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Abstract

One significant disadvantage of interpreted bytecode languages,
such as Java, is their low execution speed in comparison to com-
piled languages like C. The mobile nature of bytecode adds to the
problem, as many checks are necessary to ensure that downloaded
code from untrusted sources is rendered as safe as possible. But
there do exist ways of speeding up such systems.

One approach is to carry out static type checking at load time,
as in the case of the Java Bytecode Verifier. This reduces the
number of runtime checks that must be done and also allows
certain instructions to be replaced by faster versions. Another
approach is the use of a Just In Time (JIT) Compiler, which takes
the bytecode and produces corresponding native code at runtime.
Some JIT compilers also carry out some code optimization.

There are, however, limits to the amount of optimization that can
safely be done by the Verifier and JITs; some operations simply
cannot be carried out safely without a certain amount of runtime
checking. But what if it were possible to prove that the con-
ditions the runtime checks guard against would never arise in a
particular piece of code? In this case it might well be possible
to dispense with these checks altogether, allowing optimizations
not feasible at present. In addition to this, because of time con-
straints, current JIT compilers tend to produce acceptable code
as quickly as possible, rather than producing the best code pos-
sible. By removing the burden of analysis from them it may be
possible to change this.

We demonstrate that it is possible to define a programming logic
for bytecode programs that allows the proof of bytecode pro-
grams containing loops. The instructions available to use in the
programs are currently limited, but the basis is in place to extend
these. The development of this logic is non-trivial and addresses
several difficult problems engendered by the unstructured nature
of bytecode programs.
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Chapter 1

Introduction

One significant disadvantage of interpreted bytecode languages, such as Java [3,
24, 18, 28], is their low execution speed in comparison to compiled languages
like C. The mobile nature of bytecode adds to the problem, as many checks
are necessary to ensure that downloaded code from untrusted sources is ren-
dered as safe as possible. But there do exist ways of speeding up such systems.

One approach is to carry out static type checking at load time, as in the
case of the Java Bytecode Verifier [29]. This reduces the number of runtime
checks that must be done and also allows certain instructions to be replaced
by faster versions. Another approach is the use of a Just In Time (JIT)
Compiler, which takes the bytecode and produces corresponding native code
at runtime. Some JIT compilers also carry out some code optimization [23].

There are, however, limits to the amount of optimization that can safely
be done by the Verifier and JITs; some operations such as array bounds
checking and type casting simply cannot be carried out safely without a
certain amount of runtime checking [29]. But what if it were possible to prove
that the conditions the runtime checks guard against would never arise in a
particular piece of code?

In this case it might well be possible to dispense with these checks altogether,
allowing optimizations not feasible at present. In addition to this, because
of time constraints, current JIT compilers tend to produce acceptable code
as quickly as possible, rather than producing the best code possible. By
removing the burden of analysis from them it may be possible to improve on
the current situation.

13



14 CHAPTER 1. INTRODUCTION

1.1 Java

Java is a concurrent object-oriented programming language developed by
Sun Microsytems [2]. It is syntactically similar to C and C++, but imposes
a ‘safer’ programming style than these languages. This is achieved by the
use of stricter runtime type-checking, not allowing the user to manipulate
pointers directly, and using automatic garbage collection as opposed to users
explicitly allocating and deallocating memory.

Java was initially intended to be used in the construction of software systems
running on networks of machines with varied architecture. This meant that
it was important that the code produced should be portable—able to run
on any machine in the network regardless of differences in architecture, and
that a machine receiving some Java code across the network should be able
to assure itself that the code was, to some degree of certainty, safe to run.

The issue of portability is addressed by a Java program being compiled into
a class file containing architecture neutral bytecodes, which are then run on
the Java Virtual Machine (JVM) [29, 55], an emulator running on a ‘real’
machine. This means that the same Java program can be run on any machine
for which there exists an implementation of the JVM, without the rewrit-
ing/recompilation needed in traditional systems. The class files are designed
to be downloaded from the Internet, which further simplifies the matter of
obtaining new software.

Classes are loaded by the JVM using a class loader. The ‘primordial’ class
loader, shipped with the JVM, loads both the trusted core classes shipped
with the JVM and any classes that can be found on the CLASSPATH—a
designated area of filespace [29, 30]. These classes will be assumed not to be
malicious and are not subject to bytecode verification. If a class cannot be
found on the CLASSPATH, a specialised class loader object will be instanti-
ated to download it from a web server. These classes are subject to bytecode
verification.

Once loaded, a class will be linked and initialized. During linking, classes
obtained from outside the system the current JVM is running on will be
verified by the JVM’s Bytecode Verifier. The Verifier ensures that the classfile
meets certain criteria of type safety and well-formedness that mean it will
not cause certain catastrophic problems at runtime, thereby dealing with the
problem of the safety of code received across a network.

The verifier ensures, amongst other properties, that bytecode instructions
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receive the right number of arguments, and that the arguments are of the
correct type and in the right order, that the operand stack will not overflow
or underflow, the program counter is never pointing to somewhere outside
the range of a method’s code, and that objects are initialized before use. This
ensures the type safety of any downloaded classes, i.e. that instructions are
passed arguments of the correct type. It is assumed that classes written by
a user and located on the CLASSPATH will have been created by the javac

compiler and will therefore also be correctly formed. A full description of the
verifier can be found in [29].

In addition to checking classes conform to certain rules, the Bytecode Verifier
carries out some optimization of the bytecode by substituting faster versions
of certain bytecodes (signified by the suffix quick). These instructions are
more efficient because they do not contain checks that are redundant after
bytecode verification.

Before it can be initialized, a class must be loaded and linked. It is up to an
implementation of the JVM to decide whether it will load and link classes
‘early’, but a class must be loaded on its first active use. The initialization
of a class will also trigger the initialization (preceded if necessary by loading
and linking) of all its superclasses. A diagram outlining these operations can
be seen in Figure 1.1. Note that the shaded parts of the diagram indicate
the additional elements of the JVM necessary to run untrusted code from
outside the local file system.

1.2 JIT Compilers

As mentioned, one of the biggest drawbacks of interpreted bytecode languages
like Java is their slow execution speed. One solution to this might be to
compile Java programs to native machine code rather than bytecode. But,
unlike bytecode, the native code will be specific to a particular machine and,
if downloaded from an untrusted source, cannot be verified by the JVM’s
bytecode verifier. The execution speedup will therefore be offset by a severe
deterioration in the code’s mobility—the main selling point of interpreted
bytecode systems.

Systems using a Just In Time (JIT) compiler attempt to provide as much
speedup as possible while still keeping the advantages of bytecode. This is
done by downloading bytecode files and verifying them as usual, but then
also calling the JIT compiler to translate the bytecode to native code at
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runtime, producing the native code just before it is needed. JIT compilation
is carried out on a method only at the point at which it is called so that
unnecessary translation is not done. Some JIT compilers also profile code in
order to determine whether it is worth compiling a method [23].

The native code produced by the JIT for a particular program is not stored
after termination of the program but, during execution, the pointer to a
method’s code is replaced by a pointer to the compiled code for that method.

The most basic JIT compilers carry out a process known as inlining. The
usual implementation of the JVM interpreter is a large switch statement
with cases corresponding to the various instructions of the virtual machine;
execution of a JVM program consists of repeated execution of this switch
statement. This means that a signicant amount of time is spent executing
the various jumps and comparisons involved in the switch statement itself,
rather than in executing the instruction of the program running on the JVM.

Inlining the code means taking the corresponding native code instructions
for each virtual machine instruction in a method’s code and concatenating
them into a single stream of machine code. This not only removes the over-
head inherent in the interpreter, but means that it is no longer necessary to
maintain the program counter and stack of the virtual machine; the method
has effectively been detached from the virtual machine paradigm and can be
treated just like any other program for the concrete machine it is running
on.

For example, the chunk of code in one interpreter implementation, [19], cor-
responding to the JVM instruction dup is

ld [%l1 - 4], %o0 //load val on top of JVM stack into reg o0
st %o0, [%l1] //store val in reg o0 at new top of JVM stack
add %l0, 1, %l0 //increment JVM program counter
add %l1, 4, %l1 //increment stack pointer
b .LL16 //branch
nop //do nothing

Of these instructions, only half are actually concerned with carrying out the
dup instruction; the others are there only to implement the interpreter. By
inlining the code for dup we can reduce it to the following three instructions

ld [%l1 - 4], %o0 //load val on top of JVM stack into reg o0
st %o0, [%l1] //store val in reg o0 at new top of JVM stack
add %l1, 4, %l1 //increment stack pointer
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It is also possible to inline method calls, whereby the call to a method is
replaced by the code of the method itself. This is usually only possible for
very short methods.

In addition to this basic translation technique, more complex JIT compilers
carry out optimization of the code. This is usually carried out on some sort
of intermediate code which is at a lower level than that of the bytecode, while
not actually native code. Methods used may include

Copy Propagation Bytecode is stack based whereas most ‘real’ machines
are register based. The translation from bytecode to native code often
causes unnecessary mov instructions, which move values from one reg-
ister to another, to be generated. For example, mov r1 -> r2 followed
by mov r2 -> r3 is equivalent to mov r1 -> r3. Copy propagation is
concerned with eliminating these unnecessary instructions and can also
be carried out backwards.

Assertion Merging When a bytecode instruction is broken down into sim-
pler intermediate instructions it can become apparent that a particular
assertion is being repeated, e.g. a reference is non-null or a number is
non-zero. Analysis of the code may allow removal of these duplicate
assertions.

Live Variable Analysis A variable is live if it holds a value that may be
needed in the future. Therefore, if two variables in a program are
never live at the same time, the same register may be used to store
their values.

Dead Code Elimination This attempts to identify and eliminate instruc-
tions which carry out redundant operations.

Strength Reduction This attempts to replace an operation with an equiv-
alent one that executes faster, e.g. use shift to divide and multiply by
powers of two.

Common Subexpression Elimination Removes redundant calculations.

Loop Unrolling In cases where it is possible to calculate n, where n is the
number of times the loop will be executed, remove the loop structure
and replace with n copies of the loop body.

More information on code optimization can be found in [5] and [6].
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One other way in which Java enforces type safety is by checking all array
references at runtime to ensure that the array reference is non-null and that
the index is not out of bounds. This avoids the potentially catastrophic
results of writing to an area of memory outside the array bounds, a situation
all too possible in programs written in C or C++. But it also means that
bytecodes for array operations cannot be replaced by the more efficient quick
bytecodes mentioned in Section 1.1. The following ix86 assembly code was
produced by the GCJ program [44] and corresponds to the Java statement
testarray [i] := 2

53: movl 0xfffffff8(%ebp),%ebx //bounds check
56: movl 0xfffffffc(%ebp),%esi //bounds check
59: cmpl 0x8(%ebx),%esi //bounds check
5c: jb 70 <main__5ArrayPt6JArray1ZPQ34java4lang6String+0x50>
5e: addl $0xfffffff4,%esp
61: pushl %esi
62: call 63 <main__5ArrayPt6JArray1ZPQ34java4lang6String+0x43>
67: addl $0x10,%esp
6a: movl %eax,%eax
6c: testl %eax,%eax
6e: je 70 <main__5ArrayPt6JArray1ZPQ34java4lang6String+0x50>
70: leal 0xc(%ebx),%eax
73: leal 0x0(,%esi,4),%edx
7a: addl %edx,%eax
7c: movl $0x2,(%eax)
82: leal 0xffffffe8(%ebp),%esp
85: popl %ebx
86: popl %esi
87: movl %ebp,%esp
89: popl %ebp

Only the instructions

70: leal 0xc(%ebx),%eax
73: leal 0x0(,%esi,4),%edx
7a: addl %edx,%eax
7c: movl $0x2,(%eax)

actually update the array, and so if it was possible to prove that the array
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bounds check for this operation was unnecessary it would be possible to
eliminate the extra instructions. As it is often the case that an instruction
such as testarray [i] := 2 appears in the body of a loop in order to carry
out an operation on the entire array, the number of instructions eliminated
could potentially be quite large.

1.3 Reasoning about Programs

In order to reason about programs it is necessary first to build a logical
model of the world of the programs: the language used to write them and
its semantics, and the environment in which they run. This section provides
a brief background to some techniques used to do this which are of partic-
ular relevance to the work described in the rest of this report. A detailed
discussion of all the topics in this section can be found in [56].

1.3.1 Assigning Meaning to Programs

There are three main approaches to formalising the meaning of a program:
operational semantics, denotational semantics, and axiomatic semantics. The
ideas behind axiomatic semantics will be dealt with in the following section
1.3.2.

An operational semantics for a language is defined in terms of the operations
carried out by an abstract machine, where a rule is stated defining the re-
sult of execution for each type of command in the language. Commands are
identified syntactically, e.g. a rule would exist for an assignment statement
x := expr. Application of the rules leads to evaluation of an expression in
the language in relation to a particular state which encapsulates the environ-
ment in which the program is being executed. Evaluation can be described
either as one complete operation, i.e. a boolean expression evaluating to a
boolean value, or as a series of smaller transformations on a state leading
eventually to a value. The former is known as a ‘big-step’ semantics, the
latter a ‘small-step’ semantics [56].

A denotational semantics formulates the meaning of a program more ab-
stractly as a partial function from states to states rather than rules of execu-
tion for particular syntactic constructs. This has the advantage of making it
possible to compare the equivalence of two programs written in two different
languages.
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1.3.2 Reasoning about Program Properties

In his seminal paper An Axiomatic Basis for Computer Programming, [20],
C. A. R. Hoare describes a set of rules (or axioms) that can be used to reason
about what a program does. Rules of the form described in the paper are
often referred to as a programming logic or Hoare logic, and allow us to go
one step further than an operational or denotational semantics in terms of
reasoning about programs. Rather than just allowing reasoning about the
value of initial and final states with regard to a program, a Hoare logic allows
us to make more fine-grained statements about states. We are able to say
whether if we execute a command C in any state satisfying the predicate
P—and execution terminates— we will end up in some state satisfying Q.

A Hoare logic specification takes the form

` {P} C {Q}

where

• C is a statement in the programming language

• P is a precondition

• Q is a postcondition

Partial correctness specifications (signified by the curly brackets around pre-
and post-conditions) do not require proof of termination.

Although in both operational semantics and Hoare logic predicates are used
to assist reasoning about programs, they are essentially quite different:

• Operational Semantics describe what the operating environment of
the program ‘looks like’ after the execution of each instruction. This
description of the environment is known as the state and includes in-
formation such as the types of values held on the stack and in local
variables.

• Predicates in Hoare Logic describe properties which are true at
a particular point in the execution of a program (i.e. in a particular
state). For example ‘the value at the top of the stack is greater than
10’ or ‘variable x has the value 7’.
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In situations where an operational semantics for a language exist, it is possible
to formulate the Hoare triple in terms of the logic in which the semantics is
described. In higher order logic the relationship between the Hoare rules and
the operational semantics can be defined as follows:

{P} C {Q} ≡ ∀ σ σ′. P (σ) ∧ eval(C, σ) = σ′ =⇒ Q(σ′) (1.1)

This states that a Hoare Logic specification {P} C {Q} is equivalent to the
statement that for all states, σ, σ′, if P holds in the state σ, and executing
C in the state σ results in the state σ′, then Q will hold in the state σ′.

Although the rules of a Hoare logic are often stated as axioms—hence the
alternative description of such rules as an axiomatic semantics—it is also
possible to derive them from the operational semantics using 1.1. Derivations
from denotational semantics are equally possible, as described by Gordon in
[16].

Derivation from an operational or denotational semantics results in a pro-
gramming logic in which we may have more confidence than one in which
the rules are merely arbitrarily stated. This is particularly true if we are
dealing with a language which is sufficiently different from the simple imper-
ative language described by Hoare as to make it unclear exactly what form
the rules should take. This is the situation described in Chapter 4, in which
we describe the derivation of a programming logic for bytecode programs,
which are certainly very different from the programs dealt with by Hoare.
Our derivation is based on the operational semantics for the JVM developed
by Pusch [45], and this is described in some detail in Section 2.1.2.

1.3.3 Inductively Defined Relations

It is often the case that operational semantics and other execution relations
are defined in terms of inductively defined sets. And while Pusch’s semantics
are not defined in this way, two of the execution relations for bytecode de-
scribed in Chapter 3 are. Consequently we give a brief outline of the concepts
involved in such a definition and the related technique of rule induction. This
technique is described fully by Winskel in his book The Formal Semantics of
Programming Languages [56].

We can inductively define a set by a collection of rules. For example, the set
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of odd numbers is defined by the rules

Odd 1

Odd x

Odd (x + 2 )

In order to show that a property P is true of all members of such a set, we use
the principle of rule induction. This is based on the idea that if a property
is preserved by application of all the rules defining the set, it is true for all
members of the set. The principle can be stated as: if for all axioms

x

P (x) is true, and for all rules of the form

x1 , x2 , . . . , xn

x

the statement ∀i. 1 ≤ i ≤ n =⇒ P xi =⇒ P x holds, then P (n) holds for
any n in the set.

1.4 Mechanized Reasoning

Much of the work that has been done recently on proving properties of the
Java language has involved the use of some form of mechanical proof assis-
tant [38, 45, 26, 46]. As the semantics for even subsets of Java, or simplified
versions that disregard aspects of the language such as exception handling,
are very large and complex it is easy for mistakes to creep into a paper
and pencil proof. Indeed one of the few substantial pieces of work under-
taken in the area without the aid of a proof tool, that of Drossopoulou and
Eisenbach [14], was found to contain ‘one major error and one noteworthy
omission’ when checked by Syme using his proof tool Declare [52].

This does not imply that all proofs carried out using a mechanised proof
tool are completely flawless. All results depend, at the bottom line, on the
definitions provided by the user. But if such definitions are correct, a proof



24 CHAPTER 1. INTRODUCTION

tool can be relied upon to provide a greater degree of reassurance that results
produced are also correct, leaving critics only the smaller task of examining
the definitions. Obviously the degree of confidence in the proofs depends to
a great extent on the proof tool used and its implementation.

1.4.1 Isabelle

Our work, and that of Pusch on which it is based, uses the Isabelle sys-
tem [42]. Most proof systems support one particular logic from among the
many used by computer scientists. For example, the HOL system [33] sup-
ports reasoning in higher order logic, whereas Larch [51] supports proofs
in multisorted first order logic. Isabelle, designed by Paulson, is a generic
prover, meaning it supports a variety of logics (known as object logics). Is-
abelle has a meta logic which is used to formulate object logics. The meta
logic is the subset of higher order logic containing implication, universal
quantification, and equality. A full description of the system can be found
in [42], and discussion related to implementation and development issues in
[40, 41, 43].

Like HOL, Isabelle is based on the LCF prover designed by Milner and his
colleagues in the 1970s [32, 17]. In LCF, terms and formulae are values in ML,
the meta-language used to implement the system, and can be composed and
decomposed by ML functions. Theorems are values of type thm. Rather than
constructing theorems arbitrarily, inference rules are used to map existing
theorems to new theorems—starting with a small set of built in theorems,
known as axioms. New theorems can be proved in two ways: by working
forwards, using the inference rules to map already proved theorems to new
theorems; or working backwards, splitting the original goal into smaller goals
which can be proved trivially using existing theorems and inference rules.
The process of backwards proof is managed by functions known as tactics.

Isabelle is an interactive prover, meaning that while it supports a variety of
potentially complex logics, the user is expected to find the proof. Isabelle
does, however, provide several powerful automatic tactics in the form of
decision procedures based on non-logic-specific tableaux methods. Isabelle is
a procedural prover, but recently the Isar interface has been developed [1],
providing a more declarative interface.

The definitions and datatypes that make up each logic are stored in a theory
file (denoted by the suffix .thy). Proof scripts for derivation of new theorems
from these definitions are stored separately in files with the suffix .ml (for
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ML).

1.5 Contribution

We demonstrate that it is possible to define a programming logic for bytecode
programs that allows the proof of bytecode programs containing loops. The
instructions available for use in the programs are currently limited, but the
basis is in place to extend these.

The development of this logic was not by any means straightforward. It
required the definition of several execution relations for bytecode programs,
each necessary for proofs of different aspects of execution. In addition, the
flat, unstructured nature of bytecode programs presents a number of dif-
ficulties, particularly when reasoning about loops. But there are, as we
demonstrate, some quite elegant solutions to these problems.

1.6 Outline of Thesis

Chapter 2 examines work done in four main areas, all of which relate to our
own work, namely: proving properties of the Java language itself, proving
properties of programs written in Java, improving the performance of JIT
compilers, and incorporating proof into ‘real world’ systems. In each case two
or three papers are discussed in some detail, followed by a brief description
of examples of other notable work in the area, concluding with a discussion
of the relevance of the approaches taken to the work described in this report.

Chapter 3 describes the development of three execution relations for bytecode
programs and the alterations and extensions of Pusch’s semantics necessary
for this. All these relations are necessary for the development of the pro-
gramming logic for bytecode programs described in Chapter 4.

Chapter 4 describes the derivation of the rules of the bytecode programming
logic and the difficulties encountered in its development, particularly with
respect to the unstructured nature of bytecode.

Chapter 5 outlines in some detail the proof of soundness of the rule for loops
in bytecode programs. Although the rule itself does not differ greatly from
the rule for while statements in the conventional Hoare logic, the proof of
its soundness is a great deal more complex. In this chapter we describe the
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soundness proof and the three main results necessary to achieve it.

Chapter 6 discusses the use of the bytecode programming logic to prove
properties of example programs.

Chapter 7 discusses the results of the work and the lessons learnt from it,
particularly with regard to two topics: the practicalities of proof at the byte-
code level, and the role of mechanized reasoning in such proofs. The chapter
concludes by suggesting areas in which the work could be developed further.

1.7 Related Publications

Early results relating to this project were published in [47], and a more
complete summary of the work in [48].



Chapter 2

Related Work

In this chapter we review work related to our own in four general categories,
namely: proving properties of the Java language itself, proving properties of
programs written in Java, improving the performance of JIT compilers, and
incorporating proof into ‘real world’ systems. In each case two or three papers
are discussed in some detail, followed by a brief description of examples of
other notable work in the area, concluding with a discussion of the relevance
of the approaches taken to the work described in this report.

2.1 Proofs about the Java Language and JVM

A large amount of work has been done in recent years on formalizing aspects
of the Java language and the JVM with the aim of proving that they pos-
sess certain desirable properties. The starting point for such projects is the
English language specifications of the Java language [18] and the JVM [29]
published by Sun Microsystems.

2.1.1 The Java Language

As one of Java’s main attractions for users is its claim [18] that its strong
type system makes downloading and running programs across a network
safe, much work has been done on formally proving the type soundness of
the language. The aim is to show that the static checks done on a Java
program at compile time really do lead to type safe execution at runtime, i.e.
the program will not carry out operations that violate the typing rules, such

27
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as attempting to add a value of type String to one of type Integer.

In Java is type-safe—probably [14], Drossopoulou and Eisenbach describe
an operational semantics for a subset of Java that they call JavaS. JavaS

includes primitive types, classes with inheritance, instance variables and in-
stance methods, interfaces, shadowing of instance variables, dynamic method
binding, statically resolvable overloading of methods, object creation, null
pointers, arrays and a minimal treatment of exceptions. The authors also
define the notion of a well-formed environment and go on to prove that in-
deed a well-typed Java program run in a well-formed environment will not
give rise to typing violations.

The work of Drossopoulou and Eisenbach is unusual in that it does not
utilize any form of mechanized proof tool. In Proving Java Type Soundness
[52], Syme uses their work as a basis for a proof of the type soundness of a
very similar subset of the Java language using the prover DECLARE. Syme
goes on to validate much of the work of Drossopoulou and Eisenbach, but
does identify ‘one major error and a noteworthy omission’ in their work,
highlighting the difficulties inherent in dealing with such large proofs without
the aid of a proof tool.

In Javalight is Type Safe—Definitely [38], Nipkow and von Oheimb have car-
ried out a similar proof of type soundness, this time for a subset of Java
they call Javalight, using the prover Isabelle/HOL. Though independent of
the work of Drossopoulou and Eisenbach, and differing in certain aspects
(such as the use of a big-step rather than small-step semantics), there are
similarities between the two projects, which are discussed.

2.1.2 The JVM

The work described above is all concerned with the Java language as a high-
level, object oriented language. But while the Java language and the JVM
are obviously closely related and their type-systems very similar, they are
separate entities and as such, a proof of type soundness of one does not
necessarily imply the same property holds of the other.

In her paper Formalizing the Java Virtual Machine in Isabelle/HOL [45],
Pusch details a formalization of the JVM—which she describes as preliminary
—in the theorem prover Isabelle (using the HOL object logic). We describe
this paper in more detail than the others mentioned in this chapter as it is
the work on which our own is based.
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The Language  

Model Syntax and Environment

C ::= Pop | Dup | Skip | ...

jvm_state = (xcpt, heap, frames) val ::= Intg int | Addr loc | Null

exec_XX :: [command, partial state] -> partial state 

exec_all :: [instr classfiles, jvm_state, jvm_state] -> bool

Operational semantics

exec :: instr classfiles * jvm_state -> jvm_state option

Figure 2.1: representation of the JVM operational semantics

Pusch’s aim is to provide a formal version of the Java Virtual Machine Spec-
ification [29] that is not prey to the ambiguities and inconsistencies which
tend to invade informal specifications (and indeed do in the case of the JVM
Specification). As this is a considerable undertaking, the theorem prover Is-
abelle is used to ensure a degree of reliability not likely to be achieved in a
proof by hand. Although a large subset of the Java language is formalised,
there are areas not treated in this implementation; these include exception
handling and dynamic class loading.

The paper outlines the formalization of both static aspects of Java programs,
e.g. well-formedness of classfiles and relations between classes, and properties
of the Java run-time system including object initialisation and the JVM heap.
The author also describes an operational semantics for the subset of the JVM
instruction set considered.

As Pusch’s semantics are the basis for our work, we give a brief description
of some of the main features of her formalization here. An outline of the
form of the semantics can be seen in Figure 2.1.

The Language The commands in the language are Java bytecode instruc-
tions,

C ::= Pop | Dup | Swap | . . .
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The Environment Values are modelled by the datatype

val ::= Intg int | Addr loc | Null

and a state is a triple (xcpt Option, heap, frame list) where xcpt Option
is an exception option (this is None if no exception has been thrown
at this point in execution), heap is the object heap of the JVM, and
frame list is the frame stack for the program. The frame stack is a list
of frames, each frame relating to the invocation of a particular method.
A frame consists of variables of the following types:

• opstack—operand stack for the current method, modelled as a list
of type val

• locvars—list of local variables for the current method, each of
which can hold a value of type val

• cname—name of the class the current method belongs to,

• method loc—method locator for the current method, and

• p count—current value of the program counter.

Operational Semantics of Commands Unlike the operational semantics
mentioned in Section 1.3 and described in detail in [56], Pusch’s seman-
tics for the JVM are not presented as a set of rules. Instead she takes
the approach more common to denotational semantics of defining exe-
cution in terms of a partial function on states. Partial functions deal
with the situation where, for some values, the result of the function can
be undefined. They can be represented in Isabelle by the Option type

datatype ’a option = None | Some ’a

where an undefined result returns the value None.

Pusch’s semantics can be viewed as having three layers:

execution of a single class of bytecode operations Pusch divides
the bytecode instructions of the JVM into several categories:

• load and store

• create object

• manipulate object

• manipulate array

• check object
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• method invocation

• method return

• operand stack

• conditional branch

• unconditional branch

The effect on the state of executing the commands in each category
is defined in a separate Isabelle theory file for each category of
command, for example

exec os ::[op stack , opstack , p count ] ⇒
(opstack ∗ p count)

exec las :: [load and store, opstack , locvars , p count ] ⇒
(opstack ∗ locvars ∗ p count)

At this level the operational semantics are similar to conventional
operational semantics, in that the command itself is passed to the
function exec XX along with a state (in this case actually only the
part of the state affected by the execution) and the updated state
returned.

execution of a bytecode instruction The next layer defines the ex-
ecution of one bytecode instruction of any category by the function

exec :: instr classfiles ∗ jvm state ⇒ jvm state Option

It is at this point that the semantics become noticeably different
to the usual style. Here the arguments to the function exec are
a state and instr classfiles , so the function is not passed a single
command and state, but a complete environment from which it
must extract the relevant instruction and state. Once we have
obtained the correct classfile from the set of classfiles passed to
the function, we must look at the program counter of the current
stack frame (contained in jvm state) in order to determine the
current instruction. The result jvm state Option reflects the fact
that the result of execution may not be defined.

execution of a whole program The execution of an entire program
is given by the function

exec all ::[bytecode, jvm state, jvm state] ⇒ bool

CFS ` s −→∗ t ≡ (s , t) : {(s , t). exec (CFS , s) = Some t}∗
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where CFS denotes a set of classfiles.

This corresponds to eval, mentioned in Section 1.3, in that it re-
turns true only if executing the given code in the initial state s
results in the final state t. Once again, the code to be executed
is not explicit in the arguments to the function, but must be ex-
tracted from the state and relevant classfile.

In Proving the Soundness of a Java Bytecode Verifier in Isabelle/HOL [46],
Pusch uses the operational semantics described here to prove the type-soundness
of the Java bytecode verifier, i.e., that any program bytecode program passed
by the verifier will have the properties described in Section 1.1.

2.1.3 Comments

The work described in this section differs from our own aims in that we
wish to prove properties of specific bytecode programs compiled from Java
source code and run on the JVM, rather than properties of the Java language
and JVM themselves. But since it is pointless to prove ‘extra’ desirable
properties of a program not believed to possess the more basic property
of type-soundness, the proofs of Java’s type-soundness can be considered
fundamental to our own work. In addition to this, Pusch’s formalization of
the semantics of the JVM is the basis of our work.

2.2 Proving Properties of Java Programs

In this section we describe a number of projects whose aim is to enable the
proof of properties of individual Java programs.

