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Abstract

This dissertation shows that symbolic abstractions for a system can be inferred from

a set of system execution traces using a combination of Boolean satisfiability and

program synthesis. In addition, the degree of completeness of an inferred abstraction

can be evaluated by employing equivalence checking using simulation relations, that

can further be used to iteratively infer an overapproximating system abstraction with

provable completeness guarantees.

The first part of this dissertation presents a novel algorithm to infer a symbolic

abstraction for a system as a finite state automaton from system execution traces.

Given a set of execution traces the algorithm uses Boolean satisfiability to learn

a finite state automaton that accepts (at least) all traces in the set. To learn a

symbolic system abstraction over large and possibly infinite alphabets, the algorithm

uses program synthesis to consolidate trace information into syntactic expressions

that serve as transition predicates in the learned model.

The system behaviours admitted by the inferred abstraction are limited to only

those manifest in the set of execution traces. The abstraction may therefore only be

a partial model of the system and may not admit all system behaviours. The second

part of this dissertation presents a novel procedure to evaluate the degree of com-

pleteness for an inferred system abstraction. The structure of the abstraction is used

to extract a set of conditions that collectively encode a completeness hypothesis. The

hypothesis is formulated such that the satisfaction of the hypothesis is sufficient to

guarantee that a simulation relation can be constructed between the system and the

abstraction. Further, the existence of a simulation relation is sufficient to guarantee

that the inferred system abstraction is overapproximating. In addition, counterexam-

ples to the hypothesis can be used to construct new traces and iteratively learn new

abstractions, until the completeness hypothesis is satisfied and an overapproximating

system abstraction is obtained.
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Research Hypothesis

This dissertation argues the following thesis.

Symbolic abstractions for a system can be inferred from a set of system execu-

tion traces using a combination of Boolean satisfiability and program synthesis. In

addition, the degree of completeness of an inferred abstraction can be evaluated by

employing equivalence checking using simulation relations, that can further be used to

iteratively infer an overapproximating system abstraction with provable completeness

guarantees.

We validate this claim with the following evidence.

1. We show that given a set of execution traces of a system, an abstraction can

be learned for the system as a finite state automaton that accepts (at least) all

execution traces in the set. Specifically, we show that the problem of learning

a finite state automaton that accepts a given set of execution traces can be

formulated as a Boolean satisfiability problem.

2. We show that symbolic system abstractions over large and possibly infinite

alphabets can be learned by inferring transition predicates from traces using

program synthesis. We report experiments that demonstrate the approach using

execution traces from a variety of sources.

3. We show that the degree of completeness of an inferred system abstraction can

be evaluated by checking the truth value of a completeness hypothesis that is

formulated by extracting a set of completeness conditions using the structure

of the inferred abstraction. We formally prove that the satisfaction of the hy-

pothesis is sufficient to guarantee that a simulation relation can be constructed

between the system and the abstraction, and further that the existence of a

simulation relation is sufficient to guarantee that the inferred abstraction is an

overapproximation.
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4. We show that counterexamples to the hypothesis can be used to construct new

traces. By means of experiments we show that these traces can be used to

iteratively learn new abstractions, until the completeness hypothesis is satisfied

and an overapproximating abstraction is obtained.
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Chapter 1

Introduction

With the growing demand for automation across sectors ranging from medicine to

avionics, there has been a steady rise in the complexity of modern hardware and

software systems. As systems grow more and more complex, it becomes progres-

sively challenging to deliver resilient and error-free systems that correctly serve their

intended purpose. The emphasis on system verification and validation has there-

fore increased over the years to guarantee system correctness across all stages of the

systems engineering process, from design to implementation and deployment.

Although conventional verification practices such as simulation and testing have

proved valuable in identifying bugs in a system, particularly in the early stages of

debugging, they do not guarantee the absence of bugs. This has encouraged research

into formal verification techniques [12, 18, 31, 55, 64, 74, 75, 90], especially for the

verification of hardware and software systems for safety critical applications, where

system failure can lead to loss of life or large-scale damage.

Unlike simulation and testing that explore partial trajectories of a system in search

of bugs, formal verification techniques, in principle, perform an exhaustive search of all

possible system trajectories to mathematically prove or disprove system correctness.

But, these formal guarantees of correctness come at the cost of increased resources

and time spent on system verification. This has prompted efforts to devise methods

to scale formal verification techniques to enable their adoption in practice.

1.1 Abstract System Models

Abstraction [32, 76, 79] is a popular method that intelligently reduces the search space

for formal verification while preserving its ability to guarantee system correctness.

Typically, the goal of system verification is to check if a formal model of the system

satisfies a property. Here, a property is a formal specification describing correct
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q1start q2

mode ′ = Off

inp.temp > T thresh
∧mode ′ = On

mode ′ = On

¬(inp.temp > T thresh)
∧mode ′ = Off

Figure 1.1: Abstraction modelling operation mode switches for a Home Climate-
Control Cooler system generated by our algorithm.

system behaviour. An abstract system model is obtained by hiding details of the

system that appear irrelevant to the property of interest. To enable verification using

abstractions, an overapproximating abstract model is constructed which simulates

the original system and is usually much smaller than the system model [31]. As a

consequence, it is much easier to verify if the property holds on the abstract model

and extrapolate the result to reason about the correctness of the original system.

Conventionally, these abstract models are manually specified [34, 41, 94]. How-

ever, modern systems often have complex behaviour with many components—both in

hardware and software. The components of a system are often designed by different

teams, or even different companies, and integrated only when first silicon or a stable

hardware emulation model is available. It is difficult to ascertain in advance how

software behaviour is affected by hardware design decisions or how a given hardware

IP will fare under a software workload. It is therefore challenging to craft a good

abstraction that accurately captures system behaviour of interest.

One way to address this is to have some means of automatically extracting useful

information about integrated system behaviour. Execution traces provide an exact

representation of the system behaviours that are exercised when an instrumented

system implementation runs, and can provide insight into how various components

of the system behave as a collective. But raw trace data is inevitably large and

unstructured, and this undigested representation is difficult to employ as a high-

level view of the system and its requirements. Concise, human-readable models that

express high-level system behaviour, such as the model in Fig. 1.1, provide better

insight into the working of the system. This has prompted efforts to devise model-

learning algorithms to automatically infer system abstractions from traces.

2



1.2 Learning Abstract System Models from Traces

Model-learning algorithms for inferring system abstractions from traces use automa-

ton inference techniques, such as state-merging or query-based learning, to infer an

abstract system model as a finite state automaton that conforms to the traces. Au-

tomaton inference from traces is an extensively researched subject dating back to

1960s–70s [16, 47, 48, 87] and many modern model-learning implementations are

built on top of this research. A survey of related model-learning algorithms is pro-

vided in Chapter 2. Over the years, automaton inference has also been extended to

learn extended finite state machines such as register automata, thereby enabling the

construction of symbolic system abstractions from traces [8, 15, 17, 25].

It remains largely impractical to apply existing inference techniques to learn ab-

stract system models for system-wide analysis of large and complex systems. There

are several reasons for this:

1. A majority of the algorithms require labelled traces—positive and negative

traces—to learn concise system models. In the context of learning system ab-

stractions from traces, a positive trace is typically defined as a sequence of

observations that can be reproduced by executing the system, while a negative

trace cannot be produced by any system execution. While positive traces can

be obtained by simply executing an instrumented system implementation, it is

a challenge to collect or come by negative traces in practice.

2. Symbolic abstractions generated by existing model-learning implementations

are limited in their expressiveness. They cannot generalise and accurately ex-

press dependencies and computations involving multiple system observables.

3. Passive model-learning algorithms generate system models from a given set of

traces, without a feedback loop for additional trace gathering. As a result,

the system behaviours admitted by the generated models are limited to only

those manifest in the given traces. Therefore, capturing all system behaviour

by the generated system models is conditional on devising a system load that

exercises all relevant system behaviours. This can be difficult to achieve in

practice, particularly when a system comprises multiple components and it is

not obvious how the components will behave as a collective.

4. Active model-learning algorithms can, in principle, generate exact system mod-

els. They iteratively refine a hypothesis model by extracting information from

3



the system or an oracle that has sufficient knowledge of the system, using the hy-

pothesis model as a guide. Conventionally, these algorithms operate by posing

membership and equivalence queries to the oracle, and the responses are used

for model refinement. When these algorithms are used in practice, however,

they suffer from high query complexity, particularly when they are applied to

learn symbolic system abstractions. Consequently, many active model-learning

implementations are constrained to learning partial models for large systems.

The work presented in this dissertation is motivated by the challenges enumerated

above. In this dissertation we describe a methodology to infer concise, accurate and

expressive symbolic overapproximations with provable completeness guarantees using

only system execution trace data.

To address challenges 1 and 2 enumerated above, the first part of the dissertation

presents a novel passive model-learning algorithm to infer a symbolic system abstrac-

tion from a given set of system execution traces. The algorithm uses a combination of

Boolean satisfiability (SAT) and program synthesis to learn an abstract system model

as a finite state automaton that accepts (at least) all execution traces in the set.

We describe a SAT formulation to infer an automaton using only system execution

traces or positive traces. Additionally, we integrate algorithmic methods designed to

enable SAT-based model-learning to scale to long traces based on trace segmentation

and incremental model learning.

We extend SAT-based automaton inference from traces to learn symbolic finite

automata over large and possibly infinite alphabets, using program synthesis to con-

solidate system execution trace data into syntactic expressions that are not explicit

in the execution traces. These serve as transition predicates on the automaton edges,

thereby generating symbolic system abstractions.

As is the case with passive model-learning, an abstraction generated by the model-

learning algorithm from a given set of execution traces is guaranteed to admit only

those system behaviours exemplified by the traces in the set. Learned system abstrac-

tions may therefore be partial. To address challenges 3 and 4 enumerated above, the

second part of the dissertation presents a novel method based on equivalence checking

using simulation relations to evaluate the degree of completeness of an abstraction

inferred by the model-learning algorithm, and using the information to iteratively

learn symbolic overapproximations with provable completeness guarantees.

The structure of an inferred abstraction is used to extract a set of conditions that

collectively encode a completeness hypothesis. The hypothesis is formulated based on

4



defining a simulation relation between the system and its learned abstraction, such

that the satisfaction of the hypothesis is sufficient to guarantee that the learned ab-

straction is overapproximating. Additionally, counterexamples to the hypothesis can

be used to construct new traces. These traces can further be used to iteratively learn

new abstractions, until the completeness hypothesis holds and an overapproximating

system abstraction is obtained.

1.3 Contributions

The overall contribution of this dissertation is the development and implementation of

a methodology to infer concise, accurate and expressive symbolic system overapprox-

imations with provable completeness guarantees using only system execution trace

data. We summarize below the main elements of the contribution.

1. A novel model-learning algorithm that combines SAT and program synthesis to

generate symbolic abstractions for a system from system execution traces.

To this end,

• we describe and implement a SAT formulation for inferring a finite state

automaton from a set of available traces, using only system execution trace

data or positive traces.

• we describe and implement a method to consolidate trace information into

expressive automaton transition predicates using program synthesis.

The significance of this approach is that it enables the inference of system

abstractions in the absence of labelled traces or additional system information

such as temporal properties of the system that are known in advance. Further,

it enables the extension of SAT-based automaton inference from traces to learn

symbolic abstractions over large and possibly infinite alphabets.

The model-learning algorithm is described in detail in Chapter 3.

2. Algorithmic methods for scaling to long traces based on trace segmentation and

incremental learning.

By means of experiments, we show that these algorithmic optimizations sig-

nificantly reduce algorithm runtime. Details of the experimental evaluation,

including benchmarks, experimental setup and algorithm implementation are

described in Chapter 4.
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3. An approach to evaluate the degree of completeness of an abstraction learned

from traces based on equivalence checking using simulation relations.

We show that the approach can further be used to iteratively learn an overap-

proximating system abstraction with provable completeness guarantees.

To this end,

• we describe the formulation of a completeness hypothesis encoded as a set

of completeness conditions that are extracted using the structure of the

learned abstraction.

• we formally prove that the satisfaction of the formulated hypothesis is suf-

ficient to guarantee that a simulation relation can be constructed between

the system and the learned abstraction, and further that the existence

of a simulation relation is sufficient to guarantee that the abstraction is

overapproximating.

• we implement an active model-learning procedure that combines model-

learning from traces with equivalence checking using simulation relations

to iteratively learn new abstractions, until the completeness hypothesis

holds and an overapproximating abstraction is obtained.

The significance of this approach is that it enables the generation of overapprox-

imating symbolic system abstractions with provable completeness guarantees.

Further, generated abstractions are more expressive than abstractions generated

by existing active model-learning implementations.

The equivalence checking procedure is described in Chapter 5. Details of the ac-

tive model-learning approach, including an experimental evaluation is provided

in Chapter 6.
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Chapter 2

Background

In this chapter we present background on related automaton inference algorithms and

program synthesis. We also introduce formal preliminaries on equivalence relations

between formal models of systems.

2.1 Automaton Inference

Existing algorithms to generate abstract system models typically use automaton in-

ference techniques. We classify these algorithms into three broad categories based on

the automaton inference algorithm used: state-merging, query-based learning, and

machine learning algorithms that use recurrent neural network structures. These al-

gorithms are discussed in detail in the following sections. We compare our work with

these algorithms in Chapters 4 and 6.

2.1.1 State-Merging

State-merging is a prominent approach for learning automata from trace data. State-

merge algorithms begin by constructing a Prefix Tree Acceptor (PTA) from the given

learning sample, i.e., the trace data. As illustrated in Fig 2.1, a PTA is the smallest

tree-like automaton that is strongly consistent with the learning sample, with the

automaton states representing all prefixes of the sample.

Subsequently, equivalent state pairs in the PTA are identified and then merged to

generate a compact representation. State equivalence is determined using a variety of

model inference techniques. The simplest among them is the k-Tails algorithm [16].

Here, two states are said to be k-equivalent if they have the same set of strings of

length k or shorter that correspond to valid paths in the PTA beginning from that

state. The algorithm terminates when there are no k-equivalent states left.
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Figure 2.1: PTA for the positive trace sample {111, 000, 11101, 01} [89]

The generated models improve in precision and increase in number of states for

increasing values of k. One extension of the k-Tails approach [115] uses data classifiers

to determine state equivalence; in addition to k-equivalence, states are merged only

if the classifier predicts the same next event for these states.

Conventional state-merge algorithms are partial because they fail to model how

system variables change during execution. One extension of the state-merge algo-

rithm [114] generates “computational” state machines, where data update functions

over transitions are automatically inferred using genetic programming. First, a tran-

sition system is inferred from a set of traces. It is then simulated to record variable

changes that occur as a result of a transition, which are used as input to genetic

programming. The GkTails [80] algorithm integrates Daikon [39] with the k-Tails

approach to derive transition guards for Extended Finite State Machines (EFSM).

The k-Tails algorithm and many of its successors generate models using only

positive traces, and hence run the risk of overgeneralising. A popular model inference

algorithm, Evidence Driven State Merging (EDSM) [77], overcomes this problem

by using both positive and negative traces to determine equivalence of states to be

merged. The Regular Positive and Negative Inference (RPNI) algorithm [89] also uses

labelled data and generates a Deterministic Finite Automaton (DFA) consistent with

the data. Moreover, the algorithm can identify any regular language in the limit.

In an extension of the EDSM algorithm [56], finite automaton inference is mapped
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to a graph-colouring problem based on the red-blue EDSM framework [77]. Models

are generated by converting the problem to Boolean satisfiability and using state-of-

the-art SAT solvers to get an optimal solution. The approach generates a minimal

automaton that is consistent with a set of positive and negative trace samples; the

automaton accepts all positive and rejects all negative traces.

An extension of the SAT-based algorithm [57] starts with a few iterations of

EDSM, followed by SAT solving once the problem is small enough to be efficiently

solved. Another extension [10] learns models incrementally to ensure algorithm scala-

bility for long traces. Variants of the SAT-based approach [106, 107] are used to learn

EFSMs from a set of test scenarios. Here, a test scenario corresponds to a sequence

of triples comprising an event, a transition guard, and a sequence of output actions.

The EDSM algorithm was further extended to incorporate inherent temporal be-

haviour in the models [106, 111]. Here, the state-merge algorithm is adapted to accept

temporal constraints in the form of Linear Temporal Logic (LTL) system specifica-

tions, in addition to labelled trace data. Models are checked against LTL properties

to validate state merges as they are encountered. Similarly, the work in [106] uses a

combination of test scenarios and LTL properties to generate exact EFSMs with SAT.

In [21, 22], the requirement of labelled trace data is relaxed to generate plant mod-

els from only positive traces, while LTL properties are used to refine the generated

model. These approaches actively generate system models where additional negative

traces are obtained as a result of checking LTL properties against a hypothesis model.

These are used to iteratively refine the generated abstraction.

Other active versions of the state-merge algorithm [37, 112] use manual feedback in

the form of responses to queries generated from a hypothesis model that are classified

as positive or negative by an end user.

2.1.2 Query-based Automata Learning

Angluin’s L* algorithm [7] forms the basis for a majority of query-based automaton

inference algorithms. It learns a DFA for an unknown regular language L over a known

finite alphabet A. The method assumes the presence of a Minimally Adequate Teacher

(MAT) or an oracle that answers two types of queries regarding L: membership and

equivalence queries, the results of which are used to generate and refine the DFA.

Membership queries are used to determine whether a given string defined over A

belongs to the language L. Equivalence queries are used to check if the language

defined by the candidate DFA is equal to L. When the DFA’s language is not equal
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to L, the query returns a counterexample in the symmetric difference of the two

languages. This is used to refine the generated DFA.

The responses to the queries are organised into structures called observations

tables that consist of three components: a non-empty finite prefix-closed set of strings

S, a non-empty finite suffix-closed set of strings E and a function T mapping (S ∪S ·
A) · E to {0, 1}. The function T is interpreted as follows:

T (u) =

{
1, ifu ∈ L
0, ifu /∈ L

The observation table, denoted (S,E, T ), can be represented as a two-dimensional

array, as illustrated in Fig. 2.2a, where the rows are labelled with elements of (S ∪S ·
A) and the columns are labelled with elements of E. The entry in row s and column

e corresponds to T (s · e).
Starting with S = E = {ε}, the L* algorithm augments the observation table with

the responses to membership queries, until the table is closed and consistent. The

table is said to be closed if for each element t ∈ S · A, there exists an element s ∈ S
such that row(s) = row(t). Here, row(s) represents a function f : E → {0, 1} defined

by f(e) = T (s ·e). The table is said to be consistent provided that whenever there are

elements s1, s2 ∈ S such that row(s1) = row(s2), for all a ∈ A, row(s1 ·a) = row(s2 ·a).

When the table (S,E, T ) is closed and consistent, the algorithm constructs a DFA

(Q, q0, F, δ, A) from the table over the alphabet A, with state set Q, initial state q0,

accepting states F and transition function δ as follows:

Q = {row(s) : s ∈ S}

q0 = row(ε)

F = {row(s) : s ∈ S ∧ T (s) = 1}

δ(row(s), a) = row(s · a)

An example of the above construction is provided in Fig. 2.2. Once a candidate

DFA is constructed equivalence queries are used to determine if the constructed DFA

represents L. The responses are used to further augment the observation table and

subsequently refine the automaton, until the generated DFA exactly represents L.

The algorithm was later improved by Rivest and Schapire [92], and many applica-

tions of L* now use this improved version. The TTT algorithm [66] is an improvement

over L* that achieves optimal space complexity, enabling its application to runtime

verification problems. The L* algorithm has also been extended to learn nominal
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T ε 0 1

ε 1 0 0
0 0 1 0
1 0 0 1
11 1 0 0
01 0 0 0
011 0 1 0
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111 0 0 1
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0110 1 0 0
0111 0 0 0
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0

11

0
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(a) Observation Table (b) Constructed DFA

Figure 2.2: DFA constructed using L* over the alphabet A = {0, 1} from the obser-
vation table (S,E, T ) with S = {ε, 0, 1, 11, 01, 011} and E = {ε, 0, 1} [7].

non-deterministic automata for languages over infinite structured alphabets [85] and

Mealy machines [97].

L* and many of its variants have been used to learn system abstractions for a va-

riety of verification applications [26, 27, 33, 51, 63, 91, 103]. In one such application,

model checking and model-based testing are used in combination with L* in a collab-

orative framework [51, 91, 103]. Here, model checking and model-based testing serve

as teaching aids for L*. A set of system properties are checked against the generated

model and the result is used as feedback for learning. The models learnt using L* in

turn provide system abstractions that help scale and guide the verification process.

For compositional verification of large systems, L* has been used to iteratively

infer assumptions for assume-guarantee reasoning [26, 33]. In [27], L* is used to learn

a DFA describing scenarios under which a program error occurs. One of the main

challenges to employing L*-style algorithms in practice is the large number of queries.

The approach in [27] therefore employs an optimisation using lazy learning to reduce

the number of membership queries. A similar optimisation is discussed in [63], where

domain-specific rules are used to filter membership queries.

In all these applications either a complete or a partial model of the system is

available, such that membership queries posed by the L* framework can be answered

by “querying” the system itself. Also, the alphabet over which the automaton is

learned is a set of Boolean events that is known a priori. These may correspond

to actual system events, such as function calls, or a known high level abstraction of
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underlying system behaviour. The absence of an oracle and the inability to ascertain

the exact alphabet of system internals beforehand, such as all values that system

variables take during execution, often makes it difficult to apply L*-style algorithms

for learning symbolic abstractions for complex systems.

Sigma* [17] addresses this by extending the L* algorithm to learn symbolic mod-

els of software defined over large alphabet sets. Dynamic symbolic execution is used

to find constraints on inputs and expressions generating output to build a symbolic

alphabet. In addition, instead of employing an equivalence check between the gener-

ated model and system, as in L*, it iteratively learns an overapproximation in parallel

with the conjectures learned by L*, and returns a system model when the conjecture

equals the overapproximation.

