

of simulation abstraction. For this reason, we make use of aninteractive simulation

generation environment, where named rules can be called on to transform the sim-

ulation in different ways. There is also a composite rule that generates simulations

automatically, which is generally useful as a starting point when no manual control is

yet required.

6.2.1 Simulation Goals

We usecheck predicatesto define the top-level verification goals in our environment.

These assert the relationship between the circuit, the program and the vector GTL

property to be verified. Following common theorem proving methodology [Mil72],

we keep a list of goals, made up of such assertions, that can berewritten, discharged,

or decomposed into further goals.

Definition 6.2.1. The predicate “CHECK KC AP sim (A ⇒ C)” holds for circuit

KC, assertion programAP, vector GTL equationssim and GTL propertyA ⇒ C, if

for every circuit traceσ ∈ tr(KC) and every indexing contextν : IndexVars → Values,

if every monitor traceπ of σ satisfies antecedentA in the states̄ρ given by the fixed-

point of the GTL equationssim, thenσ also satisfies the consequentC:

(∀π ∈ monitorAP(σ) . π ∈ ‖ A ‖ν
ρ̄) implies σ ∈ ‖ C ‖ν

6.2.2 Initialization

For a given circuitKC and programAP, simulation generation starts off withinitial

checksfor each assertion. These predicates set-up a goal, using the program to be

verified and the initially empty vector GTL simulation.

Lemma 6.2.2.The circuitKC satisfies programAP consisting of assertionsAi ⇒ Ci

exactly when following predicate holds for eachi:

CHECK KC AP () (eval(Ai) ⇒ Ci)

Proof. When the simulation is empty, it imposes no constraints, so the meaning of the

assert predicate for each assertion simplifies to:

(∀π ∈ monitorAP(σ) . π ∈ ‖ eval(A) ‖ν) implies σ ∈ ‖ C ‖ν
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which by Definition 6.1.1 is equivalent to

(

∀π ∈ monitorAP(σ) . (A
π

ν
- true)

)

implies (C
σ

ν
- true)

This is exactly the condition required by Definition 5.3.5 for the circuit to satisfy

each assertion made in an assertion program.

A repeated series of steps can now be performed to rewrite this assertion into a

form where the antecedent is defined by a simulation purely interms of circuit inputs,

and independent of the program state. When this stage is reached, symbolic ternary

simulation can be used for verification.

6.2.3 Weakest Precondition Rewriting

We use a derivative of Dijkstra’s weakest precondition transformer [Dij76], to rewrite

assertion antecedents in terms of constraints on state further back in time. We describe

the transform with the mapwp, which takes a program and a Boolean postcondition

expression, and calculates the weakest precondition. The process can also be seen as

the selective application of a structured set of rewriting rules described by the program.

In the simplest instance, the weakest precondition of a single assignment statement

x := E can be calculated via the single substitution ofE for each free variablex in

the antecedent condition:

wp (x := E) E ′ = E ′[E/x]

The weakest precondition of a parallel composition is determined by the fair fixed-

point application of the weakest precondition calculationfor both arguments:

wp (T1 ‖ T2) E = (fix ((wp T1) ◦ (wp T2))) E

The calculation can be guaranteed to terminate with the non-cyclical dependency as-

sumption for programs in Definition 5.3.1 through the use of amarking procedure.

The weakest preconditions of conditional statements can becalculated as conditional

substitution:

wp (if E then T1 else T2) E ′ = E → (wp T1 E ′) | (wp T2 E ′)

The second and third constraints given in Definition 5.3.1 ensure that this calculation

rewrites the condition as far as possible.
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6.2.3.1 Rewriting Arrays

The simplest approach for rewriting with array assignment is to introduce a conditional

expression to check the array index:

wp (x[E] := G) (x[F ]) = ( (E = F ) → G | (x[F ]) )

The simplest approach for rewriting indexedfor statements is to apply one statement

for each variable valuation:

wp (for i : t do T ) E = wp ( ‖ v∈values(t) T [v/i]) E

But these approaches can lead to some excessively large terms when simultaneous

array update is indexed with afor statement. This is because a new conditional ex-

pression is generated for every value in the array index.

Since this pattern occurs commonly, especially when dealing with memories, we

provide a more efficient way of rewriting these cases. First we rewrite the statement so

that only a single indexing variable appears in the indexingexpression of each array.

Where more complicated index expressions occur, a conditional can take their place.

We then choose to rewritefor statements using a syntactical analysis of the term

being rewritten. We calculate the weakest precondition of the parallel composition

only for each index value that can actually affect the sourcecondition being rewritten.

This is given by:

wp (for i : t do T ) E = wp ( ‖ v∈matches(i,T,E) T [v/i]) E

wherematches(i, T, E) provides the possible symbolic values ofi such that statement

T assigns to a value referenced inE. For example,

wp (for i : t do a[i] := true) (a[0] ∧ a[j])

= wp (a[0] := true ‖ a[j] := true) (a[0] ∧ a[j])

Assignment to an array expression is then modified so that there is a direct substitution

when there is an exact match:

wp (x[E] := G) (x[E]) = G
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6.2.3.2 Example

The following statement sets the two-dimensional arraya to an identity matrix:

for i : int(100) do

for j : int(100) do

if i 6= j then a[i][j] := 0
else a[i][j] := 1

Now suppose we would like to find the weakest precondition forwhich a[k][5] =

1. Using the first approach for array assignment and for statements would generate

10,000 conditional expressions. By instead doing analysison the source condition,

we can calculate the result as:

wp









for i : int(100) do

for j : int(100) do

if i 6= j then a[i][j] := 0
else a[i][j] := 1









(a[k][5] = 1)

= wp





for j : int(100) do

if k 6= j then a[k][j] := 0
else a[k][j] := 1



 (a[k][5] = 1)

= wp

(

if k 6= 5 then a[k][5] := 0
else a[k][5] := 1

)

(a[k][5] = 1)

= k 6= 5 →
(wp (a[k][5] := 0) (a[k][5] = 1))
| (wp (a[k][5] := 1) (a[k][5] = 1))

= k 6= 5 → (0 = 1) | (1 = 1)
= k 6= 5 → false | true
= (k = 5)

6.2.4 Detecting Fixed-points

In the previous example, there are no recursive dependencies between program states.

As a result, the weakest precondition rewriting approach isguaranteed to terminate.

When temporal recursive dependencies are introduced, however, rewriting can expand

a condition indefinitely. For example, consider the following statement expansion:

flip :=









if reset then

b := true
else

b := last(¬b)









wp flip b
= wp flip (reset ∨Y(¬b))
= wp flip (reset ∨Y(¬reset ∧Y(b)))
= wp flip (reset ∨Y(¬reset ∧Y(reset ∨ Y(¬b))))
= wp flip (reset ∨Y(¬reset ∧Y(reset ∨ Y(¬(. . .)))))
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In this instance, we would like to be able to generate the fixed-point simulation:

µZ . reset ∨ Y(¬reset ∧ Y(Z))

Our strategy for doing this is to keep track of a set of terms that are already having, or

have already had, their weakest precondition calculated. Once the calculation reaches

a term that it has already seen, then an explicit fixed-point is created.

wp flip eval(b)

= wp flip (reset ∨ Y(eval(¬b)))

= wp flip (reset ∨ Y(¬reset ∧ Y( eval(b) )))

=µZ . reset ∨ Y(¬reset ∧ Y(Z))

To perform this calculation in practice, we label each equation of a vector GTL sim-

ulation with the original predicate from which this segmentof the simulation was

derived. This labeling also provides a valuable means of debugging in the case of

over-abstraction during simulation, since it shows how each of the simulation states

are associated with program predicates.

In this labeled form of vector GTL, each equation is a triplet(Z, E, E ′) whereZ

is the recursion variable used to name this state,E is the program predicate that this

state correspond to, andE ′ is the GTL simulation necessary to produce this state.

Rather than create a new simulation state for each simulation step, we only create

a new state for each time-step that passes in the simulation.We adapt the re-writing

algorithm so that substitution only occurs on termsnot enclosed byY. When this

rewriting is complete, we create new simulation states fromthose terms enclosed by

Y. If there is already a simulation state that matches the term, then this state is refer-

enced instead.

Using this approach, the flip example expands as follows. First, we start off with

the initial simulation state namedX0 for conditioneval(b):

( X0 , eval(b), eval(b) )

Now we rewrite the simulation using theWP rule on current-time expressions to:

( X0 , eval(b), reset ∨Y(eval(¬b)) )

Since the expressioneval(¬b) refers to the previous time-step, we do not expand it

further. We now ‘split’ the simulation to form a new simulation state from the sub-

term of the simulation that refers to the preceding time-frame. This is achieved by
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creating a new state for this term, with a fresh recursion variable, and substituting the

term in the original simulation for this variable.

( X0 , eval(b), reset ∨YX1 )

( X1 , eval(¬b), eval(¬b) )

Again we rewrite the second simulation state using theWP rule:

( X0 , eval(b), reset ∨ YX1 )

( X1 , eval(¬b), ¬reset ∧Y(eval(b)) )

Now when we come to split the termeval(b), we notice that this condition has already

been expanded in simulation stateX0 . Therefore after splitting the state we can apply

a rule that checks for equal states and merges them. This tiesthe fixed-point knot:

( X0 , eval(b), reset ∨YX1 )

( X1 , eval(¬b), ¬reset ∧YX0 )

Now the simulation is completely generated, as no program state remains in the sim-

ulation description. Notice that our approach ensures thatfixed-point definitions, cor-

responding to dependency cycles through simulation states, always pass through one

unit of time,Y, and hence are well-defined.

6.2.4.1 Boolean Encodings

In most cases, the simple approach of checking for syntacticequivalence is not suf-

ficient for termination. Instead, we can enhance our algorithm by creating Boolean

functions to characterize our states, and check for equivalence using standard tech-

niques such as BDD equivalence or SAT solving. Since our program types are all

bounded, and expressions all refer to a bounded temporal depth, such checks are de-

cidable.

Formulas of GTL that do not contain fixed-points can be encoded into a single

Boolean predicate that characterizes the linear traces that satisfy them. GTL formulas

are represented as single Boolean predicates containing variables that encode the com-

bined circuit and program traces. For instance,n ∧Y(¬n) is encoded as the predicate

n0 ∧ ¬n1.

We encode program expressions into Boolean vectors that describe their evalua-

tion, and an extra Boolean predicate that captures whether the expression fully evalu-

ates or not. For instance, consider a 3-bit integer literal,encoded with:

encode(3 : int(8)) = (〈F, T, T 〉, T )
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The first component of this pair is the binary encoding of the integer3. The sec-

ond component asserts that this expression always evaluates. Boolean variables are

encoded directly:

encode(v : bool) = (〈v〉, T )

Variables of other types are converted into a vector of suitably-named Boolean vari-

ables:

encode(v : int(8)) = (〈v_int8 [2], v_int8 [1], v_int8 [0]〉, T )

Maps and equality are given bit-vector interpretations, sothat complex expressions

can be encoded. The application of these encoded maps on the encoding must be

isomorphic to the maps on the original value domain. For example:

encode(({v : int(8)} < 4) = b) = (〈¬v_int8 [2] ∧ b ∨ v_int8 [2] ∧ ¬b〉, T )

The importance of the second component of the encoding comesinto play when partial

functions are applied. For example, the expression that encodes the head of an empty

list is encoded as any value together with false, indicatingthat it can not be evaluated:

encode(head [ ]) = (〈∗〉, F )

For the expressionE that encodes to(a, b), the corresponding propositioneval(E)

encodes toa ∧ b, since such propositions must fully evaluate in order to hold.

6.2.5 Simplification

During simulation generation it is useful to apply various simplification rules to de-

crease the size of the terms involved, and to clarify any required debugging. The rule

SIMPLIFY attempts to apply various simplification rules at every depth within a term.

The core simplification rules are shown in Figure 6.1, and canbe extended to cater for

additional data types or functions.