2.2.1 Extended Static Checking

The Extended Static Checking system (ESC) [13] aims to statically deter-
mine simple errors in programs, e.g. array out of bounds errors or simple
deadlocks and race conditions in concurrent programs. The user annotates
programs with simple specifications, and these are passed to a verification
condition generator, which produces a logical formula encapsulating the de-
sired property. This formula is then passed to ESC’s dedicated automated
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proof system, Simplify which either proves the validity of the formula, or
returns an instance in which it is false to the user.

ESC differs from the traditional approach to program verification, in that it
does not attempt to prove that a program is correct, merely that it does not
suffer from certain specific problems. The authors refer to this as ‘lightweight’
verification, but note that the comparative simplicity of the properties proved
is offset by the complexities of the Java and Modula-3 languages and envi-
ronment. The paper also draws attention to the fact that the information
produced by ESC for an incorrect program is similar to that returned by a
debugger. Furthermore, it is suggested that this additional verification of
simple properties might be viewed by users in the future in a similar light
to typechecking. To this end, any additional burden on users is reduced
by ensuring that annotations are simple and proof of the required logical
properties is both fast and automatic.

The authors also describe how in designing ESC’s integral theorem prover,
they faced the challenge of achieving the correct balance between interaction
and automation. Interactive provers are often very powerful, but require a
great deal of user input and knowledge—a feature the authors felt would
be likely to discourage a great many programmers from using the system.
Automatic provers, on the other hand, require little user interaction but
are often unable to deal with the decision procedures the authors felt were
essential to the system—e.g. those for linear arithmetic. The resultant prover
is described as having two parts: a set of co-operating decision procedures,
and a search procedure that manages the search for a proof.

The system has been used to verify properties of several programs, including
an interface for Modula-3 that implements a dynamically expandable array,
the IO streams package of Modula-3; and parts of the ESC system itself.

2.2.2 The LOOP Project

The aim of the Logic of Object-Oriented Programming (LOOP) Project [25]
is to specify and verify properties of classes in object oriented languages, with
the aid of proof tools such as Isabelle and PVS [4]. The main focus of the
project is the verification of programs written in JavaCard—a subset of Java
used to program SmartCards. In [54], van den Berg and Jacobs note that
reasoning about “real world” programming languages, such as Java, which
may not be mathematically clean has always been extremely challenging.
However with improvements in theorem proving technology and increased
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computing power, it is now becoming a realistic goal. The authors also
mention the high level of interaction and feedback between the theoretical
basis of their work and the practical aspects involved in verifying actual
programs.

The LOOP tool accepts Java programs, CCSL specifications [49], and JML
programs (Java programs annotated with Java Modelling Language (JML)
specifications). JML is a behavioural interface specification language, de-
signed specifically for Java, which enables pre- and post-conditions to be
written in a Java-like manner. It is designed with ease of use for those with
little experience of logic in mind.

The tool translates the input programs into higher order logic descriptions of
their semantics acceptable to a theorem prover. Currently these descriptions
are produced for the Isabelle and PVS provers, but the authors claim that
this could be extended to any other prover that uses higher order logic. On
the basis of these descriptions, the provers can be used to prove that the
programs meet their specifications and other properties. These proofs are
often carried out using a specialised Hoare logic.

Unlike the ESC, which requires no input from the user, but is limited in the
properties it can check, the LOOP tool can be used to provide a basis for an
unlimited variety of properties, but requires a great deal of user interaction.
As both approaches are valid for different users and problems, and especially
as both tools use the JML language, the authors suggest they may provide
complementary approaches to proofs of ‘real world’ programs.

2.2.3 The TJVM

In [34] Moore describes the development of a simplified or ‘toy’ JVM (TJVM)
in order to explore verification issues for object-oriented bytecode. The
TJVM was formalized in ACL2 (A Computational Logic for Applicative
Common Lisp) [27], and is based on Cohen’s defensive JVM [12]. Moore
employs the standard method of formalizing machines in ACL2, whereby the
state of the TJVM is represented as a LISP object and an interpreter for
TJVM bytecode as a LISP function. The TJVM differs from the JVM in
that it does not deal with resource limitations, exceptions, or access types
(e.g. a load instruction loads a value of any type).

The interpreter for the TJVM is defined as an iterated step function: tjvm s n
where the function that evaluates a single step of execution is applied n times
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to the initial state s. This definition of the execution of a bytecode program
in terms of a concrete number of steps contrasts with Pusch’s definition
in terms of the reflexive transitive closure of pairs of states in a successful
execution path. This reflects the differing aims of the authors: Pusch’s proof
objectives are of abstract properties of the JVM and bytecode programs in
general; Moore’s involve proving that specific programs are “correct” in the
more widely understood sense of the word, i.e. they result in a particular
value being produced.

After setting up the ACL2 prover by proving several lemmas about simple
arithmetic and single steps of execution, Moore describes how proofs can be
obtained for the total correctness of several small programs (e.g. factorial)
by instructing the prover to inductively “unwind” the code. Each method
that is proved increases the capacity of the prover, as any future occurences
of such a method will be treated as a primitive operation.

2.2.4 Comments

While all three projects described above involve proving properties of actual
Java programs, ESC and LOOP are probably most closely related in that
they attempt to model the Java world with as much accuracy as possible,
and carry out proofs at the level of the Java source language. Moore’s work,
in addition to dealing with proofs at the bytecode level, is concerned with a
restricted subset of the language and does not model many of the features
that make reasoning about Java and other ‘real world’ languages particularly
difficult.

Despite this, van den Berg and Jacobs claim that thanks to improved proof
technology and advances in computing power such ‘real world’ proofs are
becoming a realistic goal. Certainly ESC and LOOP demonstrate that this
is true to a degree. However it seems likely that the aim of projects nowadays
to prove only that programs possess certain, comparatively simple, desirable
properties, or do not possess other undesirable ones plays a part. Due to
the sheer complexity and scale of real world systems, it seems likely that the
distinction between ‘toy’ systems, like Moore’s, in which it can be proved that
a very simple program is correct, and systems like ESC and LOOP which can
prove that a program of some considerable complexity does not have certain
clearly defined classes of error, will be preserved. But as the proof of a few
specific properties is frequently all that is needed in practice, perhaps the
tendency towards this ‘lightweight’ verification is an advance in itself.
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With regard to our own work, despite the fact that Moore’s work carries out
proof at the level of bytecode, it seems likely that ESC and LOOP are more
immediately relevant as we are aiming at real world applicability and proof
of certain properties rather than correctness per se.

2.3 Improving Performance of JIT Compilers

In this section we describe two projects whose aim is to improve the per-
formance of JIT compilers. One is specifically aimed at Java JIT compilers,
the other is not specifically concerned with Java or JITs, but the techniques
used to improve the efficiency of a bytecode-like assembly language may well
have applications to JIT compilers.

In Annotating the Java Bytecodes in Support of Optimization,[22], Hummel,
Azevedo, Kolson, and Nicolau observe that while Java provides a portable,
platform-independent stack machine, it does so at the expense of execution
speed, as stack machines do not map well onto modern CPUs, which rely
heavily on the use of register and caches for speed. In addition to having no
concept of registers, Java bytecodes are also unable to express optimizations
like instruction scheduling, elimination of runtime checks, and automatic
reclamation of memory.

With the goal of achieving C-like performance while retaining the portability
of bytecode and preserving compatibility with existing JVMs, the authors
propose an annotating compiler. This behaves initially like a traditional
optimizing compiler, analysing the code and performing optimizations before
emitting bytecode. But rather than discarding the information produced by
the analysis, the compiler attaches the relevant information to each emitted
bytecode in the form of an annotation.

The annotations contain information useful for

• register allocation

• memory disambiguation

• memory reclamation

• run-time checking

This information would normally have to be recomputed from the bytecode
by the JVM, which in some instances may not be possible as too much
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CODE src inter dest last use r-t check memory ref tag
aload a v0 /stack/objref/a
iload i v1 /stack/int/i
iconst 2
aload a v0 v0 /stack/objref/a
iload i v1 v1 /stack/int/i
iaload v0,v1 v2 v3 111 /heap/array/int/*
imul v2,v3 v3
aload b v0 /stack/objref/b
iload i v1 v1 /stack/int/i
iaload v4,v1 v2 v4 101 /heap/array/int/*
iadd v3,v4 v3 v4
iastore v0,v1,v3 v2 v3 v3 000 /heap/array/int/*

Figure 2.2: Example of annotated bytecode

information may have been lost. Annotations are stored separately from
the bytecode in a classfile in order not to interfere with the running of the
program on standard JVMs. A JVM with an annotation aware JIT compiler,
however, can use the annotations to produce more efficient code more quickly.

The table in Figure 2.2 (taken from [22]) shows the annotated bytecode for
the Java expression

a[i] = (2*a[i]) + b[i]

The src, inter, dest, and last use columns denote virtual register allocation
performed during the original source to bytecode translation. Virtual register
v0 is mapped to physical register R0, v1 to R1, etc. until all available
registers are used up, after which the virtual registers are mapped to memory
locations.

The inter column tells a JIT compiler to save intermediate values in the
specified register(s) if possible. The last use column denotes when a register
ceases to be used for a particular variable and so can potentially be used for
another one. The r-t check column specifies which run-time checks should
be performed. For array accesses, at most three possible checks are required:

1. Is the array reference equal to Null?
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2. Is the array index less than 0?

3. Is the array index greater than or equal to the length of the array?

Each check is assigned a bit in r-t check ; if the bit is 1, then the code must
be generated to do the check. The memory ref tag column provides memory
reference information suitable for performing disambiguation.

The authors report substantial improvements in performance when using the
Annotated JIT. For one benchmark the performance is almost three times
faster than with a standard JIT, for another, almost twice as fast.

In A Dependently Typed Assembly Language [57] Hongwei Xi and Robert
Harper describe an assembly language with a restricted form of dependent
types. Dependent types are types which depend on terms, e.g. List(n) is
the type of lists of length n—as opposed to the more usual type of List

which includes no information about its length. More information can be
found in [58].

In an overly complex type system, type checking can be infeasible (or actu-
ally undecidable). In order to avoid this situation most type systems are very
simple, which means that only very elementary properties can be expressed
and hence checked: it is usually not possible for a type checker to identify an
attempt to remove an item from an empty list, for example. By restricting
the dependent types in the language to those needed to ensure certain spe-
cific properties, the authors attempt to strike a balance between these two
extremes.

In Dependent Types in Practical Programming [58] the authors describe a
method for eliminating array bounds checks in functional programs. They
define dependent type constructors of the form

{n:nat}

Constructors may also contain conditions such as

{n:nat }{i:nat| i < n}

A function nth, which returns the nth item of a list, therefore has the type

{n:nat }{i:nat| i < n} ’a list(l) * int(n) -> ’a

which eliminates the need for runtime checks on the length of the list. This
approach is now applied to assembly language, producing a dependently
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typed assembly language (DTAL) that supports a limited form of de-
pendent type system which captures both type safety and memory safety.
The paper describes an operation semantics and a set of typing rules for
DTAL, from which type-soundness is proved.

2.3.1 Comments

The work described in this section represents two very different approaches
to the optimization of assembly language programs. The AJIT project starts
by gathering information from a high-level Java program, applying it to the
‘middle’ stage of a bytecode program, resulting in a more efficient assembly
language program. The techniques involve no formal methods—although the
authors mention the benefits in increased user confidence of applying such
methods—but demonstrate a measurable improvement in the efficiency of
the JIT.

The DTAL project, on the other hand, is not concerned with high level
languages or stack-based languages, but purely with assembly language. It
takes a very formal approach to the problem, but ultimately also results in
more efficient code.

With regard to our work, it is clear that the AJIT project has more rele-
vance. It demonstrates the value to JIT performance of the knowledge of the
existence of certain properties in a bytecode program, and provides a system
by which they can be conveyed to a user. It seems likely that a proof element
could be incorporated into such a system. While not disregarding the appli-
cations of a JIT producing dependently typed assembly code, it appears to
have less immediate relevance to our work.

2.4 Incorporating Proof in Systems

While users may be keen to have the added reassurance of code that has
been proved to have desirable properties such as type-soundness, they may
well be put off using such systems if they are presented with a great deal
of extra work and complexity to achieve such a result. In this section we
discuss three projects aimed at incorporating proof into real world systems
while retaining a ‘user-friendly’ interface.
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2.4.1 Eiffel

Eiffel [53] is an object oriented language that implements proof annotations
(known as assertions) that allow programmers to express formal properties
of classes. Assertions are boolean expressions and can have the following
forms:

• Routine Preconditions: these express requirements a client must
satisfy before they call a routine.

• Routine Postconditions: these express conditions the supplier (i.e.
the routine being called) guarantees on return, if its preconditions
were satisfied on entry.

• Class Invariant: this must be satisfied by every instance of the class,
whenever an instance is externally accessible. It characterises the se-
mantics of the class.

The assertion mechanism can be used to implement what the developers of
Eiffel refer to as programming by contract. This means that every routine
in the code has a client-supplier contract specifying how it should be used
by calling procedures (clients) and what it does itself (as a supplier). The aim
is that all routines used in a system conform to their client-supplier contracts.
Unlike type-constraints which can be checked statically, Eiffel contracts may
rely on data values and so can only be checked at runtime. The handling of
such errors is dealt with by Eiffel’s exception mechanism, and Eiffel provides
a history table in order to make debugging of such situations easier.

2.4.2 Ada Spark

Spark [9] is a subset of the Ada programming language enriched with anno-
tations. Spark uses a tool known as the Examiner, which has two basic
functions:

• checking that the code conforms to the rules of the kernel language.

• checking consistency between the code and the embedded annotations
by control, data and information flow analysis.

In order to ensure correct dynamic behaviour of the code, certain proof anno-
tations can be inserted that allow analysis of a program’s dynamic behaviour
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prior to execution. The annotations allow the Examiner to generate theo-
rems; proving these theorems verifies that the program is correct with respect
to the annotations. The proof annotations comprise

• pre and postconditions of subprograms

• assertions such as loop invariants

• declarations of proof functions

The generated theorems are known as verification conditions and can be
verified by hand or by using other Spark tools such as the Simplifier and
the Proof Checker. The Examiner is also able to generate path functions
which show the effect of traversing the various paths in a subprogram.

The Examiner provides three different levels of analysis, according to how
critical the safety of the code is

• The lowest level of analysis is Data Flow Analysis. This involves
checking that the usage of parameters and global variables corresponds
to their modes; that values are not overwritten without being used;
that all imported variables are used somewhere. The interdependen-
cies between variables as expressed in the derives annotation are not
checked.

• The next level is Information Flow Analysis. This requires derives
annotations, and in addition to carrying out data flow analysis it checks
that the modes of parameters and global variables and their usage in
the code of the body correctly match the interdependencies given in
the derives annotation. This level of analysis is known as shallow
verification as it checks the static semantic dependencies, though not
dynamic ones.

• The highest level of analysis involves generating verification con-
ditions in addition to performing flow analysis and requires proof
annotations.

Verification conditions are obtained through a series of operations on the
stated conditions which annotate the code. These operations correspond
closely to those involved in Hoare Logic proofs, e.g. the Assignment Axiom.
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2.4.3 Proof Carrying Code

Proof Carrying Code (PCC) [36, 35, 11, 50] is a technique developed by
George Necula and Peter Lee to attempt to address the problem of safe
execution of untrusted code. In an instance of PCC a code receiver establishes
a set of safety rules that guarantee safe behaviour of programs (or at any rate,
what the receiver is defining safe behaviour to be); the code producer then
creates a formal safety proof that proves the untrusted code’s adherence
to the safety rules. The receiver is then able to use a simple and fast proof
validator to check that the proof is valid and hence that it is safe to execute
the untrusted code.

A PCC implementation contains the following elements:

• A formal specification language—first order predicate logic— is
used to express the safety policy.

• A formal semantics of the language used by the untrusted
code. This is usually in the form of a logic relating programs to spec-
ifications. A form of Floyd’s verification-condition generator [15] is
used to extract the safety properties of a program as a predicate. This
predicate must then be proved by the code producer using the axioms
and inference rules supplied by the code consumer as part of the safety
policy.

• The language used to express the proofs is a variant of Edinburgh
Logical Framework (LF) [8] (a typed lambda calculus).

• An algorithm for validating the proofs. This involves type-checking
the LF expression that represents a proof according to a set of typing
rules agreed on by the code producer and receiver.

• A method for generating the safety proofs. This element is used
only by the code producer and the implementation involves a theorem
prover that emits the required proofs. In [37] the use of a certifying
compiler, which translates programs written in a typesafe subset of C
into machine code and a certifier which checks the type and memory
safety of any program produced by the compiler is investigated. The
use of a certifying compiler has the added advantage that it is much
simpler to verify the output of the compiler than to verify the compiler
itself.
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2.4.4 Comments

Both PCC and Java are designed to ensure the safety of untrusted executable
code, downloaded from another system, without access to source code. Eiffel
and Spark try to ensure the production of safe executable code within a
system; and they depend on being able to examine the source code (in order
to deal with annotations).

PCC employs a combination of First Order Logic, a language semantics, a
theorem prover and a form of the lambda calculus to produce and encode its
proofs of program correctness. It can therefore be viewed as the most ‘heavy
duty’ in terms of formal methods. Spark involves data and information flow
analysis combined with a form of Hoare logic in order to carry out both static
and runtime checks. Whereas Java uses dataflow analysis with additional
runtime checks to ensure the safety of programs, Eiffel uses a rather weaker
form of the annotations used in Spark.

In terms of our own work, the notion of annotated code as used in Spark
and Eiffel, could be used in some form in the proof of bytecode programs. It
is unreasonable to imagine that users would be willing to annotate bytecode
programs themselves. However as many of the properties involved are very
low level (e.g. just prior to execution of an array store application, checking
whether the array reference is non-null), an automatic annotating mechanism
might be feasible.

The concept of Proof Carrying Code is very relevant to our work, as it pro-
vides a method of providing the user with the added reassurance of verified
code in a relatively painless manner. As the vast majority of Java users are
not well-versed in theorem proving techniques, they are unlikely to welcome
a system that demands skill in such techniques.

2.5 Conclusions

A large amount of work has been carried out on proving that the Java lan-
guage and JVM are type safe. Most of this work has been carried out with
the aid of mechanized proof tools. In addition to this there are several ongo-
ing projects that aim to develop proof systems for real world Java programs.
These tend towards lightweight verification in which the aim is to prove par-
ticular properties of programs, rather than program correctness. We feel that
these techniques are applicable to our own work on proving certain properties
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of Java bytecode programs with a view to improving the performance of JIT
compilers.

In addition there exist several projects on improving the performance of JIT
compilers, and incorporating proof into systems, which would be of relevance
to developing a technique to proving properties of bytecode programs into a
working system.



Chapter 3

Bytecode Execution Relations

The decision to prove properties of the bytecode programs themselves, rather
than the corresponding Java source was made based on two main factors:

1. Java programs are downloaded by consumers as bytecode, not source

2. It is perfectly feasible (albeit not common in practice) to produce Java
bytecode from another high level language, e.g. C, ML.

In order to reason about properties of bytecode programs it is necessary to
develop a logical framework that supports this.

The fact that bytecode is ‘flat’ and contains goto instructions presents diffi-
culties not encountered in the standard logic, which deals with a structured
programming language. The standard Hoare logic has three main compo-
nents, however, which can be applied to bytecode programs, namely:

1. The notion of evaluation of a section of code in the language (which
can be based on the operational semantics)

2. Definition of a pre- and post-condition relation on execution of code.

3. Higher level rules for combining patterns of code

The development of some logical relations corresponding to the first item in
this list—the evaluation of bytecode—is discussed in the rest of this chap-
ter. There are three execution relations for bytecode instructions. The block
execution relation (Section 3.3) describes the complete execution of a block

45
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of bytecode. The sequence execution relation (Section 3.2) describes the
complete execution of a block of bytecode of a very restricted class of in-
structions. Finally, the execution path relation (Section 3.4) is concerned
with the relationship between intermediate states in the execution of a block
of bytecode and the initial and final states. These relations are all necessary
for the development of points 2 and 3 on the list, which will be discussed
fully in Chapters 4 and 5.

3.1 Extending the Semantics

While Pusch’s formalization of the JVM is fairly comprehensive, the objective
of the work differs from ours, and some alterations to the model are necessary
in order to allow the definition of the bytecode logic. We describe these
alterations briefly before commencing discussion of any bytecode execution
relations.

3.1.1 Arithmetic Instructions

As Pusch’s work formalises a subset of the JVM, certain instructions are
omitted. These include all arithmetic instructions, such as iadd, isub. In
order to prove properties of real programs, however trivial, Pusch’s model
must be extended to include this class of instructions.

Each of the load and store instructions in Pusch’s instruction subset are
represented by a value in the datatype load and store whose components are
the name of a load and store instruction and its arguments. The following
function is then defined for each element of the load and store datatype:

exec las :: [load and store, opstack , locvars , p count ] ⇒
(opstack ∗ locvars ∗ p count)

This takes a load and store instruction, an operand stack, a set of local vari-
ables and a program counter and returns the updated values of the operand
stack, local variables and program counter.

It is simple to add the instructions

• iadd— add the two integers at the top of the stack
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• iinc var val— increment local variable var by integer value val

to the existing load and store instructions of the model. The corresponding
extensions to exec las are also straightforward, and the resultant Isabelle
theory file can be found in Appendix B of this report.

3.1.2 Branching Instructions

Problems are also encountered with the representation of branching instruc-
tions. In Java bytecode, branching instructions are absolute jumps to a label,
but in Pusch’s model they are represented by relative branches, where the
new value of the program counter is obtained by adding an offset to the cur-
rent value. This offset is positive for a branch forward, negative for a branch
backwards.

While this convention appears suitable for Pusch’s higher-level proofs, dif-
ficulties arise when using it to reason about lower-level properties. In par-
ticular, problems are encountered with proofs involving branches backwards
where a negative integer is added to the program counter (a natural number
cast to an integer) and the result is then cast to a natural. This repeated
type-casting makes the proofs in Isabelle very awkward.

Consequently, in place of the two varieties of branching instructions in Pusch’s
model (cond branch and uncond branch) we have four types of branching in-
struction:

cond branch fwd = Ifnull fwd nat

| Ifiacmpeq fwd ins type nat

| Ificmplt fwd nat

(3.1)

cond branch bwd = Ifnull bwd nat

| Ifiacmpeq bwd ins type nat

| Ificmplt bwd nat

(3.2)

uncond branch fwd = Goto fwd nat (3.3)

uncond branch bwd = Goto bwd nat (3.4)
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All of these take a natural number as offset, which is either added or sub-
tracted to the current program counter depending on whether the branch
is forwards or backwards. This keeps all branching proofs in the realm of
natural number arithmetic, greatly simplifying the Isabelle proofs.

3.2 Execution of a Sequence of Bytecode

Instructions

The conventional Hoare logic is based on an operational semantics where
execution begins at the start of the sequence of commands and finishes at
the end (assuming the program terminates). But with bytecode there is the
possibility of jumping into the code at some point after the start and out at a
point before the end. How, then, should execution of a sequence of bytecode
be defined?

Consideration of a straightforward recursive definition of the form

exec∗ [ ] σ0 = σ (3.5)

exec∗ (x : xs) σ0 = exec∗ xs (exec x σ0) (3.6)

where x is a bytecode instruction and xs a list of bytecode instructions,
immediately reveals it to be unsuitable as the execution of xs would not
necessarily be linear: execution might well jump back to the beginning of
xs after a few instructions. Pusch’s formalisation recognises this by defining
execution of several bytecode instructions as the reflexive, transitive closure
of a series of single execution steps:

exec all ::[bytecode, jvm state, jvm state] ⇒ bool

CFS ` s −→∗ t ≡ (s , t) : {(s , t). exec (CFS , s) = Some t}∗
(3.7)

where CFS denotes a set of classfiles.

To define a partial correctness relation it is necessary to know that, for a
sequence of bytecode instructions, if we start executing in state σ0 we will
finish execution in state σn. But the above relation does not have anything to
say about a state’s position in the sequence of states produced by executing
a number of bytecode instructions, only whether or not it is in the sequence.
We must therefore define what it means to ‘finish’ execution of a sequence
of bytecode instructions.
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One possibility is to state that execution of a sequence of instructions has
finished when the program counter is no longer pointing into the sequence.
This results in the definition of a relation describing the execution of a list
of bytecode instructions in which if execution begins in state σ0 inside a
sequence, it results in state σn, where the program counter of σn is outside
the section.

3.3 The Block Execution Relation

Suppose that

• CFS is a set of Classfiles

• The start of the bytecode sequence is signified by s, and the finish by
f , where s and f are triples of the form (classname, method locator,
program counter) each allowing identification of a single instruction in
CFS .

• σ0 and σn are states, each consisting of (exception option, heap, frame
stack list).

We write 〈CFS , σ0 〉
s−→
f

σn to mean that executing the sequence of instruc-

tions in CFS that begins at the instruction indentified by s and ends at the
instruction identified by f , starting in the state σ0, results in the state σn,
where the instruction identified by σn is not contained in the sequence of
instructions in CFS bounded by s and f .

The program counter of s must be less than or equal to the program counter
of f , i.e., the block consists of at least one instruction. The program counter
of state σ0, should be greater than or equal to the program counter of s and
less than or equal to the program counter of f . The program counter of f
should be less than the length of the code of the current method (measured
from the start of the method code) to ensure that we are not referring to non-
existent pieces of code. This condition also ensures that Isabelle’s standard
lemmas about lists can be used, as many require that an indexing value, e.g.
pc(f), be less than the length of the list being operated on.

The program counter of the final state σn should be either less than the
program counter of s or greater than the program counter of f . Finally, s
and f should identify instructions in the same method of the same class.
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We introduce the following definitions

Definition 1 (Program counter inside block)

inside pc(σ0) s f ≡ pc(s) ≤ pc(σ0) ∧ pc(σ0) ≤ pc(f)

Definition 2 (Program counter outside block)

outside pc(σ0) s f ≡ pc(σ0) < pc(s) ∨ pc(f) < pc(σ0)

Definition 3 (States in same method)

same method s σ0 σn f ≡ (class(s) = class(σ0 ) =

class(σn) = class(f )) ∧
(method(s) = method(σ0 ) =

method(σn) = method(f ))

And the block execution relation is defined inductively by the rules

Definition 4 (Block Execution Relation)

exec(CFS , σ0 ) = Some σn ;

inside pc(σ0 ) s f ;

same method s σ0 σn f ;

pc(f ) < length(get code CFS s);

outside pc(σn) s f

〈CFS ,σ0 〉
s−→
f

σn

(Stop)

exec(CFS , σ0 ) = Some σ1 ;

inside pc(σ0 ) s f ;

same method s σ0 σ1 f ;

pc(f ) < length(get code CFS s);

〈CFS , σ1 〉
s−→
f

σn

〈CFS , σ0 〉
s−→
f

σn

(Continue)
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Rule Stop refers to the case in which one step of execution results in the pro-
gram counter being outside the sequence of instructions under consideration.
At this point execution of the block would be considered finished, giving us
the final state required by the programming logic.

Rule Continue is the case where, after one step of execution, the program
counter is still within the block of code delimited by s and f . This the
inductive part of the definition, as the relation is defined in terms of itself.
Execution of the block would now carry on, with continued application of
the rules until the Stop rule applies and we obtain a final state.

As can be seen from the definition of the block execution relation, all states
in the relation must refer to instructions within a single method. Obviously
it would be desirable to extend the relation in the future to allow method
invocation and possible ways of doing this are discussed in Section 7.2.

In addition to this, it is assumed either implicitly or, where necessary, explic-
itly, that execution of the instructions between the boundaries of an instance
of the block execution relation do not throw exceptions. This is to simplify
the definition of the bytecode programming logic described in Chapter 4.
Again, further work could be done leading to a programming logic for byte-
code which allows for abrupt termination, such as that described by Huisman
and Jacobs in [21] for Java source code. The exception− free property is de-
fined in Section 3.4, Definition 9.

The case split and induction rules for the block execution relation are shown
in Figure 3.1 as they appear in Isabelle. It will be apparent, however, that
this format is not very readable and so all proofs will be described in the text
using a less proof-tool specific notation.

As many of our proofs involve retrieving the code of a particular method
in a set of classfiles, and then taking a smaller ‘slice’ from it, the following
definitions are given:

Definition 5 (Isolate sequence of instructions from classfile)

CFS [s . . . f ] ≡ slice pc(s) pc(f) (get code CFS s)

Definition 6 (‘Slice’ instructions from longer list)

slice a b xs = take (Suc(b− a)) (drop a xs)
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val mycases =

"[| ?CFS ?s ?f |- ?a -block-> ?b;

[| exec (?CFS, ?a) = Some ?b; inside (third_of ?a) ?s ?f;

pc_of ?f < length (get_code ?CFS (cn_of ?s) (ml_of ?s));

same_method_frs ?s (hd (snd (snd ?a))) (hd (snd (snd ?b))) ?f;

outside (third_of ?b) ?s ?f |] ==> ?P;

!!c.

[| exec (?CFS, ?a) = Some c; inside (third_of ?a) ?s ?f;

pc_of ?f < length (get_code ?CFS (cn_of ?s) (ml_of ?s));

same_method_frs ?s (hd (snd (snd ?a))) (hd (snd (snd c))) ?f;

?CFS ?s ?f |- c -block-> ?b |] ==> ?P |] ==> ?P" : thm

val exec_block3.induct =

"[| ?xo (?xn, (?xm, ?xl),

?xk) (?xj, (?xi, ?xh), ?xg) |- (?xf, ?xe, ?xd) -block-> ?xc, ?xb,

?xa;

!!CFS a aa b ab ac ba ad ae bb bc af ag bd be.

[| exec (CFS, a, aa, b) = Some (ab, ac, ba);

inside (third_of (a, aa, b)) (af, (ag, bd), be) (ad, (ae, bb), bc);

pc_of (ad, (ae, bb), bc)

< length

(get_code CFS (cn_of (af, (ag, bd), be))

(ml_of (af, (ag, bd), be)));

same_method_frs (af, (ag, bd), be) (hd (snd (snd (a, aa, b))))

(hd (snd (snd (ab, ac, ba)))) (ad, (ae, bb), bc);

outside (third_of (ab, ac, ba)) (af, (ag, bd), be)

(ad, (ae, bb), bc) |]

==> ?P CFS af ag bd be ad ae bb bc a aa b ab ac ba;

!!CFS a aa b ab ac ba ad ae bb af ag bc bd ah ai be bf.