The MAT* algorithm [8] is another extension that generates symbolic models as

symbolic finite automata. The transitions of the generated automata carry predicates

over a Boolean algebra that is efficiently learnable using membership and equivalence

queries, such as the equality algebra. The algorithm takes as input a membership

oracle, an equivalence oracle, and a learning algorithm for the Boolean algebra used

in the target symbolic automaton.

Query-based learning has also been extended to learn a special class of EFSMs

called register automata [25]. Register automata extend finite automata with regis-

ters that can store values, and transition guards that compare data parameters to

registers. The algorithm uses Symbolic Decision Trees (SDTs) to symbolically rep-

resent relations between concrete data values. Additionally, the SDTs also represent

how these relations can be used to determine if a sequence of concrete data values is

accepting or rejecting, thereby allowing the observation tables of L* to be extended

to symbolic models. The algorithm uses individual oracles, called tree oracles, for

each type of operation represented in the symbolic model.

2.1.3 Automata Learning with Neural Architectures

Neural networks, particularly Recurrent Neural Networks (RNNs), provide a mech-

anism to learn sequential information and make predictions about future data. The

relationship between RNNs and automata learning has been previously explored [50,

88, 105, 116]. The foundation of this relationship stems from the fact that the internal

state of a network trained to predict future events given an input event sequence can

be used as a representation of the state of the automaton to be learned.

One of the more recent approaches [50] uses RNNs to generate DFAs for a pre-

defined language using a training data set consisting of pairs (w, ans), where w is a
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word defined over an alphabet Σ, and ans is 1 if the word belongs to the language

and 0 if not. During network operation, the computed values from the layer of neu-

rons preceding the output layer of the network are normalised such that they can be

interpreted as a probability distribution over states of the DFA to be learnt. The

network input is a pair of tensors: one representing the input word, and the second

representing the DFA state. The DFA state is initially set to 1 and subsequent itera-

tions use the learned next-state as input using recurrent connections. The approach

works well for small automata of up to six states and an alphabet size of up to four.

Long Short Term Memory (LSTM) networks extend RNN functionality by pro-

viding a means to capture long-term dependencies [58]. Each LSTM cell consists of

three gates: input, forget, and output. All three gates take into account the current

input and a representation of previous inputs called the hidden state. The input gate

determines what information should be part of the cell state or memory, the forget

gate looks at what information is irrelevant and can be ignored, and the output gate

generates the new hidden state for the LSTM cell.

LSTMs are often used for sequence prediction, and this has been exploited for a

variety of applications. For example, they have been used for anomaly detection [54],

trace restorations [104], and mining message flow patterns from trace data [23]. The

research reported in [23] closely relates to our problem domain. Here, system-on-chip

system specifications in the form of message flow patterns are mined from execution

traces. Multiple LSTM networks trained to predict the next event for different input

sequence lengths are used to infer patterns of different length. A set of pre-defined

ground truth message sequences are used to determine pattern validity; mined pat-

terns that possess a temporal ordering between messages not found in any of the

ground truth sequences are termed invalid. Valid patterns are used as system specifi-

cations. Experiments show that the approach sometimes generates more invalid than

valid patterns, and the number of valid patterns found is low compared to the set

of ground truth sequences. Several measures are proposed to address these issues,

including additional causality based filtering of generated patterns.

The Apperception Engine [40] is a new unsupervised learning algorithm to con-

struct a symbolic theory to explain sequences of sensor data. The engine iterates

over a set of templates that build on top of an initial template, each specifying a large

and finite set of theories that conform to it. It has been found to outperform neu-

ral network baselines. However, when dealing with execution traces tracking system

variables with possibly infinite domain, such as a temperature sensor, defining the

initial template is not easy. Further, enumerating templates can be time consuming.
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2.2 Program Synthesis

In this section we present background on program synthesis. In Chapter 3 we use

program synthesis to derive syntactic expressions from system execution traces, that

serve as transition predicates for learning symbolic system abstractions.

Program synthesis is the task of automatically finding programs that satisfy a

given user intent expressed as some form of logical constraints [53]. It is a second-

order search problem where the goal is to identify a function that satisfies a given

specification. A program synthesizer can be viewed as a solver for existential second-

order logic formula of the form

∃P.Qx.σ(x, P ) (2.1)

where P ranges over functions, Q is either ∃ or ∀, x ranges over ground terms and

σ is a quantifier-free formula. Second-order logic is an extension of first-order logic.

While first-order logic only allows quantification over variables that range over ground

terms, second-order logic additionally allows quantification over functions, as in (2.1).

Virtually all tools that perform program synthesis implement a form of Counter

Example-Guided Inductive Synthesis (CEGIS). In CEGIS, the synthesis problem is

split into two components: search and validation, as illustrated in Fig. 2.3. In the

search component the solver looks for a candidate program that satisfies a simpli-

fied version of the original specification, often obtained as a reduction of the original

second-order specification to first-order logic. In the validation component a verifier

validates that the candidate program satisfies the original second-order requirement

Solver
(search component)

Verifier
(validation component)

Search space

Fail Success

Specification φ

Candidate program P

Counterexample x−

Figure 2.3: Counterexample-Guided Inductive Synthesis (CEGIS) [53].
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on the desired program. If this is not the case, then the verifier returns a counterex-

ample, which is returned to the solver. The solver then identifies another program

that, additionally, satisfies the counterexample.

This iterative process is repeated until either the candidate program is successfully

validated by the verifier, or the solver is unable to find a candidate program satisfying

the specifications, i.e., the original synthesis problem is unsolvable.

The program that is generated is usually required to conform to a grammar, which

is given as part of the problem description. Tools that require this grammar imple-

ment Syntax-Guided Synthesis (SyGuS) [6]. The input to SyGuS typically consists

of a background theory T , a logical formula φ that specifies the semantic correctness

of the desired program and a syntactic template representing the set of candidate

programs or the search space for synthesis in the form of a context-free grammar G.

The SyGuS problem is defined as finding a program P conforming to the grammar

G that satisfies specification φ in the theory T .

An example SyGuS formulation for synthesising a function max2 that returns the

maximum of two given values x and y is provided in Fig. 2.4. The background theory

for the formulation is set to Linear Integer Arithmetic (LIA), where variables are

either integers or Booleans and the vocabulary consists of integer and Boolean con-

stants, addition, relations and conditionals. The grammar specified for the example

corresponds to linear expressions over the terminal x, y, 0 and 1, and if-then-else (ite)

expressions. The correctness constraints define the logical specification φ1∧φ2 where

φ1 := max2 (x, y) ≥ x ∧max2 (x, y) ≥ y

φ2 := max2 (x, y) = x ∨max2 (x, y) = y

Given the formulation in Fig. 2.4, one candidate program implementation for the

function max2 could be

(ite (>= x y)x y)

interpreted as

ifx ≥ y then x else y

that conforms to the given grammar and satisfies the specified correctness constraints.

Specifying user intent for the synthesis problem as a logical specification, such as

the correctness constraints in the above formulation, can often be tricky particularly

when a complete specification is not known. Example-based specifications are gen-

erally easier to define in such scenarios. Synthesis from examples [52] is a program
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1 ; set the background theory to LIA

2 (set-logic LIA)

3
4 ; grammar for max2 candidate implementations

5 (synth-fun max2 ((x Int) (y Int)) Int

6 ((Start Int (x y 0 1

7 (+ Start Start)

8 (- Start Start)

9 (ite StartBool Start Start)))

10 (StartBool Bool ((and StartBool StartBool)

11 (or StartBool StartBool)

12 (not StartBool)

13 (<= Start Start)

14 (= Start Start)

15 (>= Start Start)))))

16
17 ; universally quantified input variables x and y

18 (declare-var x Int)

19 (declare-var y Int)

20
21 ; correctness constraints on the max2 function

22 (constraint (>= (max2 x y) x))

23 (constraint (>= (max2 x y) y))

24 (constraint (or (= x (max2 x y)) (= y (max2 x y))))

25
26 ; synthesize command

27 (check-synth)

Figure 2.4: SyGuS formulation for max function over two variables [53].

synthesis paradigm where user intent is specified by input-output examples. The

synthesis constraints define behaviour of the desired program on a subset of its valid

inputs and the synthesised function is a generalisation of the specified behaviour.

2.3 Equivalence Relations

In this section we introduce formal preliminaries on equivalence relations between

formal models of systems. We will use these formalisms in Chapter 5 for determining

the degree of completeness of system abstractions generated by model-learning from

system execution traces. We begin by formalizing transition systems.
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Definition 1 (Transition System). A transition system T is a triple (S,S0,∆) where

S is a set of states, S0 ⊆ S is the set of initial states and ∆ ⊆ S × S is a transition

relation.

A transition system with state labelling is called a Kripke structure.

Definition 2 (Kripke Structure). A Kripke structureM is a five-tuple (S,S0,∆,AP , L)

where S is a set of states, S0 ⊆ S is the set of initial states, ∆ ⊆ S×S is a transition

relation, AP is a set of atomic propositions and L : S → 2AP is a labelling function

that labels each state with a set of atomic propositions that are true in that state.

2.3.1 Bisimulation

Definition 3 (Bisimulation). Consider two Kripke structuresM = (S,S0,∆,AP , L)

and M′ = (S ′,S ′0,∆′,AP , L′) with the same set of atomic propositions. A binary

relation B ⊆ S × S ′ is a bisimulation if

• ∀s0 ∈ S0, ∃s′0 ∈ S ′0 such that (s0, s
′
0) ∈ B

• ∀s′0 ∈ S ′0, ∃s0 ∈ S0 such that (s0, s
′
0) ∈ B

• ∀(s, s′) ∈ B,

– L(s) = L′(s′)

– for every s1 ∈ S such that (s, s1) ∈ ∆, ∃s′1 ∈ S ′ such that (s′, s′1) ∈ ∆′ and

(s1, s
′
1) ∈ B

– for every s′1 ∈ S ′ such that (s′, s′1) ∈ ∆′, ∃s1 ∈ S such that (s, s1) ∈ ∆ and

(s1, s
′
1) ∈ B

The structures M and M′ are bisimulation equivalent if there exists a bisimulation

relation between the two structures. An example of two bisimulation equivalent

structures is provided in Fig. 2.5. The structures in Fig. 2.6, on the other hand, are

not bisimulation equivalent. The state labelled b in Fig. 2.6b does not correspond to

any state in Fig. 2.6a, since there is no state labelled b inM with transitions to both

a state labelled c and a state labelled d.

A path π = s0s1 . . . inM and a path π′ = s′0s
′
1 . . . inM′ correspond if (si, s

′
i) ∈ B

for every i ≥ 0. The existence of a bisimulation betweenM andM′ guarantees that

the two structures are behaviourally equivalent, i.e., for every path in M from an

initial state, there is a corresponding path from an initial state inM′, and vice versa.

A formal proof is provided in Theorem 1.
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Figure 2.5: Bisimilar structures [31].
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Figure 2.6: Nonbisimilar structures [31].

Theorem 1. Let M and M′ be two structures that are bisimulation equivalent, and

s ∈ S and s′ ∈ S ′ be two states such that (s, s′) ∈ B. Then, for every path starting

from s there is a corresponding path starting from s′, and for every path starting from

s′ there is a corresponding path starting from s.

Proof. Let (s, s′) ∈ B. Let π = s0s1 . . . be a path in M such that s0 = s. Then

we can construct a corresponding path π′ = s′0s
′
1 . . . in M′ by induction as follows:

it is clear that (s0, s
′
0) ∈ B. Assume (si, s

′
i) ∈ B for some i. By definition 3, since

(si, si+1) ∈ ∆, ∃t′ ∈ S ′ such that (s′i, t
′) ∈ ∆′ and (si+1, t

′) ∈ B. Choosing s′i+1 = t′

produces the corresponding path π′.

Similarly, given a path π′ from s′ in M′, a path π can be constructed from s.
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2.3.2 Simulation

Definition 4 (Simulation). Consider two Kripke structures M = (S,S0,∆,AP , L)

and M′ = (S ′,S ′0,∆′,AP , L′) with the same set of atomic propositions. A binary

relation R ⊆ S × S ′ is a simulation if

• ∀s0 ∈ S0, ∃s′0 ∈ S ′0 such that (s0, s
′
0) ∈ R

• ∀(s, s′) ∈ R,

– L(s) = L′(s′)

– for every s1 ∈ S such that (s, s1) ∈ ∆, ∃s′1 ∈ S ′ such that (s′, s′1) ∈ ∆′ and

(s1, s
′
1) ∈ R

Simulation is closely related to bisimulation. While a bisimulation equivalence be-

tween structures guarantees that the two structures have the same behaviour, a sim-

ulation relation between M and M′, denoted M � M′, guarantees that M′ is an

overapproximation ofM, i.e.,M′ includes (at least) all behaviours ofM. Similar to

the proof in Theorem 1, given (s, s′) ∈ R we can construct a path π′ starting from

state s′ in M′ for every path π starting from state s in M.

We say M′ simulates M, if M � M′. Although the structures in Fig. 2.6 are

not bisimulation equivalent as discussed before, M′ simulates M. We can define a

simulation relation R that associates every state inM to a state with the same label

in M′. The above definition also has the property that if states s, s′ are associated

by R, for every successor of s there is a successor of s′ with the same label. On the

other hand, M does not simulate M′ as the state labelled b in M′ does not have a

corresponding state in M.
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Chapter 3

Learning Symbolic Models from
Execution Traces

Abstract system models have applications in design exploration, analysis, testing and

verification. However, crafting a good abstraction for system-wide analysis can be

challenging. Modern systems often have multiple components and it is difficult to

specify integrated system behaviour, particularly emergent behaviour, ahead of time.

Here, execution traces can provide valuable information as they exemplify system

behaviours that are exercised when an instrumented implementation runs. This is

leveraged by model-learning algorithms to automatically infer abstract system models

as finite automata from trace data.

It is however challenging to apply existing methods to learn high-level symbolic

abstractions for system-wide analysis, as discussed in Chapter 1. They often rely

on the presence of labelled traces to construct concise models, and negative traces

are difficult to come by in practice. Further, generated abstractions are limited in

expressiveness—many model-learning implementations are tailored to generate sys-

tem models that represent a very specific and often small subset of system behaviours,

such as Mealy machines with a single timer [108]. In this chapter we present a novel

model-learning algorithm to reverse-engineer concise, accurate and expressive sym-

bolic abstractions from traces using only system execution trace data.

Plan of the chapter

The rest of the chapter is organized as follows. Section 3.1 introduces formal nota-

tions used throughout the chapter and provides a formal description of the problem.

Section 3.2 describes the model-learning algorithm in detail. Section 3.3 describes

the algorithmic methods used for improving algorithm performance and scalability.
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Claim of Novelty

Unlike existing techniques, the model-learning algorithm presented in this chapter

uses a combination of SAT and program synthesis to infer symbolic system abstrac-

tions using only system execution traces. Given a set of execution traces, SAT is used

to systematically search for a minimal automaton that accepts (at least) all traces in

the set, while program synthesis is used to consolidate trace information into syntactic

expressions that serve as transition predicates in the learned abstraction.

In our algorithm the transition predicate inference procedure is agnostic of the

automaton construction procedure. The input to automaton construction using SAT

is a sequence of Boolean expressions—these could be concrete Boolean observations

in a trace or syntactic expressions representing a set of observations. As long as the

program synthesis procedure for transition predicate inference can generate such a

sequence of Boolean valued expressions as output, the specific implementation details

of automaton construction are not relevant to the procedure. This enables the model-

learning algorithm to fully utilize the strength of SAT and program synthesis to

generate concise, accurate and expressive models.

3.1 Formal Model

We suppose that we can collect execution traces of the system we wish to generate

a model for by tracking a finite set of user-defined values represented by variables,

X = {x1, . . . , xk}, ranging over some domain D. We simplify the presentation by

assuming all variables have the same domain, but the generalization to multiple do-

mains is routine. The variables in X could stand for concrete values that are directly

observable in the system (register values, elements of program state, etc.) or the

results of some functions of such values, depending on the user’s intent. The set

X ′ = {x′1, . . . , x′k} contains corresponding primed variables, also over the domain D.

A primed variable x′i represents the same value as the unprimed variable xi represents

following a single discrete step of system execution.

A valuation v : X → D maps the variables in X to elements of D. An observation

at a discrete time step t of system execution is a valuation of the variables at that

time, and is denoted by vt. An execution trace is a finite sequence of observations over

successive discrete steps of time; we write an execution trace σ with n observations

as a sequence of valuations σ = v0, v1, . . . , vn−1.
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Given a set of execution traces T , our task is to generate a system model as a

symbolic finite automaton (SFA) that accepts all traces in T . In symbolic automata,

transitions carry predicates over a Boolean algebra.

Definition 5 (Boolean Algebra). A Boolean algebra A is defined to be a tuple (Σ, ψ, [[ ]],

⊥,>,∧,∨,¬) where Σ is the set of domain elements, ψ is the set of predicates closed

under the Boolean connectives ∧, ∨ and ¬, with ⊥,> ∈ ψ, and the component

[[ ]] : ψ → 2Σ is a denotation function such that (i) [[⊥]] = ∅, (ii) [[>]] = Σ, and (iii)

for all pi, pj ∈ ψ, [[pi ∨ pj]] = [[pi]] ∪ [[pj]], [[pi ∧ pj]] = [[pi]] ∩ [[pj]], and [[¬pi]] = Σ\[[pi]].

Definition 6 (Symbolic Finite Automaton). An SFA is a tupleM = (A, Q, q0, F,∆)

where A is a Boolean algebra, Q is a finite set of states, q0 ∈ Q is the initial state,

F ⊆ Q is the set of final states, and ∆ ⊆ Q × ψ × Q is a finite set of transitions,

where ψ is the set of predicates of A.

An SFA M is deterministic if, for all transitions (q, p1, q1), (q, p2, q2) ∈ ∆ where

p1, p2 ∈ ψ, if q1 6= q2 then [[p1 ∧ p2]] = ∅. In this work we learn non-deterministic

symbolic automata. For the rest of the article, we use SFA to mean non-deterministic

symbolic finite automaton, unless specified otherwise.

Our algorithm generates SFAs by constructing characteristic functions of sets of

observations in a trace (Section 3.2.2). These are Boolean-valued expressions over

(X ∪ X ′), that serve as predicates on the transition edges. We define the Boolean

algebra for the generated SFA as the smallest set that contains >, ⊥, and all the

predicates constructed by our algorithm, and is closed under conjunction, disjunction

and negation.

The domain Σ for the Boolean algebra A of our SFA will contain elements a :

(X ∪ X ′) → D. That is, a pair of consecutive observations of the system. Given

an execution trace σ = v0, . . . , vn−1, the element at for t = 0, . . . , n−2 is defined as

follows:
at(x) = vt(x)
at(x

′) = vt+1(x)
(3.1)

i.e., at(x) is the valuation of the variable x at the discrete time step t of system

execution and at(x
′) is the valuation of the corresponding unprimed variable x in the

following time step (t+ 1).

The learned SFA accepts a trace σ = v0, v1, . . . , vn−1 iff for all 0 ≤ i < n− 1 there

exists a transition (qi, pi, qi+1) ∈ ∆ such that q0 = q0, qn−1 ∈ F and ai ∈ [[pi]], where

ai corresponds to the observation pair (vi, vi+1) as defined in (3.1). In our setting, all

states of the automaton are accepting states; i.e., our automaton rejects by running
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into a ‘dead end’. The language of the automaton, denoted by L(M), is defined as

the set of all traces that are accepted by the SFA.

3.2 Model Learning with SAT and Program Syn-

thesis

An overview of the model-learning algorithm is illustrated in Fig. 3.1. We first de-

scribe the model-learning algorithm using a single trace σ as input for the sake of

clarity. At the end of this chapter, we discuss how the algorithm can be adapted to

generate models from a set of execution traces T .

The algorithm has the following components:

1. Tracing infrastructure. This records traces by observing the set of user-defined

variables X during system execution.

2. Transition predicate synthesizer. This generates a sequence of transition predi-

cates from trace data using program synthesis.

3. Automaton construction algorithm. This uses SAT to iteratively construct an

automaton from a sequence of predicates obtained from the previous step and

checks its compliance with the sequence input.

Tracing

Transition Predicate Synthesis
(Program Synthesis)

Automaton Construction
(SAT)

System execution traces

Sequence of transition predicates

Symbolic system abstraction

Figure 3.1: Overview of the model-learning algorithm.
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We describe these components in detail in the sections that follow.

3.2.1 Tracing Setup

We use implementations of the system of interest to obtain execution traces. For

most of our experiments, execution traces are produced simply by instrumenting

source code with print statements. This provides flexibility in getting the required

information from the simulation runs. Target components of interest are identified

and trace statements added at relevant points in the source code based on the end

goal for analysis. Traces can also be produced using any other means, for example

inbuilt tracing or logging frameworks.

3.2.2 Transition Predicate Synthesis

Trace data recording system variable valuations over time can be difficult to interpret

in their raw, undigested form. We therefore consolidate the trace information into

syntactic expressions that will serve as transition predicates in the generated model.

We use program synthesis to infer Boolean valued expressions over (X ∪X ′) from

the trace data. The method used is an instance of synthesis from examples [52], where

concrete examples demonstrating the behaviour of the function to be synthesised are

used to guide synthesis. There are many algorithms that implement this synthesis

technique. We discuss choices for the synthesis algorithm in Section 4.2.3, Chapter 4.

The system abstractions generated by our algorithm model the following two

aspects of system behaviour:

• updates to a variable xi ∈ X during system execution

• transitions between predefined high-level system states or operation modes

In the following sections we describe the methodology used to infer data update func-

tions and system-state transition guards as predicates for the generated abstraction.

3.2.2.1 Data Updates

To model updates to a variable xi ∈ X during system execution in the generated

model, we infer a data-update function fxi(X) from trace data as follows:

Given a trace σ = v0, v1, . . . , vn−1 we define the following synthesis constraint

fxi(vt) = vt+1(xi),∀ 0 ≤ t < n− 1 (3.2)
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This is fed to a program synthesis tool, which in turn returns a syntactic expression

for the function fxi that satisfies the constraint.