6.2.6 Trimming

As a result of these simulation rules, we will sometimes find that orphaned simu-

lation states become disconnected from the main simulation. The rule namedTRIM

finds the set of simulation recursion variables that the antecedent checks depend on,

and removes from the simulation any variables that are not required. A similar rule,

ELIM_FALSE removes those states whose Boolean encoding isfalse. Variables that

refer to such states in other parts of the simulation are replaced withff.
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¬¬a = a a = true if encode a = (〈T 〉, T )
a ∧ false = false for atemporala
false ∧ a = false a = false if encode a = (〈F 〉, T )
a ∨ true = true (last(a))[last(e)] = last(a[e])
true ∨ a = true f(a → b | c) = a → f(b) | f(c)
a ∧ true = a f(a → b | c, d) = a → f(b, d) | f(c, d)
true ∧ a = a f(d, a → b | c) = a → f(d, b) | f(d, c)
a ∨ false = a f(last(a)) = last(f(a))
false ∨ a = a f(a, last(b)) = last(f(a, b)) if b is constant

¬true = false f(last(a), b) = last(f(a, b)) if a is constant
¬false = true f(last(a), last(b)) = last(f(a, b))

¬last(a) = last(¬a) ¬(∃i.a) = ∀i.¬a
¬(a ∧ b) = ¬a ∨ ¬b ¬(∀i.a) = ∃i.¬a
¬(a ∨ b) = ¬a ∧ ¬b c → E |F = (c ∧ E) ∨ (¬c ∧ F )

for BooleanE,F

Figure 6.1: Simplification Rules

6.2.7 Parameterization

Although weakest precondition rewriting removes all the program variables via sub-

stitution, it is sometimes not possible to directly simulate the resulting terms because

they still contain higher-level constructs such as arithmetic operations. Simulation

requires that we know the symbolic ternary value that shouldbe used to drive each

circuit node involved in such expressions. Deducing this information requires ad-

ditional analysis. For example, consider how the vectordin should be simulated to

achieve the conditionint2bvn(i >> 1) = 〈din[2], din[1], din[0]〉. We need to rewrite

such a predicate into a form that determines the possible ranges and interdependencies

between the nodes involved.

Fortunately, this problem has already received attention and is part of general STE

verification methodology. The act of expressing a predicatein terms of the possible

range of values of several variables within it is known asparametrization, and can

be achieved using theparam algorithm of [AJS99]. Theparam algorithm receives

a set of variables and a target predicate to parameterize, and returns a new predicate

for each variable, defining the possible range of that variable under which the original

predicate is satisfied. For example,

param {din[2], din[1], din[0]}
(encode(int2bvn(i >> 1) = 〈din[2], din[1], din[0]〉)
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returns:

din[2] = false, din[1] = i_int8 [2], din[0] = i_int8 [1]

This can be used to directly build the GTL formula

¬din[2] ∧ (din[1] is i_int8 [2]) ∧ (din[0] is i_int8 [1])

which can then be simulated.

6.2.8 Model Checking

Once a simulation structure has been completely generated,after a couple of adapta-

tions it can be used to drive a simulation run that checks the property.

6.2.8.1 Temporal Mapping

Assertion programs will typically be cycle-accurate descriptions of the required circuit

characteristics. In contrast, each step of STE-based simulation normally corresponds

to a phase of the fastest clock in the simulation. Therefore some extra temporal trans-

formation is normally required to translate a simulation tothe circuit’s internal timing.

In practice, many different clocking schemes may be used to match the particu-

lar characteristics and requirements of the device. We willconsider a common case,

where a cycle is composed of ahighand alow phase, and the circuit is considered sta-

ble at the rising-edge of the cycle. We will also assume that the clock is distinguished

by the logical value of nodeclk.

The ruleRETIME rewrites a cycle-accurate simulation description for thistiming

model. The rule first doubles the temporal delay between asserted antecedent values

by replacing eachYf with YYf . It then adds alternating assertions about the value

of nodeclk. For example, the cycle accurate simulationa ∧ Yb is replaced by the

phase accurate simulation:

a ∧ Y(Y(b ∧ ¬clk) ∧ clk) ∧ ¬clk

This mapping is illustrated in Figure 6.2. The top arrows illustrate the point in the

circuit timing that the program steps are mapped to. These are in alignment with the

end of the last clock phase in each cycle. As a result, the simulation input values are

stable at the times required by the circuit, and the consequent checks expect the circuit

to have a reached a stable value at these sample points.

We may now finally run the model checking algorithm for vectorGTL by invoking

the ruleSIM on the constructed simulation.
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Figure 6.2: Cycle- to Phase-Accurate Temporal Mapping

6.3 Controlling Simulation Generation

In the previous section, we have described a method for the automatic generation of

symbolic ternary simulation descriptions. In many cases such simulations succeed

with no further intervention. But experience from GSTE shows that the level of con-

trol over the simulation approach is of vital importance forverification success. This

flexibility can be used both for manual abstraction refinement, in cases of either over-

or under-abstraction, as well as for switching between symbolic and explicit forms of

simulation.

These types of refinements as well as forms of property decomposition can be

achieved using the reasoning rules for GTL that we describedin Chapter 4. We will

now show how these rules can be applied midway though the simulation generation

process to control the characteristics of the resulting simulation run. If desired, the

user can choose which rewriting rules should be applied at each generation step, shap-

ing the GTL simulation and its resulting characteristics. The use of the these rules is

illustrated in the subsequent chapter, where we examine some particular case study

verifications.

6.3.1 Vector GTL Rules

The following two simple rules can be used to manage the way inwhich simulations

are encoded as fixed-point equations.

6.3.1.1 SPLIT

TheSPLIT rule breaks off sub-terms of a simulation to form a new recursion variable

definition. This can be useful for introducing sharing, or tofocus the effects of sub-

sequent rule applications, since it introduces a fresh reference name. As an example,

SPLIT Z (n ∧ m) transforms

Z = k ∧Y(n ∧ m) into
Z = k ∧YW
W = n ∧ m
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whilst introducing the nameW for this formula.

6.3.1.2 SUBSTITUTE

The SUBSTITUTE rule is in some ways the dual to theSPLIT rule. It substitutes a

recursion variable instance with its definition. For example,SUBSTITUTE W (n ∧ m)

transforms

Z = k ∧ YW
W = n ∧ m

into
Z = k ∧ Y(n ∧ m)
W = n ∧ m

Again, this is useful for selectively targeting the effect of further rules. For exam-

ple, for reasons of abstraction refinement, we may wish to apply a distributive rule.

If the terms involved are split over several recursion variables, we can first use the

substitution rule before applying standard pattern matching.

6.3.2 Abstraction Refinement Rules

As we have seen in Section 4.3, simple equivalences can be used to rewrite GTL

formulas and change the resulting level of simulation abstraction. These give rise to

the following abstraction refinement rules for our environment.

6.3.2.1 RAISE_DISJ

Like the GTL rule in Section 4.3.1, this distributes conjunction andY over disjunction,

throughout the entire simulation. In practice, we have found that it is often useful to

routinely apply this rule at each step of every simulation generation, to avoid common

cases of over-abstraction.

6.3.2.2 REDISTRIBUTE

Section 4.3.2 has described product reduction, where distributingY over conjunction

critically determines whether conjunct conditions are simulated together or separately.

Simulating different parts of the circuit separately is more efficient, because we do not

calculate how the two conditions interact. The resulting state can, however, be too

approximate because we do not consider these interactions.TheREDISTRIBUTE rule

allows a user to control these aspects by providing anabstraction schemathat can be

used to determine which types of simulations should occur independently.

We will say that asubspaceof an assertion program is a set of program vari-

ables that we associate with one of its particular aspects. An abstraction schema then

consists of a set of subspaces,{S1, S2, . . . , Sn}. The intention of such a schema
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if wra then

cella := ina

else

cella := last(cella)
if wrb then

cellb := inb

else

cellb := last(cellb)

Figure 6.3: Assertion Program for a Two-Cell Comparator

is that simulations related to different subspaces should take place independently.

Given a simulation written as conjuncts in the formY(c1 ∧ c2 ∧ . . . ∧ cn), the

rule REDISTRIBUTE {S1, S2, . . . , Sm} redistributes it to a formYA1 ∧ YA2 ∧ . . . ∧

YAm ∧YA, where eachAi is the conjunction of thosecj that contain a variable from

Si, andA is the conjunction of thosecj that contain no variables from anySi. The

result is that the preconditions associated with these subspaces are then generated and

simulated separately.

Example We will show how theREDISTRIBUTE rule can be used with reference to

the memory cell comparator of Section 2.6. Recall that the assertion graph in Figure

2.18 defines a complete simulation of the cross-product state-space, whereas those

in Figure 2.19 simulate each memory cell independently, andthen compose each of

these simulations. Figure 6.3 shows a suitable program for this verification. We aim

to simulate the condition

Y((cella = u) ∧ (cellb = v))

By default we generate the simulation shown in Figure 6.4 (i), which a similar shape

to the assertion graph in Figure 2.18. Noting, however, thatthe two memory cells

operate independently, we can applyREDISTRIBUTE {{cella}, {cellb}} as the first

step in simulation generation to obtain the split condition:

Y(cella = u) ∧ Y(cellb = v)

This results in the simulation in Figure 6.4 (ii), which a similar shape to the assertion

graph in Figure 2.19, and simulates the two components separately.
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S0 = Y((cella = u) ∧ (cellb = v))
= YS1

S1 = (cella = u) ∧ (cellb = v)
= (wra ∧ wrb ∧ ina is u ∧ inb is v)

∨(¬wra ∧ ¬wrb ∧YS1)
∨(wra ∧ ¬wrb ∧ ina is u ∧ YS2)
∨(¬wra ∧ wrb ∧ inb is v ∧YS3)

S2 = (cellb = v)
= (wrb ∧ inb is v) ∨ (¬wrb ∧YS2)

S3 = (cella = u)
= (wra ∧ ina is u) ∨ (¬wra ∧ YS3)

S0 = Y(cella = u)
∧Y(cellb = v)

= YS1 ∧ YS2

S1 = (cellb = v)
= (wrb ∧ inb is v)

∨(¬wrb ∧YS1)

S2 = (cella = u)
= (wra ∧ ina is u)

∨(¬wra ∧ YS2)

(i) (ii)

Figure 6.4: Comparison of Simulation Generation for a Two-Cell Comparator

6.3.2.3 UNROLL

Given a state-space schema with which to redistribute simulation conditions, we can

create a composite rule that automatically applies the rewriting and fixed-point detec-

tion steps from Section 6.2 in sequence. The ruleUNROLL s performs the following

steps in sequence:

WP Find weakest preconditions, based on the assertion program
SIMPLIFY Perform basic simplification
RAISE_DISJ Simulate disjunctive conditions independently
REDISTRIBUTE s Simulate specified conjuncts independently
LAST_SPLIT Split off formulas referring to previous time-frame
ELIM_FALSE Remove states that are false
SIMPLIFY Perform basic simplification
MERGE_EQ Merge any equivalent states
TRIM Trim unused states

This sequence of rules is sufficient in most cases to produce asymbolic ternary simula-

tion with a reasonable, intermediate, level of default abstraction, and we will illustrate

its use in both of the case studies in the subsequent chapter.
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6.3.2.4 SPLIT_STATE

Derived from the case-split rule of Section 4.3.3, the ruleSPLIT_STATE takes the set

of mutually exclusive cases{C1, C2, . . . Cn}, where(C1 ∨ C2 ∨ . . . ∨ Cn) is valid,

and case-splits termf into

(f ∧ C1) ∨ (f ∧ C2) ∨ . . . ∨ (f ∧ Cn)

This is typically used to enable each of these cases to be simulated independently, thus

raising the level simulation precision.

Example Suppose, as an optimization, a piece of data can take one of two equivalent

routes through a pipeline, depending on whether there is currently a bubble behind it or

not. Since this is an optimization, it should not feature in the specification. Therefore

the simulation that is generated by default will not distinguish the two cases, and the

preceding element will be set toX. The verification will fail, because not enough

information exists in the simulation to determine which path the data takes. To refine

the simulation we can use theSPLIT_STATE rule to distinguish the cases of whether

there is a bubble behind it or not.

The use of this rule is also illustrated by FIFO case study in Chapter 7.

6.3.2.5 WKN

All the rules so far have been equivalences. But since GTL formulas are monotonic,

and always occur negatively in the antecedent, it is also possible to rewrite a simu-

lation by weakeninga sub-term of the simulation. Such weakening can result in a

more approximate simulation, which potentially consumes less space and time. For

example, suppose our simulation isf ∧ g. From our knowledge of the design, we may

be aware that, in actual fact,f alone is sufficient a condition to verify the consequent

condition. The weakened simulation might be considerably simpler, since the nodes

affected byg may now be simulated withX. The application of the rule(WKN a b)

can achieve this effect, by attempting to replace every instance ofa with b, under the

condition thata impliesb.