[| exec (CFS, a, aa, b) = Some (ad, ae, bb);

inside (third_of (a, aa, b)) (ah, (ai, be), bf) (af, (ag, bc), bd);

pc_of (af, (ag, bc), bd)

< length

(get_code CFS (cn_of (ah, (ai, be), bf))

(ml_of (ah, (ai, be), bf)));

same_method_frs (ah, (ai, be), bf) (hd (snd (snd (a, aa, b))))

(hd (snd (snd (ad, ae, bb)))) (af, (ag, bc), bd);

CFS (ah, (ai, be),

bf) (af, (ag, bc), bd) |- (ad, ae, bb) -block-> ab, ac, ba;

?P CFS ah ai be bf af ag bc bd ad ae bb ab ac ba |]

==> ?P CFS ah ai be bf af ag bc bd a aa b ab ac ba |]

==> ?P ?xo ?xn ?xm ?xl ?xk ?xj ?xi ?xh ?xg ?xf ?xe ?xd ?xc ?xb ?xa" : thm

Figure 3.1: Case split and induction rule as they appear in Isabelle
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3.3.1 Lemmas for the Block Execution Relation

Working with the rules defined above, we obtain proofs of the following
properties as ‘sanity checks’ on the inductive definition of the block execution
relation.

Lemma 1 (Initial state in block execution relation is inside the block)

∀ CFS s f σ0 σn. 〈CFS , σ0 〉
s−→
f

σn −→ pc(s) ≤ pc(σ0 ) ≤ pc(f )

Proof This follows from the rules for the block execution relation (Defini-
tion 4) and the definition of inside (Definition 1). �

Lemma 2 (Final state in relation is outside the block )

∀CFS s f σ0 σn. 〈CFS , σ0 〉
s−→
f

σn −→ pc(σn) < pc(s) ∨ pc(f ) < pc(σn)

Proof This follows from the rules for the block execution relation (Defini-
tion 4) and the definition of outside (Definition 2). �

Lemma 3 (Initial and final states in relation not equal )

∀ CFS s f σ0 σn. 〈CFS , σ0 〉
s−→
f

σn −→ σ0 6= σn

Proof This follows from the rules for the block execution relation (Defini-
tion 4) and the definitions of inside (Definition 1) and outside (Definition 2).
The initial state is inside the block, the final state is outside and, as a state
cannot be both inside and outside a block, the states cannot be equal. �

Lemma 4 (List of frames in initial state not empty )

∀ CFS s f σ0 σn. 〈CFS , σ0 〉
s−→
f

σn −→ frames(σ0 ) 6= [ ]

Proof This follows from the rules for the block execution relation (Def-
inition 4) and Pusch’s definition of the partial function exec which defines
execution of a state with an empty list of frames as evaluating to undefined.�



54 CHAPTER 3. BYTECODE EXECUTION RELATIONS
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Figure 3.2: Extension of block, final program counter on right

As in imperative programs, a bytecode program can be viewed as a block
composed of several smaller blocks of code. It is therefore useful to prove
some lemmas relating to the extension and combining of blocks of code.

We begin by describing the extension of blocks. Given a block in the block
execution relation and the position of the program counter on exit, pc(σn),
it is possible to extend the relation to include all instructions in the method
on the opposite side of the block from pc(σn), and all instructions up to it
on the same side.

Lemma 5 (Extension of block with final program counter on right)

∀ CFS s f x y σ0 σn . 〈CFS , σ0 〉
s−→
f

σn −→

pc(y) < pc(σn) ∧ pc(x ) < pc(s) ∧ pc(f ) < pc(y) ∧
pc(y) < length(get code CFS s) −→ 〈CFS , σ0 〉

x−→
y

σn

Proof By induction on the rules for the block execution relation (Defini-
tion 4). The base case then follows from construction rule Stop and the
definitions for inside (Definition 1), and outside (Definition 2). The inductive
step can be proved by the inductive hypothesis, construction rule Continue,
and the definition of inside (Definition 1). This is shown in Figure 3.2. �

Lemma 6 (Extension of block with final program counter on left)

∀ CFS s f x y σ0 σn . 〈CFS , σ0 〉
s−→
f

σn −→

pc(σn) < pc(x ) ∧ pc(x ) < pc(s) ∧ pc(f ) < pc(y) ∧
pc(y) < length(get code CFS s) −→ 〈CFS , σ0 〉

x−→
y

σn
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Figure 3.3: Extension of block, program counter on left
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Figure 3.4: Add block on right, finish on right, blocks adjacent

Proof As for Lemma 5. See Figure 3.3. �

We now consider the problem of combining two blocks in the block execution.
Given two blocks in the relation where execution of the first block finishes
inside the second, and execution of the second finishes to the right or left of
both blocks, the two can be combined to form one larger block. This larger
block can itself be extended to include all instructions in the method on the
opposite side of the block from pc(σn)—the position of the program counter
on exit from the second block—and all instructions up to it on the same side.

The two original blocks may be adjacent to each other, as in Figure 3.4, be
separated by a gap, as in Figure 3.5, or overlap to the extent that one block
is exactly ‘on top’ of the other. The only situation not permitted is that
the second block should be contained within the first, as it is necessary from
the definition of the relation for the program counter of the final state to be
outside the block. These lemmas refer to situations where there is no looping
between blocks (although either or both of the individual blocks may contain
a loop); loops will be dealt with in detail in Chapters 4 and 5.

There are four cases that we will consider, defined by the position of the
program counter in the final stage of each block: add a block to the right
of the initial block, finish on the right of the two blocks; add a block to the
right of the initial block, finish on the left of the two blocks; add a block to
the left of the initial block, finish on the right of the two blocks; and add a
block to the left of the initial block, finish on the left of the two blocks.
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s f s’ f’
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σ σn1

Figure 3.5: Add block on right, finish on right, gap between blocks

As the proofs are all very similar, we will only describe in detail the first case:
execution of first block finishes on the right of the first block, but within the
second; execution of the second block finishes to the right of both blocks.
This is depicted in Figure 3.3.1.

We note briefly that one other case does exist, in which execution of the first
block finishes in the second block, and execution of the second block finishes
in the gap between the blocks. It is likely that proofs of this case would
necessitate a different approach to those described below, but as it is not
fundamental to any work later in the dissertation consideration of this case
is omitted.

Lemma 7 (Add a block on right, finishing on right )

∀ CFS s f x y s ′ f ′ σ0 σn σ′
n . 〈CFS , σ0 〉

s−→
f

σn −→

〈CFS , σn〉
s′

−→
f ′

σ′
n −→

pc(s) ≤ pc(s ′) ∧ pc(f ) ≤ pc(f ′) −→
pc(x ) < pc(s) ∧ pc(f ′) < pc(y) −→
pc(y) < length(get code CFS s) −→
pc(y) < pc(σ′

n)

−→ 〈CFS , σ0 〉
x−→
y

σ′
n

Proof The proof proceeds by rule induction (Section 1.3.3) on the first
assumption 〈CFS , σ0〉

s−→
f

σn.

Basis

The base case deals with the case in which our initial assumption was pro-
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duced by one application of the Stop rule, giving us the assumption

exec (CFS , σ0 ) = Some σn ∧
inside σ0 s f ∧
outside σn s f

(3.8)

We now consider the two possible positions of the program counter in σn.
From the definition of outside (Definition 2) we know that

pc(σn) < s ∨ f < pc(σn) (3.9)

The left hand disjunct, pc(σn) < pc(s) gives a contradiction as we know from
Lemma 1 that

inside pc(σn) pc(s′) pc(f ′) (3.10)

and from 3.8 that

pc(s) ≤ pc(s′) (3.11)

Thus pc(f) < pc(σn) and the basis can then be proved using the Continue
rule and Lemma 5.

Inductive Step

The inductive step deals with the case in which our initial assumption was
produced by at least one application of the Continue rule. By rule induction,
we have the assumption

exec (CFS , σ0 ) = Some σ1 ∧
inside σ0 s f ∧
〈CFS , σ1 〉

s−→
f

σn

(3.12)

And from the inductive hypothesis after simplification we have

〈CFS , σ1 〉
x−→
y

σ′
n (3.13)

which by application of the Continue rule, gives the desired result. �

A block of size one is equivalent to execution of that instruction, providing the
instruction is not a ‘degenerate’ branch (one which branches back to itself, or
branches outside the bounds of the method), or an instruction which results
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Figure 3.6: Add a block to the right, finish on the right

in a frame being pushed or popped from the stack, i.e. method invocation
or return. The latter constraint is due to the current, simplified, definition
of the block execution relation which demands that all states in the relation
be in the same method.

The constraint on branching instructions is due to the fact that it would be
possible to create a bytecode program (though probably not via a conven-
tional compiler) which pushed the value Null onto the stack, followed by some
other values, then had a “branch if not null” instruction which looped back
to itself. Initially the top value on the stack would not be Null , but every
time the branch instruction was evaluated, the top value on the stack would
be popped, leading eventually to a state where the top value was Null and
the loop was exited. This would mean that this instruction was in the block
execution relation, but that this instance of the relation was not equivalent
to a single-step execution of the initial state.

Lemma 8 (Single instruction block execution equivalence)

∀CFS s x σ0 σn . (get code CFS s)!pc(s) = x ∧
not degenerate branch x ∧
not shift frame x ∧
pc(s) < length (get code CFS s) −→
〈CFS , σ0 〉

s−→
s

σn ≡ exec(CFS , σ0 ) = Some σn

Proof The result follows from case analysis of the instruction x and the
operational semantics of the JVM. �

3.4 The Execution Path Relation

The block execution relation can be used to reason about an intermediate
state in the execution of a block and the final state. It does not, however,
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Figure 3.7: One step of execution

allow discussion of the connection between an intermediate state and the ini-
tial state, or between two intermediate states, as both the states in question
are inside the block. Since it is clearly useful to be able to do this, a relation
that enables us to reason about two states, at least one and possibly both of
which are within a particular sequence of bytecode, is needed.

This relation is particularly useful in the proofs of the sequencing rule, where
we have to prove the existence of a ‘crossover’ state in the execution of a
block which is the result of joining two smaller blocks together. Also, in the
proof of soundness of the while rule (Chapter 5), we must reason about the
relationship between the initial state and various intermediate states in the
execution of the loop.

The execution path relation is defined as the set of pairs of states obtained
by a successful execution step, where the program counter of the first mem-
ber of the pair is inside the block in question, see Figure 3.7. We write
〈CFS , σ0 〉

s
=⇒

f
σ1 to mean that σ0 is inside the block from s to f , and exe-

cuting the instruction in CFS identified by σ0 results in the state σ1.

Definition 7 (Execution step in a block)

〈CFS , σ0 〉
s

=⇒
f

σ1 ≡ (σ0 , σ1 ) ∈ {(σ0 , σ1 ). exec (CFS , σ0 ) = Some σ1 ∧

same method s σ0 σ1 f ∧ inside σ0 s f }

The execution path relation is the transitive closure of this set, and we write
〈CFS, σ0〉

s
=⇒

f

+ σn to mean that the pair (σ0, σn) is an element of the

transitive closure of the set of pairs of states represented by the relationship
〈CFS , σ0 〉

s
=⇒

f
σ1 Figure 3.8.

Definition 8 (Execution Path Relation)

〈CFS , σ0 〉
s

=⇒
f

+ σn ≡ (σ0 , σn) ∈ {(σ0 , σn). exec (CFS , σ0 ) = Some σn ∧

same method s σ0 σn f ∧ inside σ0 s f }+
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Figure 3.8: Execution path relation

Many of the proofs involving the execution path relation rely on lemmas
about transitive closure which come as part of the standard Isabelle distri-
bution.

The following lemmas show the correspondence between the execution path
relation and the block execution relation.

Lemma 9 (Block execution relation implies execution path relation )

∀ CFS s f σ0 σn . 〈CFS , σ0 〉
s−→
f

σn −→ 〈CFS , σ0 〉
s

=⇒
f

+ σn

Proof This follows from induction on the construction rules for the block
execution relation (Definition 4) and the definition of the execution path
relation (Definition 8). �

Lemma 10 (Execution path implies block execution)

∀ CFS s f σ0 σn . 〈CFS , σ0 〉
s

=⇒
f

+ σn ∧ outside σn s f

−→ 〈CFS , σ0 〉
s−→
f

σn

Proof By induction on the execution path relation and the construction
rules for the block execution (Definition 4). �

Lemma 11 (Unrolling the relation from the start)

∀ CFS s f σ0 σn . 〈CFS , σ0 〉
s

=⇒
f

+ σn

−→ 〈CFS , σ0 〉
s

=⇒
f

σn ∨

∃ σ1 . 〈CFS , σ0 〉
s

=⇒
f

σ1 ∧ 〈CFS , σ1 〉
s

=⇒
f

+ σn

Proof This follows from the definition of the execution path relation (Def-
inition 8) and the standard lemmas for transitive closure in Isabelle. �
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Lemma 12 (Unrolling the relation from the end)

∀ CFS s f σ0 σn . 〈CFS , σ0 〉
s

=⇒
f

+ σn

−→ 〈CFS , σ0 〉
s

=⇒
f

σn ∨

∃ σn−1 . 〈CFS , σ0 〉
s

=⇒
f

+ σn−1 ∧ 〈CFS , σn−1 〉
s

=⇒
f

σn

Proof This follows from the definition of the execution path relation (Def-
inition 8) and the standard lemmas for transitive closure in Isabelle. �

The execution path relation is also used to define the concept of a list of
instructions being free of exceptions

Definition 9 (Exception free instructions)

excep free ys ≡ ∀ CFS xp hp frs xp ′ hp ′ frs ′ s f .

ys = CFS [s . . . f ] ∧
〈CFS , (xp, hp, frs)〉 s

=⇒
f

+ (xp ′, hp ′, frs ′)

−→ xp = None ∧ xp ′ = None

3.5 Determinism Theorems

Lemma 13 (Execution of a single instruction is deterministic)

∀CFS s f σ0 σn σ′
n . exec (CFS , σ0 ) = Some σn ∧

exec (CFS , σ0 ) = Some σ′
n −→

σn = σ′
n

Proof By case analysis of the instruction identified by σ0, followed by au-
tomatic simplification with the rules for exec. �

We now show that this determinism is preserved by the block execution
relation, and discuss the determinism of execution of a series of instructions
not defined in relation to any particular class file.
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Theorem 1 (Block execution relation is deterministic)

∀CFS s f σ0 σn σ′
n . 〈CFS , σ0 〉

s−→
f

σn −→

〈CFS , σ0 〉
s−→
f

σ′
n −→

σn = σ′
n

Proof The proof proceeds by rule induction (Section 1.3.3) on the first
assumption, 〈CFS , σ0〉

s−→
f

σn.

Basis

The base case deals with the case in which our initial assumption was pro-
duced by one application of the Stop rule, giving us the assumption

exec (CFS , σ0 ) = σn ∧
inside σ0 s f ∧
outside σn s f

(3.14)

We now consider the two possible cases of derivation of the second assump-
tion, 〈CFS , σ0〉

s−→
f

σ′
n.

1. The block was formed by one application of the Stop rule, giving us
the assumption

exec (CFS , σ0 ) = σ′
n ∧

inside σ0 s f ∧
outside σ′

n s f

(3.15)

From this and (3.14) we are able to show the desired conclusion by
Lemma 13.

2. The block was formed by at least one application of the Continue rule,
giving us the assumption

exec (CFS , σ0 ) = σ′
1 ∧

inside σ0 s f ∧
〈CFS , σ′

1 〉
s−→
f

σ′
n

(3.16)
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From this assumption and Lemma 13 it follows that σn = σ′
1, but we

also have from (3.14) outside σn s f and, from Lemma 1, inside σ′
1 s f .

From the definitions of inside (Definition 1) and outside (Definition 2)
the program counter of a state cannot be both inside and outside any
block, and so we are able to show a contradiction.

Inductive Step

The inductive step deals with the case in which our initial assumption was
produced by at least one application of the Continue rule. The Isabelle
output for this step is shown in Figure 3.9 for comparison. By rule induction,
we have the assumption

exec (CFS , σ0 ) = σ1 ∧
inside σ0 s f ∧
〈CFS , σ1 〉

s−→
f

σn

(3.17)

The inductive hypothesis is

〈CFS , σ1 〉
s−→
f

σ′
n −→ σn = σ′

n (3.18)

Again we consider the two possible cases of the second assumption,

1. The block was formed by one application of the Stop rule, giving us
the assumption

exec (CFS , σ0 ) = σ′
n ∧

inside σ0 s f ∧
outside σ′

n s f

(3.19)

From this, Lemma 13, and (3.17) we can show that σ1 = σ′
n. It follows

from Lemma 1 that inside σ1 s f , and from 3.19 that outside σ1 s f .
Once again, from the definitions of inside (Definition 1) and outside
(Definition 2) we are able to show a contradiction.

2. The block was formed by at least one application of the Continue rule,
giving us the assumption

exec (CFS , σ0 ) = σ′
1 ∧

inside σ0 s f ∧
〈CFS , σ′

1 〉
s−→
f

σ′
n

(3.20)
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CFS (cn1, (mn1, pd1), PCm) (cn2, (mn2, pd2), PCj)

|- (xp1, hp1, frs1) -block-> xp2, hp2, frs2 -->

CFS (cn1, (mn1, pd1), PCm) (cn2, (mn2, pd2), PCj)

|- (xp1, hp1, frs1) -block-> xp3, hp3, frs3 -->

frs2 ~= [] --> xp1 = None --> (xp2, hp2, frs2) = (xp3, hp3, frs3)

1. !!CFS a aa b ab ac ba ad ae bb af ag bc bd ah ai be bf.

[| exec (CFS, a, aa, b) = Some (ad, ae, bb);

inside (third_of (a, aa, b)) (ah, (ai, be), bf) (af, (ag, bc), bd);

pc_of (af, (ag, bc), bd)

< length (get_code CFS (cn_of (ah, (ai, be), bf))

(ml_of (ah, (ai, be), bf)));

same_method_frs (ah, (ai, be), bf)

(hd (snd (snd (a, aa, b))))

(hd (snd (snd (ad, ae, bb))))

(af, (ag, bc), bd);

CFS (ah, (ai, be), bf) (af, (ag, bc), bd)

|- (ad, ae, bb) -block-> ab, ac, ba;

CFS (ah, (ai, be), bf) (af, (ag, bc), bd)

|- (ad, ae, bb) -block-> xp3, hp3, frs3 -->

ba ~= [] --> ad = None --> (ab, ac, ba) = (xp3, hp3, frs3);

CFS (ah, (ai, be), bf) (af, (ag, bc), bd)

|- (a, aa, b) -block-> xp3, hp3, frs3; ba ~= [];a = None|]

==> (ab, ac, ba) = (xp3, hp3, frs3)

Figure 3.9: Induction step in Isabelle for Theorem 1

By this, Lemma 13, and (3.17) we have σ1 = σ′
1 which by the inductive

hypothesis gives the required result. �

3.5.1 Determinism of Two Identical Instruction
Sequences

It would seem likely that executing the sequence of instructions xs starting
in state σ0 should result in state σn regardless of whether xs is found in one
set of class files CFS , or a different set CFS ′.

But this is not the case as, in both the block execution relation and the
operational semantics on which it is based, instructions are not independent
entities which can be described separately from the state in which they are
being executed. We might consider that a state contains two separate sets of
information: traditional environmental data such as the stack, local variables
and program counter; and contextual information in the form of a class name
and method locator. This means that two states which are environmentally
equal—and would consequently be equal in the traditional sense—may have
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Figure 3.10: Two ‘coinciding’ class files
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Figure 3.11: Classfiles containing same sequence at different points

different contextual information and therefore not be equal at all in the JVM
setting.

Thus it is possible in some cases to prove that the execution of a sequence
of instructions is deterministic even if it appears in two, non-identical sets
of classfiles. However it is only possible to prove this in the—somewhat
unlikely—situation in which the two sets of classfiles containing the same in-
structions, at the same point, in identically named methods inside identically
named classes (Figure 3.10). This is a very limited result and leaves us unable
to prove determinism for the more realistic scenarios of Figures 3.11 and 3.12,
where xs appears in two disparate sets of classfiles, or in two different classes
in the same set of classfiles.

3.5.2 Data-equality of States

As we have seen in the previous section, it is not possible to talk meaningfully
about deterministic execution in terms of an entire JVM state. Pusch’s for-
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Figure 3.12: Two instances of a sequence in one set of classfiles
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malization of the JVM aims to mirror as closely as possible the ‘real world’
in which Java bytecode programs are executed. Consequently, in Pusch’s
model of the JVM world instructions are not viewed in isolation as indepen-
dent entities, but as part of the state itself. Therefore, in order to discuss
determinism in the accepted sense of the word, we must define a different
type of ‘equality’ for states.

Two states are said to be dataequal (∼=), if their exception options and the
values of the stack and local variables in the top frame of their frame stacks
are equal:

Definition 10 (Data-equality of states)

(xp, hp, frs) ∼= (xp ′, hp ′, frs ′) ≡ xp = xp ′ ∧
stk frs = stk frs ′ ∧
loc frs = loc frs ′

Of course, this definition of data-equality is not the only possible one. In
a situation where we wish to compare two states within the execution of a
single method—as will be discussed in Chapters 4 and 5 in relation to while
loops—it would be necessary only to exclude the current value of the program
counter from the comparison. Equally, if we wished to talk about a situation
involving the execution of instructions which reference the heap, this would
have to become part of the definition of data-equality. And so it is apparent
that there may be several equalities of this nature.

For the purposes of this document, however, there are only two situations
in which we will need to use the idea of data-equality. First, in the proof
of the determinism (in terms of data-equality) of two identical instruction
sequences appearing in different places; and second, in the comparison of
two states in the execution of a single method.

Both cases are involved either directly, or indirectly, with the calculation
of the weakest precondition with respect to a sequence of instructions and
a condition Q. As will be discussed in some detail in Chapters 4 and 5,
the instructions will be restricted to classfile independent, non-branching
instructions, and all instances of Q will be concerned only with the stack
and local variables of the topmost frame. As there will be no alteration to
the object fields or heap, the notion of data-equality given in Definition 10
is therefore sufficient for the work described here.
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3.5.3 The Sequence Execution Relation

In order to prove that if the initial states of two instances of the block exe-
cution relation are data-equal, then the final states will also be data-equal,
it would seem reasonable to proceed by induction on the block execution
relation. But while this approach succeeds for the base case, the step case
requires us to prove that if the initial cases of each block are data-equal, then
the initial state of the second block and the state reached after one step of
execution of the first block are also data-equal.

Unfortunately, this is not necessarily the case. For example, consider the

blocks 〈CFS , σ0〉
s−→
f

σn and 〈CFS ′, σ′
0〉

s′
−→

f ′
σ′

n where

CFS [s . . . f ] = CFS ′[s ′ . . . f ′] = xs , σ0
∼= σ′

0 and exec (CFS , σ0) = σ1. If
the first instruction in xs pushes a value onto the stack, the length of the
stack in state σ1, i.e. the state reached after one step of execution of the first
block, will be greater than the length of the stack in σ′

0, and so the states
are not data-equal. We must therefore find another solution to the problem.

One possibility is to again abstract away from the contextual aspects of
the state within a set of classfiles. This results in an inductively defined
relation operating only on the elements of state involved in the definition of
data-equality, the relevant instructions as a sequence in its own right, and a
pointer into the current position within this sequence.

One further restriction necessary to produce a truly ‘context-independent’
relation is to limit the instructions involved to only classfile independent
instructions. These are instructions that do not reference additional infor-
mation in the relevant classfile, such as whether or not it contains a particular
class or method instance, and comprise the load and store instructions, op-
stack instructions, and all branching instructions.

Suppose that

• xs is a list of bytecode instructions

• σ0 and σn are of type minstate, a tuple consisting of an exception op-
tion, an operand stack, a list of local variables, and a program counter
relative to the start of xs .

We write xs ` σ0 ; σn if executing the sequence of instructions in xs in the
state σ0 results in the state σn, where the instruction identified by σn is not
contained in xs (where xs is non-empty).
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The function exec indep is defined as a partial function using Option types.
It returns the updated state according to the operational semantics for all
opstack instructions, load and store instructions, and branching instructions,
and the value None for all other instructions. It follows as closely as possible
the definition of exec in the underlying semantics, but with the omission of
the ‘exception handling’ method of returning an empty list of frames if a
state containing an exception is executed. Here the result is simply None—
the result reached by exec on the next step of execution in any case.
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Definition 11 (Execute CFS independent instruction)

exec indep ([ ], (xp, frs)) = None

exec indep (xs , (None, (stk , loc, pc))) = case xs !pc of

|LAS ins ⇒ let (stk ′, loc ′, pc ′) = exec las ins stk loc pc in

Some (None,(stk ′, loc ′, pc′))

|CO ins ⇒ None

|MO ins ⇒ None

|MA ins ⇒ None

|CH ins ⇒ None

|MI ins ⇒ None

|MR ins ⇒ None

|OS ins ⇒ let (stk ′, pc′) = exec os ins stk pc in

Some (None, (stk ′, loc, pc ′))

|CBF ins ⇒ let (stk ′, pc ′) = exec cb fwd ins stk pc in

Some (None, (stk ′, loc, pc ′))

|CBB ins ⇒ let (stk ′, pc′) = exec cb bwd ins stk pc in

Some (None, (stk ′, loc, pc ′))

|UBF ins ⇒ let (pc ′) = exec ub fwd ins pc in

Some (None, (stk , loc, pc ′))

|UBB ins ⇒ let (pc ′) = exec ub bwd ins pc in

Some (None, (stk , loc, pc ′))

exec indep (xs , (Some xp, frs)) = None

We also define

Definition 12 (Inlist)

inlist xs pc ≡ 0 ≤ pc ∧ pc ≤ ((length xs)− 1 )

and

Definition 13 (Outlist)

outlist xs pc ≡ (length xs) ≤ pc
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The sequence execution relation is then described by the following rules

Definition 14 (Sequence Execution Relation)

exec indep(xs , τ0 ) = τn ;

xs 6= [ ];

inlist xs pc(τ0 );

outlist xs pc(τn)

xs ` τ0 ; τn
(Seq-Stop)

exec indep(xs , τ0 ) = τ1 ;

xs 6= [ ];

inlist xs pc(τ0 );

xs ` τ1 ; τn

xs ` τ0 ; τn
(Seq-Continue)

Using these definitions, we are able to prove determinacy for exec indep and,
by induction, for the sequence execution relation.

Lemma 14 (Execute CFS independent function is deterministic)

∀ xs s f τ0 τn τ ′n . exec indep(xs , τ0 ) = Some τn ∧
exec indep(xs , τ0 ) = Some τ ′n
−→ τn = τ ′n

Proof By exhaustion on the instruction at pc(τ0) and simplification using
the definition of exec indep (Definition 11). �

Theorem 2 (Sequence execution relation is deterministic)

∀ xs s f τ0 τn τ ′n . xs ` τ0 ; τn

xs ` τ0 ; τ ′n
−→ τn = τ ′n

Proof By induction on the rules for the sequence execution relation (Seq-
Stop, Seq-Continue). �
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3.5.4 Determinism of Instruction Sequences with Data-
equality

Using the sequence execution relation described above, we are now able to
prove the determinacy of a block of bytecode instructions, regardless of their
location within a set of classfiles. We begin by establishing the relationship
between the block execution and sequence execution relations.

Although in the above definition and the subsequent lemmas involving the
sequence execution relation values of type minstate are denoted by the sym-
bol τ for ease of reading, such variables of course represent a 4-tuple of the
form (xp, stk , loc, pc). Despite being stated in terms of a single state in the
Isabelle proof scripts, Isabelle produces an induction theorem in terms of
the fully expanded minstate. This is useful as it makes it possible to prove
by induction lemmas concerned with the value of individual elements of a
minstate (Figure 3.13).

The definition of the block execution relation is similarly stated in terms
of a single variable of type state of the form (xp, hp, frame stack list). In
this case, however, Isabelle produces an induction theorem where the frame
stack list is a single, unexpanded variable (Figure 3.13). This means that,
unlike the case of the sequence execution relation, we are unable to use the
induction theorem to prove statements involving individual parts of a frame
stack, e.g., Lemma 21.

This makes it necessary to introduce a definition that is equivalent to the
block execution definition but which explicitly mentions the individual parts
of a frame stack. This is done by defining the frame stack list of any state
as two separate variables: the topmost frame on the stack and a list contain-
ing the lower frames. The production rules for this and the original block
execution relation are shown in Figure 3.14 and the induction rule for the
expanded version in Figure 3.15.

It was proved that if two states are in the block execution relation with
expanded syntax then they are also in the standard syntax block execution,
allowing lemmas involving both the block execution relation and the sequence
execution relation to be obtained. But as the expanded relation is essentially
an artefact of the proof tool and not of any interest in itself no further lemmas
explicitly involving it will be discussed in this document. Interested readers
can examine the proofs on the attached CD.

We now prove a number of lemmas involving the sequence execution relation,
several of which use the following predicate on lists as defined in the standard
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val exec_instrs.induct =

"[| ?xi |- (?xh, ?xg, ?xf, ?xe) -instrs-> ?xd, ?xc, ?xb, ?xa;

!!a aa ab b ac ad ae ba xs.

[| execCFSindep (xs, a, aa, ab, b) = Some (ac, ad, ae, ba); xs ~= [];

inlist xs (snd (a, aa, ab, b));

outlist xs (snd (ac, ad, ae, ba)) |]

==> ?P xs a aa ab b ac ad ae ba;

!!a aa ab b ac ad ae ba af ag ah bb xs.