For example, consider a system with X = {x1, x2}, and let v0 = (1, 0), v1 = (2, 0),

v2 = (3, 0), v3 = (4, 0) be a trace of that system. To model updates to the variable x1

we infer the data update function fx1 by defining the following synthesis constraints

as in (3.2).

fx1(1, 0) = 2

fx1(2, 0) = 3

fx1(3, 0) = 4

From these constraints, the synthesis tool might generate fx1 = x1 + 1.

The synthesised function fxi provides the value of the variable xi following a single

discrete step of system execution, and is used to define a Boolean expression ‘x′i = fxi ’,

that will serve as a transition predicate modelling updates to the variable xi in the

generated abstraction.

To tackle synthesis complexity for long traces, we divide the trace σ = v0, . . . , vn−1

into consecutive segments using a sliding window. We then define synthesis con-

straints as in (3.2) for each segment in independent instances of program synthesis.

The function synthesised in each program synthesis instance is used to construct a

sequence of predicates P = p0, p1, . . . , pn−2, such that

pt := x′i = fxi ,∀ 0 ≤ t < n− 1 (3.3)

where fxi is the data update function synthesised using fxi(vt) = vt+1(xi) as a con-

straint for synthesis.

It is often difficult to determine a suitable sliding-window size a priori. Therefore,

we generate multiple predicates by varying the window size from 3 to 10 and use

the smallest synthesised predicate. We then slide the window along the trace by the

window size corresponding to the smallest predicate and repeat the process. The

sequence of predicates P is constructed as described in (3.3).

The sliding window procedure is a general scheme that can break down a large

program synthesis instance into multiple smaller instances to tackle synthesis com-

plexity. In practice we often come across scenarios where the nature of updates to

a data variable xi ∈ X is influenced by system triggers, events, high-level system

states or operation modes. For instance, the nature of updates to the length of a

queue in a Serial Input-Output (I/O) Port system varies depending on whether there
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is read , write or reset event on the queue. We employ a more intuitive scheme to

tackle synthesis complexity in such scenarios.

We generalise the above scenario to the case where updates to a variable xi ∈ X is

influenced by a variable xj ∈ X with a finite enumerable domain Dxj . To model up-

dates to xi in the generated abstraction we synthesise a data-update function fxi|xj=d

for each value d ∈ Dxj in independent instances of program synthesis. The function

fxi|xj=d models updates to the variable xi when xj = d. To synthesise the function

fxi|xj=d from a trace σ = v0, . . . , vn−1 we define the following synthesis constraint:

fxi|xj=d(vt) = vt+1(xi), ∀ 0 ≤ t < n− 1 ∧ vt(xj) = d (3.4)

The synthesised function is used to define a Boolean expression ‘xj = d ∧ x′i =

fxi|xj=d’, that will serve as a transition predicate in the generated abstraction.

Synthesised functions fxi|xj=d for all values d ∈ Dxj from trace σ = v0, . . . , vn−1

are used to construct the sequence of predicates P = p0, p1, . . . , pn−1 such that

pt := xj = vt(xj) ∧ x′i = fxi|xj=vt(xj),∀ 0 ≤ t < n− 1 (3.5)

v0 = (0, reset)
v1 = (0,write)
v2 = (1,write)
v3 = (2, read)
v4 = (1, read)
v5 = (0,write)
v6 = (1, reset)
v7 = (0,write)
v8 = (1, read)
v9 = (0, read)

(a) Execution trace σ

fxi|xj=reset(0, reset) = 0
fxi|xj=reset(1, reset) = 0

fxi|xj=write(0,write) = 1
fxi|xj=write(1,write) = 2

fxi|xj=read (2, read) = 1
fxi|xj=read (1, read) = 0

(b) Synthesis constraints

fxi|xj=reset = 0

fxi|xj=write = xi + 1

fxi|xj=read = xi − 1

(c) Synthesised Expressions

p0 := xj = reset ∧ x′i = 0
p1 := xj = write ∧ x′i = xi + 1
p2 := xj = write ∧ x′i = xi + 1
p3 := xj = read ∧ x′i = xi − 1
p4 := xj = read ∧ x′i = xi − 1
p5 := xj = write ∧ x′i = xi + 1
p6 := xj = reset ∧ x′i = 0
p7 := xj = write ∧ x′i = xi + 1
p8 := xj = read ∧ x′i = xi − 1

(d) Transition Predicate Sequence P

Figure 3.2: Synthesising predicates for an abstraction of a Serial I/O Port system
with X = {xi, xj}, modelling updates to queue length xi under the influence of event
xj with domain Dxj = {reset ,write, read}.
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An example run of the above described scheme is illustrated in Fig. 3.2 using the

execution traces of a Serial I/O Port system, monitoring queue length xi and events

xj on the queue.

3.2.2.2 System-state Transition Guards

Inferring system-state transition guards from trace data can be useful when we wish to

model how a system switches between predefined high-level system states or operation

modes. For instance, the system abstraction of an IoT Heartbeat Monitoring System

provided in Fig. 3.3 models how the system switches between its operation modes

NORMAL and OFFLINE during execution.

We suppose that the high-level system states or operation modes of interest are

observable either as an output of the system or can be tapped from inside the system

with relevant instrumentation. We generalise system-state transition guard inference

to synthesising a Boolean expression that describes the condition under which a vari-

able xi ∈ X with a finite enumerable domain Dxi changes its value during system

execution. We synthesise a guard gxi,d→d′ for each pair (d, d′) ∈ Dxi × Dxi , where

d 6= d′, in independent instances of program synthesis. The synthesised guard will in

turn represent the condition under which xi changes from d to d′.

Given a trace σ = v0, v1, . . . , vn−1, we define the following synthesis constraints to

infer the transition guard gxi,d→d′ :

q1start

q2

q3

s ′
=

N
O

R
M

A
L

s′ = NORMAL

tim
er >

tim
eout ∧

s
′ =

OFFLIN
E

s′ = OFFLINE

¬(inp.val ≤ 0) ∧ s′ = NORMAL

Figure 3.3: Abstraction modelling operation mode switches for an IoT Heartbeat
Monitoring system generated by our algorithm.
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gxi,d→d′(vt) =

{
true, if vt+1(xi) = d′

false, if vt+1(xi) 6= d′
, ∀0 ≤ t < n− 1 ∧ vt(xi) = d (3.6)

The transition guard gxi,d→d′ synthesised from these constraints is used to define

a Boolean expression ‘gxi,d→d′ ∧ x′i = d′’, that will serve as a transition predicate in

the generated abstraction. Synthesised guards gxi,d→d′ from trace σ = v0, . . . , vn−1

for all pairs (d, d′) ∈ Dxi × Dxi where d 6= d′ are used to construct the sequence of

predicates P = p0, p1, . . . , pn−1 such that

pt :=

{
x′i = vt+1(xi), if vt(xi) = vt+1(xi)

gxi,vt(xi)→vt+1(xi) ∧ x′i = vt+1(xi), if vt(xi) 6= vt+1(xi)
, ∀0 ≤ t < n− 1 (3.7)

An example run of the above described method for transition guard inference is illus-

trated in Fig. 3.4 using the execution trace of an IoT Heartbeat Monitoring system.

v0 = (N, 1, 0, 5)
v1 = (N, 1, 0, 5)
v2 = (N,−10, 1, 5)
v3 = (N,−10, 2, 5)
v4 = (N,−10, 3, 5)
v5 = (N,−10, 4, 5)
v6 = (N,−10, 5, 5)
v7 = (N,−10, 6, 5)
v8 = (O,−10, 6, 5)
v9 = (O, 1, 6, 5)

(a) Execution trace σ

gs,N→O(N, 1, 0, 5) = false
gs,N→O(N,−10, 1, 5) = false
gs,N→O(N,−10, 2, 5) = false
gs,N→O(N,−10, 3, 5) = false
gs,N→O(N,−10, 4, 5) = false
gs,N→O(N,−10, 5, 5) = false
gs,N→O(N,−10, 6, 5) = true

gs,O→N(O,−10, 6, 5) = false

(b) Synthesis Constraints

gs,N→O = timer > timeout

gs,O→N = false

(c) Synthesised Expressions

p0 := s′ = N
p1 := s′ = N
p2 := s′ = N
p3 := s′ = N
p4 := s′ = N
p5 := s′ = N
p6 := s′ = N
p7 := timer > timeout ∧ s′ = O
p8 := s′ = O

(d) Transition Predicate Sequence P

Figure 3.4: Synthesising predicates for an abstraction of an IoT Heartbeat Monitoring
system with X = {s, inp.val , timer , timeout} modelling switches between operation
modes NORMAL and OFFLINE represented by s ∈ X. To simplify representation
we use N and O here in place of NORMAL and OFFLINE respectively.
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Note that each predicate pt in P constructed from trace σ is satisfied by (vt, vt+1)

for all 0 ≤ t < n− 1. Thus, the element at ∈ Σ corresponding to (vt, vt+1) as defined

in (3.1) satisfies pt by construction, i.e., at ∈ [[pt]].

3.2.3 Automaton Construction

Given a predicate sequence P = p0, . . . , pn−2 constructed from execution trace σ =

v0, . . . , vn−1 as described in Section 3.2.2, the automaton construction algorithm learns

an SFA that accepts σ. To this end, the algorithm learns an SFA that conforms to P .

Definition 7. An SFA M = (A, Q, q0, F,∆) is said to conform to a sequence of

predicates P = p0, . . . , pn−2 if there exists a finite path q0
p0−→ q1 . . . qn−2

pn−2−−−→ qn−1 in

M such that q0 = q0 and qn−1 ∈ F .

Theorem 2. If an SFA M = (A, Q, q0, F,∆) conforms to the predicate sequence

P = p0, . . . , pn−2 constructed from a trace σ = v0, . . . , vn−1, then M accepts σ.

Proof. Since M conforms to P = p0, . . . , pn−2, by definition 7 there exists a finite

path q0
p0−→ q1 . . . qn−2

pn−2−−−→ qn−1 in M such that q0 = q0 and qn−1 ∈ F . As discussed

in Section 3.2.2, the element ai ∈ Σ corresponding to the observation pair (vi, vi+1)

in trace σ satisfies pi by construction, i.e., ai ∈ [[pi]] for all 0 ≤ i < n−1. This implies

that for 0 ≤ i < n − 1 there exists transitions (qi, pi, qi+1) ∈ ∆ such that q0 = q0,

ai ∈ [[pi]] and qn−1 ∈ F . The SFA M, therefore, accepts trace σ.

The automaton construction algorithm is provided in Algorithm 1. The automa-

ton to be constructed is represented as an arrayM, each element of which encodes a

transition (line 2). The i-th element in the array is a triple comprising the following

symbolic variables: a state variable qi for the state from which the transition occurs,

a variable p′i for the corresponding transition predicate and a next state variable q′i

for the state the automaton moves to at the end of the transition. The sequence of

predicates P is used to define the following Boolean constraints on arrayM such that

the learned automaton conforms to P (line 3):

n−2∧
i=0

p′i = pi (3.8)

n−3∧
i=0

qi+1 = q′i (3.9)
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Algorithm 1 Automaton Construction Algorithm

1: procedure GenerateAutomata(P = p0, . . . , pn−2 : sequence of predicates
constructed from trace σ = v0, . . . , vn−1)

2: Target automaton M is represented as
M = (q0, p

′
0, q
′
0), . . . , (qn−2, p

′
n−2, q

′
n−2)

3: c← (
∧n−2
i=0 p

′
i = pi) ∧ (

∧n−3
i=0 qi+1 = q′i) . Encode predicate sequence as

transition sequences in M
4: N ← 1 . Number of automaton states
5: c← c ∧ (

∧n−2
i=0 1 ≤ qi, q

′
i ≤ N) . Set number of automaton states

6: result = Check SAT(c) . Invoke SAT solver
7: if result = UNSAT then . No N -state automaton found
8: N ← (N + 1)
9: go to 5

10: else . Candidate automatonM found
11: l← level of precision
12: Sl ← set of all transition sequences

of length l in M
13: Pl ← set of all subsequences of P

of length l
14: if Sl * Pl then . Subsequence check failed
15: Encode sequences in (Sl − Pl) as

blocking constraints cb
16: c← c ∧ cb
17: go to 6
18: else . Subsequence check successful
19: returnM
20: end if
21: end if
22: end procedure

Constraint (3.8) assigns synthesized predicates pi in P to the symbolic variable p′i in

M. The two constraints together ensure that the predicate sequence P is captured

by the automaton, i.e., there exists a finite path q0
p0−→ q1 . . . qn−2

pn−2−−−→ qn−1 in M.

To construct the automaton, we search systematically for an N -state automaton

that satisfies the constraints above. The number of automaton states is set to N by

restricting all state variables of M to take values between 1 and N (line 5). The

Boolean formula encoding the constraints is fed to a SAT solver, which in turn looks

for a satisfying assignment (line 6). If a satisfying assignment is found, the solution

is returned as a candidate automaton (line 10). If a satisfying assignment cannot be

found, it implies that there is no N -state automaton that meets the constraints; in

this case we increment N by 1 and repeat the search (lines 7–9). We begin automaton
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construction with N = 1 (line 4), increasing N by 1 each time an automaton cannot

be found. This ensures that we learn the smallest automaton that conforms to P .

Due to the absence of negative traces, a trivial solution to the SAT formulation

described above is a single state automaton that conforms to P . We therefore need

some means of tackling overgeneralisation when learning abstractions from only pos-

itive trace samples. In our algorithm, we introduce a tuning mechanism to address

overgeneralisation and control the precision of the learned system model.

Learning models from only positive trace samples

The problem of model-learning from labelled traces is conventionally translated to

generating an automaton that accepts all positive and rejects all negative traces.

However, in the absence of negative traces defining the exact language of the au-

tomaton to be learned is not straightforward. At one extreme, we can produce an

overgeneralised, single-state automaton that accepts not only the given traces but

also every other sequence of events defined over the alphabet set. At the other ex-

treme, we can generate an exact automaton that exclusively accepts the given traces

and nothing else. But such an automaton can be very large and complex to interpret.

Identifying the right compromise between these two extremes is challenging.

Previous work on generating models from only positive trace samples [11, 38] try

to learn the strictest automaton with at most N states. These algorithms look for an

automaton M with at most N states that is consistent with the given positive trace

samples, such that there is no other automatonM′ with at most N states where the

language ofM′ is a strict subset of the language ofM. While the language inclusion

constraint ensures that the model generated is not overgeneralised, the number of

states N controls the degree of generalisation. However, it is not possible to make an

educated guess for the value of N without any domain knowledge. Also, given the

generated model there is no means of identifying the sequential behaviours represented

by the inferred model that were not exemplified in the input trace set.

In our algorithm we introduce a single tunable parameter l, similar to the param-

eter k in k-Tails described in Section 2.1.1, Chapter 2, to address overgeneralisation

and control the precision of the learned automaton. Once a candidate automaton is

generated, we check the compliance of the generated automaton with P by looking

for invalid transition sequences of length l inM (lines 10–21). A transition sequence

is said to be invalid if it is not a subsequence of P (line 14).

We encode invalid sequences as Boolean formulae as in (3.8) and (3.9), add their

negation to the set of existing constraints and repeat the search (lines 14–17). These
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additional constraints on the automaton, referred to as blocking constraints in Algo-

rithm 1, restrict the automaton from encoding invalid transitions. The constraints

also provide provable guarantees that all sequential behaviour exemplified by transi-

tion sequences of length l in the generated automaton are indeed exemplified by the

input trace and therefore correspond to observed system execution behaviour. The

algorithm returns the N -state automaton M if a candidate automaton is found and

the compliance check is successful (lines 18–19).

A higher value of l implies tighter constraints of the automaton and hence, gen-

erates a more exact representation of the trace. This is analogous to increasing

the parameter k in k-Tails that increases the precision, size and complexity of the

learned model. While k-Tails is a top-down approach where the parameter k identifies

state merges in a PTA, our algorithm is a bottom-up approach where the parame-

ter l identifies state splits in an overgeneralised model. An experimental evaluation

demonstrating the correlation between l values, and automaton size and algorithm

runtime is provided in Section 4.2.2, Chapter 4.

Although this dissertation focuses on inferring abstractions from system execution

traces, the automaton construction algorithm can also be extended to infer automata

from labelled traces, i.e., positive and negative traces. Here, the negative traces can

be encoded as blocking constraints in Algorithm 1 to restrict the automaton from

representing the behaviours exemplified by them.

The automaton construction algorithm also provides an optional functionality to gen-

erate automata where no two transitions from a state are marked with the same pred-

icate. To this end, we use standard techniques for NFA to DFA conversion followed by

DFA minimisation, treating the set of transition predicates as the automaton alpha-

bet. Note that the resulting automaton need not be a deterministic SFA. For instance,

the automaton may have syntactically different predicates pi1 and pi2 on transitions

from some state qi to states q′i1 and q′i2 respectively. But, [[pi1]] ∩ [[pi2]] may not be

empty, thereby introducing the possibility of non-determinism in the automaton.

3.3 Performance Optimizations

The SAT formulation described Section 3.2.3 for automaton construction leads to

O(|P |) Boolean constraints. As a result, when dealing with long execution traces,

the Boolean formula encoding constraints on the automaton can become very large,
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thereby increasing algorithm runtime. To improve algorithm scalability, we intro-

duce two performance optimizations that help break down a large SAT problem into

multiple smaller instances with manageable runtime.

3.3.1 Trace Segmentation

Trace segmentation as an optimization leverages the presence of repeating patterns

in the predicate sequence to significantly reduce the size of the SAT problem from

O(|P |), and thereby reduce algorithm runtime. In our context, a pattern is any finite

sequence of predicates that are consecutive in P . Each pattern can be viewed as a

symbolic characterisation of sequential system behaviour. For instance, the sequence

of predicates s′ = NORMAL, (timer > timeout) ∧ (s′ = OFFLINE), s′ = OFFLINE

generated from traces of an IoT Heartbeat Monitoring system is a characterisation

of the sequential behaviour where the system switches from NORMAL mode to OF-

FLINE mode on timeout and remains in the OFFLINE mode.

With trace segmentation, we relax the constraints for automaton construction such

that instead of learning an automaton that conforms to the entire predicate sequence,

we learn an automaton that captures all sequential system behaviour exemplified by

patterns of a specified length w. We use a sliding window to extract the set of all

unique patterns of length w from the predicate sequence. This is illustrated in Fig. 3.5

for w = 3. We define Boolean constraints 3.8 and 3.9 for each unique pattern and

feed the conjunction to the SAT solver.

This leads to O(w · |Uniqw|) constraints, where Uniqw is the set of all unique pat-

terns of length w. For long traces with frequently repeating patterns (w · |Uniqw|)�
|P |. In such scenarios, trace segmentation produces a significant reduction in algo-

rithm runtime. A detailed discussion on the need for segmentation in practice and

its effect on scalability is given in Section 4.4, Chapter 4. We discuss strategies for

choosing a suitable window size for trace segmentation in Section 4.2.1, Chapter 4.

Note that only a window size equal to the length of the predicate sequence P

guarantees model correctness, i.e., w = |P | guarantees that the generated abstraction

conforms to P . For w < |P | the Boolean constraints defined for automaton construc-

tion do not suffice to guarantee model correctness. To ensure correctness of generated

abstractions irrespective of the window size w we employ a check after automaton

construction to verify that the generated abstraction conforms to P . If the check

fails we add missing predicate sequences incrementally to the generated automaton,

until the automaton conforms to P . This incremental procedure for model-learning

is described in Section 3.3.2.
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s′=NORMAL
s′=NORMAL
s′=NORMAL
s′=NORMAL
s′=NORMAL
s′=NORMAL
s′=NORMAL
timer>timeout ∧ s′=OFFLINE
s′=OFFLINE
s′=OFFLINE
s′=OFFLINE
s′=OFFLINE
s′=OFFLINE
s′=OFFLINE
s′=OFFLINE

(a) Predicate Sequence P

Pattern 1: s′=NORMAL
s′=NORMAL
s′=NORMAL

Pattern 2: s′=NORMAL
s′=NORMAL
timer>timeout ∧ s′=OFFLINE

Pattern 3: s′=NORMAL
timer>timeout ∧ s′=OFFLINE
s′=OFFLINE

Pattern 4: timer>timeout∧ s′=OFFLINE
s′=OFFLINE
s′=OFFLINE

Pattern 5: s′=OFFLINE
s′=OFFLINE
s′=OFFLINE

(b) Unique patterns of length 3 in P

Figure 3.5: Trace segmentation with w = 3.

The effectiveness of trace segmentation is heavily dependent on the frequency of pat-

tern recurrence and number of such patterns. For predicate sequences with infrequent

or no repeating patterns, the difference in the number of constraints with and without

segmentation is negligible. In the implementation of our algorithm we preprocess the

predicate sequence to compute the number of constraints for automaton construction

with and without trace segmentation and select the smaller of the two. Addition-

ally, we introduce a second optimisation, incremental learning, to tackle algorithm

scalability where trace segmentation is ineffective.

3.3.2 Incremental Learning

In this optimisation, instead of attempting to construct an automaton that conforms

to the entire predicate sequence P , we incrementally construct an automaton that

progressively conforms to finite prefixes of P of increasing length. This optimisation

is inspired by previous work [10] where a set of traces are processed incrementally to

generate a model, and it has been adapted to the SAT encoding used in our algorithm.

We use finite prefixes of P of increasing length as input in each iteration of incre-

mental learning. Starting with the smallest prefix, we construct a candidate abstrac-

tion that conforms to the prefix. For each subsequent prefix of increasing length, we

check to see if the previously generated automaton conforms to the input sequence.

If yes, we move onto the next prefix. If not, we encode the prefix as additional
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constraints on the previously generated automaton such that the new automaton

conforms to the input prefix, and repeat the SAT check. In each iteration i of incre-

mental learning, the construction algorithm generates an automaton Mi such that

Mi is the smallest automaton that satisfies the specified construction constraints and

L(Mi−1) ⊆ L(Mi). The optimisation yields a significant decrease in runtime for long

traces. Further details are provided in Section 4.4, Chapter 4.