6.3.3 Symbolic Rules

In this section we document rules in our framework that manage the symbolic aspects

of the resulting simulations.
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6.3.3.1 CREATE_VARIABLE

TheCREATE_VARIABLE rule allows us to manipulate preconditions by creating index

variables that are subsequently used for symbolic simulation. For example, suppose

that we are trying to simulate the conditiona = last(b) where botha andb are input

program variables. This condition asserts equality between the current value ofa and

the previous value ofb. Since simulation progresses one time step at a time, however,

we must introduce a variable with which to link the two values. Application of the

ruleCREATE_VARIABLE a creates a fresh variablei and rewrites the condition as:

∃i . (a = i) ∧ (last(b) = i)

Since constants are independent of time, this is equivalentto:

∃i . (a = i) ∧ Y(b = i)

If, furthermore, constanti is not used elsewhere in the simulation, then the quantifica-

tion becomes unnecessary:

(a = i) ∧ Y(b = i)

This is sound because all free antecedent variables are implicitly existential, owing to

their negative position in the model checking assertions. This condition is now in a

suitable form to be directly simulated.

The use of this rule is illustrated within the scheduler casestudy verification in

Chapter 7.

6.3.3.2 SYM_SUBSTITUTE

Since our simulation approach is symbolic, simulating a condition A with free index

variablei gives us a distinct set of image states for each valuation ofi . Using this

symbolic state, we can directly calculate the alternative conditionA[E/i ] using simple

symbolic substitution.

For example, suppose we are modeling the value held by a counter using the pro-

gram variablecount. Targeting the condition(count = i) results in simulationS,

which creates an family of circuit states whose indices correspond to the different

count states. Suppose we are now required to simulate the condition (count = j + 1).

We can use our existing simulation of(count = i) and perform the symbolic substi-

tution of j + 1 for i , written writtenS(i := j + 1) in GTL.
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The ruleSYM_SUBSTITUTE i E rule in our framework rewrites conditionA into

(A[i/E])(i := E)

wherei is not free in A and E depends only on index variables. By introducing these

self-canceling substitutions we can syntactically apply the first during our simulation

generation process, leaving the second as a later simulation step.

We illustrate this rule in the subsequent scheduler case study, where it is used to

reduce the number of symbolic conditions that we have to simulate for waiting micro-

operations.

6.3.4 A Decomposition Rule

Another approach to overcoming the state-explosion problem is to use structural de-

composition to split apart the property at hand. Our framework contains rules for

many of the simple decomposition rules for GTL from Section 4.2. In this section we

describe another approach that splits the program based on an extra internaldecom-

position interface. The decomposition interface is a mapping between program and

circuit state, specified in the same manner as the input interface for a program. Un-

like the input interface, however, it does not form part of the specification, but exists

purely to define a splitting point in the verification. TheDECOMPOSE rule performs

such a split.

A standard assertion program verificationassumesthat the input map holds, and

demonstrates that the output assertions hold. TheDECOMPOSE rule splits this process

into two. The first subgoal verifies the decomposition interface, given that the input

interface as an assumption. The second verifies the originalprogram assertions using

both the decomposition and input interfaces as assumptions. Simulation now takes

place in two stages: one from the input interface to the decomposition interface, and

another from the decomposition interface to the assertions. This is illustrated in Figure

6.5.

In order to apply the decomposition interface as an assumption in the second stage

of the verification, we modify the programAP, so that all the assignments to variable

x are replaced with the assignmentx := E. The result of this modification is denoted

AP � (x := E). By replacing these assignments, we direct the simulation generation

process to drive the simulation using the decomposition interface, wherever possible.

For example,DECOMPOSE (x := E) splits the verification goal

CHECK KC AP sim (A ⇒ C)
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into

CHECK KC AP sim ((x = d) ⇒ (E = d))

which verifies the decomposition interface, and

CHECK KC (AP � (x := E)) sim (A ⇒ C)

which verifies the original assertion under the assumption that the decomposition in-

terface holds.

Example Suppose a circuit consists of a register bank and an arithmetical unit. At

each cycle, either a number can be written to the register with addressi1, or else the

product of registersi1 andi2 can be calculated and placed on lineout. Such function-

ality might be modeled by the program fragment:

if write then

reg[i1] := in

else

result := reg[i1] × reg[i2]

together with the assertion

forall c . (result = c) ⇒ (out = c)

It is quite possible that simulation of both the memory and the arithmetical unit will

together be too large for a single simulation run. We can, however, decompose the

task and simulate each of these units separately. First we rewrite the program so that

we have fresh names to reference the two arithmetical operands:

if write then

reg[i1] := in

else

opA := reg[i1]
opB := reg[i2]
result := opA × opB

Model

Interface

Circuit

Assertions

Decomposition
interface

Figure 6.5: Introducing a Decomposition Interface
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Now suppose we can find an internal interface mapping that describes how the mem-

ory connects to the arithmetical unit, given byopA := busA andopB := busB. Ap-

plying our rule for decomposition twice, we end up with two simulations that verify

the register bank and one simulation that verifies the arithmetic.

Figure 6.6 shows a proof tree for the two decompositions. Thefirst split introduces

the intermediate assertion that the values held onbusA correspond to the abstract state

opA in the program. The second split similarly relatesbusB to opB. Figures 6.7(i)-(iii)

illustrates the areas of the circuit simulated by the programs labeled (i)-(iii) respec-

tively in Figure 6.6. The solid lines represent areas that are actively simulated in each

case.

6.4 Related Work

There are several existing methods for creating symbolic ternary simulations from

higher-level descriptions, including, in particular, thework of Joyce and Seger [SJ92],

and Jain [Jai97]. These frameworks use simple mappings fromtheir specifications

to low-level simulation outlines. In contrast, generatingthe simulations using our

approach requires significantly more reasoning. This is because we have chosen to

use a high-level model with abstract state, so generating the simulations requires a

fixed-point state traversal calculation rather than a direct mapping.

The core algorithm of our process is the re-writing process,which effectively per-

forms a symbolic backwards traversal of the property state-space. There are several

existing similar approaches to exploring the state-spacesof imperative programs. In

[SH97] weakest precondition calculations are used within atheorem prover for for-

ward construction of state graphs. In [BFH+92], weakest preconditions are also used

to help create minimal transition system representations.Our algorithm differs from

these approaches in several interesting ways. First, many algorithms are concerned

with creating state-transition graphs, whereas we produceformulas of GTL, which

are significantly more complex structures. Second, we do notaim to explore entire

state-spaces, but only those abstract states required for each assertion. Third, we do

not aim for our abstract states topartition the model state-space, since overlapping

abstract states are beneficial to the efficiency of ternary simulations.

Like symbolic ternary simulation itself, our algorithm also relies on separating the

data and control aspects of a property, in order to tame stateexplosion. The control as-

pects are expanded fully into explicit model checking steps, whereas the data aspects

can remain symbolic throughout the entire process. This is aparticularly relevant for
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model

if write then

reg[i1] := in

else

{opA := reg[i1]
opB := reg[i2]
result := opA × opB}

assert

forall c.
(result = c) ⇒ (out = c)

model

if write then

reg[i1] := in

else{
{opA := reg[i1]
opB := reg[i2]
result := opA × opB}

assert

forall d .
(reg[i1] = d) ⇒ (busA = d)

(i)

model

if write then

reg[i1] := in

else

{opA := busA
opB := reg[i2]
result := opA × opB}

assert

forall c.
(result = c) ⇒ (out = c)

model

if write then

reg[i1] := in

else

{opA := busA
opB := reg[i2]
result := opA × opB}

assert

forall e.
(reg[i2] = e) ⇒ (busB = e)

(ii)

model

if write then

reg[i1] := in

else

{opA := busA
opB := busB
result := opA × opB}

assert

forall c.
(result = c) ⇒ (out = c)

(iii)

∧

∧

reg[i1] = busA

reg[i1] = busA

Figure 6.6: Decomposition Proof Tree
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wr
in

i1 i2

busA

busB
× out wr

in

i1 i2

busA

busB
× out wr

in

i1 i2

busA

busB
× out

(i) (ii) (iii)

Figure 6.7: Three-Way Decomposition

hardware verification, where large datapaths are often the bottleneck in verification.

This orthogonal treatment of data is the basis behind many other approaches to ver-

ification, from control state graph generation [HGD95] to the use of uninterpreted

functions [BD94, HB95].



Chapter 7

Case Studies

In this chapter we examine two case-study verification efforts that allow us to explore

the benefits of our proposed approach compared to existing methods of assertion graph

specification. To be able to compare and contrast our approach with the most up-to-

date existing verification methodology, for each case studywe first provide details of

verification using assertion graphs. We then show how the corresponding assertion

programs can provide clearer and more succinct property representations, allowing a

more structured approach to abstraction control. At the endof the chapter we provide

a discussion of the two approaches. This chapter also servesto provide illustrative

examples of the rules presented in Chapter 6.

7.1 First-In-First-Out Buffer

The first example is a 4-entry 10-bit-wide First-In-First-Out (FIFO) buffer, derived

from [YS02]. Although the FIFO specification is relatively straight-forward, the ver-

ification makes a useful case study because of the different approaches to abstraction

that are required.

7.1.1 Circuit Specification

The buffer is intended to hold a queue of 10-bit data elements. A reset operation

initializes the buffer to an empty queue. Data can be enqueued, which means that it is

added to the back of the queue. When data is dequeued, it is read and removed from

the front of the queue, so that the first piece of data to enter the buffer is also the first

piece of data to leave the buffer. In addition to these operations, the FIFO has two

outputs that describe when the buffer is empty and full.

135
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enq

din

full

deq

dout

empty

FIFO

Figure 7.1: The FIFO Interface

As with most hardware, the FIFO circuit incorporates a delayfactor, so that fewer

gates are required between stateful elements, and the circuit can operate at a higher

clock speed. The result of this is that the operations supported by the buffer take one

clock cycle to complete. For example, if the buffer is empty and we enqueue a piece

of data at cycle0, then only at cycle1 will the empty flag be set low and the data ready

to be dequeued.

Figure 7.1 illustrates the FIFO circuit interface. In orderto enqueue a piece of

data, theenq line should be set high and the data presented on thedin lines. If the

FIFO is not already full then the data will be added to the buffer. In order to dequeue

an element, thedeq line should be set high. Provided the FIFO is not empty, then the

oldest piece of data in the buffer will be presented at thedout lines and removed from

the buffer.

7.1.2 Circuit Implementation

The success of GSTE verification depends on how well the employed abstraction fits

with the structure of the circuit implementation. For this reason, it is important to take

account of the circuit architecture when the verification isplanned.

Our FIFO implementation has a memory array of content data together with a head

and a tail pointer to mark the start and the end of the queue. When an enqueue occurs,

data is written to the head pointer location and the head pointer is incremented. When

data is dequeued from the buffer, it is read from the tail pointer location before the tail

pointer is incremented. An extra bit of state, thefull bit, is used to determine whether

the buffer is full or empty in the cases where the head and tailpointers match. Figure

7.2 illustrates the state of the FIFO after enqueuing data7 followed by8.

7.1.3 Assertion Graph Verification

This section describes a FIFO verification using assertion graphs, closely based on the

example in [YS02]. Of particular importance is the degree ofclarity of the specifica-

tion, and the difficulties with the application of refinementsteps. In this example, a
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Full Bit:

Head Pointer:

Tail Pointer:

Memory Array:

0

0

00

1

7 8 ??

Figure 7.2: FIFO State After Adding7 and8

generic FIFO property assertion graph is progressively transformed through abstrac-

tion refinement to match the particular implementation at hand.

7.1.3.1 Generic FIFO Assertion Graph

Verification aims to check the following aspects of the circuit:

1. Theempty output signal is set only when there are no entries in the FIFO.

2. Thefull output signal is set only when the FIFO is full.

3. If data is enqueued when the FIFO is not full, it is correctly dequeued after each

of the previously enqueued entries have been dequeued.

In order to verify that thefull andempty flags are set correctly, we can create an

assertion graph with states that correspond to the number ofentries currently in the

FIFO. We can add to this graph all the possible transitions from one state to another,

and assert for each of these transitions that the value of theempty andfull lines are

correct. Such an assertion graph, for a FIFO of depth four, isshown in Figure 7.3.

Forward transitions represent enqueues, and backward transitions represent dequeues.

Next we must verify that data going through the FIFO is not corrupted. In order

to do this, we consider an arbitrary piece of enqueued data and make sure than it is

unchanged when it is dequeued. We use the variablev to represent the value of this

data. During the transitions at which the data is enqueued, we will assert ‘din is v’.