[| execCFSindep (xs, a, aa, ab, b) = Some (af, ag, ah, bb); xs ~= [];

inlist xs (snd (a, aa, ab, b));

xs |- (af, ag, ah, bb) -instrs-> ac, ad, ae, ba;

?P xs af ag ah bb ac ad ae ba |] ==> ?P xs a aa ab b ac ad ae ba |]

==> ?P ?xi ?xh ?xg ?xf ?xe ?xd ?xc ?xb ?xa" : thm

val exec_block3.induct =

"[| ?xo (?xn, (?xm, ?xl),

?xk) (?xj, (?xi, ?xh), ?xg) |- (?xf, ?xe, ?xd) -block-> ?xc, ?xb,

?xa;

!!CFS a aa b ab ac ba ad ae bb bc af ag bd be.

[| exec (CFS, a, aa, b) = Some (ab, ac, ba);

inside (third_of (a, aa, b)) (af, (ag, bd), be) (ad, (ae, bb), bc);

pc_of (ad, (ae, bb), bc)

< length

(get_code CFS (cn_of (af, (ag, bd), be))

(ml_of (af, (ag, bd), be)));

same_method_frs (af, (ag, bd), be) (hd (snd (snd (a, aa, b))))

(hd (snd (snd (ab, ac, ba)))) (ad, (ae, bb), bc);

outside (third_of (ab, ac, ba)) (af, (ag, bd), be)

(ad, (ae, bb), bc) |]

==> ?P CFS af ag bd be ad ae bb bc a aa b ab ac ba;

!!CFS a aa b ab ac ba ad ae bb af ag bc bd ah ai be bf.

[| exec (CFS, a, aa, b) = Some (ad, ae, bb);

inside (third_of (a, aa, b)) (ah, (ai, be), bf) (af, (ag, bc), bd);

pc_of (af, (ag, bc), bd)

< length

(get_code CFS (cn_of (ah, (ai, be), bf))

(ml_of (ah, (ai, be), bf)));

same_method_frs (ah, (ai, be), bf) (hd (snd (snd (a, aa, b))))

(hd (snd (snd (ad, ae, bb)))) (af, (ag, bc), bd);

CFS (ah, (ai, be),

bf) (af, (ag, bc), bd) |- (ad, ae, bb) -block-> ab, ac, ba;

?P CFS ah ai be bf af ag bc bd ad ae bb ab ac ba |]

==> ?P CFS ah ai be bf af ag bc bd a aa b ab ac ba |]

==> ?P ?xo ?xn ?xm ?xl ?xk ?xj ?xi ?xh ?xg ?xf ?xe ?xd ?xc ?xb ?xa" : thm

Figure 3.13: Induction theorems for sequence and block execution relations
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val exec_block3.Stop =

"[| exec (?CFS, ?a) = Some ?b; inside (third_of ?a) ?s ?f;

pc_of ?f < length (get_code ?CFS (cn_of ?s) (ml_of ?s));

same_method_frs ?s (hd (snd (snd ?a))) (hd (snd (snd ?b))) ?f;

outside (third_of ?b) ?s ?f |] ==> ?CFS ?s ?f |- ?a -block-> ?b" : thm

val exec_block3.Continue =

"[| exec (?CFS, ?a) = Some ?c; inside (third_of ?a) ?s ?f;

pc_of ?f < length (get_code ?CFS (cn_of ?s) (ml_of ?s));

same_method_frs ?s (hd (snd (snd ?a))) (hd (snd (snd ?c))) ?f;

?CFS ?s ?f |- ?c -block-> ?b |] ==> ?CFS ?s ?f |- ?a -block-> ?b" : thm

val exec_block0.Stop =

"[| exec (?CFS, ?xp, ?hp, (?stk, ?loc, ?cn, (?mn, ?pd), ?pc) # ?frs) =

Some (?xp’, ?hp’, (?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’) # ?frs’);

inside ((?stk, ?loc, ?cn, (?mn, ?pd), ?pc) # ?frs)

(?cnS, (?mnS, ?pdS), ?pcS) (?cnF, (?mnF, ?pdF), ?pcF);

?pcF < length (get_code ?CFS ?cnS (?mnS, ?pdS));

same_method_frs (?cnS, (?mnS, ?pdS), ?pcS)

(?stk, ?loc, ?cn, (?mn, ?pd), ?pc)

(?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’) (?cnF, (?mnF, ?pdF), ?pcF);

outside ((?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’) # ?frs’)

(?cnS, (?mnS, ?pdS), ?pcS) (?cnF, (?mnF, ?pdF), ?pcF) |]

==> (?CFS, (?cnS, (?mnS, ?pdS), ?pcS), (?cnF, (?mnF, ?pdF), ?pcF),

(?xp, ?hp, ?stk, ?loc, ?cn, (?mn, ?pd), ?pc),

(?xp’, ?hp’, ?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’), ?frs, ?frs’)

: exec_block0" : thm

val exec_block0.Continue =

"[| exec (?CFS, ?xp, ?hp, (?stk, ?loc, ?cn, (?mn, ?pd), ?pc) # ?frs) =

Some

(?xp’’, ?hp’’, (?stk’’, ?loc’’, ?cn’’, (?mn’’, ?pd’’), ?pc’’) # ?frs’’);

inside ((?stk, ?loc, ?cn, (?mn, ?pd), ?pc) # ?frs)

(?cnS, (?mnS, ?pdS), ?pcS) (?cnF, (?mnF, ?pdF), ?pcF);

?pcF < length (get_code ?CFS ?cnS (?mnS, ?pdS));

same_method_frs (?cnS, (?mnS, ?pdS), ?pcS)

(?stk, ?loc, ?cn, (?mn, ?pd), ?pc)

(?stk’’, ?loc’’, ?cn’’, (?mn’’, ?pd’’), ?pc’’)

(?cnF, (?mnF, ?pdF), ?pcF);

(?CFS, (?cnS, (?mnS, ?pdS), ?pcS), (?cnF, (?mnF, ?pdF), ?pcF),

(?xp’’, ?hp’’, ?stk’’, ?loc’’, ?cn’’, (?mn’’, ?pd’’), ?pc’’),

(?xp’, ?hp’, ?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’), ?frs’’, ?frs’)

: exec_block0 |]

==> (?CFS, (?cnS, (?mnS, ?pdS), ?pcS), (?cnF, (?mnF, ?pdF), ?pcF),

(?xp, ?hp, ?stk, ?loc, ?cn, (?mn, ?pd), ?pc),

(?xp’, ?hp’, ?stk’, ?loc’, ?cn’, (?mn’, ?pd’), ?pc’), ?frs, ?frs’)

: exec_block0" : thm

Figure 3.14: Production rules for block execution relations
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val exec_block0.induct =

"[| (?ya, (?xz, (?xy, ?xx), ?xw), (?xv, (?xu, ?xt), ?xs),

(?xr, ?xq, ?xp, ?xo, ?xn, (?xm, ?xl), ?xk),

(?xj, ?xi, ?xh, ?xg, ?xf, (?xe, ?xd), ?xc), ?xb, ?xa) : exec_block0;

!!CFS cn cn’ cnF cnS frs frs’ hp hp’ loc loc’ mn mn’ mnF mnS pc pc’ pcF

pcS pd pd’ pdF pdS stk stk’ xp xp’.

[| exec (CFS, xp, hp, (stk, loc, cn, (mn, pd), pc) # frs) =

Some (xp’, hp’, (stk’, loc’, cn’, (mn’, pd’), pc’) # frs’);

inside ((stk, loc, cn, (mn, pd), pc) # frs) (cnS, (mnS, pdS), pcS)

(cnF, (mnF, pdF), pcF);

pcF < length (get_code CFS cnS (mnS, pdS));

same_method_frs (cnS, (mnS, pdS), pcS) (stk, loc, cn, (mn, pd), pc)

(stk’, loc’, cn’, (mn’, pd’), pc’) (cnF, (mnF, pdF), pcF);

outside ((stk’, loc’, cn’, (mn’, pd’), pc’) # frs’)

(cnS, (mnS, pdS), pcS) (cnF, (mnF, pdF), pcF) |]

==> ?P CFS cnS mnS pdS pcS cnF mnF pdF pcF xp hp stk loc cn mn pd pc

xp’ hp’ stk’ loc’ cn’ mn’ pd’ pc’ frs frs’;

!!CFS cn cn’ cn’’ cnF cnS frs frs’ frs’’ hp hp’ hp’’ loc loc’ loc’’ mn

mn’ mn’’ mnF mnS pc pc’ pc’’ pcF pcS pd pd’ pd’’ pdF pdS stk stk’

stk’’ xp xp’ xp’’.

[| exec (CFS, xp, hp, (stk, loc, cn, (mn, pd), pc) # frs) =

Some

(xp’’, hp’’, (stk’’, loc’’, cn’’, (mn’’, pd’’), pc’’) # frs’’);

inside ((stk, loc, cn, (mn, pd), pc) # frs) (cnS, (mnS, pdS), pcS)

(cnF, (mnF, pdF), pcF);

pcF < length (get_code CFS cnS (mnS, pdS));

same_method_frs (cnS, (mnS, pdS), pcS) (stk, loc, cn, (mn, pd), pc)

(stk’’, loc’’, cn’’, (mn’’, pd’’), pc’’) (cnF, (mnF, pdF), pcF);

(CFS, (cnS, (mnS, pdS), pcS), (cnF, (mnF, pdF), pcF),

(xp’’, hp’’, stk’’, loc’’, cn’’, (mn’’, pd’’), pc’’),

(xp’, hp’, stk’, loc’, cn’, (mn’, pd’), pc’), frs’’, frs’)

: exec_block0;

?P CFS cnS mnS pdS pcS cnF mnF pdF pcF xp’’ hp’’ stk’’ loc’’ cn’’

mn’’ pd’’ pc’’ xp’ hp’ stk’ loc’ cn’ mn’ pd’ pc’ frs’’ frs’ |]

==> ?P CFS cnS mnS pdS pcS cnF mnF pdF pcF xp hp stk loc cn mn pd pc

xp’ hp’ stk’ loc’ cn’ mn’ pd’ pc’ frs frs’ |]

==> ?P ?ya ?xz ?xy ?xx ?xw ?xv ?xu ?xt ?xs ?xr ?xq ?xp ?xo ?xn ?xm ?xl ?xk

?xj ?xi ?xh ?xg ?xf ?xe ?xd ?xc ?xb ?xa" : thm

Figure 3.15: Induction theorem for expanded syntax block execution relation

Isabelle distribution

Definition 15 (All elements in list have property P )

list all P xs ≡ ∀x . x ∈ (set xs) −→ Px

In the following lemmas involving the sequence execution relation full states
are abbreviated by σ and minstates by τ in the statement of the lemma,
followed by expanded versions signified by ‘where’.
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Lemma 15 (Full state execution implies minstate execution)

∀ CFS s f σ0 σnτ0 τn xs . exec(CFS , σ0 ) = Some σn ∧
list all CFS indep xs ∧
list all not branch xs ∧
xp0 = None ∧
CFS [s . . . f ] = xs ∧
pc(s) ≤ pc(f ) ∧
pc(f ) < length (get code) CFS s)

−→ exec indep (xs , τ0 ) = Some τn

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

σn = (xpn , hpn , (stkn , locn , cnn ,mln , pcn) : frsn)

τ0 = (xp0 , stk0 , loc0 , (pc0 − pc(s)))

τn = (xpn , stkn , locn , (pcn − pc(s)))

Proof By case analysis of the instruction at (pc(s) − pc(s)), followed by
simplification with the definition of exec indep (Definition 11) and the op-
erational semantics of JVM execution. Note that this instruction is the
instruction at pc0 in the original code, and pc0 − pc(s) in the block xs , e.g.
if pc0 = pc(s), the instruction would be the first instruction in xs . �

Lemma 16 (Minstate execution implies full state execution)

∀ CFS s f σ0 σnτ0 τn xs . exec indep (xs , τ0 ) = Some τn ∧
list all CFS indep xs ∧
list all not branch xs ∧
xp0 = None ∧
CFS [s . . . f ] = xs ∧
pc(s) ≤ pc(f ) ∧
pc(f ) < length (get code CFS s) −→
∀ hp frs . exec(CFS , σ0 ) = Some σn
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where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc(s) + pc0 ) : frs0 )

σn = (xpn , hp0 , (stkn , locn , cn0 ,ml0 , pc(s) + pcn) : frsn)

τ0 = (xp0 , stk0 , loc0 , pc0 )

τn = (xpn , stkn , locn , pcn)

Proof By case analysis of the instruction at pc(s), followed by simplification
with the definition of exec indep (Definition 11) and the operational semantics
of JVM execution. �

Lemma 17 (Inlist implies inside)

∀ CFS s f σ0 σnτ0 τn xs . xs 6= [ ] ∧ xs = CFS [s . . . f ] ∧
inlist xs pc0 ∧
pc(f ) < (length (get code CFS s))

−→ inside pc(σ0 ) s f

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 + pc(s)) : frs0 )

τ0 = (xp0 , stk0 , loc0 , pc0 )

Proof From the definitions of inlist (Definition 12), inside (Definition 1),
and CFS [s . . . f ] (Definition 5). �

Lemma 18 (Inside implies inlist)

∀ CFS s f σ0 σnτ0 τn xs . xs 6= [ ] ∧ xs = CFS [s . . . f ] ∧
inside pc(σ0 ) s f ∧
pc(f ) < (length (get code CFS s))

−→ inlist xs τ0

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

τ0 = (xp0 , stk0 , loc0 , pc0 − pc(s))

Proof From the definitions of inlist (Definition 12) , inside (Definition 1),
and CFS [s . . . f ] (Definition 5). �
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Lemma 19 (Outlist implies outside )

∀ CFS s f σ0 σnτ0 τn xs . xs 6= [ ] ∧ xs = CFS [s . . . f ] ∧
outlist xs τ0 ∧
pc(f ) < (length (get code CFS s))

−→ outside pc(σ0 ) s f

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 + pc(s)) : frs0 )

τ0 = (xp0 , stk0 , loc0 , pc0 )

Proof From the definitions of outlist (Definition 13), outside (Definition 2),
and CFS [s . . . f ] (Definition 5). �

Lemma 20 (Outside implies outlist )

∀ CFS s f σ0 σnτ0 τn xs . 〈CFS , σ0 〉
s−→
f

σn −→

inside pc(σ0 ) s f ∧
excep free xs ∧
CFS [s . . . f ] = xs ∧
list all CFS indep xs ∧
list all not branch xs ∧
pc(f ) < (length (get code CFS s)) ∧
outside pc(σn) s f

−→ outlist xs τn

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

σn = (xpn , hpn , (stkn , locn , cnn ,mln , pcn) : frs0 )

τn = (xpn , stkn , locn , pcn − pc(s))

Proof In addition to the definitions of outlist (Definition 13), outside (Def-
inition 2), and CFS [s . . . f ] (Definition 5), we need the additional assump-
tions 〈CFS , σ0〉

s−→
f

σn and list all not branch xs , which allow us to show

that pc(σn) = pc(f) + 1.
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This is necessary since all program counters are defined as natural numbers
and, while xs may have instructions on the left as part of a larger list of
instructions in a classfile, we cannot refer to positions to the left of the head
of the list xs in isolation. �

Lemma 21 (Block execution implies sequence execution )

∀ CFS s f σ0 σnτ0 τn x xs . 〈CFS , σ0 〉
s−→
f

σn −→

CFS [s . . . f ] = xs ∧
list all CFS indep xs ∧
list all not branch xs ∧
excep free xs −→
xs ` τ0 ; τn

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

σn = (xpn , hpn , (stkn , locn , cnn ,mln , pcn) : frsn)

τ0 = (xp0 , stk0 , loc0 , (pc0 − pc(s)))

τn = (xpn , stkn , locn , (pcn − pc(s)))

Proof Under the condition that the initial states in the block are data-equal
and are pointing to the same instruction within the block of instructions, the
proof proceeds by rule induction on the assumption
〈CFS , σ0〉

s−→
f

σ′.

Base

The base case deals with the case in which our initial assumption was pro-
duced by one application of the Stop rule for the block execution relation,
giving us the assumption

exec(CFS , σ0 ) = Some σn ∧
inside pc(σ0 ) s f ∧
same method s σ0 σn f ∧
pc(f ) < length(get code CFS s) ∧
outside pc(σn) s f

(3.21)
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from this assumption, the first production rule for the sequence execution
relation Seq-Stop, and Lemmas 15, 18 and 20, we are able to show the
desired conclusion.

Inductive step

The inductive step deals with the case in which our initial assumption was
produced by one application of the second production rule for the block
execution relation (Continue), giving us

exec(CFS , σ0 ) = Some σ1 ∧
inside pc(σ0 ) s f ∧
same method s σ0 σ1 f ∧
pc(f ) < length(get code CFS s) ∧
〈CFS , σ1 〉

s−→
f

σn

(3.22)

The inductive hypothesis is

CFS [s . . . f ] = xs ∧
list all CFS indep xs ∧
list all not branch xs ∧
excep free xs −→
xs ` τ1 ; τn

(3.23)

where

σ1 = (xp1 , hp1 , (stk1 , loc1 , cn1 ,ml1 , pc1 ) : frs1 )

τ1 = (xp1 , stk1 , loc1 , (pc1 − pc(s)))

Thus, from the rule Seq-Continue and Lemmas 15 and 18, we are able to
show the desired conclusion. �

Lemma 22 (Sequence execution implies block execution)

wedge∀ CFS s f τ0 τn x xs .

xs ` τ0 ; τn −→
CFS [s . . . f ] = xs ∧
pc(f ) < length(get code CFS s) ∧
pc(s) ≤ pc(f ) ∧
list all CFS indep xs ∧
list all not branch xs ∧
list all excep free instr xs −→
∀ hp frs . 〈CFS , σ0 〉

s−→
f

σn
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where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc(s) + pc0 ) : frs0 )

σn = (xpn , hp0 , (stkn , locn , cn0 ,ml0 , pc(s) + pcn) : frs0 )

τ0 = (xp0 , stk0 , loc0 , pc(s))

τn = (xpn , stkn , locn , pcn)

Proof By rule induction on the assumption xs ` τ0 ; τn.

Base

The base case deals with the case in which our initial assumption was pro-
duced by one application of the first production rule for the sequence execu-
tion relation (Seq-Stop), giving us

exec indep (xs , τ0 ) = Some τn ∧
xs 6= [ ] ∧
inlist pc(τ0 ) ∧
outlist pc(τn)

(3.24)

Thus, from the Stop rule for the block execution relation, and Lemmas 16,
17 and 19 we are able to show the desired conclusion.

Inductive step

The inductive step deals with the case in which our initial assumption was
produced by one application of the second production rule for the sequence
execution relation (Seq-Continue), giving us the assumption

exec indep (xs , τ0 ) = Some τ1 ∧
xs 6= [ ] ∧
inlist pc(τ0 ) ∧
xs ` τ1 ; τn

(3.25)
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The inductive hypothesis is

CFS [s . . . f ] = xs ∧
pc(f ) < length(get code CFS s) ∧
pc(s) ≤ pc(f ) ∧
list all CFS indep xs ∧
list all not branch xs ∧
list all excep free instr xs −→
∀ hp frs . 〈CFS , σ1 〉

s−→
f

σn

(3.26)

where

∃ hp0 frs0 . σ1 = (xp1 , hp0 , (stk1 , loc1 , cn0 ,ml0 , pc(s) + pc1 ) : frs0 )

∃ hp0 frs0 . σn = (xpn , hp0 , (stkn , locn , cn0 ,ml0 , pc(s) + pcn) : frs0 )

We instantiate hp and frs in 3.26 to hp0 and frs0 (as in σ0) and then, by the
Continue rule for the sequence execution relation and Lemmas 16 and 17,
we are able to show the desired conclusion. �

Theorem 3 (Block execution deterministic for data-equal states)

∀ CFS CFS ′ s f s ′ f ′ σ0 σn σ′
0 σ′

n xs .

CFS [s . . . f ] = xs ∧ CFS ′[s ′ . . . f ′] = xs

list all CFS indep xs ∧
list all not branch xs ∧
excep free xs ∧
pc0 − pc(s) = pc′0 − pc(s ′) ∧
〈CFS , σ0 〉

s−→
f

σn ∧

〈CFS ′, σ′
0 〉

s′
−→

f ′
σ′

n ∧

σ0
∼= σ′

0

−→ σn
∼= σ′

n

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

σn = (xpn , hpn , (stkn , locn , cnn ,mln , pcn) : frsn)

σ′
0 = (xp ′

0 , hp ′
0 , (stk ′

0 , loc ′0 , cn ′
0 ,ml ′0 , pc ′0 ) : frs ′0 )

σ′
n = (xp ′

n , hp ′
n , (stk ′

n , loc ′n , cn ′
n ,ml ′n , pc ′n) : frs ′n)
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Proof From Lemma 21,

〈CFS , σ0 〉
s−→
f

σn −→ xs ` τ0 ; τn

where

τ0 = (xp0 , stk0 , loc0 , (pc0 − pc(s)))

τn = (xpn , stkn , locn , (pcn − pc(s)))
(3.27)

and

〈CFS ′, σ′
0 〉

s′
−→

f ′
σ′

n −→ xs ` τ ′0 ; τ ′n

where

τ ′0 = (xp ′
0 , stk ′

0 , loc ′0 , (pc ′0 − pc(s ′)))

τ ′n = (xp ′
n , stk ′

n , loc ′n , (pc′n − pc(s ′)))
(3.28)

By the fact that the states σ0 and σ′
0 are data-equal (Definition 10) we now

have from (3.27) and (3.28)

τ0 = τ ′0 (3.29)

This gives us

xs ` τ0 ; τn ∧ xs ` τ0 ; τ ′n (3.30)

and so by Theorem 2

τn = τ ′n (3.31)

which, from the definition of data-equal (10), gives us

σn
∼= σ′

n (3.32)

as required. �

Lemma 23 (Extend CFS independent execution to the right)

∀ xs ys τ0 τn . exec indep (xs , τ0 ) = Some τn ∧
inlist xs τ0 ∧ xs 6= [ ]

−→ exec indep (xs@ys , τ0 ) = τn
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where

τ0 = (xp0 , stk0 , loc0 , pc0 )

τn = (xpn , stkn , locn , pcn)

Proof By case analysis of the instruction at pc0 , followed by simplification
with the definition of exec indep (Definition 11) and the operational semantics
of JVM execution. �

Lemma 24 (Extend CFS independent execution to the left )

∀xs ys τ0 τn . exec indep (ys , τ0 ) = Some τn ∧
not branch ys !pc0 ∧
inlist xs τ0 ∧ xs 6= [ ] ∧ ys 6= [ ]

−→ exec indep (xs@ys , τ0 ) = Some τn

where

τ0 = (xp0 , stk0 , loc0 , pc0 + |xs|)
τn = (xpn , stkn , locn , pcn + |xs|)

Proof By case analysis of the instruction at pc0, followed by simplification
with the definition of exec indep (Definition 11) and the operational semantics
of JVM execution. �

Lemma 25 (Extend instance of sequence execution relation to left )

xs ` (xp0 , stk0 , loc0 , pc0 ) ; (xpn , stkn , locn , pcn) −→
list all CFS indep xs −→
list all not branch xs −→
ys@xs ` (xp0 , stk0 , loc0 , pc0 + |ys|) ; (xpn , stkn , locn , pcn + |ys|)

Proof By rule induction on the sequence execution relation and by the
construction rules for the sequence execution relation (Seq-Stop, Seq-
Continue), and Lemma 24. �
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Lemma 26 (Combine two instances of sequence execution relation )

xs ` (xp0 , stk0 , loc0 , pc0 ) ; (xp1 , stk1 , loc1 , pc1 ) −→
xs 6= [ ] −→
list all CFS indep xs −→
list all not branch xs −→
ys ` (xp1 , stk1 , loc1 , 0 ) ; (xpn , stkn , locn , pcn) −→
xs@ys ` (xp0 , stk0 , loc0 , pc0 ) ; (xpn , stkn , locn , pcn + |ys|)

Proof By rule induction on the sequence execution relation, and by the
construction rules for the sequence execution relation
(Seq-Stop, Seq-Continue) and Lemma 25, using the fact that since none
of the instructions in xs are branching instructions, pc′ = |ys|. This means
that in execution of the sequence xs@ys , execution of xs finishes and leaves
the program counter pointing to the first instruction in ys . �

3.6 Conclusions

Having extended the instruction set formalized by Pusch to include arith-
metic instructions, and modified the model of branching instructions to fa-
cilitate proofs of concrete values, we now have sufficient relations describing
execution to develop a programming logic for bytecode described in the next
chapter. It has been demonstrated that while a simple execution relation
defined by entry and exit from a block of code is enough to base much of our
programming logic on, it does have several limiting features.

Firstly, it does not allow us to reason about intermediate states in the ex-
ecution of a block. Often in the proofs outlined in Chapters 4 and 5 we
wish to say something about the final state in the execution of a block. As
the value of this state will usually depend on the result of execution of some
state between the initial and final states, the execution path relation becomes
necessary. Additionally, the idea of deterministic execution of instructions is
complicated by the fact that bytecodes are seen not as separate entities, but
as part of a classfile. Either we could define a concept of determinism that
includes the context of the instruction, or as we have done here retain the
accepted definition of determinism, but with a restricted class of instructions,
as in the sequence execution relation.
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These considerations, and others that will be addressed in the coming chap-
ters, raise the question once more as to whether it is really desirable to reason
about code at this level. This is open to debate, but the fact remains that
as the current situation for both Java and new platforms such as Microsoft’s
.NET [31] is based on a stack machine model running bytecode or similar,
considering these questions and finding solutions is of definite value.
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Chapter 4

A Bytecode Programming
Logic

Having defined execution relations for bytecode programs, we now define a
pre- and post-condition relation for the execution of such programs. Tradi-
tionally, such a relation is defined in terms of the various syntactic patterns
of the programming language in question. As bytecode programs are flat, no
such patterns are explicit in the code and we must therefore determine what
constitutes, for example, a loop or a conditional statement.

It is at this point that we must address again the question raised in Section
3.3: what do we mean by the execution of a sequence of bytecode? None of
the relations discussed so far place any particular restraints on the position
of the program counter of the initial state within the block. But, while one
could potentially begin execution of a sequence of instructions at any of a
number of points in the sequence, the final state would be dependent on
which instructions in the sequence had actually been executed.

For example, execution of the instructions

bipush 5

bipush 4

iadd

bipush 2

could lead to a type-safe execution beginning at either the first instruction,
or at the last. In the first case, the value of the stack in the final state would
be 2 :: 9 :: init stk, in the second it would be 2 :: init stk. Consequently

87
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the weakest precondition with respect to a particular condition for any list
of instructions will be entirely dependent on which of these instructions are
actually executed.

Clearly then, a meaningful weakest precondition definition for bytecode must
identify the initial position of the program counter, and it seems reasonable
to decide that execution should start at the first instruction in the list. This
problem does not arise in standard programming logics as one cannot start
execution midway through a command in the language. Even in commands
built up inductively from other commands, it is implicit that execution starts
at the beginning of the topmost command, and not at one of the inner
subcommands.

4.1 A Pre- and Post-Condition Relation

for Execution of Bytecode

We write {P} xs {Q} to mean that for all classfiles CFS containing the
instruction sequence xs bounded by the instructions identified by s and f ,
if the condition P holds in state σ0 and 〈CFS , σ0〉

s−→
f

σn, then condition

Q holds in state σn. The definition is given by cases on whether or not xs is
empty.

Definition 16 (Pre-/Post-condition relation for bytecode)

{P} [ ] {Q} ≡ ∀ CFS σ0 σn . P(σ0 ) −→ Q(σn) (4.1)

{P} x :xs {Q} = ∀ CFS σ0 σn s f . [〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = x :xs ∧ pc(σ0 ) = pc(s) ∧
P(σ0 )] −→ Q(σn)

(4.2)

Note that logical operations are defined pointwise, i.e. the assertion {P ∧ S}
applied to state σ is taken to mean P σ ∧ S σ.
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4.2 Rules

We present a collection of derived rules for simple bytecode patterns. Proofs
for loops and conditional statements will be dealt with later in this chapter
and in Chapter 5.

Lemma 27 (Precondition strengthening)

(∀σ0. P σ0 −→ R σ0) ∧ {R} xs {Q} =⇒ {P} xs {Q}

Proof From Definition 16 and induction on the list of instructions xs. �

Lemma 28 (Postcondition weakening)

(∀σ0. R σ0 −→ Q σ0) ∧ {P} xs {R} =⇒ {P} xs {Q}

Proof From Definition 16 and induction on the list of instructions xs. �

We now define a block of instructions, execution of which always results in
the program counter pointing to the instruction following that block. This
describes the idea of sequential execution of blocks of instructions, e.g., x
immediately followed by ys .

Definition 17 (Simple Block)

simple xs ≡ ∀CFS σ0 σn s f . xs = CFS [s . . . f ] ∧ inside σ0 s f ∧
exec(CFS , σ0 ) = Some σn −→
inside σn s f ∨ pc(σn) = pc(f ) + 1

Note that a simple block may contain an internal loop provided this does not
prevent the block meeting the requirements of the simple definition.