Generating models from a set of execution traces

The tracing setup may often yield a set of system execution traces rather than a

single trace. We assume the system implementation used to collect traces can be

reset and executed again to collect more traces. In this section we describe how the

model-learning algorithm can be adapted to learn symbolic abstractions from a set

of system execution traces thus obtained.

Given a set of system execution traces T , we start by constructing a single long

trace σ̂ obtained by concatenating all traces in T . Each trace is separated by a delim-

iter in σ̂. The transition predicate synthesis step constructs a sequence of predicates

as described in Section 3.2.2 from trace σ̂. The delimiters that separate each trace

in σ̂ are used to divide the constructed predicate sequence into consecutive segments,

one corresponding to each trace in T . This gives rise to a set of transition predicate

sequences that serve as input to the automaton construction step.

For automaton construction, we process each predicate sequence in the set one at

a time in incremental calls to the construction algorithm. In the algorithm described

in Section 3.2.3, we do not explicitly specify an initial automaton state; the initial

state would correspond to whatever value is assigned to the symbolic state variable q0

by the SAT solver. But for constructing an automaton from a set of traces, since each

predicate sequence in the set corresponds to an execution trace obtained after system

reset, we need to ensure that each predicate sequence is captured in the automaton

as a finite path starting from an initial automaton state. To this end, we explicitly

set the initial automaton state to be represented by the value 1 by extending the

constraints 3.8 and 3.9 to include the constraint q0 = 1. The remaining symbolic

state variables can take any value between 1 and N .

In each iteration of the automaton construction algorithm we employ both per-

formance optimizations—trace segmentation and incremental learning—to enable the

algorithm to scale. The final generated system abstraction conforms to all predicate

sequences in the set and therefore accepts all traces in T .
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This approach can also be applied in a setting where given a system abstraction

M inferred from a trace set T , and a set of additional system execution traces T ′,
we wish to learn an abstraction that accepts all traces in T ∪ T ′. Here, rather than

repeating the model generation process with T ∪ T ′ as input to the model-learning

algorithm, the system behaviours exemplified by the traces in T ′ can be incrementally

added to the inferred abstraction M. To this end, we start by constructing a set of

transition predicate sequences from T ′, and then process each predicate sequence in

the set in incremental calls to the construction algorithm as described above. As an

additional optimisation step, we can check which traces in T ′ are already accepted

by M and process only the non-accepting traces for incremental learning.
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Chapter 4

Experimental Evaluation

In this chapter we present an empirical evaluation of the model-learning algorithm

described in Chapter 3. For our experiments we use three sets of benchmarks from

different domains, including system-on-chip (SoC) and internet-of-things (IoT). We

report the results of a series of ablation tests to evaluate algorithm performance, with

and without each of the algorithmic optimizations described in Section 3.3, Chapter 3,

to expose their individual contribution to improving algorithm runtime.

We also report on experiments that compare the algorithm with the most promi-

nent existing methods, state-merge and query-based learning, as well as a machine

learning approach using contemporary recurrent neural network technology. A de-

tailed account of these algorithms is provided in Chapter 2. Our experiments compare

the algorithms on their ability to generate symbolic abstractions, as well as algorithm

runtime, the size of automaton produced, and the accuracy of the system behaviours

captured by the generated system abstractions.

Plan of the chapter

The rest of the chapter is organized as follows. Section 4.1 provides a detailed descrip-

tion of the benchmarks used for our evaluation. Section 4.2 describes the implementa-

tion of the algorithm and the experimental setup used for the evaluation. Section 4.3

provides an overview of the generated models and the experimental results. In Sec-

tion 4.4 we discuss the benefits of the optimizations introduced in our algorithm using

empirical data. Section 4.5 details the results of our comparison experiments with

state-merge, query-based learning and machine learning algorithms.
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4.1 Benchmarks

We evaluate the model-learning algorithm using three sets of benchmarks:

SoC: This is a set of five benchmarks from the SoC domain. Four of the five bench-

marks use the QEMU1 virtual platform [14] to emulate an x86 system that includes

hardware components. The virtual platform runs a full CentOS Linux distribution

and is given an application to exercise system behaviours of interest. These bench-

marks are used to evaluate the capability of the model-learning algorithm in a realistic

setting. The last example is artificial and enables us to benchmark particular aspects

of the method. Details of all five benchmarks are provided below:

USB xHCI Slot State Machine The Extensible Host Controller Interface (xHCI) [65]

specifies a controller’s register-level operations for USB 2.0 and above. Here, we look

specifically at slot-level operations that take place when we access a virtual USB

storage device as implemented in QEMU x86 platform emulation.

QEMU USB Interface Emulation We use the same setup as above but record all

interface events that take place when a virtual USB storage device is attached to the

virtual platform. The resulting trace records the series of ring fetch and ring write

operations between the command ring and event ring of the xHCI protocol.

QEMU Serial I/O Port We used QEMU’s x86 emulation of a serial I/O port and

recorded changes in queue length. The trace contains (numerical) queue length data

and the queue size ‘limit’, along with (Boolean) read , reset and write events on the

queue. In our experiments, we aim to generate an abstraction of the serial I/O port

modelling updates to the queue length under the influence of the events on the queue.

Real Time Linux Kernel We generated an automaton describing the behaviour of

threads in the Linux PREEMPT RT kernel on a single core system. This is motivated

by work in [34, 35] where hand-drawn models of the kernel are used as monitors for

runtime kernel verification. For this example, we used the built-in Linux tracing in-

frastructure ftrace to trace scheduler-related calls made by the thread under analysis,

as described in [35]. We used the Linux PREEMPT RT kernel version 5.0.7-rt5 on a

single core QEMU emulated x86 machine for our experiments.

Integrator Control applications frequently track an integral of an input signal ip. We

implement an anti-windup integrator where the computed output op is saturated at

1https://www.qemu.org/
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predefined thresholds, ‘upper limit’ and ‘lower limit’. The trace contains valuations

of (ip, op) pairs at discrete steps of system execution.

Log Data: The second set of benchmarks is obtained from [19]. Here, trace data is

generated from 10 finite-state machine models using a trace generator [78]. The traces

range from log data pertaining to SSH and TCP protocols to Java API logs, and are

comprised of sequences of Boolean events. The complete set of benchmarks is publicly

available in [20]. These benchmarks are used to evaluate algorithm scalability.

AWS IoT: The third benchmark set is from the IoT domain. Amazon Web Services

(AWS) IoT uses manually specified detector models [96] to monitor customer IoT

systems and raise alarms. Each detector model defines a set of operation modes. In

our experiments we aim to generate the detector models automatically using trace

data by modelling how the system switches between these operation modes. We

use C implementations of 5 publicly available detector models described below to

generate traces and attempt to reverse-engineer the models from these traces. These

benchmarks are used to evaluate the predicate synthesis component and the ability

of the algorithm to generate expressive symbolic abstractions.

Heartbeat Monitoring This detector model switches between two modes of operation:

NORMAL and OFFLINE. When an input less than 0 is received, the system starts a

timer. If the timer expires before receiving an input signal greater than 0, the model

moves to the OFFLINE mode and raises an alert. The model switches back to the

NORMAL mode on receiving an input greater than 0.

HVAC Temperature Control The temperature control detector model for Heating,

Ventilation and Air Conditioning (HVAC) receives temperature data from sensors and

the user can set a desired temperature. The model switches between the operation

modes IDLE, COOLING and HEATING depending on the temperature reading. To

protect the HVAC system from damage an additional pair of timers and corresponding

timeouts are defined for the cooling and heating operations.

IoT Sensor This detector model receives inputs from both a sensor device and a soft-

ware application. It has three operation modes: DEVICE IDLE, DEVICE IN USE

and DEVICE EXCEPTION. The device provides a GPS position and a device ID

as input to the model, which in turn checks the values against corresponding inputs

received from the software application to trigger relevant actions.

Simple Alarm This detector model is used to detect if a monitored device is in an

alarming state. It has three operation modes: NORMAL, ALARMING and SNOOZE.

The model raises an alarm when the input signal exceeds a predefined threshold.
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ISA Alarm This detector model is used to detect if a monitored device is in an

alarming state in accordance to ISA 18.2. It has 7 operation modes: NORMAL,

UNACK, ACK, RTN UNACK, OOS, SHEL, SUPR. Unlike Simple Alarm described

above, the model checks the input against predefined upper and lower thresholds.

4.2 Implementation Details and

Experimental Setup

The model-learning algorithm is implemented as a tool Trace2Model (T2M). We

use CVC4 v1.9 [13] implementing SyGuS as the program synthesis tool for transition

predicate synthesis. For automaton construction we define the automaton and encode

the construction constraints in a C program and use the C Bounded Model Checker

(CBMC v5.11) [29] as our solver. The codebase for the T2M tool and the benchmarks

used in this work can be found in [68].

In the following sections we discuss specific aspects of the T2M tool and the

experimental setup.

4.2.1 Selecting Window Size for Trace Segmentation

For model learning we would ideally like to choose a value for w that results in the

smallest number of constraints for automaton construction. It is however challenging

to determine an optimal value for w a priori. Although choosing w = 1 will result in

the smallest number of constraints, equal to the number of unique predicates appear-

ing in P , patterns of length 1 do not characterise any sequential system behaviour.

The corresponding constraints for automaton construction only ensure that there is

at least one transition in the automaton labelled with each predicate appearing in P .

One strategy is to approximate the number of constraints for windows of different

sizes by preprocessing the predicate sequence. We can then choose the window size

that produces the smallest number of constraints. But for very long sequences this

may cause unnecessary overheads. The strategy we adopt for our experiments is to

fix the window size w = 3, which is small enough to capture interesting sequential

behaviour and produce a reasonably small number of constraints.

4.2.2 Tuning Precision of Generated Models

As described in Section 3.2.3, Chapter 3, we use a tunable parameter l to control

the precision of the generated abstraction during automaton construction. To better
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Figure 4.1: Models generated for different l values for trace σ = a, b, a, a, a, b, a, a, b

understand the effect of l on automaton construction, we performed a series of ex-

periments where we generated abstractions for a simple trace σ = a, b, a, a, a, b, a, a, b

with increasing values for l starting with l = 1. We set a timeout of 5 h for our

experiments. We recorded the algorithm runtime and automaton size. The generated

abstractions are illustrated in Fig. 4.1.

As is evident from the runtime plot in Fig. 4.2, algorithm runtime increases almost

exponentially for increasing values of l. This is because a higher l value implies tighter

constraints on the automaton to be constructed, thereby increasing the complexity of

the SAT problem. For l ≥ 8 the algorithm timed out before generating an abstraction.

A higher value for l generates a more exact representation of the trace as is evident

from Fig. 4.1. The generated abstractions become progressively more precise with

increasing l, similar to the parameter k in k-Tails. For model learning using k-Tails,

it is common practice to use a k value between 2 and 4 [80]. For our experiments we
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Figure 4.2: Runtime plot (log scale) demonstrating the effect of increasing l values on
algorithm runtime for generating an abstraction from trace σ = a, b, a, a, a, b, a, a, b.

use l = 2 to ensure that the problem is not too complex to solve but at the same time

the learned automaton is not overgeneralised to fit the trace.

4.2.3 Discussion of Program Synthesis Engines

We experimented with two program synthesis tools for generating transition predi-

cates for the automaton: CVC4 version 1.9 [13], which by default employs SyGuS

with CEGIS, and fastsynth, which is based on the work done in [4].

The SyGuS-based approach requires a grammar for the program. The key effort is

to determine the constants that are required; often they have to be adjusted manually

for every model. An alternative is to automatically sample valuations from trace data

to be used as constants in the grammar using data sampling techniques. Fastsynth

also implements CEGIS but does not rely on a user-specified grammar to restrict

the search space. Fastsynth ignores any grammar given as part of the problem and

produces the smallest function that satisfies the constraints. Any constants that may

be required are generated automatically.

CVC4 also implements an alternative algorithm that does not require syntax guid-

ance; however, that produces trivial solutions. For example, given the trace sequence

σ = 1, 2, 4, 8 for X = {x}, CVC4 generates the expression

(ite (= x 4) 8 (ite (not (= x 2)) 2 4)) (4.1)

for the data update function fx, whereas fastsynth produces the expression

x+ x (4.2)
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which is a better fit for our problem. The type of transition predicates synthesised and

as a consequence the expressiveness of generated models depends on the ability of the

program synthesis tool and the approach to synthesis. A suitable synthesis tool can

be chosen based on the target models we wish to obtain and the application domain.

4.3 Results

SoC Benchmark Set The system models generated by T2M for the SoC bench-

mark set are provided in Fig. 4.3–4.7. For USB xHCI Slot State Machine, our al-

gorithm learns the automaton provided in Fig. 4.3b, resembling the Intel datasheet

diagram in Fig. 4.3a. It is worth noting that the model-learning algorithm is able to

generate an accurate representation of system behaviours that are exercised under a

given application load. Some transitions in Fig. 4.3a do not appear in the learned

(a)

q1start

q2 q3 q4

CR ENABLE SLOT

CR DISABLE SLOT

CR RESET DEVICE

CR ADDR DEV

(BSR=0)

CR CONFIG END

CR STOP END

CR CONFIG END

(b)

Figure 4.3: USB Slot state machine provided in (a) Intel datasheet [65] and (b)
automaton learnt by our approach.
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model because either QEMU does not implement those behaviours or the application

load does not drive the system into those scenarios. The abstractions generated thus

provide valuable coverage information.

q1start q2

q3

q4

q5

q6q7

xhci write

ErT
ra

ns
fe
r

CCShortPacket

ErC
C
, ErPSC

C
C
Success

C
C
Su

cc
es

s

x
h

ci
rin

g
fetch

T
R

D
at

a,
T

R
S

et
u

p

TRBReserved

xhci ring fetch

xhci write

CrAD, CrCE, CrES
TRNormal, TRStatus

Figure 4.4: Model of USB interface for attach operation.

q1start

q2

y = reset ∧ x′ = 0

y = reset ∧ x′ = 0,

y = write ∧ x′ = if x < limit then x+ 1 else limit,

y = read ∧ x′ = if x > 1 then x− 1 else 0

Figure 4.5: Model of QEMU Serial I/O Port.

For QEMU Serial I/O Port, our algorithm was able to infer data update expres-

sions that accurately represent how the queue length x changes under the influence

of the read , write and reset events on the queue, as illustrated in Fig. 4.5.
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Figure 4.7: Model of an anti-windup integrator.
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Initial attempts at modelling RT-Linux Kernel thread behaviour with our algo-

rithm, using the pi stress tests from the rt-tests suite as system load, revealed that

some states in the hand-drawn model provided in [35] are not covered by the given

load. On running an additional kernel module to cover these corner cases, we obtain

the automaton in Fig. 4.6. This experiment provides evidence in support of poten-

tially using the models learned by our algorithm for functional test coverage analysis.

For the Integrator benchmark, the algorithm generates the system model provided

in Fig. 4.7. The transitions labelled with predicate op ′ = op + ip encode integrator

behaviour outside of saturation. In the learned abstraction, the finite paths q2 →
q3 → q5 and q2 → q4 → q6 accurately capture saturation behaviour at the lower and

upper thresholds respectively.

Log Data Benchmark Set These benchmarks are used to evaluate algorithm

scalability. This is discussed in detail in Sections 4.4 and 4.5.

Using a combination of trace segmentation and incremental learning, T2M is able

to generate concise models in less than 1 h for 9 out of 10 benchmarks. For the

java.net.DatagramSocket benchmark, T2M takes a little over an hour to generate a

model with 64 states.

AWS IoT Benchmark Set For the AWS IoT benchmarks, T2M is able to gener-

alise over multiple system variables of different datatypes to generate transition pred-

icates that accurately capture system behaviour, such as the model learned for the
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s ′
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s′ = NORMAL

tim
er >
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eout ∧

s
′ =
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¬(inp.val ≤ 0) ∧ s′ = NORMAL

Figure 4.8: Model of an IoT Heartbeat Monitoring system
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s′ = DEVICE IN USE)

¬(inp.id = user id) ∧ s′ = DEVICE EXCEPTION
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Figure 4.9: Model of IoT Sensor system.

IoT Sensor benchmark in Fig. 4.9. The models generated for 4 out of 5 benchmarks

are provided in Fig. 4.8–4.11. The model generated for the ISA Alarm benchmark has

19 states. We have therefore provided only the inferred transition guards in Table. 4.1

describing switching behaviour between operation modes.

The IoT benchmarks are unique in that the detector models we attempt to reverse-

engineer from traces data feature priorities on the transition edges. T2M is able to

automatically infer transition priority from trace data and incorporate it into the

transition predicates for the generated abstraction.

For instance, in the detector model implementation for ISA Alarm, transitions

to operation modes UNACK and NORMAL from operation mode ACK have the

following transition guards with priorities 1 and 2 respectively.

snooze time > snooze timeout (4.3)

inp.cmd = RESET (4.4)

The corresponding guards inferred by T2M from trace data are (Table 4.1)

gs,ACK→UNACK := snooze time > snooze timeout (4.5)

gs,ACK→NORMAL := ¬(snooze time > snooze timeout) ∧ inp.cmd = RESET (4.6)

Here, gs,ACK→NORMAL evaluates to true only if gs,ACK→UNACK is not satisfied, thereby

accurately capturing transition priority order.
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φ1 = gs,IDLE→HEATING := ¬(inp.temp ≥ desiredTemp− allowedError)

φ2 = gs,IDLE→COOLING := inp.temp > desiredTemp + allowedError

φ3 = gs,COOLING→HEATING := ¬(inp.temp ≥ rangeLow)

φ4 = gs,HEATING→COOLING := inp.temp > rangeHigh

φ5 = gs,HEATING→IDLE := heatingTimer > heatingTimeout∧
inp.temp ≥ desiredTemp + allowedError ∧ ¬(inp.temp > rangeHigh)
φ6 = gs,COOLING→IDLE := coolingTimer > coolingTimeout∧
¬(inp.temp > desiredTemp− allowedError) ∧ ¬(rangeLow > inp.temp)

Figure 4.10: Model of IoT HVAC Temperature Control system.

Similar guards are generated for the HVAC Temperature Control and Simple

Alarm benchmarks as well. For the HVAC Temperature Control benchmark a transi-

tion to the HEATING mode is prioritised over a transition to the IDLE mode from the

COOLING mode. Similarly, a transition to the COOLING mode is prioritised over
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φ1 = gs,NORMAL→ALARMING := inp.val > thresh

φ2 = gs,ALARMING→NORMAL := inp.cmd = RESET

φ3 = gs,ALARMING→SNOOZE := inp.cmd = ACK

φ4 = gs,SNOOZE→ALARMING := snooze time > snooze timeout

φ5 = gs,SNOOZE→NORMAL := inp.cmd = RESET∧
¬(snooze time > snooze timeout)

Figure 4.11: Model of IoT Simple Alarm system.

a transition to the IDLE mode from the HEATING mode. This is captured by the

transition guards gs,COOLING→HEATING and gs,COOLING→IDLE, and gs,HEATING→COOLING

and gs,HEATING→IDLE in Fig. 4.10, respectively.

For the Simple Alarm benchmark a transition to the ALARMING mode is priori-

tised over a transition to the NORMAL mode from the SNOOZE mode. This is cap-

tured by the transition guards gs,SNOOZE→ALARMIMG and gs,SNOOZE→NORMAL in Fig. 4.11.

4.4 The Benefit of Trace Segmentation and

Incremental Learning

To learn models from execution traces we require efficient and scalable mechanisms

for mining useful information from large amounts of trace data. The two algorithmic

optimizations used in our model-learning algorithm—trace segmentation and incre-

mental learning—as discussed in Section 3.3, Chapter 3, break down a large SAT
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problem into multiple small instances that have manageable runtime.

To evaluate the benefit of these optimizations, we give the results of a runtime

comparison of the algorithm with and without each optimization: Fig. 4.12a is a

plot of the runtime against trace length for segmented and non-segmented inputs,

Fig. 4.12b is a runtime plot for incremental and non-incremental learning. For each

comparison we use execution traces of the Integrator benchmark with exponentially

increasing trace length. Both optimizations independently produce a significant re-

duction in algorithm runtime, with the incremental learning optimization producing

a larger runtime reduction than trace segmentation.

We performed similar comparison experiments on all benchmarks. We set a time-
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Figure 4.12: Graph plot (log–log plot) comparing runtime for T2M with and without
the optimizations for the Integrator benchmark.
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Figure 4.13: Cactus plot (log scale) for the T2M algorithm with and without opti-
mizations for all benchmarks.

out of ≈ 3 h for each benchmark. The cactus plot representing algorithm performance

with and without the optimizations is provided in Fig. 4.13. A combination of both

optimizations produces the best results, with the algorithm generating system models

for more benchmarks in a given time frame as compared to other algorithm settings.

We observe that algorithm performance with only the incremental learning opti-

mization is very close to the performance obtained using both optimizations for the

benchmarks used in our evaluation. But, this is not always true. For instance, when

we attempt to learn an abstraction from an execution trace of length ≈ 217 for the

Integrator benchmark we observe that the algorithm takes 71.6 s using only incre-

mental learning and 18.1 s using the combination of both optimizations. Here, trace

segmentation produces an additional 75% decrease in algorithm runtime.

4.5 Comparison with Related Work

We experimentally compare our model-learning algorithm with relevant related work:

state-merge, query-based learning using L* and an LSTM-based approach.

4.5.1 Learning Symbolic Abstractions

The predicate synthesis component of our model-learning algorithm enables T2M to

generalise over multiple system variables of different types to learn symbolic system

models. In this section we qualitatively compare the symbolic abstractions generated
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by T2M with the models generated by state-merge and query-based learning. The

LSTM-based approach does not support inference of symbolic models.

Out of the benchmarks described in Section 4.1, we use the QEMU Serial I/O

Port, Integrator and AWS IoT benchmarks for our comparison. System traces for

the remaining benchmarks are sequences of only Boolean events. Since we wish to

compare the algorithms on their ability to infer symbolic models, these benchmarks

are not relevant. We use the complete set of benchmarks to quantitatively compare

the algorithms on model size and accuracy, and algorithm runtime in Sections 4.5.2–

4.5.4.