When we expect that same piece of data to be dequeued, we assert ‘dout is v’ in the

consequent.



Figure 7.3: Assertion Graph for Empty and Full Signals

Figure 7.4: Generic 4-Place FIFO Assertion Graph
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Since we need to make sure all enqueued data is handled correctly, we need to

generalize our check to cover all possible starting states at which a piece of data might

be enqueued. We also need to know the number of existing entries at this point, since

we will expect the same number of dequeues before our data should be dequeued. We

therefore include transitions that enqueuev starting from each of the states in Figure

7.3. After the relevant number of dequeues, we check that thecorrect data is dequeued

at dout. The resulting graph is shown in Figure 7.4. The downward arrows are those

transitions wherev is enqueued, andv should be dequeued during the last transition

in the bottom-left.

It is not immediately clear that this is the complete specification of a FIFO. In

particular, the assertion graph only contains one symbolicconstant,v, which is the

value set on thedin line when data is enqueued on certain edges of the graph. It

therefore seems that if another piece of data were to be subsequently enqueued, then

we would have no way of ensuring that this second data is not corrupted inside the

FIFO. Using this single symbolic variable, however, we in fact are able to verify all

possible sequences of enqueues and dequeues on the FIFO, because of the temporal

abstraction introduced by the for-all semantics of assertion graphs. Consider that for

every possible enqueue of data to the FIFO, there is some paththrough the graph where

we check that this data is not corrupted. Hence it must be thatall data enqueued to the

FIFO is handled correctly.

7.1.3.2 Assertion Graph Refinement

When we use our first assertion graph attempt to verify our circuit, GSTE fails due to

over-abstraction. To see why, we must consider the effects of using ternary states to

characterize the states of our particular implementation.

The first vertex of the graph represents those states where the FIFO is empty. In

our implementation, this corresponds to those circuit states where the head pointer

is equal to the tail pointer and the full bit is low. By default, GSTE explores each

of these states and forms the most precise ternary representation that includes all of

them. Therefore it forms the(head, tail) vector

(00, 00) ⊔ (01, 01) ⊔ (10, 10) ⊔ (11, 11) = (XX, XX)

In other words, since this head and tail pointers can, independently, take on any value

in the states being characterized, GSTE loses all information about them. This then

results in verification failure, since there is not enough information to determine if the
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reset

queue
length

head pointer

Figure 7.5: Assertion Graph After the Head Pointer Case-Split

FIFO is full or empty. We explore both explicit and symbolic approaches to surpassing

this over-abstraction.

Splitting Graph Vertices The first approach involves splitting every vertex of the

graph so that each resulting vertex corresponds to a single particular head/tail value

pair. In order to preserve the property specified by the graph, we must ensure that the

transitions cover the same possibilities as those of the original graph. Edges that do

not completely specify enqueues and dequeues, such as thoseedges on the lower half

of Figure 7.4, must be case-split to do so. This effect of thissplit on the first half of

the assertion is shown in Figure 7.5. Now when simulation occurs, each ternary state

stores a single concrete head/tail pointer state, so there is no over-abstraction.

Introducing Precise Nodes Although refinement by splitting vertices is sufficient

for verification to succeed, the resulting number of states is quadratic in the size of

the buffer. To avoid creating so many distinct ternary states, we can instead case-split

symbolically by introducing variables to connect the head and tail pointers. This is

done usingprecise nodes(see Section 2.5.4.5).

One advantage of this approach is that the case-split statesand their corresponding

simulation calculations are shared. For example, symbolically case-splitting based

on a single node does not require us to keep two distinct simulation states. Another

advantage is that it requires significantly less work to adapt the assertion graph. We

must find the relevant head and tail pointer nodes in the circuit, and instruct the model

checker to keep them precisely. We then need to introduce symbolic variables to

ensure that enqueues and dequeues are completely specified.
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Now when the simulation is run, GSTE internally allocates temporary symbolic

variablesz0 and z1 to capture the relation between the head and tail pointers. For

example, the requirement that the two pointers are equal in the first vertex of the graph

is captured by the symbolic state(head, tail) = (z1z0, z1z0). Simulation propagates

such symbolic dependencies to other areas of the circuit, for example, deducing that

the empty flag is high in the example state.

7.1.4 Assertion Program Verification

We will now use our proposed methods to verify the FIFO. First, we write an assertion

program to capture the requirements of a generic FIFO buffer. Our implementation

framework includes support for bounded-length lists, which we will use to model

the state of the buffer. We will then apply some of the simulation generation rules

described in Chapter 6, and refine the simulation until verification succeeds.

7.1.4.1 A FIFO Assertion Program

The FIFO assertion program specification is shown in Figure 7.6. First we define

attributes that parameterize the model. The size of the FIFO, SIZE, is 4, since it holds

a maximum of4 elements. The type of data being held in the FIFO,data, is set to be

the type of 10-bit vectors.

We then declare the variables used by the program. The variableq holds the current

list of elements stored in the buffer, in order of arrival. Weuse a second list variable,

q′, to store the partially updated contents. We also declare Boolean variables for the

various input and output control signals, and variablesdin anddout of typedata to

read and write elements.

The model block contains the main substance of the high-level model. If reset is

high, then the buffer is set to empty. Otherwise the contentsstate is set to its previ-

ous value, with enqueued data appended, and dequeued data removed. The variable

q′ holds the state at a stage where it has been updated to reflect enqueues but not de-

queues. The empty and full flags are set to indicate the numberof elements in the

buffer. Since we have built the FIFO buffer as an independentcircuit, we have been

free to chose intuitive names for the interface nodes. Therefore the program interface

is a simple directly-mapped interface.

Finally, the assertion block captures what circuit responses we wish to verify. Here

it is important to note that the asserted responses are generally delayed by one time-

step from the assertion programs. This accommodates the laginherent in the circuit.
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const SIZE = 4 // Number of entries
type data = bool[9 : 0] // Type of contents

model

var q, q′ : data list(SIZE) // Queue states
var reset, enq, deq, empty, full : bool // Boolean signals
var din, dout : data // Data in and out

if reset then // Empty on reset
q := [ ]

else{
if enq ∧ ¬last(full) then // Handle enqueue

q′ := last(q) ++ [din]
else

q′ := last(q)

if deq ∧ ¬last(empty) then // Handle dequeue
q := tail(q′)

else

q := q′

}

empty := (length(q) = 0) // Set status bits
full := (length(q) = SIZE)

interface

node n_reset, n_enq, n_deq, n_din[9 : 0]
node n_full, n_deq, n_dout[9 : 0]

reset := n_reset // Our FIFO has a
enq := n_enq // direct interface
deq := n_deq

din := n_din

assert

last(empty) ⇒ n_empty // Check empty bit
¬last(empty) ⇒ ¬n_empty

last(full) ⇒ n_full // Check full bit
¬last(full) ⇒ ¬n_full

forall v : data . // Check data out
deq ∧ last(¬empty ∧ head(q) = v) ⇒ n_dout = v

Figure 7.6: FIFO Buffer Assertion Program
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Control Conditions Precondition
reset true
¬reset ∧ ¬deq ∧ ¬enq length(q) < 4
¬reset ∧ deq ∧ ¬enq 1 < length(q)
¬reset ∧ ¬deq ∧ enq length(q) < 3
¬reset ∧ deq ∧ enq 0 < length(q) < 4
¬reset ∧ enq length(q) = 0
¬reset ∧ ¬enq length(q) = 0
¬reset ∧ deq length(q) = 4

Table 7.1: Preconditions forlength(q) 6= 4

7.1.4.2 A First Simulation Attempt

As a first attempt, we try applying the defaultUNROLL rule from Section 6.2 to gen-

erate the FIFO simulation run. This starts with the initial states characterised by the

assertion antecedents:

1. last(length(q) = 0)
2. last(length(q) 6= 0)
3. last(length(q) = 4)
4. last(length(q) 6= 4)
5. deq ∧ last(¬empty ∧ head(q) = v)

The first iteration of the backwards rewriting process finds the weakest preconditions

of each of these states, under the various combinations of enqueues and dequeues

that are possible. This is then repeated until all relevant simulation states have been

explored.

As would be expected without any further intervention, thisfirst simulation fails

due to over-abstraction. To illustrate why, we will consider the preconditions for

length(q) 6= 4. Simulation generation considers the different control inputs that can

bring about this condition, summarized in Table 7.1.

This shows that simulation generation by default creates different states for differ-

entrangesof queue lengths. Not only will this result in a large simulation, but it also

introduces abstraction problems, since the most precise ternary representations of the

head and tail pointers that characterize these states are all Xs.

7.1.4.3 Case-Splitting Simulation States

In order to avoid this over-abstraction, as well as to provide some extra structure to

our simulation, we can instruct our environment to split states at the start of generation
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if reset then

head := 0
else {
if enq ∧ ¬last(full) then

head := last(head) + 1
else

head := last(head)
}

Figure 7.7: Program Augmentation for Head Pointer

based on the queue length. This is achieved with theSPLIT_STATE from Section

6.3.2.4.

SPLIT_STATE







length(q) = 0, length(q) = 1,
length(q) = 2, length(q) = 3,
length(q) = 4







This helps, but when GSTE is invoked on the resulting simulation, verification still

fails due to over-abstraction. As with the assertion graph case, this occurs because

the dependencies between the head and tail pointers are not precisely represented. To

avoid this we can instruct simulation generation to split cases based on the value of the

head pointer. But since the assertion program does not include any information about

this pointer, we must first augment our assertion program to describe its behaviour, as

shown in Figure 7.7.

Now we split the abstract simulation states based on this pointer state:

SPLIT_STATE

{

head = 0, head = 1,
head = 2, head = 3

}

For the verification of the empty and full flags, the end resultclosely resembles the

assertion graph of Figure 7.5. In order to verify the final assertion, we split the states

according to the number of dequeues required before data elementv should be seen.

This hint has the effect of reducing the number of simulationstates, since it aligns

the abstract property states so that their images do not overlap. This ensures that the

control state of the FIFO is never approximated toX, so verification succeeds. Some

further miscellaneous term rewriting and weakening is alsouseful, as is trimming the

predicates to keep them legible during debugging.

7.1.4.4 Case-Splitting Symbolically

As with the assertion graph case, rather than splitting overa quadratic number of simu-

lation states, it can be more efficient to encode the pointer dependencies symbolically.
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This has the added benefit that we are not required to augment the assertion program

to describe how the head pointer behaves. In fact, symbolic simulation instead derives

this information from the circuit model itself.

To achieve this symbolic-explicit hybrid, we use thePRECISE_NODES rule based on

the transformations in Section 4.3.4, with the circuit nodes that make up the head and

tail pointer states. This then introduces symbolic variables that capture the required

dependencies between the two pointers, leading to successful verification.

7.2 Micro-Operation Scheduler

A micro-operation (uop) scheduleris a microprocessor component that receives a

stream of instructions to be executed and is responsible fordelivering each of these

to an execution unit at an appropriate time. We verify a simple scheduler, based on a

resource scheduler from the Intel Pentium 4 Microprocessor[Sch03, YGT05].

7.2.1 Circuit Specification

Each uop instruction consists of anopcode, asource registerand adestination register,

as shown below:

Opcode Source Register Destination Register
3 bits 4 bits 4 bits

The interface to the scheduler is shown in Figure 7.8. An instruction may only

execute after all relevant previous instructions have finished writing to its source reg-

ister. To signal when this condition occurs, each instruction carries areadybit with it

during its route through the scheduler. An instruction’s ready bit is set high when all

its dependencies have been executed. Instructions may be set ready before they enter

the scheduler, or else become ready while inside. In order toenqueue an instruction

Instruction
Decoder

Execution
Unit

Scheduler

wrback
reg

read

dout

available

write

din
ready

full

Figure 7.8: The Micro-Instruction Scheduler
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Figure 7.9: The Scheduler Implementation

into the scheduler (provided thefull line is not set), thewrite line of the scheduler

must be set high, the instruction presented on thedin lines, and theready bit for this

instruction put on theready line.

Thewrback line from the execution unit is used to signal when the execution of an

instruction has resulted in the writing of data to a particular register. The index of this

register is supplied on thereg lines. There is an environmental assumption that any

instruction in the scheduler is waiting for at most one otherinstruction to complete.

Therefore any waiting instructions that have a source register matching a write-back

registerreg can have theirready bits safely set to high.