Lemma 29 (Splitting a slice of instructions )

∀ a b xs ys zs . xs 6= [ ] ∧ ys 6= [ ] ∧ a < b ∧
b < |zs| ∧ xs@ys = slice a b zs −→
xs = slice a ((a + |xs|)− 1) zs ∧
ys = slice (a + |xs|) b zs
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Proof From definition of slice (Definition 6) and standard lemmas for take
and drop in the Isabelle distribution. �

Lemma 30 (Existence of two simple blocks)

∀CFS σ0 σ1 σn s f . 〈CFS , σ0 〉
s−→
f

σn

∧ CFS [s . . . f ] = xs@ys ∧
simple xs ∧ simple ys −→
∃σ1 .〈CFS , σ0 〉

s−→
y

σ1 ∧ 〈CFS , σ1 〉
w−→
f

σn

where

m = s{pc := pc(s) + |xs| − 1}
n = s{pc := pc(s) + |xs|}

Proof From Lemma 9 we show the existence of an instance of the execu-
tion path relation corresponding to the relation 〈CFS , σ0〉

s−→
f

σn. We then

carry out induction on this relation using one of the standard Isabelle induc-
tion theorems converse trancl induct, which ‘unrolls’ the transitive closure
relation from the start. This in conjunction with the definition of simple
(Definition 17), gives us

∃ σ1 . 〈CFS , σ0 〉
s

=⇒
y

+ σ1 ∧ 〈CFS , σ1 〉
s

=⇒
f

+ σn

∧ pc(σ1 ) = pc(s) + |xs|
(4.3)

Similar treatment of the second conjunct in 4.3 then gives us

〈CFS , σ1 〉
w

=⇒
f

+ σn ∧ pc(σn) = pc(f )+1 (4.4)

and from 4.3, 4.4 and Lemma 10 we have the desired result. �

Theorem 4 (Sequencing Rule)

{P} xs {R}
{R} ys {Q}

simple xs

simple ys

{P} xs@ys {Q}
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Proof This follows from Definition 16 and Lemmas 29 and 30. �

We now describe the lemmas necessary for the proof of a rule for uncondi-
tional branches forwards.

Lemma 31 (Narrowing of block containing a simple block )

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = xs@ys ∧
xs 6= [ ] ∧ ys 6= [ ] ∧
simple ys ∧
pc(σ0 ) = pc(s) + |xs|+ 1

−→ 〈CFS , σ0 〉
y−→
f

σn

where

y = s{pc := pc(s) + |xs|+ 1}

Proof This follows from the fact that the instructions ys make up a simple
block (Definition 17), the execution of which can only result in a state where
the program counter is pointing inside the block or at the instruction imme-
diately to the right of it. Under these circumstances, once execution reaches
the beginning of ys (or if it begins there) the instructions in xs will not be
executed again within this block.

By induction on the block execution relation followed by use of its construc-
tion rules, we are able to demonstrate the existence of the smaller block as the
program counter will always be inside this smaller block during execution. �

Lemma 32 (Elimination of unconditional branch forward)

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = [Goto fwd (|xs|+1)]@xs@ys ∧
xs 6= [ ] ∧ ys 6= [ ]∧
simple xs ∧ simple ys −→
∃ σ1 . 〈CFS , σ0 〉

s−→
s

σ1 ∧ 〈CFS , σ1 〉
y−→
f

σn
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where

y = s {pc := pc(s) + 1}

Proof By induction on the block execution relation, and the operational
semantics of the JVM, we are able to show that

∃ σ1 . exec(CFS , σ0 ) = Some σ1 ∧
pc(σ1 ) = pc(s) + |xs|+ 1 ∧
〈CFS , σ1 〉

s−→
f

σn

(4.5)

Then by Lemma 31, we can show that this implies the existence of a smaller
instance of the block execution relation involving σ1 and σn.

Note that as xs and ys are simple, execution will never return to the uncon-
ditional branch forward instruction from the block xs@ys . �

Theorem 5 (Unconditional branch forward rule)

{P} [Goto fwd |xs|+ 1] {R}
{R} ys {Q}
xs 6= [ ]

ys 6= [ ]

excep free [Goto fwd |xs|+ 1]@(xs@ys)

simple xs

simple ys

{P} [Goto fwd |xs|+ 1]@(xs@ys) {Q}

Proof This follows from Definition 16 and Lemmas 32 and 31.

4.3 A Rule for Loops in Bytecode

Unlike the simple imperative language used in the standard Hoare logic which
contains the while command, there are no explicit loop constructs in byte-
code programs. In order to develop rules for programs containing loops it is
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therefore necessary to identify the patterns of bytecode instructions that are
used to code them. Of course, Java programs may contain loops other than
while loops—namely for loops and repeat-until loops. For the purposes
of this work, however, we shall restrict our attention to while loops.

Consider the following very simple Java program that repeatedly increments
a variable i

public class SimpleWhile {

public static void main(String args[])

{

int i=0;

while (i<5)

{ i++; }

}

}

the corresponding bytecode for this program is

0 bipush 0

1 istore_1

2 goto 8

5 iinc 1 1

8 iload_1

9 iconst_5

10 if_icmplt 5

13 return

where the instructions

0 bipush 0

1 istore_1

initialize the variable i to 0, by pushing the constant value 0 onto the stack
and then storing it in variable location 1. The return instruction simply
returns at the end of the method, and so the loop itself consists of the in-
structions

2 goto 8
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5 iinc 1 1

8 iload_1

9 iconst_5

10 if_icmplt 5

where

5 iinc 1 1

is the body of the loop, incrementing the value in variable location 1, that is,
i. The instructions

8 iload_1

9 iconst_5

load the value of i and the constant value 5 on to the stack, ready for the
actual branching instruction

10 if_icmplt 5

Here, if the second value on the stack is less than 5, the program counter is
set to the instruction labelled 5 ready to execute the body of the loop again,
otherwise the loop exits. The instruction

2 goto 8

is only executed once—at the beginning of the loop—and ensures that the
guard condition is tested before the body is executed, thereby making this a
while loop rather than a repeat-until loop.

A diagram showing the outline of this loop can be seen in Figure 4.1, where
xs represents the instructions making up the body of the loop, and ys the
instructions used to prepare the stack for the conditional branch. A general
representation of such a loop may now be written

[(UBF |xs| + 1)]@[xs]@[ys]@[(CBB |xs@ys|)] (4.6)

where UBF |xs| + 1 is the unconditional branch forward instruction to the
head of ys—a jump of one more than the length of xs, and CBB |xs@ys| is
the conditional branch backwards to the start of xs—a jump of the length
of xs@ys.
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While other possible loop forms exist—one is shown in Figure 4.2–we shall
discuss only the type described above in this work. Treatment of the alter-
native forms would, however, be similar.

The notation UBF n, UBB n, CBF n and CBB n for branching instructions is
an abbreviation used for clarity of reading. As detailed in Chapter 3, there
are a number of branching instructions:

cond branch fwd = Ifnull fwd nat

| Ifiacmpeq fwd ins type nat

| Ificmplt fwd nat

cond branch bwd = Ifnull bwd nat

| Ifiacmpeq bwd ins type nat

| Ificmplt bwd nat

uncond branch fwd = Goto fwd nat

uncond branch bwd = Goto bwd nat

In the case of a rule involving conditional branch instructions, such as the
loop rule and the conditional branch forwards rule discussed in Section 4.5.2,
it would be necessary to prove the rule for all three cases of the conditional
branching instruction in question in order to obtain a general loop rule.

Due to the prohibitive size and complexity of such proofs (an issue discussed
in some detail in Sections 6.2 and 7.1), while the loop rule and conditional
branch forwards rule are stated generally, only the case relating to the Ificmplt
variety has been proved. This refers to a branch taken if the value at the top
of the stack is less than the value immediately below it on the stack. Proofs
involving the other two conditions would be practically identical.

The while rule in the standard Hoare logic is

{P ∧ S} C {P}
{P} while S do C {P ∧ ¬S}
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Unconditional 
Branch

Conditional
Branch

xs

ys

Figure 4.1: Loop structure

ys

Conditional 
Branch

xs

Unconditional 

Branch

Figure 4.2: Loop structure



4.3. A RULE FOR LOOPS IN BYTECODE 97

where P is an invariant of the loop and S is the loop guard. In a similar rule
for the bytecode representation of a while loop it seems obvious that xs in
Figure 4.1 corresponds to C (the body of the loop), and that the invariant
P does not depend on the language we are dealing with. This leaves the
question of what constitutes S, the loop guard, in the bytecode.

The loop guard is not explicit in the bytecode, as it is in the higher level
language. But if we consider what role the loop guard plays in the impera-
tive language, it becomes clearer. Evaluation of the loop guard determines
whether or not the body of the loop will be executed for each iteration of
the loop. In the bytecode, evaluation of the conditional branch determines
whether or not the body of the loop is executed for a particular iteration. So
this must mean that S is the condition—branch cond—tested by the condi-
tional branch, and our proposed rule looks something like this

{P ∧ branch cond}
xs

{P}
{P}

[UBF |xs|+ 1 ]@[xs]@[ys]@[CBB |xs@ys|]
{P ∧ ¬branch cond}

But this is not quite accurate. The conditional branch instructions test
certain properties of the value or values at the top of the stack, e.g. ‘Jump
if the value at top of the stack is equal to Null’, or ‘Jump if the value at
the top of the stack is not equal to zero’. A side effect of the comparison is
to pop the values involved in this comparison off the stack, with the result
that any predicate involving the top of the stack is meaningful immediately
before execution of the branch instruction. An example of this is shown in
Figure 4.3 where the branching condition is ‘branch if the second value on
the stack is less than the top value’. Immediately prior to execution of the
branch instruction this condition can be evaluated, but when the branching
instruction has been executed the relevant values are no longer on the stack
and the statement is no longer sensible. In fact, in the case where popping
the values empties the stack, it is undefined.

So a rule stating that a branch condition involving values on the stack holds
anywhere other than just before the branch is executed is incorrect. This
means that our rule is incorrect, as we require the branch condition to be
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Figure 4.3: State of stack before and after conditional branch

true at the beginning of execution of the body, xs, and to be false at the end
of the loop, immediately after execution of the branching instruction.

The solution to this particular problem is to ‘wind back’ the conditional
being tested until we have a condition in terms of actual variables and values
rather than items on the stack. We are, in effect, reconstructing the original
guard condition present in the Java source code which is concealed in the
bytecode instructions. If we look at the bytecode for the loop we can see that
the sequence of instructions ys is executed prior to the conditional branch
every time through the loop. These instructions ‘set up’ the stack so that
the correct values are available for the comparison. By taking the weakest
precondition of these instructions and the condition of the branch we are able
to determine the actual guard S. Our loop rule is therefore as follows:

{P ∧ wp ys branch cond}
xs

{P}
{P}

[(UBF |xs|+ 1 )]@[xs]@[ys]@[(CBB |xs@ys|)]
{P ∧ ¬wp ys branch cond}

4.4 Weakest Precondition

The weakest precondition—actually called the weakest liberal precondition
in cases of partial correctness—is the least condition necessary to hold at
the start of execution of a command that will guarantee that a particular
condition holds at the end of execution (assuming termination):
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wp C Q ≡ (λ σ0. ∀ σn. (σ0, σn) ∈ {(σ0, σn). eval(C, σ0) = σn −→ Q σn })

Our definition of weakest precondition for bytecode programs is:

Definition 18 (Weakest precondition for bytecode)

wp xs Q ≡ (λ σ0 . ∀ σn . (σ0 , σn) ∈ {(σ0 , σn).〈CFS , σ0 〉
s−→
f

σn ∧

pc(σ0 ) = pc(s) ∧
CFS [s . . . f ] = xs −→ Q σ′})

Using this, the two defining properties of the weakest precondition can be
proved, namely:

Lemma 33 (Weakest precondition is a precondition)

xs 6= [ ] =⇒ {wp xs Q} xs {Q}

Proof From the definition of weakest precondition for bytecode (Defini-
tion 18). �

Lemma 34 (Weakest precondition is the weakest possible precondition)

∀P . {P} xs {Q} −→ ∀σ0 . P σ0 ⊃ (wp xs Q) σ0

Proof From the definition of weakest precondition for bytecode (Defini-
tion 18). �

Several other useful properties may also be shown:

Lemma 35 (Postcondition false implies weakest precondition false )

∀ σ0 σn . 〈CFS , σ0 〉
s−→
f

σn ∧ xs = CFS [s . . . f ] ∧ ¬Q σn

−→ ¬(wp xs Q) σ0

Proof Suppose it is possible to execute xs starting in state σ0 and finishing
in state σn, where the condition Q is false in σn. Then the weakest precon-
dition did not hold in σ0. This is, of course, the contrapositive of Lemma
34. �
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4.4.1 Calculating the Weakest Precondition

As is the case with conventional Hoare logics, to calculate the value of the
weakest precondition for a sequence of instructions we start with the desired
postcondition and work backwards. In this way we can determine what
condition must have held before an instruction is executed in order to ensure
the postcondition holds after execution. This condition is in fact the weakest
precondition of that instruction with respect to the postcondition. This
operation is carried out incrementally over each instruction in the list.

To illustrate this, we might calculate the weakest precondition with respect
to the branching condition of part of our example loop program in Section
4.3:

public class SimpleWhile {

public static void main(String args[])

{

int i=0;

while (i<5)

{ i++; }

}

}

with corresponding bytecode

0 bipush 0

1 istore 1

2 goto 8

5 iinc 1 1

8 iload 1

9 bipush 5

10 if_icmplt 5

13 return

We wish to calculate the weakest precondition of the instructions

8 iload 1

9 bipush 5

with respect to the branch condition, which is ‘is the second value on the
stack less than the value at the top of the stack?’, i.e.

hd (tl stk) < hd stk



4.4. WEAKEST PRECONDITION 101

the calculation of which, using the hoisting technique, is as follows. Taking
the desired postcondition

hd (tl stk) < hd stk

we calculate the weakest precondition with respect to the second instruction
in our list

bipush 5

which pushes the value 5 onto the stack, giving us the condition

hd (tl (5 : stk)) < hd (5 : stk)

we now calculate the weakest precondition with respect to this new postcon-
dition of the first instruction in the list

iload 1

which pushes the value stored in local variable 1 onto the stack, resulting in
the condition

hd (tl (5 : (lv1 : stk))) < hd(5 : (lv1 : stk))

When simplified, the weakest precondition is therefore

lv1 < 5

As the value of i is stored in local variable 1, as can be seen from the initial-
isation instructions at the start of the program

0 bipush 0

1 istore 1
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the weakest precondition is i < 5: the loop guard of the original Java pro-
gram.

In order to carry out this operation we need to know the weakest precondi-
tion of any individual instruction. Below we give proofs of two instructions:
Bipush i is a classfile independent instruction that pushes the integer value
i onto the stack, ins type IAastore i is a classfile dependent instruction that
stores the value i in an array.

Definition 19 (Non-terminating state)

not term state = λ (xp, hp, frs). xp = None ∧ frs 6= [ ]

Definition 20 (Insert load and store arguments)

putLASargs = λ(xp, hp, frs) (stk ′, loc ′, pc ′). let (stk , loc, cn,ml , pc) =

hd frs in (xp, hp, (stk ′, loc ′, cn,ml , pc ′) : (tl frs))

Definition 21 (Extract first load and store argument)

getlASarg1 = λ(xp, hp, frs). let (stk , loc, cn,ml , pc) = hd frs in stk

Definition 22 (Extract second load and store argument)

getLASarg2 = λ(xp, hp, frs). let (stk , loc, cn,ml , pc) = hd frs in loc

Definition 23 (Extract third load and store argument)

getLASarg3 = λ(xp, hp, frs). let (stk , loc, cn,ml , pc) = hd frs in pc

Lemma 36 (Block execution of Bipush implies exec las Bipush)

∀CFS s σ0 σn i . CFS ! s = (Bipush i) ∧ xp(σ0 ) = None ∧
〈CFS , σ0 〉

s−→
s

σn −→

σn = (putLASargs σ0 (exec las (Bipush i)

(getLASarg1 σ0 ) (getLASarg2 σ0 ) (getLASarg3 σ0 )))

Proof By Lemma 8 and the operational semantics of the JVM. �
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Lemma 37 (exec las Bipush implies block execution of Bipush )

∀CFS s σ0 σn i . CFS ! s = (Bipush i) ∧ xp (σ0 ) = None ∧
pc (s) < length(get code CFS s) ∧
σn = (putLASargs σ0 (exec las (Bipush i)

(getLASarg1 σ0 ) (getLASarg2 σ0 ) (getLASarg3 σ0 )))

−→ 〈CFS , σ0 〉
s−→
s

σn

Proof By the rules for construction of the block execution relation and the
operational semantics of the JVM. �

Lemma 38 (Existence of set of classfiles containing Bipush)

∃ CFS . CFS [s . . . s ] = [Bipush i ]

Proof We show that such a set of classfiles exists by constructing an in-
stance of Pusch’s formalisation of a classfile, substituting this for the existen-
tially quantified variable, and simplifying with Isabelle’s automatic tactics.�

Lemma 39 (Weakest precondition of bipush instruction )

wp [Bipush i ] Q = (λ σ0 . (not term state σ0 ) −→
Q (putLASargs σ0 (exec las (Bipush i)

(getLASarg1 σ0 ) (getLASarg2 σ0 ) (getLASarg3 σ0 ))))

Proof In order to prove equality, we prove implication in both directions.
This involves Lemmas 36 and 37. �

Definition 24 (Insert manipulate array arguments)

putMAargs = λ(xp, hp, frs) (stk ′, loc ′, pc ′). let (stk , loc, cn,ml , pc) =

hd frs in (xp, hp, (stk ′, loc ′, cn,ml , pc ′) : (tl frs))

Definition 25 (Extract first manipulate array argument)

getMAarg1 = λ(xp, hp, frs). hp
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Definition 26 (Extract second manipulate array argument)

getMAarg2 = λ(xp, hp, frs). let (stk , loc, cn,ml , pc) = hd frs in stk

Definition 27 (Extract third manipulate array argument)

getMAarg3 = λ(xp, hp, frs). let (stk , loc, cn,ml , pc) = hd frs in pc

Lemma 40 (Weakest precondition of IAastore )

excep free [ (ins type IAastore i)] =⇒
wp [(ins type IAastore i)] =

(λ σ0 . ∀ CFS . (not term state σ0 ) −→ CFS ! σ0 = IAastore

−→ Q (putMAargs σ0 (exec ma (ins type IAastore i) CFS

(getMAarg1 σ0 ) (getMAarg2 σ0 ) (getLASarg3 σ0 ))))

Proof Similar to Lemma 39. �

We now return to the original aim of this section: a method of calcu-
lating the weakest precondition of a sequence of instructions. The tech-
nique described at the beginning of this section is based on the equality:
wp (x :xs) (assert Q) = (wp [x] (wp xs (assert Q))).

To prove this we rely on the assumption—correct in the case of most standard
high level languages—that execution proceeds in a linear manner, moving
through the code from left to right one command at a time. In the case
of bytecode instructions this may not be the case, and so we must attach
another predicate, linear, to instruction sequences the weakest precondition
of which we wish to be able to calculate. This is defined as

Definition 28 (Linear code)

linear xs ≡ list all not branch xs ∧ list all CFS independent xs (4.7)

It is necessary that all the instructions are classfile independent and non-
branching. This is due to the fact that the proof hinges on the idea of the
deterministic execution of a list of instructions. As discussed in Section 3.5.3,
in order to obtain proofs involving the standard idea of determinism (i.e. for
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a list of instructions independent of context) we must restrict the instructions
involved to those which are classfile independent.

The function (assert) provides a way of applying a predicate that is concerned
solely with the operand stack, stk, and local variables, loc, of a method frame
to a complete state consisting of an exception option, heap, and frame stack.
This is necessary as we want to restrict the discussion to data-equal states,
and our present definition of data-equality involves only the stack and local
variables.

Definition 29 (Assert)

assert Q ≡ (λ(xp, hp, frs). (let (stk , loc, cn,ml , pc) = (hd frs) in

Q(stk , loc)))

Lemma 41 (Decompose block )

∀CFS σ0 σn s f m x xs . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = x :xs ∧
linear (x :xs) ∧
pc(σ0 ) = pc(s) −→
∃σ1 .〈CFS , σ0 〉

s−→
s

σ1 ∧ 〈CFS , σ1 〉
y−→
f

σn

where

y = s{pc := pc(s)+1}

Proof This follows by case analysis of block execution relation. We know
from the definition of linear that the instruction at pc(σ0) is not a branching
instruction. This means that execution of the instruction will result in a state
whose program counter is equal to pc(s)+1. As none of the other instructions
in the block are branches, execution of the instructions from pc(s) + 1 to
pc(f) will continue without returning to the instruction at pc(s). Hence,
by application of the rules for the block execution relation we can show the
existence of the two blocks as required. �
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As we wish to prove that assert Q holds in the state resulting from execution
of the instructions x :xs, we must show that the execution of x in one classfile,
followed by xs from another classfile is equivalent in effect to executing x :xs
from a single classfile.

Lemma 42 (Two adjoining block executions imply a sequence )

∀CFS σ0 σ1 σn s f m x xs . list all not branch (x :xs) ∧
list all CFS independent (x :xs) ∧
excep free (x :xs) ∧
〈CFS , σ0 〉

s−→
f

σ1 ∧ CFS [s . . . f ] = [x ] ∧

〈CFS ′, σ1 〉
s′

−→
f ′

σn ∧ CFS ′ [s ′ . . . f ′] = xs

−→ τ0 τn . (x :xs) ` τ0 ; τn

(4.8)

where

σ0 = (xp0 , hp0 , (stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 )

σ1 = (xp1 , hp0 , (stk1 , loc1 , cn0 ,ml0 , pc1 ) : frs0 )

σn = (xpn , hp0 , (stkn , locn , cn0 ,ml0 , pcn) : frs0 )

τ0 = (xp0 , stk0 , loc0 , pc0 − pc(s))

τn = (xpn , stkn , locn , pcn − pc(s))

Proof We show that the two instances of the block execution relation for x
and xs and σ0 and σn admit an instance of the sequence execution relation
involving x :xs and the corresponding minstates τ and τ ′. This follows from
Lemma 21 and Lemma 26, together with the fact that there exists a classfile
containing the sequence x :xs (proof similar to that of Lemma 38). �

Lemma 43 (Weakest precondition of a list of instructions )

excep free [x ] ∧
list all not branch (x :xs) ∧
list all CFS independent (x :xs) ∧
excep free (x :xs) ∧

xs 6= [ ]

=⇒ wp (x :xs) (assert Q) = (wp [x ] (wp xs (assert Q)))
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Figure 4.4: States before and after evaluation of guard to false

Proof Once again, we show equality by proving the implication in each
direction. After rewriting with the definition of weakest precondition (Def-
inition 18), the right-to-left version of the equality can be proved using
Lemma 42, followed by Lemma 22 to show that the existence of this instance
of the sequence execution relation implies the existence of an equivalent in-
stance of the block execution relation. The left-to-right part of the equality
can be shown using Lemma 41. �

4.5 Data-equality and Loops

One major difference between the execution of a while loop in an imperative
language and a loop sequence in the bytecode is the effect of executing the
‘structure’ of the loop. As discussed in Section 9 a general pattern for loops
in bytecode is

[(UBF |xs| + 1)]@[xs]@[ys]@[(CBB |xs@ys|)] (4.9)

where the instructions xs represent the loop body, and the instructions
(UBF |xs| + 1), ys, and (CBB |xs@ys|) constitute the structual parts of
the loop.

In an imperative language, the rules for execution state that executing a
while statement in an initial state in which the loop guard is false results in
an unchanged state. In the bytecode, execution of a loop sequence in which
the guard is false in the initial state results in a different state, as evaluating
the sequences which constitute the structure of the loop means the value of
the program counter will have changed. This is illustrated in Figure 4.4.

Similarly, with the situation where the body of the loop is executed, if a
while statement is executed in state σ0 in which the loop guard is true, we
can talk of executing the body of the loop in the same state—evaluation of
the loop guard does not affect the state. Again, this is not the case in the
bytecode sequence. This is illustrated in Figure 4.5.
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xsUBF ys|xs| + 1
CBB

|xs@ys|

σ

σ’’

Figure 4.5: States before and after evaluation of guard to true

At first glance, this may seem likely to add to the complexity of a proof of
the bytecode rule. But closer inspection of the effect of executing the struc-
ture of a bytecode loop sequence, shows that the only element of the state
affected (assuming the instructions concerned satisfy certain constraints) is
the program counter. This means that once again we can use the idea of
data-equality, discussed in the previous chapter. As the branch condition
does not mention the program counter, and assuming that the loop invariant
does not either, data-equal states in the bytecode execution can take the
place of equal states in the source code execution.

4.5.1 Data-equality and the Weakest Precondition

Returning to our postulated While Rule

{P ∧ wp ys branch cond}
xs

{P}
{P}

[(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P ∧ ¬wp ys branch cond}

we see that we need wp ys branch cond to be false in state σn, one step after
the execution of ys is complete. But wp is a relation which deals specifically
with the state σ0 immediately prior to execution of ys. In fact, even if
the two states in question are data-equal—as they will be in a well-formed
loop—it is not the case that

wp ys branch cond σ0 −→ wp ys branch cond σn (4.10)
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Figure 4.6: States for which weakest precondition must evaluate to true or
false

This is because the definition of wp depends on the block execution relation
which is expressed in terms of the position of the program counter in a state
relative to the class file. Unlike higher level languages, a state is inextricably
bound to the instruction indicated by its program counter. This means
that despite every other element of the two states σ0 and σn being equal,
wp ys branch cond does not hold in σn as its program counter value is outside
the block containing ys. The position of states σ0 and σn with respect to ys
is illustrated in Figure 4.6. Equally, wp ys branch cond will not hold in the
state in which execution of the loop begins, because its program counter will
be pointing to the unconditional branch instruction.

The above definition of weakest precondition for bytecode is clearly not suit-
able for the purposes of our While Rule, and we must modify it to remove the
dependence on the position of the program counter. One solution is to define
the weakest precondition in terms of the sequence execution relation (Section
3.5.3) rather than the block execution relation. This effectively transforms
the definition into that of the conventional definition of weakest precondition,
where only the ‘non-positional’ parts of a state are relevant. We define the
sequence weakest precondition as:

Definition 30 (Sequence weakest precondition)

sequence wp xs Q ≡ λ σ0 . ∀ τn . not term state σ0 ∧
xs ` τ0 ; τn −→ (assert Q σn)

where

σ0 = (xp0 , hp0 , ((stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 ))

τ0 = (xp0 , stk0 , loc0 , 0 )

τn = (xpn , stkn , locn , pcn)

σn = (xpn , hp0 , ((stkn , locn , cn0 ,ml0 , pc0 + pcn) : frs0 ))
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This new definition does not replace our previous definition (Definition 18)
since the sequence weakest precondition can only be used to reason about
classfile independent instructions (from the definition of the sequence execu-
tion relation, 3.5.3). In order to reason about programs including non-classfile
independent instructions we will need the original definition. However, since
the instructions contained in a well-formed while loop are assumed to be
classfile independent, we are able to use the sequence weakest precondition.

Once again, the two defining properties of the weakest precondition were
proved for sequence weakest precondition:

Lemma 44 (swp is a precondition )

xs 6= [ ] ∧ list all not branch xs ∧
list all CFS independent xs ∧
excep free xs

=⇒ {sequence wp xs Q} xs {assert Q}

Proof From the definition of sequence weakest precondition (Definition 30)
and Lemma 21. �

Lemma 45 (swp is the weakest possible precondition )

CFS [s . . . f ] = xs ∧ pc(f ) < length(get code CFS s) ∧
pc( s) ≤ pc(f ) ∧ xs 6= [ ] ∧ list all not branch xs ∧
list all CFS independent xs ∧
list all excep free instr xs ∧
{assert P} xs {assert Q}
=⇒ ∀σ0 . (assert P σ0 ) −→ (sequence wp xs Q)

Proof From the definition of sequence weakest precondition (Definition 30)
and Lemma 22. As the pre- and post-condition relation (Definition 16) is
defined in terms of the block execution relation, it is necessary to include
more information in the assumptions of the theorems involving both the pre-
and post-condition relation and sequence wp than in those concerned only
with only sequence wp.

As for the block execution definition of weakest precondition, the following
lemmas were proved for the sequence weakest precondition:
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Lemma 46 (Condition false implies swp false )

∀ σ0 σn s f CFS xs Q . xs 6= [ ] ∧ list all not branch xs ∧
list all CFS independent xs ∧
excep free xs ∧ 〈CFS , σ0 〉

s−→
f

σn ∧

¬(assert Q)σn

−→ ¬ (sequence wp xs Q) σ0

Proof If it is possible to execute xs starting in state σ0 and finishing in state
σn, where the condition Q is false in σn, the sequence weakest precondition
does not hold in σ0. This is the contrapositive of Lemma 44 and can be
understood intuitively as the consequence of Lemma 45. �

Lemma 47 (swp false implies condition false )

xs ` τ0 ; τn ∧ ¬(sequence wp xs Q) σ0 =⇒ ¬(assert Q) σn

where

σ0 = (xp0 , hp0 , ((stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 ))

τ0 = (xp0 , stk0 , loc0 , 0 )

τn = (xpn , stkn , locn , pcn)

σn = (xpn , hp0 , ((stkn , locn , cn0 ,ml0 , pc0 + pcn) : frs0 ))

Proof If the relevant parts of states σ0 and σn are in the sequence execution
relation, and sequence wp xs Q does not hold in σ0, then assert Q will not hold
in σn. The result follows from the definition of sequence weakest precondition
(Definition 30). �

Lemma 48 (Condition holds implies swp held )

xs ` τ0 ; τn ∧ (assert Q) σn =⇒ (sequence wp xs Q) σ0

where

σ0 = (xp0 , hp0 , ((stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 ))

τ0 = (xp0 , stk0 , loc0 , 0 )

τn = (xpn , stkn , locn , pcn)

σn = (xpn , hp0 , ((stkn , locn , cn0 ,ml0 , pc0 + pcn) : frs0 ))
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Proof If the relevant parts of states σ0 and σn are in the sequence execution
relation, and assert Q holds in σn, then sequence wp xs Q must have held in
σ0. The result follows from the definition of sequence weakest precondition
(Definition 30). �

Lemma 49 (Relation of wp to swp )

linear xs ∧ excep free xs ∧
list all excep free instr xs ∧ xs 6= [ ]

=⇒ wp xs (assert Q) = sequence wp xs Q

Proof This is similar to the the proof of Lemma 43, and again we show
equality by proving implication in both directions. In this case, however, the
result follows simply from Lemma 21 and Lemma 22, along with a proof that
there exists a classfile containing the sequence xs (as in Lemma 41). �

Lemma 50 (swp preserved by data-equality )

(sequence wp xs Q) σ0 ∧ σ0
∼= σn =⇒ (sequence wp xs Q) σn

Proof This follows from the definition of sequence weakest precondition
(Definition 30), assert (Definition 29), and data-equality (Definition 10). �

Lemma 51 (Assert preserved by data-equality )

(assert Q) σ0 ∧ σ0
∼= σn =⇒ (assert Q) σn

Proof From the definitions of assert (Definition 29) and data-equality (Def-
inition 10). �

We are now able to state the final version of the While Rule for bytecode.
As we have seen, the role in the conventional Hoare logic of the loop guard
S is played here by the sequence weakest precondition of the instructions ys
with respect to the branch condition. From its definition, (Definition 30), we
know that the sequence weakest precondition is only meaningful in the con-
text of a non-terminating initial state. So, in order to ensure that the actual
value of sequence wp ys branch cond can be calculated—essential when actu-
ally using the logic to prove properties of programs—we add the predicate
not term state to the postcondition of the while rule.