State-merge: Conventional state-merge algorithms, such as k-Tails, do not gener-

ate symbolic abstractions. They often fail to model how system variables change

during execution. But over the years these algorithms have been extended to infer

EFSMs [80, 106, 107, 114, 115]. A detailed account is provided in Chapter 2.

We use the MINT (Model Inference Technique) tool [110] to compare state-merge

algorithms for EFSM inference with T2M. In addition to the k-Tails algorithm, the

tool provides support for the GkTails algorithm that uses Daikon to infer transition

guards for EFSMs, and the algorithm in [114] that generates data update functions

using genetic programming. We use both these approaches for our comparison.

The abstractions generated by T2M and MINT for the QEMU Serial I/O Port,

Heartbeat Monitoring and Sensor benchmarks, using the same set of system execution

traces as input, are provided in Fig. 4.14–4.16.

q1start

y = reset ∧ x′ = 0,

y = write ∧ x′ = if x = 5− 0.884 then x+ 1 else 5,

y = read ∧ x′ = x− 1

(a) MINT

q1start

q2

y = reset ∧ x′ = 0

y = reset ∧ x′ = 0,

y = write ∧ x′ = if x < limit then x+ 1 else limit,

y = read ∧ x′ = if x > 1 then x− 1 else 0

(b) T2M

Figure 4.14: Models learnt for a Serial I/O Port system using T2M and MINT. Here,
‘limit’ represents the total queue size, which was set to 5.
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Figure 4.15: Models learnt for a Heartbeat Monitoring system using T2M and MINT.

For the QEMU Serial I/O Port benchmark the MINT tool is able to infer expres-

sive data update functions, such as the expression

y = write ∧ x′ = if x = 5− 0.884 then x+ 1 else 5

as illustrated in Fig. 4.14a. The inferred functions are however partial. For instance,

the tool infers the expression x′ = x − 1 modelling updates to queue length x when

there is a read event on the queue. This is however not the case when the queue

is empty, i.e., x = 0 and therefore not accurate. The abstraction reverse-engineered

by T2M in Fig. 4.14b is able to accurately model this behaviour. For the other

benchmarks MINT is found to generate models that are less expressive than T2M,

as illustrated in Fig. 4.15 and 4.16; Here, MINT fails to generalise and accurately

express dependencies and computations involving multiple system variables.
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s′ = DEVICE EXCEPTION

(b) T2M

Figure 4.16: Models learnt for an IoT Sensor system using T2M and MINT.
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MINT infers transition guards and data update expressions on a per-transition

basis, and therefore requires a large amount of trace data to generate a good enough

abstraction; each transition needs to be executed with a broad range of data values

to infer accurate predicates. As a result, for the same input set of execution traces,

MINT is found to generate models that are less expressive than T2M.

Query-based learning: Although the classic L* algorithm does not support sym-

bolic abstraction inference, several extensions of the algorithm have been developed to

generate symbolic models such as SFAs and register automata [8, 17, 25]. In practice,

however, implementations of these algorithms are often tailored to generate a specific

and often small subset of symbolic models due to high query complexity [60, 61].

For instance, Maler and Mens developed a symbolic version of the L* algorithm to

learn models where transitions are labelled with elements of a finite partition of the

alphabet [81, 82]. Another extension [108] learns a specific class of Mealy machines

with a single timer. The symbolic abstractions generated by T2M can feature more

complex expressions, such as linear arithmetic, involving multiple variables.

The MAT* algorithm [8] learns SFAs over Boolean algebras that are efficiently

learnable using membership and equivalence queries, such as the equality algebra.

In addition to membership and equivalence oracles the algorithm takes as input a

learning algorithm for the Boolean algebra used in the target SFA. Although the

algorithm is able to generate SFAs over the equality algebra and SFAs with transitions

labelled with Binary Decision Diagrams (BDDs), designing and implementing oracles

for richer models such as SFAs over the theory of linear integer arithmetic is not

straightforward. This is discussed further in Section 6.3.3, Chapter 6.

The Sigma* algorithm [17] uses symbolic execution to find constraints on inputs

and expressions generating output to build a symbolic alphabet. Unlike T2M, Sigma*

does not infer these expressions from system execution traces. Since an implementa-

tion of the algorithm is not available for public use, we were unable to experimentally

compare Sigma* with T2M.

The SL* algorithm [25] extends query-based learning to infer register automata

that model both control flow and data flow. Register automata have registers that can

store input characters, and allow comparisons with existing values that are already

stored in registers, making them inherently more expressive that SFAs. To evaluate

the SL* algorithm and compare it with T2M we convert the SFAs generated by T2M

into register automata, and attempt to reverse engineer the models using RALib [24].

RALib implements the SL* algorithm and supports the inference of Input-Output
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timer > timeout
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Figure 4.17: IORA modelling a Heartbeat Monitoring system.

q1start q2
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q5 q6

check(inp.pos, inp.id)
inp.pos = gps pos

DEVICE IDLE()

check(inp.pos, inp.id)
¬(inp.pos = gps pos)

DEVICE IN USE()

check(inp.pos, inp.id)
inp.id = user id

check(inp.pos, inp.id)
¬(inp.id = user id)

DEVICE EXCEPTION()

check(inp.pos, inp.id)

Figure 4.18: IORA modelling an IoT Sensor system.
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Figure 4.19: IORA modelling a Serial I/O Port system.

Register Automaton (IORA). An IORA is a register automaton transducer that gen-

erates an output action after each input action. Here, we discuss the results obtained

for the QEMU Serial I/O Port, Heartbeat Monitoring and Sensor benchmarks.

We model the Heartbeat Monitoring benchmark as an IORA with input action

check(inp.val , timer) that takes parameters inp.val and timer , and output actions

NORMAL() and OFFLINE() corresponding to the system operation modes, as illus-

trated in Fig. 4.17. We use a similar modelling formalism to construct an IORA for

the Sensor benchmark, provided in Fig. 4.18. RALib is able to reverse-engineer these

models exactly for both benchmarks.

We model the QEMU Serial I/O Port benchmark as an IORA with inputs ac-

tions read(), write() and reset(), and output action done(), as illustrated in Fig. 4.19.

RALib, however, does not currently support assignments involving symbolic expres-

sions on the right-hand side, and therefore the tool was unable to generate a model

for this benchmark. We further discuss RALib and its ability to generate symbolic

abstractions on benchmarks from other domains in Section 6.3.3, Chapter 6.

In the following sections the algorithms are compared on runtime, generated model

size and correctness. The results are summarised in Tables 4.2 and 4.3. For the

comparison experiments, we use the set of predicate sequences constructed from the

execution trace set as described in Chapter 3 as the algorithm input for all bench-

marks. In the following sections we refer to the set of predicates sequences as the

trace input to the algorithms, unless specified otherwise.
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4.5.2 Comparison with State-Merge

To compare T2M with state-merge we use the MINT tool. Most state-merge al-

gorithms do not focus on producing the most succinct models but rather produce

a good enough approximation that is consistent with the trace input. Algorithms

that do generate minimal automata often require labelled traces or additional system

information in the form of predefined LTL properties.

As is evident from Table 4.2, for majority of the benchmarks the state-merge al-

gorithm is slower than T2M and it often generates large automata that are difficult

to comprehend. By contrast, T2M learns models that are succinct in reasonable run-

time. The MINT tool was unable to produce models for the Linux Kernel, Integrator

and java.net.Socket benchmarks.

Since the state-merge approach generates automata by merging states in the PTA,

the generated automaton is guaranteed to admit the trace input. Model correctness

is therefore guaranteed, as is the case for T2M.

4.5.3 Comparison with L*

To compare T2M with L* we implement simple procedures that approximate oracles

for membership and equivalence queries on the basis of the trace input only. Mem-

bership queries are answered by checking if the queried sequence is a finite prefix of

any sequence in the trace input. Equivalence queries are handled by checking if the

generated model admits all sequences in the trace input. If not, the procedure returns

the smallest finite prefix of the sequence that is not accepted by the candidate model

as a counterexample for model refinement.

As discussed above, the trace input is the only available information and therefore

must serve as a proxy for the oracles used in L*. Thus, as evidenced in Table 4.2,

L* learns exact representations of the trace input resulting in large automata that are

hard to interpret. To illustrate this, consider the trace σ = a, b, c, a, b, c, c, . . . , a, b, {c}n.

q1start q2

q3

q4
a

b c

c
a

Figure 4.20: Automaton generated by T2M for trace σ = a, b, c, a, b, c, c, . . . , a, b, {c}n.
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Figure 4.21: Log-log plot comparing runtime and number of states for L* and T2M
for exponentially increasing trace length.

We use finite prefixes of σ of exponentially increasing length as input to L* and T2M

in separate calls to the algorithms, and record the runtime and generated model size.

T2M generates the 4-state automaton in Fig. 4.20 for all input sequences. Note that

any finite prefix of σ is accepted by this automaton. On the other hand, L* generates

automata with exponentially increasing number of states, as illustrated in Fig. 4.21b.

We also observe an exponential increase in runtime (Fig. 4.21a). Unlike T2M, the

lack of additional system information makes it difficult for L* to generalise and learn

small system models using only the trace data.
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4.5.4 Comparison with the LSTM-based Approach

To compare T2M with LSTM-based learning, we look at two LSTM architectures:

a single layer LSTM network (LSTM1) and a multi-layer LSTM network (LSTM2)

comprising two layers of stacked LSTM cells. These are standard architectures used

in relevant literature for learning temporal information from trace data [23, 104].

For training, each event in the input sequence is converted into the corresponding

one-hot tensor encoding. The training set is generated using the TimeseriesGenerator

module in Tensorflow Keras [3]. This produces batches of temporal data for some

predefined lookback—which determines the amount of history taken into account to

make a prediction. For each benchmark, we train multiple networks with different

lookback; starting with all values between 1 and 10, followed by 20, 40, 60, 80, 100,

150 and 200 in order to cover a broad range of values. We compare training curves

and test accuracy to identify the network with minimum lookback that gives the best

performance for each benchmark. Once trained, we can present a sequence of events

of length equal to the lookback as input to the network, which in return will produce

a likelihood measure for possible next-event values as the network output.

In our experiments, for a network trained with lookback lb, we begin by feeding

the trace prefix of length lb as input to the network. For each next-event value in

the network output with likelihood greater than a pre-defined threshold θ = 0.1, we

append the next-event value to the current network input and use the last lb events

as the next input to the network. This is done for 1000 iterations. Starting with the

initial input to the network, we track all next-event values with likelihood greater

than θ for each iteration, in effect, creating a trie [72] like structure where each next-

event value corresponds to a new branch in the trie. Every path in the trie from root

to leaves represents a sequence of next-event values produced by the network, and

is preceded by the event sequence that forms the initial input to the network. This

corresponds to the sequential behaviour learnt by the LSTM network.

Effect of lookback on training: For most of the benchmarks we observe smooth

training curves for lookback values up to 10 and training gets progressively erratic be-

yond a lookback value of 40. This is a common observation with LSTM networks [95].

Fig. 4.22 provides graph plots for training accuracy vs. lookback for the three

benchmark sets. For the SoC and AWS IoT benchmarks we see similar plots for

LSTM1 and LSTM2 so we provide results for only LSTM1 in Fig. 4.22. For the

java.net.Socket benchmark, LSTM2 (Fig. 4.22d) exhibits higher accuracy than LSTM1

(Fig. 4.22c). Table 4.3 provides the value of minimum lookback that provides best
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performance for each benchmark. From Table 4.3 it is evident that we cannot pick a

single value for lookback that works well for all benchmarks, but a value between 4

and 10 is best for consistent training results and good network performance.
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Figure 4.22: Lookback vs. Accuracy plots for all benchmark sets.
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Model correctness and runtime: To quantitatively compare the accuracy of be-

haviours captured by the LSTM approach and T2M, we introduce two parameters:

‘%Miss’ represents the fraction of predicate sequences captured by T2M but not by

the LSTM networks, and ‘%Wrong’ represents the fraction of predicate sequences cap-

tured by the LSTM networks but not seen in the trace input. The LSTM approach

does not always capture all sequential behaviour exemplified by the trace input, as is

evident from Table. 4.3. Moreover, for many benchmarks we see that more than 50%

of the behaviours captured by the LSTM approach are invalid. Similar results are

observed in related literature [23], as already discussed in Section 2.1.3, Chapter 2.

Since networks trained on different lookback values capture information with vary-

ing levels of accuracy for different benchmarks, we need to train multiple networks

with different lookback in order to get the best outcome. This process can be time-

consuming, as is evident from the ‘Total Runtime’ column in Table. 4.3. This captures

the training time summed over network lookback values between 1 and 10.

Unlike T2M, the LSTM approach does not always guarantee that all sequential

behaviour exemplified by the input traces are captured. For all benchmarks, T2M

generates models that admit all input traces with provable guarantees, and also sig-

nificantly faster compared to the training time for LSTM networks.
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Chapter 5

Equivalence Checking using
Simulation Relations

Model-learning algorithms are broadly classified into passive and active algorithms.

While passive learning algorithms generate a model from a given set of traces [16, 56,

67, 77], active learning algorithms [7, 8, 25, 111] iteratively refine a hypothesis model

by extracting information from the system or an oracle that has sufficient knowledge

of the system, using the hypothesis model as a guide.

The model-learning algorithm described in Chapter 3 is an instance of passive

learning. As discussed in Chapter 1, the behaviours admitted by models generated by

passive learning are limited to only those manifest in the given traces. Therefore, cap-

turing all system behaviour by the generated system models is conditional on devising

a software load that exercises all relevant system behaviours. This can be difficult

to achieve in practice, especially when a system comprises multiple components and

specifying emergent behaviour can be tricky. Random input sampling is a pragmatic

choice in this scenario, but it does not guarantee that generated abstractions admit

all system behaviour. This is discussed further in Section 6.2.4, Chapter 6.

On the other hand, active model-learning algorithms can, in principle, generate

exact system models. The most popular form of active learning is query-based learn-

ing, where the learning framework poses membership and equivalence queries to an

oracle and uses the responses to guide model generation and refinement. But, when

these algorithms are used in practice, particularly to learn symbolic abstractions over

large and possibly infinite alphabets, such as the model in Fig. 5.1, they suffer from

high query complexity [45, 60, 61]. As a result, many active model-learning imple-

mentations are constrained to generating partial models for large systems.

In the following two chapters we describe an active learning approach to derive

overapproximating abstractions of a system, with provable completeness guarantees.
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Figure 5.1: Abstraction modelling gear-shift logic for an Automatic Transmission
Gear system generated by our algorithm.

In this chapter we describe an equivalence checking procedure using simulation

relations to evaluate the degree of completeness of a given abstraction for a system.

The structure of the abstraction is used to extract a set of conditions that collec-

tively encode a completeness hypothesis. The hypothesis is formulated such that

the satisfaction of the hypothesis is sufficient to guarantee that a simulation relation

can be constructed between the system and the given abstraction. Further, the exis-

tence of a simulation relation is sufficient to guarantee that the given abstraction is

overapproximating, i.e., it accepts (at least) all system execution traces.

To verify if the hypothesis holds, we check the truth value of all extracted com-

pleteness conditions using SAT solving. The procedure returns the fraction of ex-

tracted conditions that hold as a quantitative measure of the degree of completeness

for the given abstraction. In the event of a condition falsification, the SAT procedure

returns a counterexample to the condition.

The satisfaction of the hypothesis is sufficient to guarantee that a given abstrac-

tion is overapproximating, but not necessary. Counterexamples to the hypothesis may

therefore be spurious, i.e., a condition falsification may not actually correspond to
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missing system behaviour in the abstraction. This is resolved by model checking [31]

to verify if the counterexample for a condition is spurious. Non-spurious counterex-

amples provide useful insight to identify missing behaviours in the given abstraction.

In Chapter 6, we describe how this information can be used to iteratively learn an

overapproximating abstraction for a system.

Plan of the chapter

The rest of the chapter is organized as follows. Section 5.1 provides a formal overview

of the terminology, definitions and notations used in this chapter. Section 5.2 de-

scribes the formulation of the completeness hypothesis and provides a formal proof

for the claim: satisfaction of the completeness hypothesis is sufficient to guarantee

the existence of a simulation relation between the system and the given abstraction,

which further guarantees that the given system abstraction is overapproximating.

Section 5.3 describes the procedure used to check the truth value of extracted con-

ditions, and generate counterexamples for any condition falsifications. Further, it

describes a method to verify if a counterexample to the hypothesis is spurious.

Claim of Novelty

Unlike query-based learning, our procedure to evaluate the degree of completeness for

a given abstraction operates at the level of the abstraction and not concrete system

traces:

• The scope of each extracted completeness condition is the set of incoming and

outgoing transitions to a state rather than a finite path in the system or its

abstraction.

• The completeness hypothesis can be represented symbolically, incorporating

characteristic functions for sets of observations in a system trace, therefore

eliminating the need for explicit enumeration of concrete transitions.

This enables the procedure to be applied to symbolic abstractions over large alpha-

bets. Further, the procedure is agnostic of the algorithm used to learn the abstraction.

This enables the approach to be easily integrated with model-learning algorithms that

generate symbolic abstractions from traces, to iteratively learn expressive system over-

approximations with provable completeness guarantees.
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5.1 Formal Model

We represent the system as a Labelled Transition System (LTS) M.

Definition 8 (Labelled Transition System). An LTS M is a quadruple (S,Ω,∆, s0)

where S is a set of states, Ω is a set of labels, ∆ ⊆ S×Ω×S is the transition relation

and s0 ∈ S is the initial state.

The set of labels Ω is a set of system observations. An observation o ∈ Ω could be

any event that depends on a transition from some state s to state s′. A path π inM
is a finite sequence π = s0, o0, s1, . . . , on−1, sn of alternating states and observations

such that (si, oi, si+1) ∈ ∆ for 0 ≤ i < n. The trace of π, denoted σ(π), is the

corresponding sequence of observations o0, . . . , on−1 along π. The set of all traces of

paths in M is called the language of M, denoted L(M), defined over the alphabet

of observations Ω.

The learned system abstraction is represented as an LTS M̂ = (Ŝ, Ω̂, ∆̂, ŝ0). The

language of the abstraction L(M̂) is defined over the alphabet of observations, i.e.,

Ω̂ = Ω. The abstraction accepts a trace σ = o0, . . . , on−1 if σ ∈ L(M̂), i.e., if there

exists a sequence ŝ0, . . . , ŝn of states in Ŝ such that (ŝi, oi, ŝi+1) ∈ ∆̂ for 0 ≤ i < n.

With the equivalence checking procedure described in this chapter we evaluate if

a given abstraction M̂ for a system M is complete, i.e., L(M) ⊆ L(M̂).

5.2 Completeness Conditions for a Candidate Ab-

straction

We first give an explicit-state, set-based definition of our completeness criterion, for

the sake of clarity. We subsequently describe a symbolic representation of the com-

pleteness conditions using characteristic functions, that can be applied to symbolic

abstractions such as the model in Fig. 5.1.

5.2.1 Set-based Definition

To determine whether a given abstraction M̂ for the system M is complete, we use

the structure of the abstraction to extract the following completeness conditions:

For initial state ŝ0 ∈ Ŝ, ∀o ∈ Ω:

∃s ∈ S : (s0, o, s) ∈ ∆ =⇒ ∃ŝ ∈ Ŝ : (ŝ0, o, ŝ) ∈ ∆̂ (5.1)
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And for all states ŝ ∈ Ŝ, ∀o′, o ∈ Ω:

(∃ŝ′′ ∈ Ŝ : (ŝ′′, o′, ŝ) ∈ ∆̂ ∧
∃s′′, s, s′ ∈ S : (s′′, o′, s), (s, o, s′) ∈ ∆) =⇒
∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂

(5.2)

These conditions collectively encode the following completeness hypothesis: for any

transition available in the system M, defined by the transition relation ∆, there is a

corresponding transition in M̂ defined by ∆̂.

In the following section we prove that if the above hypothesis holds, i.e., if the

completeness conditions (5.1) and (5.2) evaluate to true, then a simulation relation

can be constructed betweenM and M̂. Further, we formally prove that the existence

of a simulation relation between M and M̂ implies L(M) ⊆ L(M̂).

5.2.1.1 Constructing a Simulation Relation

In Section 2.3, Chapter 2 we introduced formal preliminaries on equivalence relations

between formal system models, including simulation relations for Kripke structures.

Here, we formally define simulation relations specifically for LTSs.

Definition 9 (Simulation Relation for LTSs). Given two LTSs M = (S,Ω,∆, s0)

and M̂ = (Ŝ, Ω̂, ∆̂, ŝ0) with Ω̂ = Ω, we define a binary relation R ⊆ S × Ŝ to be a

simulation if

1. (s0, ŝ0) ∈ R, and

2. ∀(s, ŝ) ∈ R, for every s′ ∈ S and o ∈ Ω such that (s, o, s′) ∈ ∆, ∃ŝ′ ∈ Ŝ such

that (ŝ, o, ŝ′) ∈ ∆̂ and (s′, ŝ′) ∈ R.

If such a relation R exists, we write M�R M̂.

To support our claim that the satisfaction of the completeness hypothesis is suffi-

cient to guarantee that a simulation relation can be constructed between the system

M and the given abstraction M̂, we first describe a method to construct a binary re-

lation R′ ⊆ S×Ŝ when all extracted completeness conditions hold, and later formally

prove that R′ is indeed a simulation.

Assuming the completeness conditions (5.1) and (5.2) hold, the relation R′ is

constructed as follows:

1. Initialise R′ = {(s0, ŝ0)}
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2. If the condition (5.1) holds non-trivially for some observation o ∈ Ω, i.e., ∃s ∈
S : (s0, o, s) ∈ ∆ and ∃ŝ ∈ Ŝ : (ŝ0, o, ŝ) ∈ ∆̂, then add the state pair (s, ŝ) to R′.