The scheduler should set the lineavailable to high when it contains a waiting ready

instruction. When it receives this signal, the execution unit can request the instruction

on thedout lines by settingread to high. When there is more than one ready instruc-

tion, the scheduler provides the one that entered the scheduler first. Like the FIFO,

the circuit incorporates some delay, so enqueues and write-backs require one cycle to

become committed to state.

7.2.2 Circuit Implementation

As with the FIFO buffer, it is imperative to consider the structure of the implemen-

tation to be able to shape and balance the simulation abstraction. Figure 7.9 shows

an outline of the scheduler implementation. The instructions are stored in a memory

array, together with theirvalid andready bits. Thevalid bits are used to signal whether
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there is currently an instruction stored in that index of thearray. In order to store the

relative arrival times of each instruction, the scheduler also contains apriority matrix.

The(i, j)th entry of this matrix stores whether the instruction in index i of the mem-

ory array arrived before that stored in indexj of the array. There is then some logic

to determine which of the instructions stored is the earliest-entered ready instruction

that is next to be sent off to the execution unit.

7.2.3 Assertion Graph Verification

We will first describe how the scheduler can be verified using GSTE assertion graphs.

This approach follows the example from [YS04], which bypasses the entry logic and

starts the simulation from theenteri nodes rather than directly from thewrite input

(see Figure 7.9). We also restrict ourselves to consideringonly the correctness of the

data lines, missing out the full and available status lines.

Since the instruction emitted by the scheduler depends on the relative arrival times

of all the instructions held, verifying the scheduler explicitly using a traditional asser-

tion graph would require too many simulation states to be practical. This is because

there would need to be one state for each set of possible relative arrival times.

We can make use of compositional GSTE, however, to overcome these difficulties.

Recall that compositional GSTE allows us to simulate different parts of the circuit

independently. In particular, whether an instruction is ready or not, and the relative

arrival times of instructions are handled separately by independent areas of the circuit.

Therefore if we simulate these sections separately, we can significantly reduce the

required number of simulation states.

The symbolic quantification operations supported by compositional GSTE also

allow us to effectively combine independent symbolic simulations. In particular, we

are sometimes required to simulate conditions that apply toeveryinstruction. Rather

than simulate each possible interleaving of input conditions that brings about such a

condition, we can instead simulate the requirement for onlythe general instruction at

memory addressi, and then universally quantify overi to reach the required condition.

The top-level assertion graph for the scheduler verification is shown in Figure 7.10.

EarliestReady(i, op) asserts that theith instruction has associated dataop, and is the

earliest ready instruction being held. The nodeschedi in the circuit signals that theith

index of the array is being scheduled. Hence the edge of the top-level graph can be

read as saying that for every addressi, if the instructionop has been stored ini and

is the earliest ready instruction, and the execution unit istrying to read an instruction,

then the instructioni is scheduled and valueop is presented ondout.
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EarliestReady(i, op) ∧ read / schedi ∧ dout = op

Figure 7.10: The Top Level Scheduler Assertion

reset

¬enter(i)

sched(i)

¬sched(i)

enter(i) ∧ (din = op)
∧ready

enter(i) ∧ (din = op)
∧¬ready

wrback ∧ reg = srcC

¬wrback wrback ∧ (reg 6= srcC )

Figure 7.11: TheReady(i, op) Assertion

enter(j) ∧ ¬enter(i)

¬enter(i)

Figure 7.12: TheEarlier(i, j) Assertion Graph
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reset

¬enter(i)

sched(i)

¬sched(i)

enter(i) ∧ ready

Enter(i) ∧ ¬ready wrback ∧ reg = srcC

wrback = z ∧ (¬z ∨ (reg 6= srcC ))

Figure 7.13: TheNotReady(i) Assertion

TheEarliestReady(i) condition can be defined in terms of further simulation con-

ditions, as:

EarliestReady(i, op) := Ready(i, op) ∧ ∀j 6= i . (Earlier(i, j) ∨ NotReady(j))

The predicatesReady(i, op), Earlier(i, j) andNotReady(j) are then defined in

terms of the a set of edges on the additional assertion graphsshown in Figures 7.11-

7.13. In these diagrams, the union of the states assigned to the solid lines is the

condition represented.

TheReady(i) assertion graph shows different paths for the two possible ways in

which an instruction can become ready: either it is ready when it enters the scheduler

(the top path), or else it is not ready when it enters and subsequently a write-back

occurs to its source register (the bottom path).

The meaning of theEarlier(i, j) graph is that an instruction has entered indexj

and no instruction has entered indexi since. The final graph,NotReady(i) uses the

same outline ofReady(i) to express those states in which theith instruction either

is not valid or else is not ready. These graphs are then enoughto verify our circuit

without the need for abstraction refinement.

7.2.4 Assertion Program Verification

We will now describe how we have verified the scheduler using GTL-based simula-

tions created from an assertion program. The style of simulation generation is more

interactive than that of the FIFO buffer, since the success of the verification is more

dependent on the correct simulation approach that keeps thememory footprint small.
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7.2.4.1 The Scheduler Assertion Program

The scheduler assertion program is shown in Figure 7.14. It first defines some types:

index is the type of memory address locations,uop is the type for 11-bit uops, and

reg_addr is the type of register addresses.

We then declare the abstract state and variables used. The status bits for each uop

held by the scheduler are stored as arrays indexed by the uop address. The state bit

valid[i] indicates that there is an instruction incontents[i] with ready statusready[i].

Bits earlier[i][j] are used to store whether or not the instruction at positioni arrived

before that at positionj. There is then a series of variables that corresponds to the

interface of the scheduler.

The state of the assertion program is updated as follows. When a reset occurs,

every entry is set invalid, to empty the scheduler. Otherwise, if entryi is empty, and

the environment is attempting to enqueue an instruction at position i, then the valid,

ready and contents indices are stored for this new instruction. When an entry is valid

and scheduled, it is subsequently set to invalid so that it will not be rescheduled. A

write-back occurs when the write-back register input matches the last four bits of

one of the held instructions. Under this condition, the corresponding ready bit is

set to true. The earlier array is updated depending on which entries are entering the

scheduler. Finally,sched[i] is set to describe whether the instruction at indexi is to

be currently scheduled or not. This is calculated using the condition that in order to

be scheduled, a uop must be ready and valid, and have entered the scheduler earlier

than any other valid ready entry. We omit an interface block for the assertion program,

since our test circuit interface has the same names as those variables on the interface

of the high-level model.

The aim of verification is to show that the scheduler circuit emits the correct in-

struction at any given time. This can be described using a single assertion where the

antecedent describes the conditions under which uopop at memory addressi should

be scheduled. The consequent asserts that under this condition, the output lines of the

scheduler match valueop.

7.2.4.2 Generating the Simulation

We first simplify the verification by using theDECOMPOSE rule (Section 6.3.4) to relate

thesched array of the assertion program with the circuit nodesschedi, that we expect

to signal that a given instruction address is being scheduled. This is a useful place to
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type index = int(4) // Contains maximum 4 uops
type uop = bool[int(11)] // 11-bit uops
type reg_addr = bool[int(4)] // 4-bit register addresses

model

state contents : uop[index] // Stored uops
state valid, ready, enter, sched : bool[index] // Status bits
state earlier : bool[index][index] // Arrival times

var reset, wrback, ready_in, read : bool // Interface
var wrback_reg : reg_addr // variables
var uop_in : uop

for i : index do { // For each uop...
if last(reset) then

valid[i] := false // Clear it on reset
else if last(enter[i] ∧ ¬valid[i]) then {

valid[i] := true // Store it on entry
contents[i] := uop_in
ready[i] := ready_in

} else if last(read ∧ sched[i] ∧ valid[i]) then

valid[i] := false // Invalidate on schedule
else if last(wrback ∧ valid[i] ∧ (contents[i][7 : 10] = wrback_reg))
then

ready[i] := true // Set ready on write-back

for j : index do { // Record arrival times
if last(enter[i]) ∧ ¬enter[j]) then

earlier[i][j] := false
else if last(enter[j]) then

earlier[i][j] := true
}

// Schedule when a uop is the earliest ready uop
sched[i] := ready[i] ∧ valid[i] ∧ forall j : index .

((i = j) ∨ ¬ready[j] ∨ ¬valid[j] ∨ earlier[i][j])
}

assert // Check correct data is scheduled
forall i : index , op : uop .

read ∧ (sched[i] ∧ ∀j : index . (i = j) ∨ ¬sched[j]) ∧ (contents[i] = op)
⇒ (dout[0 : 10] = op)

Figure 7.14: Scheduler Assertion Program
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decompose the verification because it allows us to separate out the control and data

aspects of the circuit. This decomposition splits the main antecedent:

read ∧ (sched[i] ∧ ∀j : index . (i = j) ∨ ¬sched[j]) ∧ (contents[i] = op)

into the two remaining simulation obligations:

1. sched[i] is c
2. read ∧ (schedi ∧ ∀j : index . (i = j) ∨ ¬schedj) ∧ (contents[i] = op)

First we must check that thesched array andschedi nodes are in fact equivalent. Then,

we must show that the scheduler operates correctly, given that this equivalence holds.

Verifying the Circuit Control The decomposition interface might be verified either

symbolically, using:

∀ i : index , v : bool . (sched[i] is v ⇒ schedi is v)

or explicitly, using:

∀ i : index . (sched[i] ⇒ schedi)
∀ i : index . (¬sched[i] ⇒ ¬schedi)

Since it is a control signal, the input patterns that generate sched[i] and¬sched[i]

will have little in common. There is therefore no benefit to symbolically sharing the

simulations, and an explicit approach is likely to be more efficient.

In order to go about generating the two conditions, we use thebackwards rewriting

technique from Chapter 6. By taking a single step in rewriting both conditions, we

obtain:

sched[i] = ¬(last(reset)) ∧ valid[i] ∧ ready[i]
∧ ∀j.((i = j) ∨ earlier[i][j] ∨ ¬valid[j] ∨ ¬ready[j])

¬sched[i] = last(reset) ∨ ¬valid[i] ∨ ¬ready[i]
∨ ∃j.((i 6= j) ∧ ¬earlier[i][j] ∧ valid[j] ∧ ready[j])

At this point, we can make use of our knowledge of the circuit structure. Since we

know that whether an instruction is valid, ready or entered before another instruction

are allindependentlymanaged by the circuit, we can start creating separate simulations

for each of these sub-formulas, leaving them to be combined at the final stage of simu-

lation. We therefore use theSPLIT rule (Section 6.3.1.1) to create new recursion vari-

ables for each of:valid[i], ¬valid[i], ready[i], ¬ready[i], earlier[i][j], ¬earlier[i][j],
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valid[j], ¬valid[j], ready[j] and¬ready[j]. We can reduce the number of these con-

ditions by using theSYM_SUBSTITUTE rule (Section 6.3.3.2) to re-expressvalid[j],

¬valid[j], ready[j] and¬ready[j] as conditions parameterized instead byi. For ex-

ample, generatingvalid[j] is the same as generating the conditionvalid[i](i := j).

The remaining predicates can be simulated using the standard approach described

by theUNROLL rule (Section 6.3.2.3). At each step in this generation process, we use

the REDISTRIBUTE rule (Section 6.3.2.2) to make sure that simulation of the valid,

ready, earlier and schedule conditions remain independent. Whether an instruction is

ready or not depends on whether its source register matches any write-back registers.

It is therefore necessary to also use theCREATE_VARIABLE rule to introduce variables

that correspond to theith instruction’s source register. No further abstraction refine-

ment steps are required for the verification of this aspect ofthe control to complete.

Verifying The Data Output We take a similar approach to the second condition,

where we create the simulation of

read ∧ (schedi ∧ ∀j : index . (i = j) ∨ ¬schedj) ∧ (contents[i] = op)

through the composition of separate simulations for each sub-formula. The only sub-

formula that requires backwards propagation is the conditioncontents[i] = op, which

is covered using the default rewriting strategy of theUNROLL rule (Section 6.3.2.3).

No further abstraction refinement is required for the entireverification to succeed.

7.3 Discussion

In this chapter we have applied our verification approach to afirst-in-first-out buffer

and micro-operation scheduler. In both cases, we believe that the assertion program

approach provides a more appropriate specification description than the use of asser-

tion graphs. The cleanliness of the synchronous programming approach gives a clarity

that lends a greater confidence to the interpretation of a property. In particular, the use

of higher-level data-types such as lists and arrays allow usto reuse well-understood

data structure concepts. Being textual and less explicit than assertion graphs, assertion

programs seem less vulnerable to small specification errors. Assertion programs also

enforce the separation of concerns between the model, the interface mapping, and the

verification approach.