The predicate well formed loop is defined as
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Definition 31 (Well-formed loop)

well formed loop zs ≡ ∃xs ys . CFS [s . . . f ] = zs ∧
zs = [(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)] ∧
xs 6= [ ] ∧ ys 6= [ ]∧
simple xs ∧ simple ys ∧
ref trans 2 ys ∧ linear ys

Note that the above definition includes the requirement that the instructions
ys should be referentially transparent, denoted by the term ref trans 2 ys.
The execution of a sequence of referentially transparent instructions affects
only the stack and the program counter. For a list of instructions ys, the
execution of which places two values on the stack, the definition is

Definition 32 (Referential transparency of a list of instructions )

ref trans 2 ys ≡ ∀ CFS σ0 σn s f . ys = CFS [s . . . f ] ∧
linear ys ∧ pc(σ0 ) = pc(s) ∧
〈CFS , σ0 〉

s−→
f

σn −→

xp0 = xpn ∧ hp0 = hpn ∧
∃ a b.stkn = a : (b : (stk0 )) ∧ loc0 = locn ∧
cn0 = cnn ∧ ml0 = mln ∧ frs0 = frsn

where

σ0 = (xp0 , hp0 , ((stk0 , loc0 , cn0 ,ml0 , pc0 ) : frs0 ))

σn = (xpn , hpn , ((stkn , locn , cnn ,mln , pcn) : frsn))

This, of course, states that execution of the instructions ys results in two
values being placed on the stack. If, for example, ys = [Pop, Pop] this
would not be the case. Certainly, any well-formed program involving an
Ificmplt or Ifiacmpeq branch should place two values to be compared on the
stack immediately before the branch. However, this would not be the case
with an Ifnull branch (where only one value would be placed on the stack).

Thus the definitions of referential transparency and of a well-formed loop
would have to be modified to reflect these situations in any future version
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of the programming logic. For the purposes of the proofs described in this
dissertation, however, the current definitions are adequate.

Our final version of the While Rule is as follows, and a proof of the soundness
of this rule appears in Chapter 5.

{P ∧ sequence wp ys branch cond}
xs

{P}
well formed loop[(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P}

[(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P ∧ ¬sequence wp ys branch cond} ∧ not term state

4.5.2 Conditional Branch Forward Rule

We now describe a rule for conditional branches forward which, like the
while rule, depends on the lemmas for sequence weakest precondition and
the fact that the instructions zs immediately prior to the conditional branch
instruction are referentially transparent.

Lemma 52 (Execute up to conditional branch)

∀ CFS σ0 σn s f m n xs ys zs . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = zs@[CBF (|xs| + 1)]xs@ys ∧
pc(σ0 ) = pc(s) ∧
simple zs ∧
simple [CBF (|xs| + 1)]@xs@ys

−→ ∃σ1. 〈CFS , σ0 〉
s−→
y

σ1 ∧

〈CFS , σ1〉
z−→
f

σn

where

y = s{pc := pc(s) + |zs| − 1}
z = s{pc := pc(s) + |zs|)}
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Proof From the definition of simple (Definition 17), and Lemma 30. �

Theorem 6 (Conditional branch rule )

{P} zs@[CBF (|xs| + 1)] {R}
{R ∧ (sequence wp zs branch cond)} ys {Q}
{R ∧ ¬(sequence wp zs branch cond)} xs@ys {Q}
xs 6= [ ]; ys 6= [ ]; zs 6= [ ]

excep free zs@[CBF (|xs| + 1)]@xs@ys

simple xs ; simple ys

ref trans 2 zs ; simple [CBF (|xs| + 1)]@xs@ys

{P} zs@[CBF (| xs| + 1))]@xs@ys {Q}

Proof From the pre- and post-condition relation for bytecode (Definition 16)
we know that there is a block

〈CFS , σ0 〉
s−→
f

σ1 (4.11)

such that

CFS [s . . . f ] = zs@[CBF (|xs| + 1)]@xs@ys (4.12)

and P holds in state σ0.

From Lemma 52 we know that

∃σ1. 〈CFS , σ0 〉
s−→
y

σ1 ∧ 〈CFS , σ1〉
z−→
f

σn (4.13)

where

y = s {pc := pc(s) + |zs|)− 1}
z = s {pc := pc(s) + |zs|}

where the first block, from s to y, corresponds to execution of the instructions
zs prior to the conditional branch instruction. The program counter in state
σ1 points to the conditional branch instruction.

Execution of the second block can take one of two forms depending on
whether the branching condition is true in state σ1 or not. In the case
where the condition is true, the branch is taken, branch cond holds in state
σ1 and only the instructions ys are executed. In the case where the condition
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is false, branch cond does not hold in state σ1 and the instructions xs@ys are
executed.

We now apply case analysis to the second block, noting that the case involving
the Stop rule cannot apply as it would require the program counter to finish
outside the block xs@ys as a result of executing a jump of length xs+1 where
both xs and ys are non-empty. This gives us

∃σ2 . exec(CFS , σ1) = Some σ2 ∧ 〈CFS , σ2 〉
z−→
f

σn (4.14)

A case split on the value of the branch condition in state σ1, followed by
narrowing of the blocks as in Lemma 31, along with Lemma 52, gives us the
two possible situations

∃σ1 σ2 .branch cond(σ1) ∧ 〈CFS , σ0 〉
s−→
y

σ1 ∧

exec(CFS , σ1) = Some σ2 ∧ 〈CFS , σ2 〉
z−→
f

σn

(4.15)

and

∃σ1 σ2 . ¬branch cond(σ1) ∧ 〈CFS , σ0 〉
s−→
y

σ1 ∧

exec(CFS , σ1) = Some σ2 ∧ 〈CFS , σ2 〉
w−→
f

σ′ (4.16)

where

w = s{pc := pc(s) + |zs|+ |xs|+1}

Using Lemma 7 we are now able to obtain a block covering execution of the
instructions zs@[CBF (|xs| + 1)]

〈CFS , σ0 〉
s−→
z

σ1 (4.17)

And from the assumption

{P} zs@[CBF (|xs| + 1)] {R} (4.18)

we know that R holds in state σ2.

From Lemma 21 and Lemma 48 we know that

branch cond (σ1) ∧ 〈CFS , σ0 〉
s−→
y

σ1 ∧

exec(CFS , σ1) = Some σ2

=⇒ (sequence wp zs branch cond) σ0

(4.19)
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and from Lemma 21 and Lemma 47

¬branch cond (σ1) ∧ 〈CFS , σ0 〉
s−→
y

σ1 ∧

exec(CFS , σ1) = Some σ2

=⇒ ¬ (sequence wp zs branch cond) σ0

(4.20)

We must now show that in the case of 4.19 that

(sequence wp zs branch cond) σ2 (4.21)

and in the case of 4.20 that

¬(sequence wp zs branch cond) σ2 (4.22)

Since the instructions zs are referentially transparent it follows that when zs
is of length 2, in state σ0 the stack is equal to the stack in state σ1 with the
addition of two extra values at the top meaning that

stk0 = tl(tl(stk1)) (4.23)

and all other values in σ1—excluding the program counter—are equal to
those of σ0. Execution of the conditional branch instruction in state σ1 pops
the two topmost values from the stack (after comparing them). This means
that

stk0 = stk2 (4.24)

and, as all other elements of the states apart from the program counters are
equal

σ0
∼= σ2 (4.25)

This situation is illustrated in Figure 4.7. We can now use this result with
4.15, 4.16 and the assumptions {R ∧ (sequence wp zs branch cond)} ys {Q}
and {R ∧ ¬(sequence wp zs branch cond)} xs@ys {Q}
to show that Q holds in state σn. �

4.6 Conclusions

We have described a programming logic containing rules for sufficient pat-
terns of bytecode to prove bytecode programs including loops and branching
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stk before ys stk after ys stk after branch

a
b

Figure 4.7: Stack unchanged by zs followed by branch

structures. Although the rules described are clearly closely related to the
rules in the conventional Hoare logic, they differ in a number of important
ways. In particular, the necessity of treating the execution of the instructions
defining a program structure explicitly. In the following chapter we describe
in detail the difficulties this presents in the case of a proof of soundness of the
rule for loops in the bytecode logic, and the ways in which these problems
can be overcome.



Chapter 5

Soundness of the Loop Rule

In this chapter we will discuss a proof of the soundness of the rule for loops in
bytecode programs that was proposed in Chapter 4. We begin by describing
the proof of the while rule in the conventional Hoare logic and how it relates
to our proof of the loop rule for bytecode programs. Both of these proofs
depend on proofs of two subsidiary properties: w

1. The loop guard condition will be false on exit from the loop

2. If a property is invariant for one execution of the loop body it is also
invariant for the loop itself

In a conventional axiomatic semantics these properties are very simple to
prove as they follow almost immediately from the execution rules for the lan-
guage. In the bytecode world, however, they are considerably more difficult
to prove and we discuss the methods used to achieve these proofs in some
detail.

5.1 Outline of Proof Method

The standard Hoare logic while rule for a simple imperative programming
language (4.3) states that if P is an invariant for one execution of C when-
ever S holds then it is also an invariant for the execution of the statement
while S do C , and that S will be false on termination of the loop.

119
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{P ∧ S} C {P}
{P} while S do C {P ∧ ¬S}

Example proofs of its soundness can be found in [10] and [56], and they can
be broken down into proofs of each of the two properties mentioned in the
introduction to this chapter. In [10] these are represented by the following
lemmas:

Guard false on exit from loop—conventional Hoare logic

∀ C s1 s2 . eval C s1 = s2 −→ (∀ S ′ C ′. (C = while S ′ C ′)

−→ ¬(S ′ s2 ))

Preservation of invariant—conventional Hoare logic

∀ C s1 s2 .

eval C s1 = s2 −→
(∀ S ′ C ′. (C = while S ′ C ′) −→

(∀ s1 s2 . P s1 ∧ S ′ s1 ∧ C ′ s1 s2 −→ P s2 ) −→
(P s1 −→ P s2 ))

Both lemmas can be proved using the operational semantics of the languages
they are concerned with, either immediately or by strong rule induction.

For the Bytecode Programming Logic, recall that our postulated Loop Rule
is

{P ∧ sequence wp ys branch cond}
xs

{P}
well formed loop[(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P}

[(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P ∧ ¬sequence wp ys branch cond ∧ not term state}

and we assert that equivalent statements can be defined for the bytecode:
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Proposition 1 (Guard false on exit from loop—bytecode logic )

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = [(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)] ∧
well formed loop CFS [s . . . f ]

−→ ¬ (sequence wp ys branch cond) σn

Proposition 2 (Preservation of invariant—bytecode logic)

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn∧

well formed loop CFS [s . . . f ] ∧
P σ0 ∧
[∀ σ′

0 σ′
1 σ′

n CFS ′ w y s ′ f ′.

〈CFS ′, σ′
0 〉

w−→
y

σ′
1 ∧

〈CFS ′, σ′
1 〉

z−→
f

σ′
n ∧

well formed loop CFS ′[s ′ . . . f ′] ∧
P σ′

0 ∧
(sequence wp ys branch cond) σ′

0 −→
P σ′

n ]

−→ P σn

where

w = s ′ {pc := pc(s ′) + 1}
y = s ′ {pc := pc(s ′) + |xs|}
z = s ′ {pc := pc(s ′) + |xs|+ 1}

Here, the fact that the invariant is preserved by one execution of the body
of the loop is represented by the statement

∀ σ′
0 σ′

1 σ′
n CFS ′ w y s ′ f ′. 〈CFS ′, σ′

0 〉
w−→
y

σ′
1 ∧

〈CFS ′, σ′
1 〉

z−→
f

σ′
n ∧

well formed loop CFS ′[s ′ . . . f ′] ∧
P σ′

0 ∧
(sequence wp ys branch cond) σ′

0 −→
P σ′

n

(5.1)
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which says that, in fact, the invariant is preserved by one execution of the
body of the loop—the list of instructions xs—plus execution of the ‘struc-
tural’ instructions ys@CBB .

In the next three sections we present proofs of Propositions 1 and 2, followed
by a proof of soundness of the Loop Rule.

5.2 Guard Condition False on Exit from Loop

Our aim here is a proof of Proposition 1

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s ‘ldotsf ] = [(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
well formed loop CFS [s . . . f ]

−→ ¬ (sequence wp ys branch cond) σn

Our strategy involves showing that there exists a penultimate state σn−1,
whose program counter points to the conditional branch instruction, and
execution of which results in final state σn:

Proposition 3 (Penultimate state exists)

∀ σ0 σn CFS s f y z . 〈CFS , σ0 〉
s−→
f

σn ∧

well formed loop CFS [s . . . f ] −→
∃ σn−2 σn−1 . 〈CFS , σn−2 〉

y−→
z

σn−1 ∧

exec (CFS , σn−1 ) = Some σn ∧
pc(σn−1 ) = pc(f )

where

y = s {pc := pc(s) + |xs|}
z = f {pc := pc(f )− 1}

We then use the fact that the branching condition must be false in this
penultimate state in order for us to exit the loop, the idea of data equal-
ity (Definition 10), and the lemmas for the sequence weakest precondition
(Definition 30) to show ¬ (sequence wp ys branch cond) σn.
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5.2.1 Lemmas for Guard Condition False

In this section we describe a series of lemmas necessary for the proof of
Proposition 1: the guard condition is false on exit from the loop.

To allow us to focus attention on the main part of the loop—the section
xs@ys@[CBB |xs@ys|]—we show that for a well-formed loop in the block
execution relation, executing the initial unconditional branch forward re-
sults in another instance of the relation consisting only of the instructions
xs@ys@[CBB |xs@ys|].

Lemma 53 (Elimination of unconditional branch )

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

well formed loop CFS [s . . . f ] −→
∃ σ1 . exec(CFS , σ0 ) = Some σ1 ∧

pc(σ1 ) = pc(s) + |xs| + 1 ∧
〈CFS , σ1 〉

w−→
f

σn

where

w = s {pc := pc(s) + 1}

Proof This follows from the fact that the instructions
xs@ys@[CBB |xs@ys|] make up a simple block (Definition 17), the execution
of which can only result in a state where the program counter is pointing in-
side the block or at the instruction immediately to the right of it. Under these
circumstances, once the unconditional branch instruction at the beginning
of the loop has been executed once, it will never be executed again within
this block. We are therefore able to effectively discard it and concentrate
our attention on the smaller resultant block. The situation is represented in
Figure 5.1. �

We now consider our smaller loop, and show that there exists a state, σ2, in
which the conditional branch instruction is executed for the first time.
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σ1

ysxsUBF 
|xs| + 1

CBB
|xs@ys|

σ0

xs ys
|xs@ys|
CBB

σ1

σ

σ

Figure 5.1: Elimination of unconditional branch

Lemma 54 (Conditional branch is executed at least once )

∀CFS σ1 σn s f w y z .〈CFS , σ1 〉
w−→
f

σn ∧

well formed loop CFS [s . . . f ] ∧
simple ys ∧
pc(σ1 ) = pc(s) + |xs|+ 1 −→
∃σ2 .〈CFS , σ1 〉

y−→
z

σ2 ∧

pc(σ2 ) = pc(f )∧
〈CFS , σ2 〉

w−→
f

σn

where

w = s {pc := pc(s) + 1}
y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}

Proof We know that the program counter of σ1 is pointing to the first
instruction of ys . As we are assuming the existence of the larger block from
σ0 to σn, we know that execution must leave the block ys at some point in
order to reach state σn.

But because ys is a simple block we cannot reach σn directly from any instruc-
tion in ys , and there must exist an intermediate state, σ2, whose program
counter is pointing to the instruction immediately to the right of ys , i.e.
the conditional branch instruction. Execution of the conditional branch in-
struction in this state will then lead to σn, either immediately or following a
number of executions of the loop—represented by the instance of the block
execution relation 〈CFS , σ2〉

w−→
f

σn �
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CBB

σ σn

ysxs

Stop

Continue

23σ

Figure 5.2: Possible outcomes of executing branch instruction

In order to prove the existence of a penultimate state (Proposition 3), we
now consider the block 〈CFS , σ2〉

w−→
f

σn, with pc(σ2) = pc(f) , and apply

the block execution case rule. This presents the two possibilities shown in
Figure 5.2

• the Stop rule applies:

exec(CFS, σ2) = Some σn ∧ pc(σ2) = pc(f) (5.2)

• the Continue rule applies:

∃σ3. exec(CFS, σ2) = Some σ3 ∧ 〈CFS, σ3〉
w−→
f

σn ∧ pc(σ2) = pc(f)

(5.3)

In the Stop case the proof of Proposition 3 is complete; in the second case
we need to know whether or not the branch condition is true in order to
determine the position of the program counter after execution.

In the case where the condition is false we have a contradiction: executing
the branch instruction in this situation results in the program counter of σ3

being outside the block, but the existence of the block 〈CFS, σ3〉
w−→
f

σn

means that, from Lemma 1 it must be inside the block.

This leaves the third case in which the branching condition is true. Again
we consider statement 5.3, relating to the situation where the branching
condition is true. From the definition of a well formed loop (Definition 31)
we know that the program counter of state σ3 points to the first instruction
in xs as a result of the conditional branch backwards in a state where the
condition is true. We now reason ‘backwards’ from the final state, σn.

We show that if, starting in a state whose program counter is equal to pc(s)+
1, i.e. the state produced by executing the conditional branch when the
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condition is true, we have reached σn—a fact implicit in the definition of the
block execution relation (Stop, Continue)—then there must be some state
σn−1 in the execution path relation for the block that evaluates to σn.

Lemma 55 (Penultimate state exists in execution of the loop )

∀CFS σ3 s f w . 〈CFS , σ3 〉
w−→
f

σn ∧

well formed loop CFS [s . . . f ] −→
∃σn−1 . 〈CFS , σ3 〉

w
=⇒

w

+ f σn−1 ∧

pc(σn−1 ) = pc(f )

∧ exec(CFS , σn−1 ) = Some σn

where

w = s {pc := pc(s) + 1}

Proof From Lemma 9 we know that as σ3 and σn−1 are in the block exe-
cution relation, they are also in the execution path relation. We then apply
transitive closure elimination to ‘unwind’ the final execution step from the
relation which, along with the definition of the execution path relation (Def-
inition 8), implies that ∃σn−1. exec(CFS , σn−1) = Some σn. As xs and ys
are simple, we can show that pc(σn−1) = pc(f), since from the definition of
simple, (Definition 17), it is impossible to reach the final state outside the
block from either xs or ys . �

We show that if we have reached this penultimate state, σn−1, starting from
a position σ3 inside xs there must be a sequence of states spanning the final
execution of ys that starts in a state whose program counter points to the
first instruction in ys and culminates in σn−1.

Lemma 56 (Ante-penultimate state exists in loop execution )

∀CFS σ3 s f w . 〈CFS , σ3 〉
w−→
f

σn ∧ well formed loop CFS [s . . . f ] −→

∃σn−1 σn−2 . 〈CFS , σ3 〉
w

=⇒
f

+ σn−2 ∧

〈CFS , σn−2 〉
y

=⇒
z

+ σn−1 ∧

pc(σn−2 ) = pc(m)

pc(σn−1 ) = pc(f )

exec(CFS , σn−1 ) = σn
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CBB

σ1

ysxs
σn−1

σn

σn−2

σ2

Figure 5.3: Final steps of execution

where

w = s {pc := pc(s) + 1}
y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}

Proof From the definition of simple, (Definition 17), the only section of the
block from which it is possible to reach the conditional branch instruction is
ys , and in order to reach ys we must have come from xs (as it is not reachable
from the conditional branch). Furthermore, the only instruction outside xs
reachable from within it is the first instruction in ys . The path of execution
is shown in Figure 5.3 �

This allows us to prove Proposition 3

Lemma 57 (Final step preceded by execution of ys exists )

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

well formed loop CFS [s . . . f ] −→
∃ σn−1 σn−2 . 〈CFS , σn−2 〉

y−→
z

σn−1 ∧

exec (CFS , σn−1 ) = Some σn ∧
pc(σn−2 ) = pc(m)

pc(σn−1 ) = pc(f )

where

w = s {pc := pc(s) + 1}
y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}
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Proof From Lemma 55 and Lemma 56. �

We now prove some more preliminary lemmas in order to prove prove Propo-
sition 1.

We know from Lemma 57 that

∃σn−1 . exec (CFS , σn−1 ) = Some σn (5.4)

where the instruction at σn−1 is the conditional branch backwards to the
start of xs . The fact that the branch is not taken—execution results in state
σn which is outside the block—implies that the branch condition is false in
state σn−1 (from the operational semantics of branching instructions). This
gives us

Lemma 58 (Branch condition false implies swp false )

∀ σn−1 σn−2 . 〈CFS , σn−2 〉
y−→
z

σn−1 ∧

well formed loop CFS [s . . . f ] ∧
¬(branch cond σn−1 ) −→
¬ (sequence wp ys branch cond) σn−2

where

y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}

Proof From Lemma 56 and Lemma 46. �

We now show that states σn−2 and σn are data-equal:

Lemma 59 (Antepenultimate and final states are data-equal)

∀ σn−1 σn−2 . 〈CFS , σn−2 〉
y−→
z

σn−1 ∧

well formed loop CFS [s . . . f ] ∧
exec(CFS , σn−1 ) = Some σn −→
σn−2

∼= σn

where

y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}
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stk before ys stk after ys stk after branch

a
b

Figure 5.4: Stack unchanged by ys followed by branch

Proof From the definition of a well formed loop (Definition 31) we know
that ys is referentially transparent. From Definition 32 we see that the
execution of a sequence of referentially transparent instructions affects only
the stack and the program counter.

So in state σn−1 the stack is equal to the stack in state σn−2 with the addition
of two extra values at the top implying that

stkn−2 = tl(tl(stkn−1) (5.5)

and all other values in σn−1—excluding the program counter—are equal to
those of σn−2.

Execution of the conditional branch instruction in state σn−1 pops the two
topmost values from the stack (after comparing them). This means that

stkn−2 = stkn (5.6)

and, as all other elements of the states apart from the program counters are
data-equal

σn−2
∼= σn (5.7)

This situation is illustrated in Figure 5.4. �

Using these lemmas and the lemmas for the sequence weakest precondition
we can now prove Proposition 1:

Theorem 7 (Loop guard false on exit—bytecode logic)

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = [(UBF |xs|+ 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
well formed loop CFS [s . . . f ]

−→ ¬ (sequence wp ys branch cond) σn

Proof From Lemma 56, Lemma 57, and Lemma 59. �
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σ1 σ2 σn

ysxsUBF
|xs| + 1

CBB
|xs|@|ys|

0σ

Figure 5.5: Preliminary execution of the loop

5.3 Preservation of the Invariant

Assuming that execution of the loop begins in state σ0, in which the invariant
assert P holds and whose program counter points to the unconditional branch
instruction, we show that the conditional branch instruction is reached for
the first time via the execution of the instructions ys . This is illustrated in
Figure 5.5.

Lemma 60 (Initial pattern of loop execution )

∀ σ0 σn CFS s f y z . 〈CFS , σ0 〉
s−→
f

σn ∧

pc(σ0 ) = pc(s) ∧
well formed loop CFS [s . . . f ] −→
∃σ1 σ2 . exec (CFS , σ0 ) = Some σ1 ∧

pc(σ1 ) = pc(m) ∧
〈CFS , σ1 〉

y−→
z

σ2 ∧

pc(σ2 ) = pc(f ) ∧
〈CFS , σ2 〉

s−→
f

σn

where

y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}

Proof From Lemma 53 and Lemma 54. �

As in the proof described in Section 5.2, we now consider the block
〈CFS , σ2〉

w−→
f

σn, where w = s {pc := pc(s) + 1} and pc(σ2) = pc(f),

and apply the block execution case rule. Once again this presents the two
possibilities shown in Figure 5.2
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• the Stop rule applies:

exec (CFS , σ2) = Some σn ∧ pc(σ2) = pc(f) (5.8)

• the Continue rule applies:

∃σ3. exec (CFS , σ2) = Some σ3 ∧ 〈CFS, σ3〉
w−→
f

σn ∧ pc(σ2) = pc(f)

(5.9)

In the Stop case, we prove the following lemma:

Lemma 61 (Initial, second and final states data-equal )

∀ σ0 σ1 σ2 σn CFS s f y z . well formed loop CFS [s . . . f ] ∧
pc(σ0 ) = pc(s) ∧
exec (CFS , σ0 ) = Some σ1 ∧
〈CFS , σ1 〉

y−→
z

σ2 ∧

exec (CFS , σ2 ) = Some σn ∧
pc(σ2 ) = pc(f ) −→
σ0

∼= σ1 ∧ σ1
∼= σn

where

y = s {pc := pc(s) + |xs|+ 1}
z = f {pc := pc(f )− 1}

Proof From the operational semantics of the unconditional branch instruc-
tion, we know that only the program counters of states σ0 and σ1 differ, so
σ0

∼= σ1.

From the definition of a well formed loop (Definition 31) we know that ys is
referentially transparent and so, as in Lemma 59, σ1

∼= σn. �

This then allows us to show that the invariant is preserved for the Stop case:

Lemma 62 (Invariant preserved—Stop case )

∀ σ0 σn CFS s f y z . 〈CFS , σ0 〉
s−→
f

σn ∧

exec(CFS , σ0 ) = σn

pc(σ0 ) = pc(s) ∧
well formed loop CFS [s . . . f ] −→
(assert P) σn
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Proof From Lemma 60, Lemma 61 and Lemma 51. �

We now turn to the case relating to the Continue rule. As in the proof of
Theorem 7, we reason by cases on the branch condition, which produces a
contradiction in the case where the condition is false, leaving us to consider
the case in which the branch is taken.

We again use the fact that the unconditional branch instruction will not be
reached again during the execution of this block (Lemma 53). This leaves us
to concentrate on the preservation of the invariant, assert P , by the execution
of the instructions xs@ys@[CBB ], assuming we start in a state pointing to
the start of xs and in which assert P holds.

It is obvious that, in order to prove that the preservation of assert P by one
execution of the loop body implies its preservation by multiple executions,
it will be necessary to use some form of inductive argument. This is the
approach used in the proofs of soundness of the while rule for more traditional
Hoare logics [56, 10]. These proofs are reasonably straightforward as in the
inductive definition of the language, one step of execution corresponds to one
execution of the body of the loop.

In the bytecode programming logic, however, this is not the case. The block
execution relation works at a much finer grain, i.e. that of individual bytecode
instructions, several of which may be needed to represent a single ‘higher
level’ instruction like array assignment. In addition, although the invariant
holds at the beginning and end of the body of the loop, it may or may not
hold between these points.

In standard inductive definitions of execution like those mentioned above,
this is not a problem as the body, C, of a loop many be inductively built up
from several commands C1, ..., Cn, but is viewed as a single command in its
own right. In this way we can abstract away from the finer detail and view
its execution to be viewed as a single step. In the block execution relation
however, a single step of execution is that of a single bytecode instruction,
and so we cannot use the block execution relation directly to reason about
the preservation of assert P across a loop body consisting of several bytecode
instructions.

It is clearly necessary to find a relation describing a ‘big step’ of execution
in the bytecode world. If the execution of the loop can be described in such
a manner we can then carry out a successful induction leading to the proof
of preservation of the invariant. Of course, this relation must also take into
account the fact that we must explicitly execute the ‘structure’ of the loop,
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σn

ysxs CBB
|xs|@|ys|

σ0

CBB
|xs|@|ys|xs ys

a c
b

Figure 5.6: Decomposition of loop

represented by the instructions ys@[CBB ].

5.3.1 A ‘Big Step’ Execution Relation for Loops

If we consider the section xs@ys@[CBB |xs@ys|] of a well-formed loop for
which the relation 〈CFS , σ0〉

w−→
f

σn holds, where w = s {pc := pc(s) +

1)/pc(s)], we see that it could be viewed as two separate blocks: xs and
ys@[CBB ]. The states σ0 and σn can then be seen to be members of a set of
states representing ’big steps’ of execution:

Definition 33 (Loop as series of big steps)

big step loop ≡ {(a, b) : ∃ c. 〈CFS , a〉 w−→
x

c ∧ 〈CFS , c〉 y−→
f

b}+

where

w = s {pc := pc(s) + 1 )/pc(s)]

x = s {pc := pc(s) + |xs|)/pc(s)]

y = s {pc := pc(s) + |xs|+ 1 )/pc(s)]

Even if the branch is taken back to the start of xs , the state b is outside
the block ys@[CBB |xs@ys|] and so the relation holds. This is shown in
Figure 5.6 and Figure 5.7.

As the pairs of states in this relation span the whole of the block
xs@ys@[CBB |xs@ys|] we now have a relation upon which we can perform
induction. But first we must show that if two states are in the block execution
relation they are also in the ‘big step’ relation, (Definition 33). Once again
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ys CBB
|xs@ys| ys CBB

|xs@ys| ys CBB
|xs@ys|xs xs xs

a b

Figure 5.7: Loop as transitive closure of blocks

the mismatch of step size means the proof cannot be obtained directly by

induction on 〈CFS , σ0〉
w−→ σn
f

, and we must first address this issue.