R′ ← R′ ∪ {(s, ŝ)}

3. If the condition (5.2) extracted for a state ŝ ∈ Ŝ holds non-trivially for some

observations o′, o ∈ Ω, i.e., ∃s′′, s, s′ ∈ S : (s′′, o′, s), (s, o, s′) ∈ ∆ and ∃ŝ′′, ŝ′ ∈
Ŝ : (ŝ′′, o′, ŝ), (ŝ, o, ŝ′) ∈ ∆̂, then add the state pairs (s, ŝ) and (s′, ŝ′) to R′.

R′ ← R′ ∪ {(s, ŝ), (s′, ŝ′)}

Note that in the above construction, for every state pair (s, ŝ) ∈ R′\(s0, ŝ0), there

exists incoming transitions to the states s and ŝ on some observation o′ ∈ Ω. That is,

∀(s, ŝ) ∈ R′\(s0, ŝ0) · ∃s′′ ∈ S · ∃ŝ′′ ∈ Ŝ · ∃o′ ∈ Ω: (s′′, o′, s) ∈ ∆ ∧ (ŝ′′, o′, ŝ) ∈ ∆̂
(5.3)

Theorem 3. The constructed relation R′ forms a simulation, i.e. M�R′ M̂

Proof. We use contradiction to prove that when the completeness conditions (5.1)

and (5.2) hold, the constructed relation R′ forms a simulation. Let us assume R′ is

not a simulation. A binary relation R ⊆ S × Ŝ is not a simulation if either

(a) (s0, ŝ0) /∈ R or

(b) ∃(s, ŝ) ∈ R such that ∃s′ ∈ S · ∃o ∈ Ω: (s, o, s′) ∈ ∆ and ∀ŝ′ ∈ Ŝ · (ŝ, o, ŝ′) /∈ ∆̂

or

(c) ∃(s, ŝ) ∈ R such that ∃s′ ∈ S · ∃o ∈ Ω: (s, o, s′) ∈ ∆ and ∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈
∆̂ ∧ (s′, ŝ′) /∈ R

The above clauses (a), (b) and (c) are obtained by negating conditions (1) and (2)

in definition 9 for a simulation relation; while clause (a) is obtained by negating

condition (1), clauses (b) and (c) are obtained by negating condition (2) as follows:

Condition (2) in definition 9 can be written as

∀(s, ŝ) ∈ R · ∀s′ ∈ S · ∀o ∈ Ω · ((s, o, s′) ∈ ∆ =⇒

(∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) ∈ R)) (5.4)
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On negating the above expression we get

¬(∀(s, ŝ) ∈ R · ∀s′ ∈ S · ∀o ∈ Ω · ((s, o, s′) ∈ ∆ =⇒

(∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) ∈ R))) (5.5)

=⇒ ∃(s, ŝ) ∈ R · ∃s′ ∈ S · ∃o ∈ Ω: ((s, o, s′) ∈ ∆∧

¬(∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) ∈ R)) (5.6)

=⇒ ∃(s, ŝ) ∈ R · ∃s′ ∈ S · ∃o ∈ Ω: ((s, o, s′) ∈ ∆∧

∀ŝ′ ∈ Ŝ · ((ŝ, o, ŝ′) ∈ ∆̂ =⇒ (s′, ŝ′) /∈ R))
(5.7)

=⇒ ∃(s, ŝ) ∈ R · ∃s′ ∈ S · ∃o ∈ Ω: ((s, o, s′) ∈ ∆∧

((∀ŝ′ ∈ Ŝ · (ŝ, o, ŝ′) /∈ ∆̂)∨

(∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) /∈ R))) (5.8)

=⇒ ∃(s, ŝ) ∈ R · ∃s′ ∈ S · ∃o ∈ Ω: ((s, o, s′) ∈ ∆ ∧ ∀ŝ′ ∈ Ŝ · (ŝ, o, ŝ′) /∈ ∆̂)

∨

∃(s, ŝ) ∈ R · ∃s′ ∈ S · ∃o ∈ Ω: ((s, o, s′) ∈ ∆ ∧ (∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) /∈ R))
(5.9)

Here, expression (5.9) corresponds to (clause (b) ∨ clause (c)).

Assume clause (a) holds. Then, (s0, ŝ0) /∈ R′. But, (s0, ŝ0) ∈ R′ by construction.

This is a contradiction and therefore, clause (a) does not hold.

Assume clause (b) holds. Then, ∃(s, ŝ) ∈ R′ such that ∃s′ ∈ S ·∃o ∈ Ω: (s, o, s′) ∈
∆ and ∀ŝ′ ∈ Ŝ · (ŝ, o, ŝ′) /∈ ∆̂. There are two possibilities here:

• If s = s0 and ŝ = ŝ0, then

∃s′ ∈ S · ∃o ∈ Ω: (s0, o, s
′) ∈ ∆∧

∀ŝ′ ∈ Ŝ · (ŝ0, o, ŝ
′) /∈ ∆̂

This violates completeness condition (5.1), which is a contradiction.

• If (s, ŝ) ∈ R′\(s0, ŝ0), then from (5.3) there exists incoming transitions to s and

ŝ on some observation o′ ∈ Ω, i.e., ∃s′′ ∈ S · ∃ŝ′′ ∈ Ŝ · ∃o′ ∈ Ω: (s′′, o′, s) ∈
∆ ∧ (ŝ′′, o′, ŝ) ∈ ∆̂. This implies

∃ŝ′′ ∈ Ŝ : (ŝ′′, o′, ŝ) ∈ ∆̂∧

∃s′′, s, s′ ∈ S : (s′′, o′, s), (s, o, s′) ∈ ∆∧

∀ŝ′ ∈ Ŝ · (ŝ, o, ŝ′) /∈ ∆̂

This violates completeness condition (5.2), which is a contradiction.
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Therefore, clause (b) does not hold.

Assume clause (c) holds. Then, ∃(s, ŝ) ∈ R′ such that ∃s′ ∈ S ·∃o ∈ Ω: (s, o, s′) ∈
∆ and ∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂ ∧ (s′, ŝ′) /∈ R′. There are two possibilities here:

• If s = s0 and ŝ = ŝ0, then

∃s′ ∈ S : (s0, o, s
′) ∈ ∆∧

∃ŝ′ ∈ Ŝ : (ŝ0, o, ŝ
′) ∈ ∆̂

This is a case where condition (5.1) holds non-trivially, and therefore (s′, ŝ′) ∈ R′

by construction. This contradicts our assumption that clause (c) holds.

• If (s, ŝ) ∈ R′\(s0, ŝ0), then from (5.3) there exists incoming transitions to s and

ŝ on some observation o′ ∈ Ω, i.e., ∃s′′ ∈ S · ∃ŝ′′ ∈ Ŝ · ∃o′ ∈ Ω: (s′′, o′, s) ∈
∆ ∧ (ŝ′′, o′, ŝ) ∈ ∆̂. This implies

∃ŝ′′ ∈ Ŝ : (ŝ′′, o′, ŝ) ∈ ∆̂∧

∃s′′, s, s′ ∈ S : (s′′, o′, s), (s, o, s′) ∈ ∆∧

∃ŝ′ ∈ Ŝ : (ŝ, o, ŝ′) ∈ ∆̂

This is a case where condition (5.2) holds non-trivially, and therefore (s′, ŝ′) ∈ R′

by construction. This contradicts our assumption that clause (c) holds.

Therefore, clause (c) does not hold.

As none of the clauses (a), (b) or (c) hold, the constructed relation R′ is a simu-

lation by contradiction, i.e., M�R′ M̂.

Note that the satisfaction of the completeness hypothesis is sufficient to guarantee

the existence of a simulation relation between M and M̂, but not necessary. An

example is provided in Fig. 5.2. Here, the completeness conditions extracted for state

ŝ2 do not hold:

(∃ŝ0 ∈ Ŝ : (ŝ0, ob, ŝ2) ∈ ∆̂∧

∃s3, s0, s1 ∈ S : (s3, ob, s0), (s0, oa, s1) ∈ ∆) =⇒

∃ŝ ∈ Ŝ : (ŝ2, oa, ŝ) ∈ ∆̂

does not hold as ∀ŝ ∈ Ŝ · (ŝ2, oa, ŝ) /∈ ∆̂. Similarly,

(∃ŝ0 ∈ Ŝ : (ŝ0, ob, ŝ2) ∈ ∆̂∧

∃s3, s0, s2 ∈ S : (s3, ob, s0), (s0, ob, s2) ∈ ∆) =⇒

∃ŝ ∈ Ŝ : (ŝ2, ob, ŝ) ∈ ∆̂
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(a) System M

ŝ0start ŝ1

ŝ2
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ob

(b) Abstraction M̂

Figure 5.2: Example system and its abstraction.

does not hold as ∀ŝ ∈ Ŝ · (ŝ2, ob, ŝ) /∈ ∆̂.

However, M�R M̂ with R = {(s0, ŝ0), (s1, ŝ1), (s2, ŝ2)}.

Theorem 4. If M�R M̂ for LTSs M and M̂ then, L(M) ⊆ L(M̂).

Proof. Let π = s0, o0, s1, . . . , on−1, sn be the path in M corresponding to a trace

σ = o0, . . . , on−1 ∈ L(M), such that (si, oi, si+1) ∈ ∆ for 0 ≤ i < n. Then, we

can construct a sequence ŝ0, . . . , ŝn of states in Ŝ such that (ŝi, oi, ŝi+1) ∈ ∆̂ for

0 ≤ i < n by induction as follows: it is clear that (s0, ŝ0) ∈ R. Assume (si, ŝi) ∈ R
for some i. By Definition 9, since (si, oi, si+1) ∈ ∆, ∃t̂ ∈ Ŝ such that (ŝi, oi, t̂) ∈ ∆̂

and (si+1, t̂) ∈ R. Choosing ŝi+1 = t̂ produces the required sequence of states. We

now have a path π̂ = ŝ0, o0, ŝ1, . . . , on−1, ŝn in M̂ corresponding to the trace σ, and

therefore σ ∈ L(M̂).

By Theorems 3 and 4 it is guaranteed that if all completeness conditions extracted

for a given system abstraction are true, then the abstraction is an overapproximation

accepting (at least) all system execution traces. We compute the fraction of com-

pleteness conditions that are true, denoted by ρ, as a quantitative measure of the

degree of completeness of the given system abstraction. The procedure used to check

the truth value of the extracted completeness conditions is described in Section 5.3.
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5.2.2 Symbolic Definition

Symbolic representations of abstractions have transitions labelled with characteristic

functions or predicates for sets of observations, such as the abstractions generated

in Chapter 3. A single edge in these graphs in fact corresponds to a set of multiple

transitions. There are three benefits of this representation:

1. It reduces the computational cost of the method in the case of very large state

spaces when compared to an explicit representation that enumerates concrete

transitions.

2. We hypothesize that human engineers prefer the more succinct symbolic presen-

tation over an explicit list. In lieu of evidence, we remark that popular design

tools such as Simulink [100] strongly encourage the use of symbolic transition

predicates.

3. The symbolic representation also enables an extension of the equivalence check-

ing method to symbolic abstractions over large alphabets.

The standard means to represent sets or relations symbolically is to use charac-

teristic functions. We expect that a single observation o ∈ Ω can be described as a

valuation of a set of system variables X that range over some domain D, as defined in

Chapter 3. We can therefore give a description of a subset O ⊆ Ω as a characteristic

function fO : D|X| −→ B, where B is the set of Boolean truth values. The subset O

then corresponds to:

O = {o ∈ D|X| | o |= fO} (5.10)

where, o |= fO ⇐⇒ fO(o) = true.

As defined in Section 5.1, the transitions of our LTSs comprise

1. a source automaton state ŝi ∈ Ŝ,

2. a destination automaton state ŝi+1 ∈ Ŝ,

3. and an observation o ∈ Ω.

Of these three components, we represent only the observation symbolically as a transi-

tion predicate p. Both automaton states are represented explicitly. Hence, a symbolic

transition is a triple (ŝi, p, ŝi+1), which corresponds to the following set of concrete

transitions:

{(ŝi, o, ŝi+1) | o |= p} (5.11)
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ŝ0start P(0,out)

(a)

ŝi P(i,out)P(i,in)

(b)

Figure 5.3: Symbolic representation of abstract model states and transitions.

To derive the completeness conditions (5.1) and (5.2) for a symbolic abstraction, we

represent the transition relation ∆ and the initial state s0 symbolically as character-

istic functions f∆ : Ω× Ω −→ B and Init : Ω −→ B respectively, defined as follows:

(o′, o) |= f∆ ⇐⇒ ∃s′′, s, s′ ∈ S, (s′′, o′, s), (s, o, s′) ∈ ∆ (5.12)

o |= Init ⇐⇒ ∃s ∈ S, (s0, o, s) ∈ ∆ (5.13)

For a given symbolic abstraction, we extract the following conditions encoding a

symbolic representation of the completeness hypothesis:

For initial state ŝo ∈ Ŝ, ∀o ∈ Ω

o |= Init =⇒ o |=
∨

pout∈P(0,out)

pout (5.14)

where P(0,out) is the set of predicates for all outgoing transitions from ŝ0, as illustrated

in Fig. 5.3a.

And for all states ŝi ∈ Ŝ, ∀pin ∈ P(i,in), ∀o′, o ∈ Ω

(o′ |= pin ∧ (o′, o) |= f∆) =⇒ o |=
∨

pout∈P(i,out)

pout (5.15)

where P(i,in) is the set of predicates on the incoming transitions to state ŝi and P(i,out)

is the set of predicates on outgoing transitions from ŝi, as illustrated in Fig. 5.3b. We

illustrate the formulation of the completeness hypothesis for a symbolic abstraction

as described above with an example in Fig. 5.4.

Note that the conditions (5.14) and (5.15) are symbolic representations of the

completeness conditions (5.1) and (5.2), respectively. For the remainder of the disser-

tation we use the symbolic representation of the completeness hypothesis as encoded

by conditions (5.14) and (5.15).
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ŝ1start ŝ2

modenext = Off

inp.temp > T thresh
∧modenext = On

modenext = On

¬(inp.temp > T thresh)
∧modenext = Off

(a) Given system abstraction

For state ŝ1, ∀o′, o ∈ Ω:

o |= Init =⇒ o |= (modenext = Off ∨ (inp.temp > T thresh ∧ modenext = On))

(o′ |= modenext = Off ∧ (o′, o) |= f∆) =⇒
o |= (modenext = Off ∨ (inp.temp > T thresh ∧ modenext = On))

(o′ |= (¬(inp.temp > T thresh) ∧ modenext = Off) ∧ (o′, o) |= f∆) =⇒
o |= (modenext = Off ∨ (inp.temp > T thresh ∧ modenext = On))

For state ŝ2, ∀o′, o ∈ Ω:

(o′ |= (inp.temp > T thresh ∧ modenext = On) ∧ (o′, o) |= f∆) =⇒
o |= (modenext = On ∨ (¬(inp.temp > T thresh) ∧ modenext = Off))

(o′ |= modenext = On ∧ (o′, o) |= f∆) =⇒
o |= (modenext = On ∨ (¬(inp.temp > T thresh) ∧ modenext = Off))

(b) Extracted conditions

Figure 5.4: Completeness hypothesis for a symbolic abstraction.

5.3 Checking the Truth Value of Extracted Con-

ditions

To verify if the completeness conditions evaluate to true for all observations in Ω we

use symbolic variables ω′, ω to represent the observations o′, o in (5.14) and (5.15)

respectively, and use a SAT solver to check if there exists an assignment of values in

Ω to ω′, ω that satisfies the negation of the completeness conditions.

To this end, the negation of the conditions (5.14) and (5.15), represented as

¬(ω |= Init =⇒ ω |=
∨

pout∈P(0,out)

pout) (5.16)
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and

¬((ω′ |= pin ∧ (ω′, ω) |= f∆) =⇒ ω |=
∨

pout∈P(i,out)

pout) (5.17)

respectively, is fed to a SAT solver. A satisfying assignment indicates a falsification

of the corresponding completeness condition, and serves as a counterexample for the

condition. In the event that a satisfying assignment cannot be found, we conclude

that the corresponding completeness condition always evaluates to true.

As discussed in Section 5.2, the satisfaction of the completeness hypothesis is

sufficient to guarantee completeness, but not necessary. In the event of a falsification

of condition (5.14), the SAT solver returns a counterexample ω = o, such that o |= Init

and o 6|= pout ,∀pout ∈ P(0,out). Since o ∈ L(M), this is a non-spurious counterexample

indicating missing system behaviour in the learned abstraction, i.e., L(M) * L(M̂).

But, in the event of a falsification of condition (5.15), the SAT solver returns a

counterexample ω′ = o′, ω = o such that o′ |= pin , (o′, o) |= f∆ and o 6|= pout ,∀pout ∈
P(i,out). Here, it is not guaranteed that the observation o′ lies on a system path from

the initial system state s0 ∈ S. The counterexample may therefore be spurious and

may not actually correspond to any missing system behaviour in the abstraction.

5.3.1 Counterexample Analysis

To check if a counterexample ω′ = o′, ω = o for condition (5.15) is spurious, i.e., it

does not correspond to any concrete system trace, we use model checking to verify if

the observation o′ is reachable from s0. That is, the algorithm checks if there exists

a path π = s0, o0, s1, o1, . . . , on−1, sn in M such that
∨n−1
i=0 (oi = o′) is true. If such a

path does not exist, the counterexample is guaranteed to be spurious.

In the event that the counterexample for condition (5.15) is spurious, the cor-

responding input to the SAT solver is strengthened by adding the clause ω′ 6= o′

to (5.17) as follows

¬((ω′ |= pin ∧ (ω′, ω) |= f∆) =⇒ ω |=
∨

pout∈P(i,out)

pout) ∧ ω′ 6= o′ (5.18)

The conjunction of ω′ 6= o′ guides the SAT solver away from the spurious counterex-

ample ω′ = o′, and towards a non-spurious counterexample, if any.

In Chapter 6 we describe how traces exemplifying missing system behaviour can

be constructed from non-spurious counterexamples, and used to iteratively learn ab-

stractions until an overapproximating system abstraction is obtained.
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Chapter 6

Active Learning Symbolic
Overapproximations

As discussed in Chapter 5, query-based active model-learning implementations often

suffer from high query complexity, particularly when applied to learn symbolic ab-

stractions, and are therefore limited to generating partial models for large systems.

In this chapter we describe a new active learning approach that integrates equivalence

checking using simulation relations described in Chapter 5, with model-learning from

traces described in Chapter 3 to generate symbolic system overapproximations with

provable completeness guarantees.

As illustrated in Fig 6.1, the approach is a grey-box algorithm. It combines a black-

box analysis in the form of model-learning from traces, with a white-box analysis in

the form of equivalence checking using simulation relations, that is used to evaluate

the degree of completeness for a candidate system model returned by model learning.

The model-learning component can be any algorithm that infers an abstraction from

a given set of system execution traces. The equivalence checking procedure uses the

structure of the learned candidate abstraction to extract conditions that encode a

completeness hypothesis.

The algorithm terminates if all conditions are true, returning the learned sys-

tem overapproximation. In the event of a condition falsification, the counterexample

for the condition is checked for spuriousness using model checking. Non-spurious

counterexamples are used to construct a set of new traces that exemplify system be-

haviours identified to be missing from the model. New traces are used to augment

the input trace set for model learning and iteratively generate new abstractions until

all conditions are true. By Theorems 3 and 4 in Chapter 5, the abstraction returned

on algorithm termination is guaranteed to be overapproximating, i.e., the model is

guaranteed to accept (at least) all system execution traces.
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Figure 6.1: Overview of the active model-learning algorithm.

Plan of the chapter

The rest of the chapter is organized as follows. Section 6.1 provides an overview of the

active learning approach. Section 6.2 describes the experimental setup, implemen-

tation details and the benchmarks used to evaluate the algorithm. It also includes

a discussion on the experimental results obtained. Section 6.3 provides a compar-

ison with relevant related work, focusing on two aspects of active model-learning:

generating complete models and generating expressive symbolic abstractions.
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6.1 Overview

Throughout this chapter we use the notations introduced in Section 5.1, Chapter 5.

Given a system M, the goal of our active model-learning approach is to learn an

overapproximating system abstraction M̂ such that L(M) ⊆ L(M̂).

An overview of our approach is provided in Fig. 6.1. It consists of the following steps:

1. Generate candidate abstraction from available traces : The algorithm learns a

candidate abstraction M̂ from an initial set of system execution traces T using

a pluggable model learning algorithm. This is discussed in Section 6.1.1.

2. Extract completeness conditions : To evaluate the degree of completeness of the

candidate abstraction returned by model learning, the structure of M̂ is used to

extract a set of conditions C that collectively encode a completeness hypothesis.

If all conditions are true, it implies L(M) ⊆ L(M̂). The formulation of the

completeness hypothesis and a formal proof of the above claim was provided in

Section 5.2, Chapter 5.

3. Check truth value of extracted conditions : The algorithm uses a SAT procedure

to check the truth value of each condition, and thereby check the hypothesis,

as described in Section 5.3, Chapter 5. If all conditions are true, the algorithm

returns M̂ as the learned system overapproximation. The extracted condi-

tions are sufficient to prove model completeness, i.e., L(M) ⊆ L(M̂), but not

necessary. In the event that a condition is falsified, the procedure returns a

counterexample. However, a condition falsification may not necessarily indicate

missing system behaviour in M̂.

4. Counterexample analysis : To check if a condition falsification actually indicates

missing system behaviour in M̂, i.e., L(M)\L(M̂) 6= ∅, the algorithm uses

model checking to determine whether the counterexample returned by the SAT

procedure corresponds to a concrete system trace, as described in Section 5.3.1,

Chapter 5. If found to be spurious, the condition is strengthened to guide the

SAT procedure towards non-spurious counterexamples, if any. The algorithm

then repeats step 3.

5. Generate new abstraction: A set of new traces TCE is constructed from non-

spurious counterexamples that exemplify missing system behaviour in M̂. These

are used as additional trace inputs to the model-learning component in step 1,
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which learns a new abstraction admitting T ∪ TCE . Construction of new traces

exemplifying missing system behaviour in the model is discussed in Section 6.1.2.