As well as this, assertion program specifications are more parameterized than as-

sertion graphs because they can be configured via abstract constants. This not only
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allows for reuse, but provides far better scope for scalability. For example, the size of

an assertion graph for a FIFO is linear in its depth. In contrast, changing the depth

for an assertion program specification requires changing only a single constant literal.

There is, however, additional effort required to generate the simulation outline for an

assertion program. We have not explored the scalability of the simulation generation

algorithm, partly due to the work involved with each generation and partly because

our tool was built with a low degree of optimization. The scalability will, however,

certainly exceed what is possible with manual assertion graph construction. The fol-

lowing cases highlight some other particular strengths of our approach that have been

illustrated by the case studies.

In the original FIFO assertion graph approach, it is difficult to be assured of the

correctness ofeverydequeue output, given that we represent them all using only asin-

gle instance of symbolic data. The verification is sound, however, due to the unusual

for-all semantics of assertion graphs, coupled with the lack of initial hardware state. In

the assertion program approach, we are aware all along that the simulation we produce

will be sound, since each step in the simulation generation process is justified.

The original scheduler verification is difficult to understand, since it requires us

to look at the concurrent execution of multiple assertion graphs in order to fully un-

derstand the original verification property. This is necessary because the specification

must be decomposed in a particular way for the verification tosucceed with limited

memory space. In contrast, because the assertion program methodology separates

the property from the verification approach, the scheduler assertion program is not

required to be segregated in this way.

The scheduler verification proceeds via a decomposition based on the nodeschedi,

which describes if the operation in indexi is scheduled at this time-step. In our ap-

proach, this step is extremely clear, and we have formally justified that the decompo-

sition does not involve circular reasoning. In the assertion graph approach, however,

nodeschedi is used both in antecedents and consequents within the same graph, and it

is not clear that the inductive step of the verification is actually constructive.

The case studies also demonstrated some of the practical advantages of using as-

sertion programs over assertion graphs. Because the specification rules could all be de-

scribed textually and applied automatically, specifications in GTL allowed for a more

adaptive verification approach, where it was easier to test out different strategies. The

textual nature of GTL also allowed for rapid command-line driven prototyping of sim-

ulations, greatly aiding abstraction refinement. Furthermore, model checking could be
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optimized in new ways, for example, through the use of simplification transformations

and the caching of simulations.



Chapter 8

Conclusion

This dissertation has presented two specification notations and a methodology for veri-

fication using symbolic ternary simulation. The work has focused on taking particular

promising techniques from generalized symbolic trajectory evaluation (GSTE), and

recasting them using cleaner and more general notations that are more amenable to

formal reasoning. The approach is organized into two layers: A low-level logic,gen-

eralized trajectory logic (GTL), for specifying low-level simulation details, and the

synchronous language ofassertion programs, for the high-level modeling of circuit

behaviour.

GTL is an intuitive and compositional linear temporal logicthat provides a fine-

grained formalism for describing symbolic ternary simulations. Each formula de-

scribes a particular flow of simulation, but also has a clean,trace-based, property

semantics. By drawing an analogy between the atomic steps ofsimulation and the

constructs of propositional logic, GTL and its algebraic properties are made to look

familiar. Since it is textual in nature, GTL is also directlyamenable to mechanized

reasoning, easing the cleanliness of model checking algorithms, introspection tech-

niques, and the construction and application of reasoning rules.

An appropriate choice of foundational semantics for GTL hasenabled us to de-

velop a wide range of reasoning rules, applicable in areas ofabstraction refinement,

decomposition, and simulation optimization. These go far beyond existing rule-sets

for GSTE. The rules are generally based on the observation that sound simulation

transformations in GTL correspond to semantic-preservingrewriting rules. Our rules

also classify and further reveal the nature of GSTE verification choices, particularly

for abstraction refinement and the mixing of symbolic and explicit verification.

For describing complete high-level specifications models,we have presented the

language ofassertion programs. This synchronous programming language allows

model transitions to be described using abstract state built from rich and familiar

156
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vocabularies of arbitrary data types. Statements in the language are based around

imperative assignments, but have a declarative semantics that allows for equational

reasoning. In order to allow for greater clarity and reuse, assertion programs allow for

the separation of concerns between the model, the circuit interface mapping, the veri-

fication approach and specification parameters. Assertion programs are more concise

and descriptive than GSTE assertion graphs, because their abstract transition structure

is not explicitly unwound. Combined with their textual nature, this makes assertion

programs more prone to mechanized reasoning, and less vulnerable to small errors in

specification.

The semantic nature of assertion programs has much in commonwith GTL: both

are based on a finite trace-based semantics, a last time operator and similar variable

characteristics. This has allowed us to describe a rule-based framework that connects

the two formalisms by translating assertion programs into GTL properties that drive

simulation. In this framework, the equational constraintsof the assertion program

are used to apply weakest precondition calculations that progressively construct the

input sequence patterns necessary. Selective applicationof the reasoning rules for

GTL allow simulations to be tailored to the implementationsat hand. This provides a

rigorous overall verification methodology that we have successfully applied to verify

both a first-in-first-out buffer, and micro-operation scheduler.

Future Work

This section contains suggestions for future work, organized into topics that follow

the same order as the dissertation contents.

Generalized Trajectory Logic

Although GTL is expressive enough to cover the most commonlyused forms of GSTE,

there are various currently inexpressible model checking extensions that the logic

might be adapted to handle. For example, the GSTE approach toliveness proper-

ties [YS00] may correlate well with infinite trace variants of GTL. The backwards

simulation approach in [YS02] may naturally correspond to the inclusion of a next

time operator. The scope of GTL could also be extended for thespecification of other

abstraction techniques, such asnode weakening, where a node is forced toX to limit

the propagation of constraints, ordynamic weakening, which is a sound approach

to trimming the model checking BDD structures [AJM+00]. Goel’s work [Goe04],

which unifies the interaction between symbolic and ternary simulation, suggests the
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additional use of a partial order on variables to provide complete specifications of the

variable dependencies that should be retained.

Each of these opportunities for extending GTL would naturally also increase the

potential for additional reasoning rules for managing them. Future reasoning rules for

GTL may also concentrate on how to encode additional abstraction techniques into the

logic. For example, we have not included an analysis of rulesfor re-parameterization

of indexing variables, although it is expected that techniques from STE [MJ02] will

carry directly to GTL. Another area of interest might be exploring variation in the

temporal scoping of indexing variables. For example, interesting new abstractions

for capturing dependencies across time ranges might be attained by extending the

persistence of the ghost variables in our precise nodes encoding.

Verification with Assertion Programs

There are various potential improvements to the language ofassertion programs. The

development of a suitable module system would increase scalability, heighten abstrac-

tion, improve variable scoping, and potentially map down into modular or incremental

verification approaches. Other beneficial extensions mightinclude the use of new data

types, the addition of assumed environmental constraints,or polymorphic forms of

specification.

Our interactive simulation generation framework opens questions about how best

to selectively apply the various rewriting rules that we have described. In particular,

there may be heuristics for suggesting various state abstractions, based on various

analyses of the circuit or specification. For example, the identification of datapaths

within the circuit might be a good indicator for the automatic symbolic treatment

of the corresponding assertion program state. In cases where some of the assertion

program structure is shared with the circuit, there may be techniques and heuristics for

automatically determining internal equivalent nodes, orcut points, between the two.

Such cut points are ideal candidates for the application of our decomposition rule for

assertion programs. These techniques could potentially bebased on scalar simulation

tests, top-down structural comparisons, or on the similar techniques developed for

equivalence checking [KK97].

There are many potential practical improvements to simulation generation that

might either increase capacity or ease the abstraction refinement process. One way

of increasing capacity might be to make use of different reasoning engines, such as

those based on satisfiability checking [NO05]. Unbounded orvery large data types

might be better handled using decision procedures that operate directly on terms, or
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perhaps via the identification of a small model property. Onedifficulty experienced

during our work that might inspire further research was the question of how to apply

pattern matching across shared equational constraints, such as those found in vector

GTL properties.

To help the process of abstraction refinement, the executable nature of assertion

programs might be useful for generating illustrative counter-examples, or for dis-

covering and validating circuit interface specifications.Graphical mapping of vec-

tor GTL simulations might help to emulate the visual benefitsof assertion graph

specifications. Suitable rewriting rules for identifying the causes of over-abstraction

might be based on unrolling, simplification or case-splitting properties. It might

also be beneficial to characterize existing (G)STE abstraction refinement algorithms

[RC06b, ABMS07, CHXY07] using simulation generation rulesfor GTL.

There is also scope for extending the nature of verification above the level of ab-

straction provided by assertion programs. In particular, assertion programs have simi-

lar style to many other hardware modeling specifications, such as Murphi [DDHY92]

and the Symbolic Analysis Laboratory (SAL) [Sha00], which are generally used dur-

ing the verification of other forms of properties, such as liveness properties. If a high-

level model is verified using these techniques, then it may then be connected directly

to the gate-level circuit description through the application of our approach. In such a

process symbolic ternary simulation would effectively abstract some of the circuit op-

timization and nondeterminism complexity, leaving a cleaner model for higher-level

verification. There is also scope for using or adapting our approach to verify different

types of refinement. For example, at the moment our high-level models must be ei-

ther phase- or cycle-accurate. By exploiting different forms of temporal mappings, it

should be possible to allow for temporal deviations within the refinement process.



Appendix A

GTL Characteristics

This appendix contains detailed proofs about the semanticsof generalized trajectory

logic.

A.1 Monotonicity

Our aim in this section is to demonstrate that GTL is monotonic with respect to re-

cursion variables. Since GTL is a form of symbolically indexed structure, we first

demonstrate some monotonicity results for symbolically indexed structures in gen-

eral.

A.1.1 Symbolic Indexing Operators

In this section we show that both symbolic if-then-else and symbolic substitution are

monotonic operations.

Lemma A.1.1. If a and b are symbolic representations of the partial order(X,⊑),

then ‘if Q thena elseb’, written Q → a | b, is monotonic in botha andb with respect

to⊑∀V .

Proof. First we show that the operation is monotonic with respect tothe first argument.

Supposea ⊑∀V a′ and pick anyν ∈ V.

Case Q〈ν〉. Then

(Q → a | b)〈ν〉 = a〈ν〉

⊑ a′〈ν〉

= (Q → a′ | b)〈ν〉

160
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Case ¬Q〈ν〉. Then

(Q → a | b)〈ν〉 = b〈ν〉

= (Q → a′ | b)〈ν〉

A similar argument demonstrates monotonicity with respectto b.

Lemma A.1.2. If a is a symbolic representation of the partial order(X,⊑), then the

symbolic substitution ofQ for u, a(u := Q), is monotonic as a function ofa with

respect to⊑∀V .

Proof. If a ⊑∀V a′ thena〈ν〉 ⊑ a′〈ν〉 for any valuationν. Sinceν[u 7→ Q〈ν〉] is also

another valuation, it also implies that:

a〈ν[u 7→ Q〈ν〉]〉 ⊑ a′〈ν[u 7→ Q〈ν〉]〉

This is true for allν, soa(u := Q) ⊑∀V a′(u := Q).

A.1.2 Generalized Trajectory Logic

Theorem (3.3.2). Rf ,ρ,Z is monotonically increasing with respect to⊆∀V .

Proof. The proof is by structural induction overf .

Case f = tt, ff, n,¬n, W or µZ . g : Under any of these conditions,f is independent

of Z. ThereforeRf ,ρ,Z is constant, and the hypothesis trivially holds.

Case f = Z. In this case,RZ,ρ,Z is the identity function, which is trivially monotonic.

Case f = g ∨ h. HereRf ,ρ,Z(Q) = Rg ,ρ,Z(Q) ∪V Rh,ρ,Z(Q). By the inductive

hypothesis, bothRg ,ρ,Z andRh,ρ,Z are monotonic. Union is a monotonic set operation

in both its operands. Therefore,∪V is monotonic with respect to⊆ in each valuationν,

so it is monotonic with respect to⊆∀V . HenceRf ,ρ,Z is the composition of monotonic

maps, and so is monotonic itself.