The following lemma defines the notion of ‘big’ steps of execution that start
anywhere in the instructions xs@ys and finish by executing the conditional
branch instruction at pc(f), as shown in Figure 5.8. The conditional branch
can be viewed as a ‘pivot’ instruction: after each execution of the body of the
loop, the conditional branch must be executed, resulting either in termination
of the loop, or at least one subsequent execution of the loop body.

Lemma 63 (Loop execution ‘pivots’ on conditional branch )

∀CFS s f w z σ0 σn . 〈CFS , σ0 〉
w−→
f

σn ∧

well formed loop CFS [s . . . f ] −→
(σ0 , σn) ∈

{(a, b) : exec(CFS , a) = b ∧ pc(a) = pc(f ) ∨
(∃ c. exec(CFS , c) = b ∧

pc(c) = pc(f ) ∧
〈CFS , a〉 w−→

z
c) }+

where

w = s {pc := pc(s) + 1}
z = f {pc := pc(f )− 1}

Proof By rule induction on 〈CFS, σ0〉
w−→ σn
f

. In both the Stop and Con-

tinue cases we now proceed by cases on the condition pc(σ0) = pc(f).

In the Stop case we have

exec(CFS , σ0 ) = Some σn (5.10)
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|xs@ys|
CBB

s f

xs ys 

σ σ σ

σ

0 1 2

2

Figure 5.8: Relation “pivoting” on instruction at f

If pc(σ0) = pc(f), the lefthand disjunct of our goal holds. In the case where
pc(σ0) 6= pc(f), we have a contradiction as pc(σn) is outside the block and
is only reachable from the instruction at f .

For both truth values of pc(σ0) = pc(f) in the Continue case, we use the in-
duction hypothesis, along with the standard Isabelle theorems for “unrolling”
transitive closure relations and the construction rules for the block execution
relation to show that the required result holds. �

Lemma 64 (States in block relation imply states in big step relation )

∀CFS σ0 σn s f w x y . 〈CFS , σ0 〉
w−→ σn
f

∧

well formed loop CFS [s . . . f ] −→
(σ0 , σn) ∈ {(a, b) : ∃ c. 〈CFS , a〉 w−→

l
c ∧

〈CFS , c〉 y−→
f

b}+

where

w = s {pc := pc(s) + 1}
x = s {pc := pc(s) + |xs|}
y = s {pc := pc(s) + |xs|+ 1}

Proof From Lemma 63 �

This result allows us to carry out the induction over the body of the loop
(plus structure instructions), leading us to a proof of Proposition 2:
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Theorem 8 (Invariant preserved by loop)

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn∧

well formed loop CFS [s . . . f ] ∧
P σ0 ∧
[∀ σ′

0 σ′
1 σ′

n CFS ′ w y z s ′ f ′. 〈CFS ′, σ′
0 〉

w−→
x

σ′
1 ∧

〈CFS ′, σ′
1 〉

y−→
f

σ′
n ∧

well formed loop CFS ′[s ′ . . . f ′] ∧
P σ′

0 ∧
(sequence wp ys branch cond) σ′

0 −→
P σ′

n ]

−→ P σn

where

w = s ′ {pc := pc(s ′) + 1}
x = s ′ {pc := pc(s ′) + |xs|}
y = s ′ {pc := pc(s ′) + |xs|+ 1}

Proof By induction on the Bigstep relation (Definition 33), and from Lemma
60, Lemma 61, Lemma 62, Lemma 63, and Lemma 64. �

5.4 Proof of Soundness of Loop Rule

In this section we describe the proof of soundness of the Loop Rule itself,
beginning with the proof of some necessary lemmas.

Lemma 65 (First exception is None in exception free block )

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = xs ∧
excep free xs

−→ xp0 = None
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where

σ0 = (xp0, hp0, frs0)

Proof By case analysis of the block execution relation plus the definition
of excep free. �

Lemma 66 (Exception free implies final state non-terminating)

∀ σ0 σn CFS s f . 〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = xs ∧
list all not shift frame xs ∧
excep free xs

−→ not term state σn

Proof By induction on the block execution relation, and Lemmas 4 and
65. �

When the Loop Rule is rewritten with the definition of the pre- and post-
condition relation described in Chapter 4 and simplified, it becomes a proof
of the statement

(assert P ∧ ¬ sequence wp ys branch cond ∧ not term state) σn (5.11)

under the assumptions

[∀ CFS σ0 σn s f . (〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = xs ∧ (assert P) σ0

−→ (assert P) σn ]

(5.12)

〈CFS , σ0 〉
s−→
f

σn (5.13)

CFS [s . . . f ] = [UBF |xs|+ 1 ]@[xs ]@[ys ]@[CBB |xs@ys|)] (5.14)

well formed loop [UBF |xs|+ 1 ]@[xs ]@[ys ]@[CBB |xs@ys|)] (5.15)

(assert P) σ0 (5.16)
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A proof of (¬ sequence wp ys branch cond) σn, can be obtained immediately
by Theorem 7 and Assumptions 5.13, 5.14 and 5.15. Similarly, a proof of
the third conjunct, not term state σn, can be achieved by Lemma 66 and
Assumptions 5.13, 5.14 and 5.15.

The proof of (assert P ) σn is, however, slightly more complex. We begin by
resolving with Theorem 8 (after implication introduction), as its conclusion
matches that of our current goal. After simplification, we require to prove

∀ σ′
0 σ′

1 σ′
n CFS ′ s ′ f ′ w x y y . 〈CFS ′, σ′

0 〉
w−→
x

σ′
1 ∧

〈CFS ′, σ′
1 〉

y−→
f ′

σ′
n ∧

well formed loop CFS ′[s ′ . . . f ′] ∧
(assert P) σ′

0 ∧
(sequence wp ys branch cond)σ′

0 −→
(assert P) σ′

n

(5.17)

where

w = s ′ {pc := pc(s ′) + 1}
x = s ′ {pc := pc(s ′) + |xs|}
y = s ′ {pc := pc(s ′) + |xs|+ 1}

under Assumptions 5.12, 5.13, 5.14, 5.15 and 5.16. Further simplification
transforms this into the problem of proving

(assert P) σ′
n (5.18)

under the assumptions

[∀ CFS σ0 σn s f . (〈CFS , σ0 〉
s−→
f

σn ∧

CFS [s . . . f ] = xs ∧ (assert P) σ0

−→ (assert P) σn ]

(5.19)

〈CFS , σ0 〉
s−→
f

σn (5.20)

well formed loop CFS [s . . . f ] (assert P) σ0 (5.22)

〈CFS ′, σ′
0 〉

w−→
x

σ′
1 (5.23)
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〈CFS ′, σ′
0 〉

y
z−→

f
σ′

n (5.24)

well formed loop CFS ′[s ′ . . . f ′] (5.25)

(assert P) σ′
0 (5.26)

(sequence wp ys branch cond)σ′
0 (5.27)

Working with these assumptions, we begin by proving that the invariant
holds in state σ′

1, after one execution of the loop body:

Lemma 67 (Preservation of invariant across body of loop)

∀ CFS ′ σ′
0 w x s ′ f ′. [∀ CFS σ0 σn s f . 〈CFS , σ0 〉

s−→
f

σn ∧

CFS [s . . . f ] = xs ∧ (assert P) σ

−→ (assert P) σn ] ∧
well formed loop CFS ′[s ′ . . . f ′] ∧
〈CFS ′, σ′

0 〉
w−→
x

σ′
1 ∧

(assert P) σ′
0

−→ (assert P) σ′
1

where

w = s ′ {pc := pc(s ′) + 1}
x = s ′ {pc := pc(s ′) + |xs|}

Proof From instantiation of the universally quantified variables CFS , σ0,
σn, s, f in Assumption 5.19 to CFS ′, σ′

0, σ′
1, k, l, followed by simplification.�

We now need to show that the invariant is preserved by the block
〈CFS ′, σ′

1〉
y−→
f ′

σ′
n, representing execution of the instructions

ys@[(CBB |xs@ys|)].

The definition of a well-formed loop (Definition 31) tells us that ys is simple,

and we begin by showing that this means that the block 〈CFS , σ′
1〉

y−→
f ′

σ′
n

can be split into a smaller block representing the execution of ys , followed
by the execution of the conditional branch.
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Lemma 68 (Final state reached by execution of branch)

∀ CFS ′ σ′
1 σ′

n s ′ x f ′ xs ys . 〈CFS ′, σ′
1 〉

s′
−→

f ′
σ′

n ∧

inside s ′ x σ′
1 ∧

xs 6= [ ] ∧ ys 6= [ ] ∧
CFS ′[s ′ . . . f ′] = ys@[(CBB |xs@ys|)] −→

∃σ2 . 〈CFS ′, σ′
1 〉

s′
−→

x
σ′

2 ∧

exec(CFS ′, σ′
2 ) = Some σ′

n ∧
pc(σ′

2 ) = pc(f ′)

where

x = s ′ {pc := pc(s ′) + |xs|}

Proof From the definition of simple (Definition 17), the only position out-
side ys that it is possible to reach from within ys is the instruction at f .
Therefore the final state, σ′

n, must be reached by executing the instruction
at f . We know that σ′

2 is inside the instructions ys as it is reached by ex-
ecuting the simple block xs and so its program counter must be equal to
pc(s) + length xs + 1. State σ′

1 is the state reached by executing the loop
once (as mentioned in the previous lemma) and so is inside the block xs . �

This gives us (assert P) σ′
n from Lemma 51, and we are now able to prove

the Loop Rule.

Theorem 9 (Loop Rule)

{P ∧ sequence wp ys branch cond}
xs

{P}
well formed loop [(UBF |xs| + 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P}

[(UBF |xs| + 1 )]@[xs ]@[ys ]@[(CBB |xs@ys|)]
{P ∧ ¬(sequence wp ys branch cond ∧ not term state}

Proof From Theorem 7, Theorem 8, Lemma 51, Lemma 66, Lemma 67,
and Lemma 68. �
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5.5 Conclusions

Despite the superficial similarity of the rule for loops in bytecode to the while
rule of the conventional Hoare logic, the proof of soundness for the former is
a great deal more complex than that of the latter. This is due mainly to two
points: the need to impose a structure on a ‘flat’ bytecode program, and the
granularity or step-size of our execution relations.

Conventional Hoare logics are normally based on an operational semantics
defined in terms of a small number of commands. The semantics consist of
rules for how these commands may be combined to form other commands,
and these map easily onto the corresponding rules in the Hoare logic. Ad-
ditionally, each command can be viewed as a separate entity, independent
of its context. In the bytecode world, the commands involved relate to very
small steps of execution, and there is no concept of combining commands to
create other commands. A program has no structure, it is simply a list. This
means that in order to prove more complex properties of bytecode programs,
we are compelled to impose a structure on the bytecode which, to some ex-
tent, does not really exist. Also, in order to reflect the ‘real world’ nature
of the JVM, instructions are not independent entities, but must be viewed
within the context of a classfile.

When it comes to proving properties of our imposed higher level structures
that involve induction, such as in the case of the preservation of an invariant
by a loop, we again come up against the problem of the lack of any sort of
‘combinatory’ property of bytecode commands. In the conventional logic, the
body of a loop is a command and so, using an inductively defined semantics
based on the idea of the execution of commands, we are able to induct over
the body of any loop regardless of how it is formed. In the bytecode world,
the only situation in which we could induct over the body of a loop using the
execution relations defined at the level of execution of a bytecode command,
is if the body only contained one instruction. Again, there is no notion of
two bytecode instructions combining to become another type of bytecode
instruction, they will merely form a list of two instructions. Consequently,
there is no way of proving that any property is preserved by one step of
execution of the body, as there is no relation which describes this concept.

As we have demonstrated, these problems can be overcome and indeed quite
elegant solutions found. The idea of data-equality of states deals with the
problem of executing the structure of higher level patterns explicitly. This
brings the proof more in line with that of the conventional logic, where such
‘control’ structure as if and while are explicitly present in the rules by
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nature of their formulation in terms of syntax. The definition of execution of
a block of bytecode in terms of ‘big-steps’ again puts us in a situation parallel
to the conventional world, where we are able to talk about the execution of
a ‘compound’ command in one step.

We have shown that, despite the apparent mismatch between the structured
language of the conventional Hoare logic and the flat unstructured world
of bytecode, and the considerable challenges it represents, it is possible to
reconcile the two. In addition, we have been able to produce a workable logic
that will allow proofs of simple bytecode programs including loops.



Chapter 6

Verification Example

In this chapter we present a proof involving a simple bytecode program con-
taining a loop, demonstrating the bytecode programming logic in use. We
also discuss why, while is would be possible to prove that the array bounds
checks for another small program could be eliminated, it is not currently
practical to do so.

6.1 While Program

This section details a proof involving the small loop program from Chapter 4:

public class SimpleWhile {

public static void main(String args[])

{

int i=0;

while (i<5)

{ i++; }

}

}

with corresponding bytecode

0 bipush 0

1 istore 1

2 goto 8

143
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5 iinc 1 1

8 iload 1

9 bipush 5

10 if_icmplt 5

13 return

We wish to prove that, if execution terminates, the value stored in variable i
is 5. In terms of the bytecode program, we want to show that the final value
in local variable 1 (written loc ! 1) is equal to 5. We omit the return in-
struction as the bytecode logic currently does not allow method call or return.

Proposition 4 (Proof of a small program with loop)

{λ σ. (let (stk , loc, cn,ml , pc) = hd (snd(snd σ)) in

1 < length loc ∧ xp = None ∧ frs 6= [ ])}

[LAS bipush 0, LAS IAstore 1,

UBF (Goto fwd 2), LAS (Iinc 1 1), LAS (iload 1),

LAS (Bipush 5), CBB (Ificmplt bwd 3)]

{λ σ. (let (stk , loc, cn,ml , pc) = hd (snd(snd σ)) in

1 < length loc ∧ (loc ! 1) = 5)}

We begin by considering the part of the program containing the loop:

2 goto 8

5 iinc 1 1

8 iload 1

9 bipush 5

10 if_icmplt 5

We take the loop invariant to be

λ σ. (let (stk , loc, cn,ml , pc) = hd(snd(snd σ) in

1 < length loc ∧ (loc ! 1) ≤ 5)
(6.1)

and want to show that this is preserved across the body of the loop. The
term 1 < length loc is included because the local variable are represented in
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the operational semantics as a list—with indices 0, 1, 2, . . .—but the Java
compiler starts indexing the local variables from 1. This means that, in order
for us to be able to carry out proofs on the list of local variables in Isabelle,
we must know that the length of the list is at least one greater than the
highest indexed variable we refer to.

The loop guard is

sequence wp [ LAS (iload 1), LAS (Bipush 5)]

(λ σ. let (stk , loc, cn,ml , pc) = hd (snd(snd σ)) in

(hd(tl stk)) < hd stk))))

(6.2)

and we want to show that this is false on exit from the loop.

We begin by calculating the sequence weakest precondition (Definition 30)
of the instructions [ LAS (iload 1), LAS (Bipush 5)] which set up the stack
for the conditional branch.

Lemma 69 (Example calculation of swp of list)

∀ σ. not term state σ −→
[(sequence wp [ LAS (iload 1), LAS (Bipush 5)]

(λ σ. let (stk , loc, cn,ml , pc) = hd (snd(snd σ)) in

(hd(tl stk)) < hd stk))) σ

≡
(λ σ. let (stk , loc, cn,ml , pc) = hd (snd(snd σ)) in (loc ! 1 ) < 5 ) σ]

(6.3)

Proof By Lemma 43, Lemma 49, and lemmas for weakest precondition of
iload and bipush. �

We now show that execution of the body of the loop preserves the invariant,
as required by the loop rule:

Lemma 70 (Loop body preserves invariant)

{λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc!1 ) ≤ 5 ∧ (loc!1 ) < 5 )}

[LAS (Iinc 1 1 )]

{λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc!1 ) ≤ 5 )}

(6.4)
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Proof By the weakest precondition of the Iinc instruction, and simplifica-
tion. �

These lemmas now allow us to prove the following lemma about the loop
section of the program

Lemma 71 (Proof of correctness—loop section)

{(λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc! 1 ) ≤ 5 ∧ (loc ! 1 ) < 5}

[UBF (Goto fwd 2), LAS (Iinc 1 1), LAS (iload 1),

LAS (Bipush 5), CBB (Ificmplt bwd 3)]

{(λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc! 1 ) ≤ 5}

Proof By Lemma 70 and the Theorem 9 (Loop Rule). �

We are also able to prove that, on termination of the loop, the desired post-
condition holds.

Lemma 72 (Invariant and negation of guard implies postcondition)

∀σ. (λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc! 1 ) ≤ 5 ∧ ¬ (loc ! 1 ) < 5

∧ not term state σ)) σ

=⇒ (λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc!1 ) = 5 )) σ

Proof By Lemma 28 (Postcondition Weakening) and simplification. �

We now return to the first section of the program:

0 bipush 0

1 istore 1
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and show that, assuming the desired precondition, execution of these instruc-
tions results in the loop invariant

Lemma 73 (Precondition leads to invariant)

{λ σ. 1 < length loc ∧ xp = None ∧ (frames (σ)) 6= [ ]}
(let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

[LAS bipush 0, LAS IAstore 1]

{(λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc! 1 ) ≤ 5 ))}

Proof By Theorem 4 (Sequencing Rule) and lemmas for the weakest pre-
conditions of the instructions bipush and IAstore. �

We are now able to prove Proposition 4:

Theorem 10 (Proof of simple incrementation while loop program)

{λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ xp = None ∧ (frames (σ)) 6= [ ])

[LAS bipush 0, LAS IAstore 1, UBF (Goto fwd 2), LAS (Iinc 1 1), LAS (iload 1),

LAS (Bipush 5), CBB (Ificmplt bwd 3)]

{λ σ. (let (stk , loc, cn,ml , pc) = hd (frames (σ)) in

1 < length loc ∧ (loc ! 1) = 5)}

Proof By the Sequencing Rule (Theorem 4), Lemma 72 and Lemma 73. �

6.2 Array Bounds Elimination

After the proof of a small program containing a loop, our intention was to
prove that it was safe to eliminate the array bounds checks on a program
containing a loop which updated an array:
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public class Arraybounds {

public static void main(String args[]) {

int i=0;

int myarray[] = new int[5];

while (i< 5) {

myarray[i] = 2;

i++;

}

}

}

with bytecode

0 iconst_0

1 istore_1

2 iconst_5

3 newarray int

5 astore_2

6 goto 16

9 aload_2

10 iload_1

11 iconst_2

12 iastore

13 iinc 1 1

16 iload_1

17 iconst_5

18 if_icmplt 9

21 return

Our aim is to prove that, immediately before an array update operation the
array address is non-null and the index is within bounds. However, the array
update instruction is in the middle of the body of the loop. As we can only
say with certainty that the loop invariant holds at the beginning and end
of the loop body, we cannot ensure that a loop invariant that included our
desired property will hold just before the array update instruction.

The ideal solution to this problem would be to introduce some kind of as-
sertion statements to the logic. These would allow us to state that certain
properties hold at various intermediate points in the code. But this would
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entail a fairly major addition to the logic, and is therefore included in the
“Further Work” section of Chapter 7.

A more ad hoc solution would be to alter the bytecode of the program slightly
so that the array update instruction appeared at the beginning of the loop
body, where the loop invariant would hold.

0 iconst_0

1 istore_1

2 iconst_5

3 newarray int

5 astore_2

6 aload_2

7 iload_1

8 iconst_2

9 goto 16

10 aload_2

11 iload_1

12 iconst_2

13 iastore

14 iinc 1 1

16 iload_1

17 iconst_5

18 if_icmplt 9

21 return

But while this would produce a program that our current programming logic
could deal with, it seems to defeat the purpose of our aim of smaller, more
efficient bytecode programs as the “provable” bytecode program is three in-
structions longer than the original program.

In addition to this, the proof involving the smaller loop program of seven
instructions is in the region of 400 lines long. As the longer proof involves
a program containing almost three times as many instructions, it is likely to
be around 1,200 lines long.

Therefore, while it would be feasible to carry out an array bounds elimination
with the logic in its current state, it can be argued that it is not really
reasonable. Rendering such proofs managable in practice is likely to require
two features. Firstly, the addition of assertion statements to the logic to
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avoid the necessity of reordering bytecode instructions, and secondly, a tactic
capable of taking as arguments a list of instructions, a precondition, and a
postcondition and carrying out the proof using the rules of the programming
logic. A description of such a tactic can be found in [16].

6.3 Conclusions

Although we have not successfully managed to prove a property more related
to JIT optimization, the above proof demonstrates that we have been suc-
cessful in constructing a framework in which it is possible to prove properties
of bytecode programs. With the addition of the features discussed in Section
7.2—most of them already documented in other work— it would be possible
to prove many properties necessary for JIT optimization.



Chapter 7

Conclusions

Our aim was to develop a way of proving properties of bytecode programs
that would allow JIT compilers to make optimizations not currently possible.

In chapter 3 we give the definitions of a number of relations for the execution
of bytecode programs, and describe the proof of some related lemmas and
theorems. The concept of data-equality is introduced as a method of com-
paring the parts of two JVM states not related to position within a particular
classfile.

These formalized concepts form the basis for the subsequent development of
several rules constituting a programming logic for bytecode programs. The
derivation of these rules is presented in Chapter 4, and the idea of data-
equality is used again, this time to overcome the problems inherent in having
to execute the structure of loops and conditional sequences explicitly.

In chapter 5 we present a proof of the soundness of our proposed rule for
loops, contrasting its complexity with that of the same proof in conventional
Hoare logics.

Finally, in chapter 6 we present a proof of a simple bytecode program con-
taining a loop, thereby demonstrating the use of our programming logic.

151
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7.1 Bytecode Proof and Mechanized Reason-

ing

In this section we discuss our experiences of the difficulties inherent in car-
rying out proof at the level of bytecode instructions, along with the benefits
and disadvantages of using a mechanized proof tool.

The use of a mechanized proof tool is central to our results. It has the benefit
of enabling us to keep track of very complex proofs involving many defini-
tions. Additionally, as mentioned before, it provides an additional degree of
confidence in the validity of these proofs. The Isabelle system was considered
particularly suitable for our work as it facilitates the definition of logics and
subsequent proofs involving them. In the course of the work, however, we
encountered several difficulties which offset these advantages.

7.1.1 Size and Complexity of Proofs

As previously discussed, bytecode programs lack the sort of syntactic struc-
ture present in the higher level languages for which Hoare logics are more
usually defined. This means that rather than recognising, for example, the
keyword while and applying the relevant rule, we must identify ‘structural
instructions’ within a bytecode pattern, check that they conform to certain
constraints, and explicitly execute them. This results in a great deal of proof
in addition to that necessary in the conventional logics (c.f. Chapter 5).

Possibly the main difficulty we encountered in the course of this work was the
sheer length and complexity of the proofs involved. Although the concepts
behind the proofs can be communicated in a fairly high-level way to human
beings—as we hope we have demonstrated in the preceding chapters—this
approach cannot be applied to the Isabelle definitions and proof scripts. The
JVM world is very detailed; it contains a great deal of information and the
Isabelle model must reflect this. It means, however, that there can be no
‘glossing over’ of the details, and every inference—however small—must be
spelled out.

The proofs of the various theorems in this report each run to several hundred
lines of code, not including the necessary lemmas. The files related to the
soundness of the while rule contain in the region of 10,000 lines of code. The
complete count for the whole logic is around 22,000 lines. It is likely that
this could be reduced to some extent by packaging repeated patterns of proof
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as tactics, or by more effective use of the automatic tactics. It gives an idea,
however of the amount of detail involved in the proofs.

One feature that would be invaluable with proofs of this length would be the
ability to save only the successful commands in a proof session. The basic
Isabelle interface relies on the user remembering to note down every success-
ful command—and remove every unsuccessful command—used to achieve a
proof in a text editor. This is reasonable with smaller proofs, but in those
running to several hundred lines it is all too easy to make mistakes. Un-
fortunately even one instruction missed out or left in unintentionally may
necessitate running through the entire proof in small steps in order to iden-
tify the error.

Fortunately, Proof General [7], the most recently available interface for use
with Isabelle, has a mechanism for “locking” commands in a text editor as
they are successfully executed by the prover. It is our opinon that improved
user interfaces to proof tools will become essential as proofs get larger and
more complex in order to deal with real world systems (c.f. the ESC and
LOOP projects). Certainly it is the case that no team of software engineers
would attempt to carry out sizeable projects with only a compiler and a text
editor.

7.1.2 Proofs Involving Lists

Another drawback to the structureless form of bytecode programs is the ne-
cessity of dealing with a large number of proofs involving lists. Normally this
would not be a problem: list properties can usually be proved by induction,
and the Isabelle distribution already contains many lemmas about lists.

Unfortunately the lists of instructions we are interested in are often not lists
in their own right as such, but slices of a larger list (Definition 6). As we
are, in a sense, coming at the list from both ends we cannot use induction:
if we induct on either the start or end position we change the length of our
list; if we try to induct on the slice itself we upset the relationship between
the start and end points. This means that we must rely on rewriting with
the various lemmas for take and drop, which can result in some quite tricky
proofs.
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7.1.3 Automatic Tactics

The fact that instructions are not viewed as independent entities, but rather
must be extracted from a set of classfiles and a state, means that a lot of
information is contained within the assumptions of each proof. The block
execution relation involves two states each consisting of three elements, a
set of classfiles, two class name identifiers, two method identifiers, and two
program counter values. So an assumption or definition involving quantifica-
tion over these variables requires thirteen instantiations. Often there are too
many possibilities for Isabelle’s resolution tactics to find these instantiations
automatically, so each variable must be instantiated by hand.

The large number of assumptions in many of the proofs also frequently con-
fuses the automatic tactics. It is often the case that the simplifier will get
nowhere with a particular goal if it contains many assumptions not pertinent
to the desired conclusion. But if the relevant assumptions are extracted and
used in the goal of a separate lemma the tactics succeed almost immediately.

This may well be a problem that is solved in more recent versions of Isabelle;
in particular the rewriting of asm_full_simp_tac so that results do not
depend on the order in which the assumptions appear might well have a
significant effect on this problem. Unfortunately, one of the more recent
versions of Isabelle made significant changes which would have necessitated
changes in Pusch’s formalisation of the semantics, and consequently we made
the decision to stay with our current version of the prover (Isabelle 99) despite
the improved features of newer versions.

The size and complexity of our proofs pushed the computing power available
to us to its limits. The memory requirements of our proofs often exceeded
the 256Mb of RAM available to us, causing Isabelle to crash.

These difficulties call into question the wisdom of attempting proofs of byte-
code programs. But, as mentioned before, despite its drawbacks, the stack
based virtual machine appears to be here to stay, at least for the foreseeable
future. Therefore the ability to carry out proof at this level has definite value.

7.2 Further Work

Having developed a simple programming logic for bytecode programs, there
are a number of ways in which it could be extended. The most obvious first
step is the extension of the operational semantics to include all bytecode
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instructions available in the JVM, rather than the subset currently treated.
One possibility would be to transfer the underlying formalization on which
our work is based to the µJava theories [39], which include a larger set of
instructions and deal with exception handling.

In terms of the bytecode execution relations, the main drawback is the restric-
tion that states must be all in the same method of a particular class. This
means that it is impossible to work with bytecode programs that include
method invocation or return, which is clearly not realistic. One possible way
of lifting this restriction might be to in effect inline the code of the method
being called (Section 1.2), which would result in a larger block that included
the code of all methods called.

Alternatively, as the frame of the method in which we start a block remains
on the frame stack when a new method is called, we could require that rather
than all classes and methods being equal across a path of execution that there
exists a chain through various method calls, returning to the calling method.
That is

in frame stack s (xp, hp, fr : frs) ≡ same method s (xp, hp, fr) ∨
in frame stack s (xp, hp, frs)

same method path s σ0 σn f ≡ in frame stack s σ0 ∧
same method s σn

The fact that our programming logic relies on the code that is being executed
never throwing exceptions is again unrealistic in a real world situation. Con-
sequently, another useful extension would involve modelling Java’s exception
handling method in the operational semantics, and altering the programming
logic in such a way that it allows us to reason about programs that terminate
abruptly as a result of exceptions being raised. The logic described by Jacobs
in [21] has this ability.

Finally, it would be useful to add assertion statements to the programming
logic. This would allow the proof of assertions at intermediate points in a
program, rather than just the start and finish. This would facilitate the proof
of more complex loop programs, as discussed Section 6.2.

In terms of incorporating bytecode proof into a working system, it would
obviously be unreasonable to invoke Isabelle at runtime. Also, any system
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requiring much extra work from users is unlikely to be popular, and so a
model similar to that used by ESC where user input to the proof process is
minimal and viewed as a kind of “advanced typechecker” would be preferable.

Another possibility would be to build on either the Annotated JIT project
where bytecode programs arrive with optimizing annotations than can be
used by an annotation aware JIT compiler. Obviously this raises the question
of whether or not the annotations can be trusted. Therefore it seems likely
that some sort of digital signature might be required here, or possibly a
proof checker like that used in proof carrying code systems. Alternatively, it
might be possible to prove that for certain patterns of bytecode particular
optimizations are safe, e.g. a loop of this form including an array operation
can have the array bounds check eliminated. These ’proved patterns’ could
be stored as a library against which incoming programs could be compared
and action taken by the JIT accordingly.

7.3 Contribution

We have demonstrated that it is possible to define a programming logic for
bytecode programs that allows the proof of bytecode programs containing
loops. The instructions available for use in the programs are currently lim-
ited, but the basis is in place for extension.

The development of this logic was not by any means straightforward. It
required the definition of several execution relations for bytecode programs,
each necessary for proofs of different aspects of execution. In addition, the
flat, unstructured nature of bytecode programs presents a number of dif-
ficulties, particularly when reasoning about loops. But there are, as we
demonstrate, some quite elegant solutions to these problems.