In each iteration i of the algorithm, TCE i
∩ L(M̂i−1) = ∅, where TCE i

is the set of

new traces constructed by the algorithm in iteration i after evaluating the degree of

completeness for the abstraction L(M̂i−1) generated in the previous iteration. The

new abstraction M̂i is generated using the set all new traces TCE1 ∪TCE2 ∪ . . .∪TCE i

and the initial trace set T as input to model learning.

The methodology described above is similar to Counterexample-Guided Abstrac-

tion Refinement (CEGAR) [28], illustrated in Fig. 6.2. The key difference is that

CEGAR is a top-down approach that begins by generating an overapproximation,

which is progressively pruned to obtain a finer overapproximation. Our algorithm,

on the other hand, is a bottom-up approach that progressively extends a candidate

abstraction until an overapproximation is obtained.

Generate
Abstraction

Model
Checking

Counterexample
Analysis

Refinement

Figure 6.2: Counterexample-Guided Abstraction Refinement (CEGAR) loop.

In the following sections we describe steps 1 and 5 of the algorithm in detail.

6.1.1 Model Learning from Execution Traces

The approach uses a pluggable model-learning component to generate a candidate ab-

straction from a set of available system execution traces. We impose two requirements

on this component:

• Given a set of execution traces T , the model-learning component must return

a model M̂ that accepts (at least) all traces in T , i.e., L(M̂) ⊇ T .
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• The language accepted by the model must be prefix-closed, i.e., if the model

accepts a trace σ, then it must also accept all finite prefixes of σ.

There are many model-learning algorithms that satisfy the first requirement [16,

67, 80, 107, 114, 115]. In general, these algorithms operate by employing automaton

inference techniques, such as state-merging [16, 77] or SAT [56, 67], to generate a

finite state automaton that conforms to a given set of traces.

Among these, our model-learning algorithm [67] described in Chapter 3 satisfies

both requirements. To use the other algorithms, simple pre-processing of the input

trace set to include all prefixes pref (σ) for each trace σ ∈ T , i.e. T ←
⋃
σ∈T {σ′ |σ′ ∈

pref (σ)} can be applied. Although this technique enables the generation of prefix-

closed automata for conventional state-merging algorithms, it may not always guaran-

tee prefix-closure for models returned by other learning algorithms. A more reliable

technique is to convert all non-accepting states that appear on paths to accepting

states in the generated finite state automaton to accepting.

It is straightforward to transform a finite state automaton that accepts a prefix-

closed language into an LTS abstraction, as defined in Section 5.1, Chapter 5, by

removing the non-accepting states and all transitions that lead into them.

6.1.2 Traces Exemplifying Missing System Behaviour

All non-spurious counterexamples obtained from step 4 of the active learning algo-

rithm are used to construct a set of new traces TCE that exemplify system behaviours

found to be missing from the candidate abstraction.

For each counterexample ω = o for condition (5.14), we add a trace σCE = o to

the set TCE . For each counterexample ω′ = o′, ω = o for condition (5.15), we find

the smallest prefix σ′ = o1, o2, . . . , om for all σ ∈ T such that om |= pin . We then

construct a new trace σCE = o1, o2, . . . , om−1, o
′, o for each prefix σ′. Note that since

o′ |= pin , the new trace σCE does not change the system behaviour exemplified by

σ′ but merely augments it to include the missing behaviour. The set of new traces

TCE thus generated is used as an additional input to the model-learning component,

which in turn generates an abstraction that admits the missing behaviour.

An example run demonstrating the active model-learning algorithm for a Home Cli-

mate Control Cooling system is illustrated in Fig 6.3 and described below. First a

candidate abstraction is learned from an initial set of system execution traces T . The

generated abstraction is provided in Fig. 6.3a. The abstraction models the following

sequential system behaviour: the system stays in the Off mode (ŝ1 → ŝ1), or switches
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from the Off mode to the On mode when inp.temp > T thresh (ŝ1 → ŝ2). The system

then switches back to the Off mode and stays in the Off mode indefinitely (ŝ2 → ŝ2).

ŝ1start ŝ2

modenext = Off

inp.temp > T thresh
∧modenext = On

modenext = Off

Counterexamples

o′ = (On, 131072, 0, 70, 40)

o = (On, 0, 0, 70, 40)

o′ = (Off, 71, 0, 70, 40)

o = (On, 0, 0, 70, 40)

(a) Iteration 0, ρ = 0.5
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(b) Iteration 1, ρ = 0.4
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(c) Iteration 2, ρ = 0.8

ŝ1start ŝ2

modenext = Off

inp.temp > T thresh
∧modenext = On

modenext = On

¬(inp.temp > T thresh)
∧modenext = Off

(d) Iteration 3, ρ = 1

Figure 6.3: Example run of the active learning algorithm for a Home Climate Control
Cooling system with X = {modenext , inp.temp, inp.humid ,T thresh,H thresh}.
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The structure of the generated abstraction is used to extract the following com-

pleteness conditions

For state ŝ1, ∀o′, o ∈ Ω:

o |= Init =⇒ o |= (modenext = Off∨

(inp.temp > T thresh ∧ modenext = On)) (6.1)

(o′ |= modenext = Off ∧ (o′, o) |= f∆) =⇒

o |= (modenext = Off ∨ (inp.temp > T thresh ∧ modenext = On)) (6.2)

For state ŝ2, ∀o′, o ∈ Ω:

(o′ |= (inp.temp > T thresh ∧ modenext = On) ∧ (o′, o) |= f∆) =⇒

o |= modenext = Off (6.3)

(o′ |= modenext = Off ∧ (o′, o) |= f∆) =⇒ o |= modenext = Off (6.4)

The subsequent completeness hypothesis check indicates falsifications for conditions (6.3)

and (6.4). The SAT procedure returns the counterexamples provided in Fig. 6.3a for

the two conditions, respectively, and these are found to be not spurious.

The counterexamples exemplify the following system behaviours that are missing

from the abstraction in Fig. 6.3a:

1. The first counterexample corresponding to a falsification of condition (6.3) in-

dicates that after the system switches from the Off mode to the On mode

(ŝ1 → ŝ2), the system may remain in the On mode.

2. The second counterexample corresponding to a falsification of condition (6.4)

indicates that when the system is in the Off mode after switching from the On

mode (ŝ2 → ŝ2), the system may switch back to the On mode.

The counterexamples are used to construct new traces that serve as additional

inputs to the model-learning component, which in turn generates the abstraction

in Fig. 6.3b. Note that the new abstraction now captures the system behaviours

identified to the missing from the old model: ŝ1 → ŝ2 → ŝ4 captures missing behaviour

1 enumerated above and ŝ2 → ŝ3 → ŝ2 captures missing behaviour 2.

The abstractions generated for subsequent iterations of active learning are pro-

vided in Fig. 6.3c–6.3d. All conditions extracted from the abstraction in Fig. 6.3d

evaluate to true, i.e., ρ = 1. Thus, the algorithm terminates, returning the model in

Fig. 6.3d as the final generated system overapproximation.
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6.2 Evaluation and Results

6.2.1 Implementation

We implement the active learning approach using the T2M tool as the model learning

component. We use CBMC v5.35 [29] to implement the procedure that evaluates

degree of completeness for a learned model. The SAT solver in CBMC is used to

check the truth value of each extracted condition.

CBMC is used to perform k-induction [98] to verify if the counterexample for

a condition check is spurious. This is done by asserting that there does not exist a

concrete system path corresponding to the counterexample. If both the base case and

step case for k-induction hold, it is guaranteed that the counterexample is spurious,

while a violation in the base case indicates otherwise. However, in the event of a

violation only in the step case, there is no conclusive evidence for the validity of the

counterexample. Since we are interested in generating a system overapproximation,

we treat such a counterexample as we would a non-spurious counterexample.

We use a constant value of k = 10 for our experiments. Note that we only discard

those counterexamples that k-induction guarantees to be spurious. This ensures that,

irrespective of the value used for k, all non-spurious counterexamples are used for

subsequent model-learning iterations.

For complex systems, model-checking for counterexample analysis as described

in Section 5.3.1, Chapter 5 can be computationally expensive in practice. Here,

simulation-based techniques [36, 93] could be a pragmatic alternative to explore sys-

tem paths to check if the observation in the counterexample is reachable.

6.2.2 Benchmarks

To evaluate the algorithm, we attempt to reverse-engineer a set of LTSs from their

respective C implementations. For this purpose, we use the dataset of Simulink

Stateflow example models [101], available as part of the Simulink documentation.

We select this dataset as these example models are state machines that can serve as

ground-truth for our evaluation.

For each Stateflow example, we use Embedded Coder (MATLAB 2018b) [99] to

automatically generate a corresponding C code implementation. The generated C

implementation is used as the system M in our experiments. To collect traces, we

instrument the implementation to observe a set of program variables X. The set of

observations Ω is the set of valuations for all variables x ∈ X.
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The dataset of Stateflow example models comprises 51 examples that are available

in MATLAB 2018b. Out of the 51 examples, Embedded Coder fails to generate code

for 7; a total of 13 have no sequential behaviour and 3 implement Recursive State Ma-

chines (RSM) [5]1. We use the remaining 28 examples for our evaluation.

The majority of the Stateflow example models feature predicates on the transition

edges. Some of the Stateflow example models are implemented as multiple parallel

and hierarchical state machines. Our goal is to reproduce each of these state machines

from execution traces, and we therefore obtain a total of 45 target state machines from

the 28 Stateflow examples. These serve as our benchmarks for evaluation. A mapping

of each Stateflow example model to its set of target state machine benchmarks is

provided in Table A.1 in Appendix A. The algorithm implementation and benchmarks

are available online [69].

6.2.3 Experiments and Results

For each benchmark, we generate an initial set of 50 traces, each of length 50, by

executing the C implementation with randomly sampled inputs. This set of traces

and the C implementation are fed as input to the algorithm, which in turn attempts

to learn an abstraction overapproximating system behaviours. The results are sum-

marised in Table 6.1.

Each entry in the table from B1 to B45 corresponds to a target state machine that

we wish to reverse-engineer. These are grouped by the Stateflow example that they

belong to. We record the number of model learning iterations #iter , the number of

states |Ŝ| and degree of completeness ρ for the final abstraction, the total runtime

in seconds T (s) and the percentage of the total runtime attributed to model learn-

ing, denoted by %Tm. We also record the cardinality of the set X (the number of

variables) for every Stateflow model. We set a timeout of 24 h for our experiments.

For benchmarks that time out, we present the results for the candidate abstraction

generated right before timeout.

Since the algorithm is designed to generate overapproximating system abstrac-

tions, the inferred model for a target state machine could admit traces that are out-

side the language of target machine, and therefore may not be accurate. We assess

the accuracy of the final generated abstraction by assigning a score d computed as

1In this work we learn abstractions as finite state automata (Section 6.1.1), which are known
to represent exactly the class of regular languages. Reverse-engineering an RSM from traces re-
quires a modelling formalism that is more expressive than finite state automata, such as Push-Down
Automata (PDA) [44], which is outside the scope of this work. In the future, we wish to look at
extensions of this work to generate RSMs.
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the fraction of state transitions in the target state machine that match corresponding

transitions in the abstraction we generate. This is done by semantically comparing

the corresponding transition predicates in the target state machine and the abstrac-

tion using CBMC. For hierarchical Stateflow models, we flatten the hierarchy and

compare the abstraction with the flattened state machine.

Table 6.1: Results of experimental evaluation of the active learning algorithm.

Our Algorithm Random Sampling
|X|

#iter |Ŝ| ρ d T (s) %Tm |Ŝ| ρ d T (s)

B1 4 8 5 1 1 684.1 35.3 4 0.2 0.1 38.2

B2 7 3 1 1 54.3 44.3 3 0.8 0.7 64
B3

5
6 5 1 1 90.1 50.8 5 0.9 0.6 89.5

B4 3 2 3 1 1 11.5 44.3 4 1 1 56.5

B5 3 1 1 0.5 0.2 ——timeout—— 2 0.5 0.4 31

B6 7 1 2 1 1 4.9 17.7 2 1 1 72.3

B7 2 3 1 1 17 21.3 3 1 1 33.9
B8

5
3 3 1 1 360.9 1.4 3 1 1 35.2

B9 3 9 4 1 1 162.1 64.6 3 0 0.2 52.9

B10 2 1 4 1 1 8.8 47.9 4 1 1 67

B11 19 6 1 1 ≈20.8 h 2.1 12 0.3 0.8 953.7
B12 9 5 1 1 ≈4.4 h 0.5 7 1 1 282.8
B13 1 4 1 1 10.9 33.9 4 1 1 416.1
B14 8 5 1 1 695.6 49.2 5 1 1 876.9
B15

13b

1 2 1 1 4.6 19.4 2 1 1 138

B16 2 6 1 1 123.5 13.4 6 0.9 0.8 966
B17 1 4 1 1 7.8 41.1 4 1 1 70.6
B18

6
4 5 1 1 45.7 33.6 5 0.4 0.3 107.8

B19 3 5 1 1 49.1 48.4 8 0.8 0.8 105.6
B20

11
4 4 1 1 39 43.2 6 1 1 81.8

B21 6 5 4 1 1 71.1 33.8 5 0.6 0.8 72.4

B22 8 4 1 1 260.4 37.4 4 0.6 0.6 793.1
B23 1 3 1 1 7.3 22.1 3 1 1 503.3
B24 16 1 3 1 1 7.1 16.4 3 1 1 691.5
B25 14 4 1 1 386.3 38.4 4 0.9 0.8 1248.3
B26 1 3 1 1 7.4 16.7 3 1 1 1188.3

Continued on next page

bThe dataset includes another implementation of this system with similar results. We present
the results for only one of them.
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Table 6.1 – Continued from previous page

Our Algorithm Random Sampling
|X|

#iter |Ŝ| ρ d T (s) %Tm |Ŝ| ρ d T (s)

B27 1 3 1 1 7.8 16.3 3 1 1 1974.2

B28 2 1 2 1 1 2.9 29.8 2 1 1 29.6

B29 3 3 7 1 1 52.8 66.8 9 1 1 124

B30 2 1 3 1 1 5.9 28.2 3 1 1 52.8

B31 3 5 3 1 1 34.6 27.7 4 1 1 35.9

B32 2 6 5 1 1 62.8 53.3 5 1 1 88.2

B33 4 2 3 1 1 10.7 40.4 4 0.6 0.7 99.3

B34 2 1 4 1 1 4.5 38.1 4 1 1 32.1

B35 3 4 5 1 1 47.4 56 7 1 1 89.1

B36
1

1 1 1 1 142 0.4 1 1 1 21.8
B37 1 3 1 1 141.5 0.7 3 1 1 25.5

B38 2 6 4 1 1 78.9 15.4 4 1 1 36

B39 3 1 4 1 1 7.8 32 4 1 1 41.5

B40 2 3 1 1 116.7 3.4 4 1 1 38.9
B41

4
2 5 1 1 157.8 4.5 6 1 1 47.4

B42 2 1 4 1 1 4.2 41.2 4 1 1 34.8

B43 2 4 1 1 20.6 56.8 4 1 1 60.1
B44 2 4 1 1 19.9 48 4 1 1 71.9
B45

8
1 3 1 1 4.2 24 3 1 1 43

6.2.3.1 Runtime

The active learning algorithm is able to generate overapproximations in under 12 min

for the majority of the benchmarks. For the benchmarks that take more than 1 h to

terminate, namely B11 and B12, we see that the model checker tends to go through

a large number of spurious counterexamples before arriving at a non-spurious coun-

terexample for a condition falsification. This is because, depending on the size of the

domain for the variables x ∈ X, there can be a large number of possible valuations

that falsify an extracted condition, of which very few may actually correspond to a

concrete system trace. In such cases, runtime can be improved by strengthening the

conditions with domain knowledge to guide the SAT procedure towards non-spurious

counterexamples. For the B5 benchmark, the SAT procedure takes a long time to
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check each condition. This is because the implementation features several operations,

such as memory access and array operations, that especially increase the complexity

of the SAT check, and the solving runtime as a consequence.

6.2.3.2 Accuracy of the Generated Models

The algorithm terminates when ρ = 1 and therefore, by Theorems 3 and 4 in Chap-

ter 5 the algorithm is guaranteed to generate an overapproximation on termination.

For the benchmarks that terminate, the generated abstraction is found to accurately

capture the behaviour of the corresponding state machine (d = 1).

6.2.3.3 Number of Learning Iterations

As described in Section 6.1, in each learning iteration i, L(M̂i) ⊇ TCE i
∪TCE i−1

∪ . . .∪
TCE1 ∪T and TCE i

∩L(M̂i−1) = ∅. The algorithm terminates when L(M̂i) ⊇ L(M).

The number of learning iterations depends on |L(M) \ L(M̂0)|, where M̂0 is the

abstraction generated from the initial trace set T .

To evaluate the impact of the seed traces on the number of iterations that the

algorithm requires, we have run our experiments without any seed traces, i.e., using

L(M̂0) = ∅. We observe that on an average the number of iterations increases ≈ 5

times compared to the number of iterations reported in Table 6.1.

6.2.4 Comparison with Random Sampling

We performed a set of experiments to check if random sampling is sufficient to learn

complete models, i.e., abstractions that accept all system execution traces. A million

randomly sampled inputs are used to execute each benchmark. Generated traces

are fed to the T2M tool to passively learn a model. For ≈ 29% of the benchmarks,

random sampling fails to produce a model that accepts all system traces (ρ < 1).

6.2.5 Threats to Validity

The key threat to the validity of our experimental claim is benchmark bias. We

have attempted to limit this bias by using a set of benchmarks that was curated by

others. Further, we use C implementations of Simulink Stateflow models that are

auto-generated using a specific code generator. Although there is diversity among

these benchmarks, our algorithm may not generalise to software that is not generated

from Simulink models, or software generated using a different code generator.
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While the active-learning implementation used for our experiments produces an

accurate model, i.e., d = 1 for the benchmarks that terminate, there is no formal

guarantee that the algorithm delivers this in all cases. The accuracy of generated

models may vary depending on the algorithm used as the model-learning component

and its ability to consolidate trace information into symbolic abstractions. The pro-

cedure to evaluate degree of completeness only formally guarantees the generation of

a system overapproximation on algorithm termination.

6.3 Comparison With Related Work

6.3.1 Overview

Active model-learning implementations largely consist of two components: a model-

learning algorithm that generates a model from a set of traces, and an oracle that

evaluates the learned model to identify missing and/or wrong behaviours.

The state-merge [16, 56, 77] algorithm and query-based learning [7, 66, 92] are

popular choices for the model-learning component. State-merge algorithms reverse-

engineer models by constructing a PTA from the traces and identifying equivalent

states to be merged in the PTA. The L* algorithm forms the basis of query-based ac-

tive learning, where the learning algorithm poses equivalence and membership queries

to an oracle. The responses to the queries are recorded into an observation table, that

is eventually used to construct an automaton. These algorithms have been discussed

in detail in Section 2.1, Chapter 2.

The oracle for active-learning can be implemented as a black-box or a white-box

procedure. One such black-box oracle implementation uses model checking, where

pre-defined LTL system properties are checked against the generated model to identify

wrong behaviours [51, 103, 106, 111]. For query-based learning in a black-box setting,

membership queries are implemented as tests on the system. Equivalence queries are

often approximated using techniques such as conformance testing [36], through a finite

number of membership queries. For a white-box oracle implementation, algorithms

use techniques such as fuzzing [102] and symbolic execution [71].

In the broader literature of equivalence checking, particularly in the field of Elec-

tronic Design Automation (EDA), several techniques are used to prove if two repre-

sentations or implementations of a system exhibit the same behaviour [9, 30, 49, 73,

83, 84, 86, 109]. Among these, the most closely related to our work are the techniques

based on SAT and Bounded Model Checking (BMC) [31]. These techniques primarily
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Table 6.2: Summary of related active model-learning implementations.

Oracle
Model-learning algorithm Generated Model Characteristics

State-Merge L* Symbolic Complete

Black-box
[37, 106]
[111, 113]

[1, 2, 15, 24, 25, 51]
[62, 91, 103, 108]

[1, 2, 15, 25]
[24, 62, 108]

White-box
[17, 27, 33, 42]
[45, 46, 59, 102]

[17, 45] [17]

check for input/output equivalence, i.e., assuming the inputs to each implementation

are equal, the corresponding outputs are equal.

The SAT based techniques [49, 83] generally operate by representing the output

for each implementation as a Boolean expression over the inputs. The clause obtained

by an XOR of these expressions is fed to a SAT solver. If a satisfying assignment is

found, it implies that the outputs are not equal and thus the two implementations are

not equivalent. In BMC-based equivalence checking [30, 73] the two implementations

are unwound a finite number of times, and translated into a formula representing

behavioural equivalence that is fed to a SAT solver. In [73] input/output equivalence

is verified on abstract overapproximations of the implementations. Equivalence is

modelled as a safety property that is checked using CEGAR on the product of the

abstract models. Counterexample analysis for CEGAR is performed by simulating

the abstract counterexample on the concrete model using BMC.

In this section, we will primarily focus on equivalence checking in the context

of active model learning. There are many active learning techniques that use vari-

ous combinations of model-learning algorithms and oracle implementations discussed

above. In this chapter, we described an algorithm that uses a white-box oracle imple-

mented using SAT solving and model checking, that when combined with a symbolic-

model learning algorithm can learn symbolic overapproximations for a system. A

summary of related active learning implementations is provided in Table 6.2. In the

following sections we describe these techniques in detail and compare them in terms

of generated model completeness and expressivity.

6.3.2 Learning System Overapproximations

State-merge algorithms are predominantly passive and generated abstractions admit

only those system behaviours exemplified by the traces [56, 77, 80, 114, 115]. One

of the earliest active algorithms using state-merge is Query-Driven State Merging
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(QSM) [37], where model refinement is guided by responses to membership queries

posed to an end-user. Other active versions of state-merge use model checking [106,

111] and model-based testing [113] to identify spurious behaviours in the generated

model. In [106, 111] a priori known LTL system properties are checked against the

generated model. Counterexamples for property violations serve as negative traces

for automaton refinement. In [113], tests generated from the learned model are used

to simulate the system to identify any discrepancies. However, abstractions generated

by these algorithms are not always guaranteed to accept all system traces.