Case f = g ∧ h. Proof is as in the previous case, where union is replaced by intersec-

tion.
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Case f = Yg . Pick an arbitrary variable valuationν, and letQ, R ∈ (2S+
)V be

semantic values whereQ ⊆∀V R. Then, by the semantics of Yesterday, a tracet is in

RYg ,ρ,Z(Q)〈ν〉 if and only if front(t) ∈ Rg ,ρ,Z(Q)〈ν〉. By the inductive hypothesis,

Rg ,ρ,Z is monotonic, sofront(t) ∈ Rg ,ρ,Z(Q)〈ν〉 implies front(t) ∈ Rg ,ρ,Z(R)〈ν〉.

Then by the semantics of Yesterday, this in turn impliest ∈ RYg ,ρ,Z(R)〈ν〉. Therefore

we have thatRYg ,ρ,Z(Q)〈ν〉 ⊆ RYg ,ρ,Z(R)〈ν〉 for any valuationν, soRYg ,ρ,Z is

monotonic.

Case f = µW . g whereW 6= Z. Pick an arbitrary variable valuationν and assume

Q, R ∈ (2S+
)V are semantic values whereQ ⊆∀V R. Now, by the semantics ofµ-

expressions, ift ∈ R(µW . g),ρ,Z(Q)〈ν〉 then for any semantic valueT ∈ (2S+
)V :

Rg ,ρ[W 7→T ],Z(Q) ⊆V T implies t ∈ T 〈ν〉 (A.1)

By the induction hypothesis,Rg ,ρ[W 7→T ],Z is monotonic. Hence for any other value

T ′ ∈ (2S+
)V :

Rg ,ρ[W 7→T ],Z(R) ⊆V T ′ ⇒ Rg ,ρ[W 7→T ],Z(Q) ⊆V T ′ (I.H.)

⇒ t ∈ T ′〈ν〉 (Equation A.1)

By applying the fixed-point definition again, this is equivalent to

t ∈ R(µW . g),ρ,Z(R)〈ν〉

henceR(µW . g),ρ,Z is monotonic.

Case f = Q → g | h or g(u := Q). By the induction hypothesis,Rg ,ρ,Z andRh,ρ,Z

are both monotonic. By Lemmas A.1.1, and A.1.2 respectively, the semantics off is

also monotonic with respect to its sub-formulas. ThereforeRf ,ρ,Z is also monotonic.

A.2 Continuity

Theorem (3.3.8). For every recursion contextρ and GTL formulaf :

L≤n(Rf ,ρ,Z(R))) ⊆∀V Rf ,ρ,Z(L≤n−depth(Z,f )(R))

and, as a consequence, the mapRf ,ρ,Z is continuous.
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Proof. For each formula it is shown that the following condition holds:

L≤n(Rf ,ρ,Z(R))) ⊆∀V Rf ,ρ,Z(L≤n−depth(Z,f )(R))

Each formula is consistently lengthening map by virtue of this and Lemma 3.3.2.

Hence by Lemma 3.3.6, each is also chain-continuous.

Case f = tt, ff, n,¬n, µZ . g , W . In these casesf is independent ofZ, soRf ,ρ,Z is a

constant,Q, anddepth(Z, f ) is∞. It is clear thatL≤n(Q) ⊆V Q for any such constant

Q.

Case f = Z. In this case,RZ,ρ,Z is the identity function, anddepth(Z, Z) = 0.

Hence the hypothesis trivially holds.

Case f = g ∧ h.

L≤n(R(g∧h),ρ,Z(R))

= L≤n(Rg ,ρ,Z(R) ∩V Rh,ρ,Z(R)) (Def. 3.2.2)

= L≤n(Rg ,ρ,Z(R)) ∩V L≤n(Rh,ρ,Z(R)) (Property ofL≤n)

⊆V Rg ,ρ,Z(L≤n−depth(Z,g)(R)) ∩V Rh,ρ,Z(L≤n−depth(Z,h)(R)) (I.H.)

⊆V Rg ,ρ,Z(L≤n−depth(Z,g∧h)(R))
∩V Rh,ρ,Z(L≤n−depth(Z,g∧h)(R))

(Depth of∧)

= R(g∧h),ρ,Z(L≤n−depth(Z,g∧h)(R)) (Def. 3.2.2)

Case f = g ∨ h. Proof mirrors the above case for conjunction.

Case f = Yg . Pick any symbolic valuationν and integern. If n ≤ 0 then the

hypothesis trivially holds, sinceL≤n(RYg ,ρ,Z(R))) = ∅. Supposen > 0, then:

L≤n(R(Yg),ρ,Z(R))〈ν〉

= L≤n({ σ.s | σ ∈ ‖ g ‖ρ[Z 7→R]〈ν〉 }) (Def. 3.2.2)

= { σ.s | σ ∈ L≤n−1(‖ g ‖ρ[Z 7→R])〈ν〉 } (Property ofL≤n)

⊆ { σ.s | σ ∈ ‖ g ‖ν
ρ[Z 7→L≤n−1−depth(Z,g)(R)] } (I.H.)

= R(Yg),ρ,Z(L≤n−1−depth(Z,g)(R))〈ν〉 (Def. 3.2.2)

= R(Yg),ρ,Z(L≤n−depth(Z,Yg)(R))〈ν〉 (Depth ofY)

Case f = µW . g . SinceRg ,ρ,W is monotonic it has a least fixed-point

µRg ,ρ,W =
⋂

{ T ∈ (2S+

)V | Rg ,ρ,W (T ) ⊆V T }
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by the Knaster-Tarski Theorem. This is precisely the definition of the semantics of

µW . g . By the inductive hypothesis,Rg ,ρ,W is continuous, so the Knaster-Tarski

Theorem guarantees that the fixed-point is the limit of the approximants given by:

‖ µW . g ‖ρ =
⋃

n≥0

V
(Rg ,ρ,W )n(⊥) (A.2)

Hence

L≤n(R(µW . g),ρ,Z(R))

= L≤n(
⋃

m≥0

V
(Rg ,ρ[Z 7→R],W )m(⊥)) (Equation A.2)

=
⋃

m≥0

V
L≤n((Rg ,ρ[Z 7→R],W )m(⊥)) (Lemma 3.3.4)

⊆V
⋃

m≥0

V
(Rg ,ρ[Z 7→L≤n−depth(Z,g)(R)],W )m(⊥) (I.H.)

= R(µW . g),ρ,Z(L≤n−depth(Z,µW . g)(R)) (Equation A.2)

Case f = Q → g | h.

L≤n(R(Q→ g | h),ρ,Z(R))

= L≤n(λν . if Q〈ν〉 thenRg ,ρ,Z(R)〈ν〉 elseRh,ρ,Z(R)〈ν〉) (Def. 3.2.2)

= λν . if Q〈ν〉 thenL≤n(Rg ,ρ,Z(R))〈ν〉

elseL≤n(Rh,ρ,Z(R))〈ν〉 (Property ofL≤n)

⊆V λν . if Q〈ν〉 thenRg ,ρ,Z(L≤n−depth(Z,g)(R))〈ν〉

elseRh,ρ,Z(L≤n−depth(Z,h)(R))〈ν〉 (I.H.)

⊆V λν . if Q〈ν〉 thenRg ,ρ,Z(L≤n−depth(Z,Q→ g | h)(R))〈ν〉

elseRh,ρ,Z(L≤n−depth(Z,Q→ g | h)(R))〈ν〉 (Depth of→ | )

= R(Q→ g | h),ρ,Z(L≤n−depth(Z,Q→ g | h)(R)) (Def. 3.2.2)
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Case f = g(u := Q).

L≤n(Rg(u:=Q),ρ,Z(R))

= L≤n(λν . Rg ,ρ,Z(R)〈ν[u 7→ Q〈ν〉]〉) (Def. 3.2.2)

= λν . L≤n(Rg ,ρ,Z(R))〈ν[u 7→ Q〈ν〉]〉 (Property ofL≤n)

⊆V λν . Rg ,ρ,Z(L≤n−depth(Z,g)(R))〈ν[u 7→ Q〈ν〉]〉 (I.H.)

= λν . Rg ,ρ,Z(L≤n−depth(Z,g(u:=Q))(R))〈ν[u 7→ Q〈ν〉]〉 (Depth of:=)

= R(g(u:=Q)),ρ,Z(L≤n−depth(Z,g(u:=Q))(R)) (Def. 3.2.2)

A.3 Set-based Model Checking

Lemma (3.6.3). For any closed atemporal formulaf , symbolic valuationν, and word

t.s ∈ S+, wheres is a state inS, t.s satisfiesf if and only if the singleton words

satisfiesf :

t.s ∈ ‖ f ‖ν iff s ∈ ‖ f ‖ν

Proof. Sincef is atemporal, it does not containY, fixed-points, or recursion variables.

Hence every sub-formula is also closed. We show the propertydirectly for these cases,

using structural induction onf .

Case f = tt. The result trivially true, since‖ f ‖ν = S+.

Case f = ff. The result vacuously true, since‖ f ‖ν = ∅.

Case f = n.

t.s ∈ ‖ n ‖ν ⇐⇒ (last(t.s))(n) = 1 (Def. 3.2.2)

⇐⇒ (last(s))(n) = 1 (Property oflast)

⇐⇒ s ∈ ‖ n ‖ν (Def. 3.2.2)

Case f = ¬n. Proof follows the previous case.

Case f = g ∨ h.

t.s ∈ ‖ g ∨ h ‖ν ⇐⇒ t.s ∈ ‖ g ‖ν ∪ ‖ h ‖ν (Def. 3.2.2)

⇐⇒ s ∈ ‖ g ‖ν ∪ ‖ h ‖ν (I.H.)

⇐⇒ s ∈ ‖ g ∨ h ‖ν (Def. 3.2.2)
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Case f = g ∧ h. Proof is as previous case, by replacing union with intersection.

Case f = Q → g | h.

t.s ∈ ‖ Q → g | h ‖ν ⇐⇒ t.s ∈ (if Q〈ν〉 then‖ g ‖ν else‖ h ‖ν) (Def. 3.2.2)

⇐⇒ s ∈ (if Q〈ν〉 then‖ g ‖ν else‖ h ‖ν) (I.H.)

⇐⇒ s ∈ ‖ Q → g | h ‖ν (Def. 3.2.2)

Case f = g(u := Q).

t.s ∈ ‖ g(u := Q) ‖ν ⇐⇒ t.s ∈ ‖ g ‖ν[u 7→Q〈ν〉] (Def. 3.2.2)

⇐⇒ s ∈ ‖ g ‖ν[u 7→Q〈ν〉] (I.H.)

⇐⇒ s ∈ ‖ g(u := Q) ‖ν (Def. 3.2.2)

Lemma (3.6.5). For every formulaf , simulation terminates and is monotonic in the

simulation context of each recursion variable.

Proof. Proof is by induction, ordering first by the number of fixed-points in formula

f , and secondly by length off .

Case f = tt, ff, n, or¬n. In these cases, termination is trivial, and since the formu-

las contain no recursion variables, the simulations are constant with respect to the

simulation context.

Case f = g ∨ h, g ∧ h,Yg , Q → f | g , or f (u := Q). For each of these, the

simulation of the sub-formulas terminate by the induction hypothesis. As a result,

each of these cases terminates, since they consist of singlecalculation steps. Also

by the induction hypothesis, the simulation of each sub-formula is monotonic with

respect to each recursion variable. Therefore each of thesesimulation cases are also

monotonic, using monotonicity of∪,∩, post, (→ |) (Lemma A.1.1) and(:=) (Lemma

A.1.2) respectively.

Case f = Z. Termination is assured, since the simulation of a recursion variable only

consists of looking up the variable in a store. Now supposeτ(Z) ⊆∀V τ ′(Z) for any

Z ∈ F . Then[ Z ]ντ = τ(Z) ⊆ τ ′(Z) = [ Z ]ν
′

τ , and hence simulation is monotonic.
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Case f = µZ . f . By the induction hypothesis, simulation off is monotonic with

respect toZ. Hence the simulation iterations((λS . [ f ]τ [Z 7→S])
n (λν.∅)) form a chain.

Since the domain of simulation is finite, we reach a fixed-point where simulation ter-

minates. For monotonicity, supposeτ ⊆∀V τ ′. Then:

[ µZ . f ]τ =
⋃

n≥0

[ µnZ . f ]τ ⊆∀V
⋃

n≥0

[ µnZ . f ]τ ′ = [ µZ . f ]τ ′

Lemma (3.6.7). For any closed GTL formulaf , the simulation off is an upper-

approximation of the image off :

im(f ) ⊆∀V [ f ]

Proof. We show a stronger property for any formulaf of GTL, including those with

free variables. The added assumption is that the simulationof each recursion variable

up until now is an upper-approximation of the traced-based context. The condition is

that for any trace recursion contextρ and simulation recursion contextτ :

(∀Z ∈ F . imρ(Z) ⊆∀V [ Z ]τ ) implies imρ(f ) ⊆∀V [ f ]τ

Proof is by induction, ordering first by the length of a formula, and secondly by the

number of fixed-points in a formula. We assumeimρ(Z) ⊆∀V [ Z ]τ for each variable

in each case, and demonstrateimρ(f ) ⊆∀V [ f ]τ .