While it would be possible to use the logic in its current state to prove
properties that would allow the speeding up of bytecode programs, we believe
that such proofs would be of an unreasonable size and complexity to carry
out in practice. The addition of assertion statements to the logic and the
creation of an Isabelle tactic capable of automating such proofs would be
necessary to render such proofs managable.
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7.4 Concluding Remarks

In the course of this work we have demonstrated that it is possible to carry out
proof at the level of Java bytecode instructions. In order to reach this state
we have been forced to consider and find solutions for some hard problems,
involving some long and complex proofs which pushed the bounds of what
our mechanized proof tool was able to handle. The resulting programming
logic, while not complete, provides a firm basis that with some extension
should allow the proofs of bytecode programs necessary to allow several JIT
optimizations.
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Appendix A

Extension of LoadAndStore.thy

LoadAndStore = Runtime +

(** load and store instructions transfer values between local variables

and operand stack **)

datatype load_and_store =

IAload ins_type nat ("_ load _" 30)

(* load int/ref from local variable *)

| IAstore ins_type nat ("_ store _" 30)

(* store int into/ref local variable *)

| Bipush int

(* push int *)

| Aconst_null

(* push null *)

| Iinc nat int

(*increment local var by int *)

| Iadd

(*add two integers at top of stack *)

consts

exec_las :: "[load_and_store,opstack,locvars,p_count] =>

(opstack * locvars * p_count)"

primrec

"exec_las (X load idx) stk vars pc =

159
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((vars ! idx) # stk , vars , pc+1)"

"exec_las (X store idx) stk vars pc =

(tl stk , vars[idx:=hd stk] , pc+1)"

"exec_las (Bipush ival) stk vars pc =

(Intg ival # stk , vars , pc+1)"

"exec_las Aconst_null stk vars pc =

(Null # stk , vars , pc+1)"

"exec_las (Iinc idx ival) stk vars pc =

(stk, vars[idx:= (Intg(get_Intg(vars ! idx) + ival))], pc+1)"

"exec_las Iadd stk vars pc =

(Intg ((get_Intg (hd stk)) +

(get_Intg (hd(tl stk)))) # (tl(tl stk)) , vars , pc+1)"

end
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Isabelle .thy Files

B.1 ListSlice.thy

ListSlice = HOL + List + Nat +

(* mid m n xs consists of n elements of xs from position m
onwards. Precondition is that m + n <= length xs. *)

constdefs mid :: "nat => nat => ’a list => ’a list"
"mid m n xs == take n (drop m xs)"

(* fromto s f xs consists of the elements of xs from position s to
position f inclusive. Precondition is that s < length xs &
f < length xs *)

constdefs fromto :: "nat => nat => ’a list => ’a list"
"fromto s f xs == mid s (Suc (f - s)) xs"

end

B.2 State parts.thy

State_parts =HOL + Exec +

161
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types

boundary = "cname*(mname*param_desc)*p_count"

minframe = "opstack *locvars *p_count"

minstate = "(xcpt option *minframe)"

constdefs

get_stk :: frame => opstack
"get_stk == %(stk,loc,cn,ml,pc). stk"

get_loc :: "frame => locvars"
"get_loc == %(stk,loc,cn,ml,pc). loc"

get_cn :: "boundary => cname"
"get_cn == %(cn,ml,pc). cn"

cn_of:: "boundary => cname"
"cn_of strt == let (cn,ml,pc) = strt in cn"

st_cn_of:: "frame=> cname"
"st_cn_of st == let (stk, loc, cn,ml,pc) = st in cn"

stk_of :: "frame => opstack"
"stk_of st == let (stk, loc, cn,ml,pc) = st in stk"

loc_of :: "frame => locvars"
"loc_of st == let (stk, loc, cn,ml,pc) = st in loc"

st_pc_of :: "frame => p_count"
"st_pc_of st == let (stk, loc, cn,ml,pc) = st in pc"

get_ml :: "boundary => method_loc"
"get_ml == %(cn,ml,pc). ml"

ml_of :: "boundary => method_loc"
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"ml_of s == let (cn,ml,pc) = s in ml"

st_ml_of :: "frame => method_loc"
"st_ml_of st == let (stk,loc, cn,ml,pc) = st in ml"

get_pc :: "frame => p_count"
"get_pc == %(stk,loc,cn,ml,pc). pc"

pc_equals :: "[frame, p_count] => bool"
"pc_equals frs pca == let (stk,loc,cn,ml ,pc) = frs in

pc = pca"

pc_of :: "boundary => p_count"
"pc_of == %(cn,ml,pc). pc"

same_method_bounds :: "[boundary, boundary] => bool"
"same_method_bounds s f == (cn_of s = cn_of f) &

(ml_of s = ml_of f)"

same_method_frs :: "[boundary, frame,frame, boundary] => bool"
"same_method_frs s a b f == ((st_cn_of a = st_cn_of b) &

(st_cn_of a = cn_of s) & (st_cn_of a = cn_of f)) &
((st_ml_of a = st_ml_of b) & (st_ml_of a = ml_of s) &
(st_ml_of a = ml_of f))"

inlist:: "[instr list, minframe] => bool"
"inlist xs a == let (stk,loc,pc) = a in

0 <= pc & pc <= ((length xs) - 1)"

outlist ::"[instr list, minframe] => bool"
"outlist xs a == let (stk,loc,pc) = a in

(length xs) <= pc"

third_of :: "(xcpt option * heap *frame list) =>frame list"
"third_of == % (xp, hp, frs). frs"

inside :: "[frame list, boundary , boundary] => bool"
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"inside frs s f == let (stk,loc,cn,ml,pc) = hd frs in

(pc_of s <= pc & pc <= pc_of f)"

outside :: "[frame list, boundary, boundary] => bool"
"outside frs s f == let (stk,loc,cn,ml,pc) = hd frs in

(pc < pc_of s | pc_of f < pc)"

constdefs

getOSarg1 :: "frame => opstack"
"getOSarg1 == %(stk,loc,cn,ml,pc). stk"

getOSarg2 :: "frame => p_count"
"getOSarg2 == %(stk,loc,cn,ml,pc). pc"

getOSarg3 :: "frame => cname"
"getOSarg3 == %(stk,loc,cn,ml,pc). cn"

getOSarg4 :: "frame => method_loc"
"getOSarg4 == %(stk,loc,cn,ml,pc). ml"

putOSargs ::"[frame,(opstack*p_count)] => frame"
"putOSargs == %(stk’, loc’, cn’,ml’,pc’) (stk, pc).

(stk, loc’,cn’,ml’,pc)"

getLASarg1 :: "frame => opstack"
"getLASarg1 == %(stk,loc,cn,ml,pc). stk"

getLASarg2 :: "frame => locvars"
"getLASarg2 == %(stk,loc,cn,ml,pc). loc"

getLASarg3 :: "frame => p_count"
"getLASarg3 == %(stk,loc,cn,ml,pc). pc"

putLASargs ::"[frame,(opstack*locvars*p_count)] => frame"
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"putLASargs == %(stk’, loc’, cn’,ml’,pc’) (stk,loc, pc).
(stk, loc,cn’,ml’,pc)"

get_p_count :: "frame => p_count"
"get_p_count == %(stk,loc,cn,ml,pc). pc"

consts
execCFSindep::"( instr list*minstate) => (minstate option)"

recdef execCFSindep "{}"

"execCFSindep ([], (xp, frs)) = None"

"execCFSindep (xs, (None,(stk,loc,pc))) = (case (xs!pc) of
LAS ins => (let (stk’,loc’,pc’) = exec_las ins stk loc pc
in
Some (None,(stk’,loc’,pc’)))
|CO ins => None
|MO ins => None
|MA ins => None
|CH ins => None
|MI ins => None
|MR ins => None
|OS ins => (let (stk’,pc’) = exec_os ins stk pc
in
Some (None,(stk’,loc,pc’)))
|CBF ins =>(let (stk’,pc’) = exec_cb_fwd ins stk pc
in

Some (None,(stk’,loc,pc’)))
|CBB ins =>(let (stk’,pc’) = exec_cb_bwd ins stk pc
in

Some (None,(stk’,loc,pc’)))
|UBF ins =>(let (pc’) = exec_ub_fwd ins pc
in

Some (None,(stk,loc,pc’)))
|UBB ins =>(let (pc’) = exec_ub_bwd ins pc
in

Some (None,(stk,loc,pc’)))) "
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"execCFSindep (xs, (Some xp, f)) = None"

end

B.3 Exec block0.thy

(*****************************************************************)
(* Relation equivalent to the block execution relation, but with *)
(* separate listing of head and tail of frame list *)
(* Used to produce big step relation for loops *)
(*****************************************************************)

Exec_block0 = HOL + Set + List + Exec+ State_parts + ListSlice +

consts exec_block0 ::"(bytecode * (cname*(mname*param_desc) *p_count) *
(cname*(mname*param_desc)*p_count) * (xcpt option * heap *(opstack *
locvars *cname *(mname*param_desc)*p_count))*(xcpt option * heap *
(opstack *locvars *cname *(mname*param_desc)*p_count))*(opstack *
locvars *cname *(mname*param_desc) *p_count)list*(opstack *locvars *
cname *(mname*param_desc) *p_count)list) set"

inductive exec_block0

intrs

(*********** End of execution of a block - ************)
(*********** pc’ outside block************)

Stop " [|(exec(CFS, (xp,hp,(stk,loc,cn,(mn,pd),pc)#frs)) = \
\ Some (xp’,hp’,(stk’,loc’,cn’,(mn’,pd’),pc’)#frs’));\
\ inside ((stk,loc,cn,(mn,pd),pc)#frs) (cnS,(mnS,pdS),pcS)
(cnF, (mnF,pdF),pcF);\
\ pcF < (length(get_code CFS cnS (mnS, pdS))); \
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\ same_method_frs (cnS,(mnS,pdS),pcS) ((stk,loc,cn,(mn,pd),pc))
((stk’,loc’,cn’,(mn’,pd’),pc’)) (cnF, (mnF,pdF),pcF);\
\ outside ((stk’,loc’,cn’,(mn’,pd’),pc’)#frs’)
(cnS,(mnS,pdS),pcS) (cnF, (mnF,pdF),pcF)|]\
\ ==> (CFS, (cnS,(mnS,pdS),pcS), (cnF, (mnF,pdF),pcF),
(xp, hp, (stk, loc, cn, (mn,pd), pc)),
(xp’, hp’,( stk’, loc’, cn’, (mn’,pd’), pc’)), frs, frs’):exec_block0"

(*********** Continuation of execution of a block -‘***********)
(*********** pc’’ inside block ***********)

Continue "[|(exec(CFS, (xp,hp,(stk,loc,cn,(mn,pd),pc)#frs)) =
Some (xp’’,hp’’,(stk’’,loc’’,cn’’,(mn’’,pd’’),pc’’)#frs’’));\
\inside ((stk,loc,cn,(mn,pd),pc)#frs) (cnS,(mnS,pdS),pcS)
(cnF, (mnF,pdF),pcF);\
\ pcF < (length(get_code CFS cnS (mnS, pdS)));\
\ same_method_frs (cnS,(mnS,pdS),pcS) ((stk,loc,cn,(mn,pd),pc))
((stk’’,loc’’,cn’’,(mn’’,pd’’),pc’’)) (cnF, (mnF,pdF),pcF);\
\ (CFS, (cnS,(mnS,pdS),pcS), (cnF,(mnF,pdF),pcF),
(xp’’,hp’’,(stk’’,loc’’,cn’’,(mn’’,pd’’),pc’’)) ,
(xp’,hp’,(stk’,loc’,cn’,(mn’,pd’),pc’)), frs’’, frs’):exec_block0 |]\
\ ==> (CFS, (cnS,(mnS,pdS),(pcS)), (cnF,(mnF,pdF) ,pcF),
(xp,hp,(stk,loc,cn,(mn,pd),pc)) ,
(xp’,hp’,(stk’,loc’,cn’,(mn’,pd’),pc’)), frs, frs’):exec_block0"

end

B.4 Exec block3.thy

(********************************************************)
(* Block execution relation *)
(********************************************************)

Exec_block3 = Exec + Exec_block0 +

consts exec_block3 ::"(bytecode * boundary *boundary *
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jvm_state * jvm_state) set"

syntax "@exec_block3" :: [ bytecode, boundary, boundary,
jvm_state , jvm_state] => bool ("_ _ _ |- _ -block-> _" )

translations
"CFS s f |- a -block-> b" == "(CFS, s,f,a,b):exec_block3"

inductive exec_block3

intrs

Stop "[| exec (CFS, a) = Some b ;\
\ inside (third_of a) s f; \
\ (pc_of f) < length (get_code CFS (cn_of s) (ml_of s));\
\ same_method_frs s (hd(snd(snd a))) ( hd(snd(snd b))) f ;\
\ outside (third_of b) s f|] \
\ ==> CFS s f |- a -block-> b"

Continue "[| exec (CFS, a) = Some c ;\
\ inside (third_of a) s f;\
\ (pc_of f) < length (get_code CFS (cn_of s) (ml_of s));\
\ same_method_frs s (hd(snd(snd a))) (hd(snd(snd c))) f ;\
\ CFS s f |- c -block-> b|]\
\ ==> CFS s f |- a -block-> b"

end

B.5 Block pairs.thy

(********************************************************)
(* Execution path relation *)
(********************************************************)

Block_pairs = HOL + Exec + Assign + State_parts + Exec_block3
+ Exec_block_conds +
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constdefs

narrow_boundary1 :: "boundary => boundary"
"narrow_boundary1 b == let (cn,ml,pc) = b in

(cn,ml,(pc-1))"

constdefs

block_pairs :: "[bytecode, boundary, boundary,(xcpt option *
heap *frame list), (xcpt option * heap *frame list)] => bool"
("_ _ _ |- _ -execute-> _")

"CFS S F |- s -execute-> t ==
(s,t) : {(s,t). exec (CFS, s) = Some t
& same_method_frs S (hd(snd(snd s))) ( hd(snd(snd t))) F &
inside (third_of s) S F }"

block_pairs_trancl :: "[bytecode, boundary, boundary,(xcpt option *
heap *frame list), (xcpt option * heap *frame list)] => bool"
("_ _ _ |- _ -execute^+-> _")

"CFS S F |- s -execute^+-> t ==
(s,t) : {(s,t). exec (CFS, s) = Some t &
same_method_frs S (hd(snd(snd s))) ( hd(snd(snd t))) F
& inside (third_of s) S F }^+"

big_step :: "[ bytecode, boundary, boundary,(xcpt option *
heap *frame list), (xcpt option * heap *frame list)] => bool"
("_ _ _ |- _ -bigstep-> _")

"CFS S F |- a -bigstep-> b ==
(a,b): {(a,b).((pc_equals (hd(third_of a)) (pc_of F) &
exec(CFS, a) = Some b) | (EX c. ((pc_equals (hd(third_of c)) (pc_of F) )
& exec (CFS,c) = Some b &
(CFS S (narrow_boundary1 F) |- a -block-> c)))) }"

(*** series of big steps - but all within s to f **********)

big_step_trancl :: "[ bytecode, boundary, boundary,(xcpt option *
heap *frame list), (xcpt option * heap *frame list)] => bool"
("_ _ _ |- _ -bigstep^+-> _")
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"CFS S F |- a -bigstep^+-> b ==
(a,b): {(a,b).((pc_equals (hd(third_of a)) (pc_of F) &
exec(CFS, a) = Some b) | ( EX c. ((pc_equals (hd(third_of c)) (pc_of F) )
& exec (CFS,c) = Some b & (CFS S(narrow_boundary1 F) |- a -block-> c))))}^+"

end

B.6 Block pairs conds.thy

Block_pairs_conds = Block_pairs +

constdefs

excep_free :: "[instr list] => bool"

"excep_free (ys) == (ALL CFS xp1 hp1 frs1 xp’ hp’ frs’ cn1 ml1 cn’
ml’ pcS pcF.(( ys = (fromto pcS pcF (get_code CFS cn1 ml1))

& (CFS (cn1,(ml1),pcS) (cn’,(ml’),pcF)
|- (xp1,hp1,frs1) -execute^+-> (xp’,hp’,frs’))) -->

xp1 = None & xp’ = None))"

excep_free_instr :: "[instr ] => bool"

"excep_free_instr (y) == (ALL xp stk loc pc xp’ stk’ loc’ pc’ xs .
((xs!pc = y) & (execCFSindep (xs,(xp,stk,loc,pc)) =
Some (xp’,stk’,loc’,pc’)) --> xp = None & xp’ = None))"

well_formed_loop:: "[instr list]=> bool"
"well_formed_loop zs == ( ALL CFS cnS mlS cnF mlF pcS pcF xs ys.
( zs = (UBF (Goto_fwd (Suc (length xs)))#xs @( ys @
[CBB (Ificmplt_bwd (length xs + length ys))])) -->
( pcS < pcF & get_code CFS cnS (mlS) ! pcS =
UBF (Goto_fwd (length (xs) + 1))
& excep_free ys & list_all excep_free_instr ys &
(xs = fromto (pcS + 1) (pcS + (length xs)) (get_code CFS cnS (mlS))) &
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(ys = fromto (pcS + length xs + 1) ( pcF-1) (get_code CFS cnS (mlS))) &
(simple_block xs) & simple_block ys & ys ~= [] &xs~=[] &
get_code CFS cnS (mlS) ! pcF = CBB (Ificmplt_bwd (length (xs @ ys))) &
(pcF = pcS + length (xs @ ys) + 1) &(simple_block ys) &
ref_trans_2 ys & linear ys &
correct_init_loop_state (cnS,(mlS), pcS) (cnF,(mlF),pcF) )))"

end

B.7 Exec block conds.thy

Exec_block_conds = State_parts + ListSlice + Exec_block3 +

constdefs

is_branch :: "instr => bool"
"is_branch instr == case instr of

LAS ins => False
| CO ins => False
| MO ins => False
| MA ins => False
| CH ins => False
| MI ins => False
| MR ins => False
| OS ins => False
| CBF ins => True

| CBB ins => True
| UBF ins => True

| UBB ins => True"

(****** instructions which only alter stk, pc, and xp************)
consts
is_load ::"load_and_store => bool"
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primrec

"is_load (X load idx) = True"

"is_load (X store idx) = False "

"is_load (Bipush ival) = True"

"is_load Aconst_null = True"

"is_load (Iinc idx ival) = False"

"is_load Iadd = True"

constdefs
simple_stk_op :: "instr => bool"
"simple_stk_op instr == case instr of

LAS ins => (is_load ins)
| CO ins => False
| MO ins => False
| MA ins => False
| CH ins => True
| MI ins => True
| MR ins => False
| OS ins => True
| CBF ins =>False

| CBB ins => False
| UBF ins => False

| UBB ins => False"

constdefs
stk_op :: "instr => bool"
"stk_op instr == case instr of

LAS ins => (is_load ins)
| CO ins => False
| MO ins => False
| MA ins => False
| CH ins => True
| MI ins => True
| MR ins => False
| OS ins => True
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| CBF ins => True
| CBB ins => True

| UBF ins => True
| UBB ins => True"

consts
all_stk_ops :: "instr list => bool"

recdef all_stk_ops "measure (% xs. length xs)"

"all_stk_ops [] = True"

"all_stk_ops (x#xs) = ((stk_op x) & (all_stk_ops xs))"

consts
get_cbf_branch :: "cond_branch_fwd => nat"

primrec

"get_cbf_branch (Ifnull_fwd i) = i"

"get_cbf_branch ( Ifiacmpeq_fwd X i) = i"

"get_cbf_branch ( Ificmplt_fwd i) = i"

consts
get_cbb_branch :: "cond_branch_bwd => nat"

primrec

"get_cbb_branch (Ifnull_bwd i) = i"

"get_cbb_branch ( Ifiacmpeq_bwd X i) = i"

"get_cbb_branch ( Ificmplt_bwd i) = i"

consts
get_ubf_branch :: "uncond_branch_fwd => nat"

primrec
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"get_ubf_branch (Goto_fwd i) = i"

consts
get_ubb_branch :: "uncond_branch_bwd => nat"

primrec

"get_ubb_branch (Goto_bwd i) = i"

constdefs
get_branch :: "instr => nat option"
"get_branch instr == case instr of

LAS ins =>None
| CO ins => None
| MO ins =>None
| MA ins => None
| CH ins => None
| MI ins => None
| MR ins => None
| OS ins => None
| CBF ins => Some (get_cbf_branch ins)

| CBB ins => Some (get_cbb_branch ins)
| UBF ins => Some (get_ubf_branch ins)

| UBB ins => Some (get_ubb_branch ins) "

constdefs

is_target ::"[bytecode,cname,mname,param_desc, p_count] => bool"
"is_target CFS cn mn pd pc == ( ALL pc1.

(is_branch( (get_code CFS cn (mn,pd) ) ! pc1)
--> pc1 + the(get_branch

( (get_code CFS cn (mn,pd) ) ! pc1)) = pc))"

constdefs

inrange :: "[p_count, p_count,p_count,p_count] => bool"

"inrange a b s f == (s < a) & (b < f)"
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linear :: "[instr list] => bool"

"linear (xs) ==( list_all not_branch xs) & (list_all is_CFS_independent xs)"

constdefs

simple_block :: "[instr list] => bool"
"simple_block (ys) == ALL CFS xp1 hp1 frs1 xp’ hp’ frs’ cn1 ml1 cn’

ml’ pcS pcF.( ys = (fromto pcS pcF
(get_code CFS cn1 ml1))

& inside frs1 (cn1,ml1,pcS) (cn’,ml’,pcF)
& same_method_frs (cn1,ml1,pcS) (hd frs1)

(hd frs’)(cn’,ml’,pcF)
& pcF < length (get_code CFS cn1 ml1)

& exec (CFS, (xp1,hp1,frs1)) = Some(xp’,hp’,frs’)) -->
inside frs’ (cn1,ml1,pcS) (cn’,ml’,pcF) |

pc_equals (hd frs’) (pcF + 1)"

constdefs

insert_pc_frm :: "[frame, p_count] => frame"
"insert_pc_frm s x == let (stk, loc, cn,ml,pc) = s in

(stk, loc, cn,ml,x)"

add_pc_frm :: "[frame, p_count] => frame"
"add_pc_frm s x == let (stk, loc, cn,ml,pc) = s in

(stk, loc, cn,ml,(pc + x))"
consts

insert_pc_frames :: "(frame list* p_count) => frame list"

recdef insert_pc_frames "{}"

"insert_pc_frames ([] ,x) = []"

"insert_pc_frames ((y#ys), x) = [(insert_pc_frm y x)]@(ys)"

consts
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add_pc_frames :: "(frame list* p_count) => frame list"

recdef add_pc_frames "{}"

"add_pc_frames ([] ,x) = []"

"add_pc_frames ((y#ys), x) = [(add_pc_frm y x)]@(ys)"

constdefs
insert_pc :: "[jvm_state, p_count] => jvm_state"
"insert_pc s x == (let (xp, hp, frs) = s in

(xp, hp, (insert_pc_frames (frs, x))))"

add_pc :: "[jvm_state, p_count] => jvm_state"
"add_pc s x == (let (xp, hp, frs) = s in

(xp, hp, (add_pc_frames (frs, x))))"

minimise_frm :: "frame =>minframe"
"minimise_frm a == let (stk,loc,cn,ml,pc) = a in (stk, loc,pc)"

consts

minimise_frs :: "frame list => minframe list"

recdef minimise_frs "measure (% xs. length xs)"

"minimise_frs ([]) = []"
"minimise_frs (x#xs) = (minimise_frm x)#(minimise_frs xs)"

consts

meta_frames :: "(frame list* frame list) => bool"

recdef meta_frames "measure (% (xs, ys). length xs)"

"meta_frames ([],[]) = True"
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"meta_frames ((x#xs),[]) = False"
"meta_frames ([],(y#ys)) = False"
"meta_frames ((x#xs), (y#ys)) = ((stk_of x = stk_of y) &

(loc_of x = loc_of y) &
meta_frames (xs,ys))"

constdefs
(******* compare only xp, stk, loc of top of stk ***********)

meta_eq ::" [jvm_state, jvm_state] => bool" ("_ =~= _")

"a =~= b == (fst a) = (fst b) &
stk_of (hd(snd(snd a )))= stk_of (hd(snd(snd b))) &
loc_of (hd(snd(snd a))) = loc_of (hd(snd(snd b)))"

(******* should mention only xp, stk, loc of top of stk ***********)

meta_holds:: "[instr list, (jvm_state => bool),jvm_state] => bool"
"meta_holds ys q s == (ALL CFS cn1 ml1 pcS pcF.

((ys) = (fromto pcS pcF
(get_code CFS cn1 (ml1)))

-->q (insert_pc s pcS)))"

(******* should mention only xp, stk, loc of top of stk ***********)

meta_inv :: " [(((xcpt option * heap *(opstack *locvars *cname
*method_loc *p_count)list))=>bool) ] => bool"

"meta_inv P == ALL s x. P (s) --> P ((insert_pc s x))"
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ref_trans_2 :: "[instr list] => bool"

"ref_trans_2 ys == ALL CFS xp1 hp1 frs1 xp’ hp’ frs’ cn1 ml1 cn’
ml’ pcS pcF.((( ys = (fromto pcS pcF

(get_code CFS cn1 ml1)))
& linear ys & pc_equals (hd frs1) pcS
& (CFS (cn1,(ml1),pcS) (cn’,(ml’),pcF) |- (xp1,hp1,frs1)

-block-> (xp’,hp’,frs’)))
-->
(xp1 = xp’ & hp1 = hp’ &
( EX a b. stk_of (hd(third_of (xp’,hp’,frs’))) =

(a#(b#(stk_of (hd(third_of (xp1,hp1,frs1))))))
& loc_of (hd(third_of (xp1,hp1,frs1))) =

loc_of (hd(third_of (xp’,hp’,frs’)))
& st_cn_of (hd(third_of (xp1,hp1,frs1))) =

st_cn_of(hd(third_of (xp’,hp’,frs’)))
& st_ml_of (hd(third_of (xp1,hp1,frs1))) =

st_ml_of(hd(third_of (xp’,hp’,frs’)))
& (tl(third_of (xp1,hp1,frs1))) =

(tl(third_of (xp’,hp’,frs’))))))"

end

B.8 Exec instrs.thy

(********************************************************************)
(* Sequence execution relation *)
(********************************************************************)
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Exec_instrs = Exec + State_parts +

consts exec_instrs ::"(instr list * minstate * minstate) set"

syntax "@exec_instrs" :: [instr list,minstate, minstate] =>
bool ("_ |- _ -instrs-> _" )

translations
"xs |- a -instrs-> b" == "(xs ,a,b):exec_instrs"

inductive exec_instrs

intrs

Stop "[| execCFSindep (xs, a) = Some b ;\
\ xs ~= [];\
\ inlist xs ((snd a)); \
\ outlist xs ((snd b))|] \
\ ==> xs |- a -instrs-> b"

Continue "[| execCFSindep (xs, a) = Some c ;\
\ xs ~= [];\
\ inlist xs ((snd a));\
\ xs |- c -instrs-> b|]\
\ ==> xs |- a -instrs-> b"

end

B.9 Triple.thy

(********************************************************************)
(* Pre- and Post-condition relation *)
(********************************************************************)

Triple = List + Exec_block0 + Exec_block3 + Exec_instrs +
Block_pairs_conds + Ref_trans +

consts
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triple:: " ((((xcpt option * heap *(opstack *locvars *cname *method_loc
*p_count)list))=>bool)* instr list*
(((xcpt option * heap *(opstack *locvars *cname *method_loc

*p_count)list))=>bool) => bool)"

recdef triple"{}"

"triple(p, [], q) = (ALL xp hp frs
xp’ hp’ frs’ .(((p((xp, hp, frs)))
--> q((xp’, hp’, frs’)))))"

"triple(p, (y#ys), q) = (ALL CFS xp hp frs cn1 ml1 cn’ ml’ xp’ hp’
frs’ pcS pcF.

(((CFS (cn1,(ml1),pcS) (cn’, (ml’),pcF) |- (xp, hp, frs) -block->
(xp’,hp’,frs’))

& ((y#ys) = (fromto pcS pcF
(get_code CFS cn1 (ml1))))

& st_pc_of (hd frs) = pcS
& p((xp, hp,frs))-->
q((xp’, hp’, frs’)))))"

constdefs

assert :: "[((opstack *locvars)=>bool) , (xcpt option * heap *
(opstack *locvars *cname *method_loc *p_count)list)] => bool"

"assert P == (%(xp,hp,frs). (let (stk, loc,cn,ml,pc) = hd frs in
P (stk,loc)))"

end

B.10 Wpc.thy
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(***********************************************************************)
(* Weakest Precondition for a list of commands *)
(***********************************************************************)

constdefs

wp :: "[ instr list, ((((xcpt option * heap *((opstack *locvars *cname *
method_loc *p_count)list ) ))) => bool)] =>

((((xcpt option * heap *((opstack *locvars *cname *method_loc *
p_count)list )))) => bool)"

"wp ys q == (%(xp,hp,frs).
(ALL CFS xp’ hp’ frs’ cn1 ml1 cn’ ml’ pcS pcF .
(((CFS (cn1,(ml1),pcS) (cn’, (ml’),pcF)|-

((xp, hp, frs)) -block-> (xp’, hp’,frs’))
& ((ys) = (fromto pcS pcF (get_code CFS cn1 (ml1))))
& st_pc_of(hd frs) = pcS))-->

q(xp’, hp’, frs’)))"

not_term_state :: "jvm_state => bool"
"not_term_state s == ((fst s) = None & (third_of s) ~= [])"

(******************************************)
(* Sequence weakest precondition *)
(******************************************)

meta_wp :: "[ instr list, ((opstack *locvars) => bool)] =>
((((xcpt option * heap *((opstack *locvars *cname *method_loc

*p_count)list )))) => bool)"

" meta_wp ys q == (%(xp,hp,frs). (let (stk,loc,cn,ml,pc) = (hd frs) in

(ALL xp’ stk’ loc’ pc’.
(not_term_state (xp,hp,frs) &

ys |- (xp,stk,loc,0) -instrs->(xp’,stk’,loc’,pc’))-->
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assert q (xp’, hp, (stk’,loc’,cn,ml,(pc + pc’))#(tl frs)))))"

end
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