Query-based learning algorithms, such as Angluin’s L* algorithm and its vari-

ants [8, 66, 70, 97], can in principle generate exact system models. But the absence of

an equivalence oracle, in practice, often restricts their ability to generate exact models

or even system overapproximations. In a black-box setting, membership queries are

posed as tests on the system. The elicited response to a test is used to classify the

corresponding query as accepting or rejecting. Equivalence queries are often approxi-

mated through a finite number of membership queries [1, 25, 97] on the system. The

membership queries are generated using techniques such as conformance testing or

random walks of the hypothesis model.

An essential pre-requisite to enable black-box query-based model learning is that

the system can be simulated with an input sequence to elicit a response or output, such

as systems modelled as Mealy machines or register automata. Moreover, obtaining

an adequate approximation of an equivalence oracle may require a large number of

membership queries, that is exponential in the number of states in the system. The

resulting high query complexity constrains these algorithms to learning only partial

models for large systems [60, 61].

One way to address these challenges is to combine model learning with white-

box techniques, such as fuzzing [102], symbolic execution [17, 46, 59] and model

checking [33, 42], to extract system information at a lower cost. But, these are not

always guaranteed to generate system overapproximations.

In [102], model learning is combined with mutation based testing that is guided

by code coverage. This proves to be more effective than conformance testing, but the

approach does not always produce complete models. In [46, 59], symbolic execution

is used to answer membership queries and generate component interface abstractions

modelling safe orderings of component method calls. Sequences of method calls in

a query are symbolically executed to check if they reach an a priori known unsafe

state. However, learned models may be partial as unsafe method call orderings that

are unknown to the end-user due to insufficient domain knowledge are missed by

96



the approach. The Sigma* [17] algorithm combines L* with symbolic execution to

iteratively learn an overapproximation in parallel to the models learned using L*.

The algorithm terminates when the hypothesis model equals the overapproximation,

and therefore generates exact system models. In [33, 42], model checking is used

in combination with model learning for assume guarantee reasoning. The primary

goal of the approach is not to generate an abstract model of a component and may

therefore terminate before generating a complete model.

Closely related to our work are the algorithms that use L* in combination with

black-box testing [91] and model checking [51, 103]. The latter use predefined LTL

properties, similar to [106, 111], that are checked against the generated abstraction.

Any counterexamples are checked with the system. This either results in the conclu-

sion that the system does not satisfy the property, or leads to a refinement of the

abstraction to remove incorrect behaviours. Black-box testing [91] may be a prag-

matic approach to identify missing behaviours for an abstraction by simulating the

learned model with a set of system traces. However, it is not guaranteed that the

model admits all system traces, as this requires a complete set of execution traces.

6.3.3 Learning Symbolic Models

An open challenge with query-based active model learning is learning symbolic mod-

els. Many practical applications of L* [27, 33] and its variants are limited to learning

system models defined over an a priori known finite alphabet consisting of Boolean

events, such as function calls. Maler and Mens developed a symbolic version of the L*

algorithm [81, 82] to extend model inference to large alphabets by learning symbolic

models where transitions are labelled with partitions of the alphabet.

In [2], manually constructed mappers abstract concrete values into a finite sym-

bolic alphabet. However, different applications would require different mappers to

be manually specified, which can be a laborious and error prone process. The au-

thors in [1] propose a CEGAR-based method to automatically construct mappers for

a restricted class of Mealy machines that test for equality of data parameters, but

do not allow any data operations. In [62], CEGAR is used for automated alphabet

abstraction refinement to preserve determinism in the generated abstraction. Given

an abstraction, the refinement procedure is triggered by counterexamples exposing

non-determinism in the current abstraction.

The MAT* algorithm [8] generates SFAs, where the transitions carry predicates

over a Boolean algebra that can be efficiently learned using membership and equiv-

alence queries. The input to the algorithm is a membership oracle, an equivalence
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oracle and a learning algorithm to learn the Boolean algebra of the target SFA. The

algorithm has been used to learn SFAs over Boolean algebras with finite domain,

the equality algebra, BDD algebra and SFAs over SFAs that accept string of strings.

But, designing and implementing oracles for richer models such as SFAs over the the-

ory of linear integer arithmetic is not straightforward, as it would require answering

queries comprising valuations of multiple variables, some of which could have large

and possibly infinite domains.

In [15], an inferred Mealy machine is converted to a symbolic model in a post-

processing step. The algorithm, however, is restricted to learning models with simple

predicates such as equality/inequality relations. The algorithm in [108] is restricted to

generating Mealy machines with a single timer. Sigma* [17] extends the L* algorithm

to learn symbolic models of software. Dynamic symbolic execution is used to find con-

straints on inputs and expressions generating output to build a symbolic alphabet.

But, behaviours modelled by the generated abstraction are limited to input-output

steps of a software. Although the algorithm generates symbolic models that are com-

plete, as illustrated in Table 6.2, an implementation of the algorithm is not publicly

available for an experimental comparison.

The SL* algorithm [25] extends query-based learning to infer register automata.

We compared our model-learning implementation T2M with the SL* implementation

RALib in Chapter 4. In this chapter we attempt to reverse-engineer the Simulink

state machine benchmarks modelled as IORA using RALib. We present the results

obtained for benchmarks B1 and B6 below.

We modelled state machine B6 of a Home Climate Control Cooling system as

an IORA with input action check(inp.temp) that takes a parameter inp.temp, and

output actions On() and Off() representing the operation modes of the system, as

illustrated in Fig. 6.4. This is fed as the system-under-learning (SUL) to RALib. The

s1start

s2 s3

check(inp.temp)
inp.temp > T thresh

On()

check(inp.temp)
inp.temp ≤ T thresh

Off()

Figure 6.4: IORA modelling a Home Climate Control Cooling system (B6).
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ŝ1start ŝ2

mode ′ = Off

inp.temp > T thresh
∧mode ′ = On

mode ′ = On

¬(inp.temp > T thresh)
∧mode ′ = Off

(a) Our algorithm

ŝ1start

ŝ2 ŝ3

check(inp.temp)
inp.temp > T thresh

On()

check(inp.temp)
inp.temp ≤ T thresh

Off()

(b) RALib

Figure 6.5: Abstractions generated for a Home Climate Control Cooling system (B6).

models generated by our active learning approach and RALib are provided in Fig. 6.5.

Similar to our algorithm, RALib was able to accurately capture the system behaviours

and generate an exact representation of the SUL, as is evident from Fig. 6.5b.

As illustrated in Fig. 6.6, we modelled state machine B1 of an Automatic Trans-

mission Gear system as an IORA with input action check(timeabs , c1, c2) that takes

parameters timeabs , c1 and c2, and output actions One(), Two(), Three() and Four()

representing the four gears in the system. This is fed to RALib as the SUL. The

abstractions generated by our algorithm and RALib are provided in Fig. 6.7. RALib

was only able to generate the partial model illustrated in Fig. 6.7b before timing out

at 10 h. Our algorithm, on the other hand, was able to generate a complete model

(Fig. 6.7a) in less than 12 minutes, as evidenced in Table 6.1.

The basic tool implementation of RALib currently supports predicates featur-

ing equality over integers and inequality over real numbers. In addition to equal-

ity/inequality relations, automaton transitions may also feature simple arithmetic

expressions such as increment by 1 and sum. However, these are still in the devel-

opment stage and only partially supported, often tailored to specific domains such
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s1

s2start

s3

s4

s5

s6

s7

s8

One()

check(timeabs , c1, c2)
timeabs − c1 > TWAIT

Two()

check(timeabs , c1, c2)
timeabs − c1 > TWAIT

Three()

check(timeabs , c1, c2)
timeabs − c1 > TWAIT

Four()

check(timeabs , c1, c2)
timeabs − c1 ≤ TWAIT

check(timeabs , c1, c2)
timeabs − c1 ≤ TWAIT∧
timeabs − c2 ≤ TWAIT

check(timeabs , c1, c2)
timeabs − c1 ≤ TWAIT∧
timeabs − c2 ≤ TWAIT

check(timeabs , c1, c2)
timeabs − c2 ≤ TWAIT

check(timeabs , c1, c2)
timeabs − c1 ≤ TWAIT∧
timeabs − c2 > TWAIT

check(timeabs , c1, c2)
timeabs − c1 ≤ TWAIT∧
timeabs − c2 > TWAIT

check(timeabs , c1, c2)
timeabs − c2 > TWAIT

Figure 6.6: IORA modelling gear-shift logic for an Automatic Transmission Gear
system (B1).
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as TCP protocols [43]. Due to the high query complexity it is not obvious how the

approach can be generalised to efficiently learn symbolic models over richer theories.

An extension of the SL* algorithm [45] uses taint analysis to improve performance

by extracting constraints on input and output parameters. However, it currently does

not allow the analysis of multiple or more involved operations on data values.

ŝ1start

ŝ2

ŝ3

ŝ4

ŝ5

gear ′ = 1

gear ′ = 1

gear ′ = 2

gear ′ = 3

gear ′ = 4

timeabs − c1 > TWAIT
∧gear ′ = 2

timeabs − c1 > TWAIT
∧gear ′ = 3

timeabs − c1 > TWAIT
∧gear ′ = 4

¬(timeabs − c1 > TWAIT)
timeabs − c2 > TWAIT

∧gear ′ = 1

¬(timeabs − c1 > TWAIT)
timeabs − c2 > TWAIT

∧gear ′ = 2

timeabs − c2 > TWAIT
∧gear ′ = 3

(a) Our algorithm

ŝ1start ŝ2

check(timeabs , c1, c2)

One()

(b) RALib

Figure 6.7: Abstractions modelling gear-shift logic for an Automatic Transmission
Gear system (B1).
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Chapter 7

Conclusions and Future Work

In this chapter we summarize the key contributions of the work reported in this

dissertation and suggest some potential directions for future research.

7.1 Summary

In this dissertation we presented a methodology to infer concise, accurate and ex-

pressive symbolic system overapproximations with provable completeness guarantees

using only system execution trace data.

In Chapter 1 we began by briefly describing the need for abstraction and enumer-

ating some of challenges encountered when applying existing inference techniques to

learn abstract system models for system-wide analysis of large and complex system.

In Chapter 2, we covered an extensive survey of related model-learning methodologies,

and introduced formal preliminaries on program synthesis and equivalence relations.

We described a novel approach to generate symbolic abstractions for a system

using only system trace data in Chapter 3. Abstractions are inferred as symbolic finite

automata from system execution traces using a combination of SAT and program

synthesis. We presented a SAT formulation for constructing a minimal finite state

automaton from only positive traces. Additionally, we integrated algorithmic methods

designed to enable SAT-based model-learning to scale to long traces, based on trace

segmentation and incremental learning. We also extended SAT-based automaton

inference from traces to learn symbolic finite automata over large and possibly infinite

alphabets, using program synthesis to consolidate system execution trace data into

syntactic expressions that are not explicit in the execution traces.

We presented an experimental evaluation of the model-learning algorithm in Chap-

ter 4, on benchmarks from a variety of domains including system-on-chip and internet-

of-things. By means of experiments we showed that the algorithmic optimizations
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introduced in Chapter 3 produce a significant reduction in algorithm runtime. Our

comparison experiments demonstrate that the model-learning algorithm generates ab-

stractions that are concise, accurate and often more expressive than models generated

by other algorithms in relevant literature.

Although the model-learning algorithm described in Chapter 3 generates abstrac-

tions that are guaranteed to accept (at least) all execution traces in the given learning

sample, the learned models may be partial. To address this, we developed a method

based on equivalence checking using simulation relations to evaluate the degree of

completeness of an abstraction inferred from execution traces.

In Chapter 5 we described the formulation of a completeness hypothesis to eval-

uate the degree of completeness for a given system abstraction. We formally proved

that the satisfaction of the formulated hypothesis is sufficient to guarantee that a

simulation relation can be constructed between the system and the learned abstrac-

tion, and further that the existence of a simulation relation is sufficient to guarantee

that the abstraction is overapproximating.

In Chapter 6 we described an active model-learning approach that integrates

model-learning from traces with equivalence checking using simulation relations to

generate overapproximating system abstractions with provable completeness guaran-

tees. We also presented an experimental evaluation of the active learning approach,

and showed that the generated abstractions are more expressive that abstractions

learned by existing active learning implementations.

7.2 Future Work

The work reported in this dissertation partially addresses some of the challenges for

learning expressive symbolic system abstractions enumerated in Chapter 1. In this

section, we identify few avenues for future research.

Increasing Scalability

There are two potential avenues to explore for increasing algorithm scalability

• One of the main bottlenecks for scalability in our model-learning approach is

automaton construction using SAT. The use of SAT provides provable guaran-

tees of correctness and is therefore favourable. It however comes at the cost

of increased runtime. Although the optimizations we introduce significantly

reduce runtime, the algorithm may not scale as well to very large traces, such
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as log data from industrial applications. A more efficient SAT encoding for

automaton construction from positive traces could be a promising step forward.

• As discussed in Section 6.2.3.1, Chapter 6, the active learning approach of-

ten goes through a large number of spurious counterexamples before arriving

at a non-spurious counterexample, if any, which increases algorithm runtime.

Exploring ways to guide the condition check procedure towards non-spurious

counterexamples is a potential avenue for future research.

Improving Transition Predicate Inference

Our model-learning algorithm generates symbolic finite automata where the transi-

tions are labelled with predicates that are inferred from traces using program syn-

thesis. The scope of the inferred predicates is therefore limited to the type of ex-

pressions that program synthesis can generate. For instance, synthesis from examples

does not support the inference of relations. This may however be useful to model

non-deterministic system behaviour, such as same system inputs producing different

system outputs. Depending on the application and the system for which we wish to

learn an abstraction, we may need to explore alternate techniques or enhancements

to program synthesis to infer more expressive transition predicates from trace data.

Extension to Richer Models

An interesting direction for future research is exploring extensions of the learning

algorithm to richer modelling formalisms, such as register automata and recursive

state machines. This will enable the generation of system abstractions modelling a

wider range of system behaviours and, as a consequence, aid in the verification and

validation of more complex systems.

Potential Use-Cases

The model-learning algorithm generates automata with strong guarantees for model

correctness which enables their application to problems in the verification domain:

• They can summarise which aspects of system behaviour have been covered by

a suite of tests

• They provide starting points for model-based test generation. The equivalence

checking procedure using simulation relations could be used to identify test

inputs to cover coverage holes.
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• They could be used as candidate invariants in the inductive invariant refinement

loop. For instance, the authors of [41] propose user-guided invariant inference

for infinite state systems such as distributed protocols. The user specifies a

candidate invariant as an automaton, called a phase structure, that captures

the logical phases of a protocol. The model-learning algorithm could be used

to automatically learn these phase structures.

The active model-learning algorithm generates abstractions that are guaranteed to

admit all system traces. This can be particularly useful when system specifications

are incomplete, and so any implementation errors outside the scope of defined require-

ments cannot be flagged. This is a common risk when essential domain knowledge

gets progressively pruned as it is passed on from one team to another during the

development life cycle. In such scenarios, manual inspection of the learned models

can help identify errors in implementation.
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Appendix A

List of benchmarks

Table A.1: Mapping of Simulink Stateflow example models to their benchmark num-
ber B# used in Table 6.1.

Benchmark Name B#

AutomaticTransmissionUsingDurationOperator B1

BangBangControlUsingTemporalLogic
InHeater B2

InOn B3

CountEvents B4

FrameSyncController B5

HomeClimateControlUsingTheTruthtableBlock B6

KarplusStrongAlgorithmUsingStateflow
DelayLine B7

MovingAverage B8

LadderLogicScheduler B9

MealyVendingMachine B10

ModelingACdPlayerradio
UsingEnumeratedDataType

CdPlayer
BehaviourModel

DiscPresent B11

Overall B12

CdPlayer
ModeManager

ModeManager B13

On B14

Overall B15

ModelingALaunchAbortSystem
Abort

AbortLogic B16

Overall B17

ModeLogic B18

ModelingAnIntersectionOfTwo
1wayStreetsUsingStateflow

InRed B19

Overall B20

Continued on next page
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Table A.1 – Continued from previous page

Benchmark Name B#

ModelingARedundantSensorPairUsingAtomicSubchart B21

ModelingASecuritySystem

InAlarm
On B22

Overall B23

InDoor B24

InMotion
Active B25

Overall B26

InWin B27

MonitorTestPointsInStateflowChart B28

MooreTrafficLight B29

ReuseStatesByUsingAtomicSubcharts B30

SchedulingSimulinkAlgorithmsUsingStateflow B31

SequenceRecognitionUsingMealyAndMooreChart B32

ServerQueueingSystem B33

StatesWhenEnabling B34

StateTransitionMatrixViewForStateTransitionTable B35

Superstep
With Super Step B36

Without Super Step B37

TemporalLogicScheduler B38

UsingSimulinkFunctionsToDesignSwitchingControllers B39

VarSize
SizeBasedProcessing B40

VarSizeSignalSource B41

ViewDifferencesBetweenMessagesEventsAndData B42

YoYoControlOfSatellite
InActive

ReelMoving B43

Overall B44

Overall B45
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[89] Jose Oncina and Pedro Garćıa. Inferring regular languages in polynomial update

time. In World Scientific, 1992. doi:10.1142/9789812797902_0004.

[90] Doron A. Peled. Software Reliability Methods. Texts in Computer Science.

Springer, 2013.

[91] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking.

In Jianping Wu, Samuel T. Chanson, and Qiang Gao, editors, Formal Methods

for Protocol Engineering and Distributed Systems: FORTE XII / PSTV XIX’99

IFIP TC6 WG6.1 Joint International Conference on Formal Description Tech-

niques for Distributed Systems and Communication Protocols (FORTE XII)

and Protocol Specification, Testing and Verification (PSTV XIX) October 5–8,

1999, pages 225–240. Springer, 1999. doi:10.1007/978-0-387-35578-8_13.

[92] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing

sequences. In Proceedings of the Twenty-First Annual ACM Symposium on

Theory of Computing, STOC ’89, pages 411–420. Association for Computing

Machinery, 1989. doi:10.1145/73007.73047.

118

http://dx.doi.org/10.1145/3093333.3009879
http://dx.doi.org/10.1145/3093333.3009879
http://dx.doi.org/10.1109/ISVLSI.2015.110
http://dx.doi.org/10.1109/ISVLSI.2015.110
http://dx.doi.org/10.2307/2033204
http://dx.doi.org/10.1145/235809.235811
http://dx.doi.org/10.1145/235809.235811
http://dx.doi.org/10.1142/9789812797902_0004
http://dx.doi.org/10.1007/978-0-387-35578-8_13
http://dx.doi.org/10.1145/73007.73047


[93] J. Ruf, D.W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation-guided prop-

erty checking based on multi-valued AR-automata. In Proceedings Design, Au-

tomation and Test in Europe. Conference and Exhibition 2001, pages 742–748,

2001. doi:10.1109/DATE.2001.915111.

[94] W. Said, J. Quante, and R. Koschke. Reflexion models for state machine ex-

traction and verification. In 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 149–159, 2018. doi:10.1109/

ICSME.2018.00025.

[95] Arjun Singh Saud and Subarna Shakya. Analysis of look back period for stock

price prediction with RNN variants: A case study on banking sector of NEPSE.

In Procedia Computer Science, volume 167, pages 788–798, 2020. International

Conference on Computational Intelligence and Data Science. doi:10.1016/j.

procs.2020.03.419.

[96] Amazon Web Services. AWS IoT Events, 2021. URL: https://docs.

aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.

html.

[97] Muzammil Shahbaz and Roland Groz. Inferring Mealy machines. In Ana Cav-

alcanti and Dennis R. Dams, editors, Formal Methods, pages 207–222. Springer,

2009. doi:10.1007/978-3-642-05089-3_14.

[98] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety prop-

erties using induction and a SAT-solver. In Warren A. Hunt and Steven D.

Johnson, editors, Formal Methods in Computer-Aided Design, pages 127–144.

Springer, 2000. doi:10.1007/3-540-40922-X_8.

[99] Simulink. Embedded Coder, 2021. URL: https://uk.mathworks.com/

products/embedded-coder.html.

[100] Simulink. Simulation and Model-Based Design, 2021. URL: https://www.

mathworks.com/products/simulink.html.

[101] Simulink. Stateflow Examples, 2021. URL: https://uk.mathworks.com/help/

stateflow/examples.html?s_tid=CRUX_topnav.

[102] Rick Smetsers, Joshua Moerman, Mark Janssen, and Sicco Verwer. Com-

plementing model learning with mutation-based fuzzing. In ArXiv, volume

abs/1611.02429, 2016.

119

http://dx.doi.org/10.1109/DATE.2001.915111
http://dx.doi.org/10.1109/ICSME.2018.00025
http://dx.doi.org/10.1109/ICSME.2018.00025
http://dx.doi.org/10.1016/j.procs.2020.03.419
http://dx.doi.org/10.1016/j.procs.2020.03.419
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/3-540-40922-X_8
https://uk.mathworks.com/products/embedded-coder.html
https://uk.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://uk.mathworks.com/help/stateflow/examples.html?s_tid=CRUX_topnav
https://uk.mathworks.com/help/stateflow/examples.html?s_tid=CRUX_topnav


[103] Bernhard Steffen and Hardi Hungar. Behavior-based model construction. In

Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopadhyay,

editors, Verification, Model Checking, and Abstract Interpretation, pages 5–19.

Springer, 2003. doi:10.1007/s10009-004-0139-8.

[104] Ilia Sucholutsky, Apurva Narayan, Matthias Schonlau, and Sebastian Fis-

chmeister. Deep learning for system trace restoration. In International

Joint Conference on Neural Networks, IJCNN 2019, pages 1–8. IEEE, 2019.

doi:10.1109/IJCNN.2019.8852116.
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