Case f = tt. Trivially true, since[ tt ]ντ = S.

Case f = ff. Vacuously true, since:

imρ(ff)〈ν〉

= last(tr(KC) ∩ ‖ ff ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ ∅) (Def. 3.2.2)

= ∅

Case f = n.

imρ(n)〈ν〉

= last(tr(KC) ∩ ‖ n ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ {t ∈ S+ | (last(t))(n) = 1}) (Def. 3.2.2)

⊆ last(tr(KC)) ∩ last({t ∈ S+ | (last(t))(n) = 1}) (Property oflast)

= S ∩ {t ∈ S | t(n) = 1} (Properties oflast)

= {t ∈ S | t(n) = 1} (Set algebra)

= [ n ]ντ (Def. 3.6.4)
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Case f = ¬n. Proof follows the previous case.

Case f = Z. Covered directly by assumption.

Case f = g ∨ h.

imρ(g ∨ h)〈ν〉

= last(tr(KC) ∩ ‖ g ∨ h ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν
ρ ∪ ‖ h ‖ν

ρ)) (Def. 3.2.2)

= last((tr(KC) ∩ ‖ g ‖ν
ρ) ∪ (tr(KC) ∩ ‖ h ‖ν

ρ)) (Set Algebra)

= last((tr(KC) ∩ ‖ g ‖ν
ρ)) ∪ last((tr(KC) ∩ ‖ h ‖ν

ρ)) (Property oflast)

⊆ [ g ]ντ ∪ [ h ]ντ (I.H.)

= [ g ∨ h ]ντ (Def. 3.6.4)

Case f = g ∧ h.

imρ(g ∧ h)〈ν〉

= last(tr(KC) ∩ ‖ g ∧ h ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν
ρ ∩ ‖ h ‖ν

ρ)) (Def. 3.2.2)

= last((tr(KC) ∩ ‖ g ‖ν
ρ) ∩ (tr(KC) ∩ ‖ h ‖ν

ρ)) (Set Algebra)

⊆ last((tr(KC) ∩ ‖ g ‖ν
ρ)) ∩ last((tr(KC) ∩ ‖ h ‖ν

ρ)) (Property oflast)

⊆ [ g ]ντ ∩ [ h ]ντ (I.H.)

= [ g ∧ h ]ντ (Def. 3.6.4)

Case f = Yg .

imρ(Yg)〈ν〉

= last(tr(KC) ∩ ‖ Yg ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ {t.s ∈ S+ | t ∈ ‖ g ‖ν
ρ}) (Def. 3.2.2)

= last({t.s ∈ S+ | (last(t), s) ∈ T ∧ t ∈ tr(KC) ∩ ‖ g ‖ν
ρ}) (Prop. oftr)

= {s ∈ S | (last(t), s) ∈ T ∧ t ∈ tr(KC) ∩ ‖ g ‖ν
ρ} (Def. last)

= {s ∈ S | (s′, s) ∈ T ∧ s′ ∈ last(tr(KC) ∩ ‖ g ‖ν
ρ)} (Guard Rewrite)

= post(last(tr(KC) ∩ ‖ g ‖ν
ρ)) (Def. post)

= post(imρ(g)〈ν〉) (Def. im)

⊆ post([ g ]ντ ) (I.H., post monotone)

= [Yg ]ντ (Def. 3.6.4)
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Case f = µZ . g

imρ(µZ . g)〈ν〉

= last(tr(KC) ∩ ‖ µZ . g ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩
⋃

n≥0

‖ µnZ . g ‖ν
ρ) (Corollary 3.3.10)

=
⋃

n≥0

last(tr(KC) ∩ ‖ µnZ . g ‖ν
ρ) (Set Algebra)

⊆
⋃

n≥0

[ µnZ . g ]ντ (I.H.)

= [ µZ . g ]ντ (Def. 3.6.4)

Case f = Q → g | h.

imρ(Q → g | h)〈ν〉

= last(tr(KC) ∩ ‖ Q → g | h ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ (if Q〈ν〉 then‖ g ‖ν
ρ else‖ h ‖ν

ρ)) (Def. 3.2.2)

= if Q〈ν〉 thenlast(tr(KC) ∩ ‖ g ‖ν
ρ) elselast(tr(KC) ∩ ‖ h ‖ν

ρ)) (Set Algebra)

⊆ if Q〈ν〉 then[ g ]ντ else[ h ]ντ (I.H.)

= [ Q → g | h ]ντ (Def. 3.6.4)

Case f = g(u := Q).

imρ(g(u := Q))〈ν〉

= last(tr(KC) ∩ ‖ g(u := Q) ‖ν
ρ) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν[u 7→Q〈ν〉]
ρ )) (Def. 3.2.2)

⊆ [ g ]ν[u 7→Q〈ν〉]
τ (I.H.)

= [ g(u := Q) ]ντ (Def. 3.6.4)

A.3.1 Atemporal Formulas

Lemma (3.6.8). For any closed atemporal GTL formulaf , the simulation off is equal

to the image off :

im(f ) = [ f ]
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Proof. Sincef is atemporal, it does not containY, fixed-points, or recursion variables.

Hence every sub-formula is also closed. We show by inductionthat

im(f ) = [ f ]

Case f = tt.

im(tt)〈ν〉

= last(tr(KC) ∩ ‖ tt ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ S+) (Def. 3.2.2)

= S (Def. tr)

= [ tt ]ν (Def. 3.6.4)

Case f = ff.

im(ff)〈ν〉

= last(tr(KC) ∩ ‖ ff ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ ∅) (Def. 3.2.2)

= ∅ (Def. tr)

= [ ff ]ν (Def. 3.6.4)

Case f = n.

im(n)〈ν〉

= last(tr(KC) ∩ ‖ n ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ {t ∈ S+ | (last(t))(n) = 1}) (Def. 3.2.2)

= last(tr(KC)) ∩ {t ∈ S | t(n) = 1} (Property oflast)

= {t ∈ S | t(n) = 1} (Set algebra)

= [ n ]ν (Def. 3.6.4)

Case f = ¬n. Proof follows the previous case.
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Case f = g ∨ h.

im(g ∨ h)〈ν〉

= last(tr(KC) ∩ ‖ g ∨ h ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν ∪ ‖ h ‖ν)) (Def. 3.2.2)

= last((tr(KC) ∩ ‖ g ‖ν) ∪ (tr(KC) ∩ ‖ h ‖ν)) (Set Algebra)

= last((tr(KC) ∩ ‖ g ‖ν)) ∪ last((tr(KC) ∩ ‖ h ‖ν)) (Set Algebra)

= [ g ]ν ∪ [ h ]ν (I.H.)

= [ g ∨ h ]ν (Def. 3.6.4)

Case f = g ∧ h.

im(g ∧ h)〈ν〉

= last(tr(KC) ∩ ‖ g ∧ h ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν ∩ ‖ h ‖ν)) (Def. 3.2.2)

= last((tr(KC) ∩ ‖ g ‖ν) ∩ (tr(KC) ∩ ‖ h ‖ν)) (Set Algebra)

= last((tr(KC) ∩ ‖ g ‖ν)) ∩ last((tr(KC) ∩ ‖ h ‖ν)) (Lemma 3.6.3)

= [ g ]ν ∩ [ h ]ν (I.H.)

= [ g ∧ h ]ν (Def. 3.6.4)

Case f = Q → g | h.

im(Q → g | h)〈ν〉

= last(tr(KC) ∩ ‖ Q → g | h ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ (if Q〈ν〉 then‖ g ‖ν else‖ h ‖ν)) (Def. 3.2.2)

= if Q〈ν〉 thenlast(tr(KC) ∩ ‖ g ‖ν) elselast(tr(KC) ∩ ‖ h ‖ν)) (Set Algebra)

= if Q〈ν〉 then[ g ]ν else[ h ]ν (I.H.)

= [ Q → g | h ]ν (Def. 3.6.4)

Case f = g(u := Q).

im(g(u := Q))〈ν〉

= last(tr(KC) ∩ ‖ g(u := Q) ‖ν) (Def. 3.6.1)

= last(tr(KC) ∩ (‖ g ‖ν[u 7→Q〈ν〉])) (Def. 3.2.2)

= [ g ]ν[u 7→Q〈ν〉] (I.H.)

= [ g(u := Q) ]ν (Def. 3.6.4)
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A.4 Abstract Model Checking

Lemma (A.4). Abstract simulation terminates and is monotonic with respect to the

value of each recursion variable, i.e.⌊ f ⌋ν
σ[Z 7→U ] is monotonic with respect to⊑∀V as

a function ofU .

Proof. Proof is by induction, ordering first by the number of fixed-points in f , and

secondly by the length off :

Case f = tt, ff, n,¬n or W . Then⌊ f ⌋ν
σ[Z 7→U ] trivially terminates and is constant with

respect toU , so is monotonic.

Case f = g ∨ h, g ∧ h,Yg . Then⌊ f ⌋ν
σ[Z 7→U ] terminates and is monotonic by the

induction hypothesis and monotonicity of⊔,⊓ andpost♯ respectively.

Case f = µW . g . By the induction hypothesis,⌊ g ⌋ν
σ[W 7→S] is monotonic with respect

to S. Therefore by the Knaster-Tarski theorem, the abstract simulation ofµW . g ,

fix (λS . ⌊ f ⌋τ [W 7→S]) (λν ′.⊥) (A.3)

must reach a fixed-point in our finite abstract domain, which equals
⊔

n≥0

⌊µnW.g ⌋ν
σ[Z 7→U ]

This is the least value greater than⌊µnW . g ⌋ν
σ[Z 7→U ] for any n. SupposeU⊆∀VU ′.

Then by the induction hypothesis,

⌊µnW . g ⌋ν
σ[Z 7→U ] ⊆∀V ⌊µnW . g ⌋ν

σ[Z 7→U ′]

for anyn. Therefore,

⌊µnW . g ⌋ν
σ[Z 7→U ] ⊆∀V ⌊µnW . g ⌋ν

σ[Z 7→U ′] ⊆∀V
⊔

n≥0

⌊µnW.g ⌋ν
σ[Z 7→U ′]

for anyn. So

⊔

n≥0

⌊µnW.g ⌋ν
σ[Z 7→U ] ⊆∀V

⊔

n≥0

⌊µnW.g ⌋ν
σ[Z 7→U ′]

as required.

Case f = Q → g | h or g(u := Q) By the induction hypothesis, abstract simulation

of the sub-formulasg andh is monotonic. Therefore by Lemmas A.1.1, and A.1.2,

respectively, abstract simulation off is also monotonic.
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Grammar for Assertion Programs

This appendix presents a grammar for assertion programs, using the following BNF-

style conventions:

• Non-terminals are initalics and all other symbols are terminals, except:

• { x } denotes zero or more occurrences ofx.

• x | y means one of eitherx or y.

The syntax takes the form:

literal ::= true | false
| integer_literal

type ::= identifier

| bool

| int ( integer_literal )
| type { [ type ] }

const_decl ::= type identifier = type

| const identifier = literal

model_decl ::= var identifier : type

interface_decl ::= node identifier

| node identifier [ integer_literal : integer_literal ]

lexpr ::= identifier { [ expr ] }

173
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infix_operator ::= ∧ | ∨ | = | + | − | < | ≤ | > | ≥

args ::= expr { , expr }

expr ::= literal

| lexpr { [ integer_literal : integer_literal ] }
| ¬ expr

| last ( expr )
| expr infix_operator expr

| expr → expr ‘ | ’ expr

| forall identifier : type . expr

| exists identifier : type . expr

| expr [ expr ]
| identifier ( args )

stmt ::= skip

| identifier := expr

| stmt ‖ stmt

| if expr then stmt else stmt

| for identifier : type do stmt

| ‘{’ stmt ‘}’

assertion ::= expr ⇒ expr

| forall identifier : type . assertion

program ::= const_decls
model

{ model_decls }
stmt

interface

{ interface_decls }
stmt

assert

{ assertion }
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