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Abstract

We consider the Least Squares Method (LSM) for estimation of length of payload
embedded by Least Significant Bit (LSB) replacement in digital images. Errors in
this estimate have already been investigated empirically, showing a slight negative
bias and substantially heavy tails (extreme outliers). In this work we derive (approx-
imations for) the estimator distribution over cover images: this requires analysis of
the cover image assumption of the LSM algorithm and a new model for cover im-
ages which quantifies deviations from this assumption. The theory explains both the
heavy tails and the negative bias, and suggests improved detectors. It also allows the
steganalyst to compute precisely, for the first time, a p-value for testing the hypoth-
esis that a hidden payload is present. To our knowledge this is the first derivation of
steganalysis estimator performance.

1 Introduction

Steganalysis is the detection of steganography, and this detection can take a number of
forms. Many steganalysis methods are quantitative: not simply a binary decision as to
whether an input is a cover or stego object, they estimate the length of the payload
(possibly zero). Particularly for LSB replacement steganography in digital images, quan-
titative detectors seem to present themselves naturally as part of the detection process
(see e.g. [1–4]).

However, no steganalysis method is perfect so these estimates will be subject to error.
In the literature ([5, 6]) it has become apparent that quantitative detectors for LSB
replacement suffer from errors of a pathological type. There are sometimes extreme
outliers in the error distribution (the errors appear to be very far from Gaussian) and
some estimators, particularly those with the smallest error variance ([4, 7]) suffer from
a small bias. Furthermore, the nature of these errors seems to be highly influenced by
the class of image under consideration: the size, local variance, and saturation are shown
empirically to be important in [6], but there are likely to be other influences on accuracy.
This presents the steganalyst with a difficult problem: given an estimate for the amount
of embedded data, how much confidence should they have in it? This goes to the heart
of the steganalysis problem. As demonstrated in [8], knowledge of properties of the cover
source can make a vast difference to a steganalyst’s confidence in their result, but in
many applications (such as network monitoring) we probably cannot assume that the
steganalyst has much information of this sort.

In this paper we consider a particular quantitative detector for LSB replacement in
grayscale images: the Least Squares Method (LSM) variant [9] of Sample Pairs Analysis

(SPA) [3]. Our aim is to derive its error distribution; we will be able to do so for one
source of error, as long as the detector is modified to remove dependence on a pathological
component.

In [6] we showed that steganalysis estimator error should be decomposed into two
components: within-image error and between-image error. In [6] these are separated
and their nature investigated empirically for a number of LSB replacement estimators,
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including the LSM/SPA algorithm. Broadly speaking the within-image error is due to
the content and location of the payload, whereas the between-image error is entirely due
to the cover. Although within-image error should not be discounted, it is generally of
much smaller magnitude than between-image error, unless the embedded payload is very
large, and it always has much smaller, apparently Gaussian, tails (therefore within-image
error is not responsible for extreme outliers). Furthermore, when no payload is embedded
there is no within-image error. Therefore it sufficient for the steganalyst to know only the
between-image error distribution in order to compute a p-value for an observed estimate,
knowledge of which is a fundamental aim.

In this work, then, we focus only on between-image error, which is the error in the
estimator when there is no payload embedded1. Our aim is to provide a genuine p-
value for the steganalyst, for testing the hypothesis that no payload is hidden against the
alternative that some payload is hidden.

Presenting the steganalysis method now known as WS, [10] is another work which
has some theory which makes examination of steganalysis error. However it does so in
passing (as part of the tuning process for the estimator), only for within-image error,
and it is not clear that the theory has any connection with experimental practice. To
our knowledge we present here the first derivation of steganalysis error which does not
make unrealistic assumptions about the source of cover objects, and which accords well
with experimental results. This work has applications both in improved steganalysis and,
more speculatively, in adaptive steganography.

As an introductory example, we display in Fig. 1 the histogram of the LSM/SPA
estimator when applied to 3000 grayscale cover images (no payload is present so the
estimator should be around zero). We highlight two features apparent in this distribution:
there is a small negative bias (which turns out to be statistically significant), and a
large number of outliers. The distribution does not look Gaussian (it conclusively fails a
normality test) and seems somewhat skew. Our theory will explain these features in full:
in fact, the error distribution is approximately Gaussian, but the mean and variance are
influenced by image-specific factors so the resulting distribution is a Gaussian mixture.

The structure of the paper is as follows. In Sect. 2 we do some simple mathematics
relating to perturbations in parametric curves of a certain type, which will be a key part
of the later derivations. In Sect. 3 we describe the LSM/SPA method in just enough
detail for our purpose of deriving its error when no payload is embedded. In Sect. 4
we propose a simple model for cover images which explains the errors, and combine this
with the previous results to derive first- and second-order approximations to the between-
image error distribution. We verify that the second approximation gives a high degree
of accuracy in Sect. 5. Briefly we look at applications of this work, in Sect. 6, including
a modification of the LSM/SPA method with improved performance. Finally, we draw
conclusions in Sect. 7.

1In some literature (e.g. [1]) this is referred to as detector bias but we are not keen to use this term
as it suggests bias in the statistical (i.e. strictly additive) sense, which it is not. Indeed, empirical data
in [6] suggests that the between-image error is relative, decreasing with higher embedding rates to zero
under maximal embedding.
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Figure 1: Histogram of observed LSM/SPA estimates of proportionate length of hidden
payload, when none is hidden in 3000 grayscale cover images.

2 Small Perturbations in Quadratic Paths

We begin with some abstract mathematics. We will call a parametric curve in R
m a

quadratic path if each co-ordinate is of the form (s + pt + p2u)/(1 − p)2, where p < 1 is
the parameter and s, t, u ∈ R (the reasons for this shape will become apparent later). We
will write its locus in the form

v =
s + pt + p2u

(1 − p)2

for p < 1, where the vectors s, t, u are in R
m. We are interested in curves which pass

through the origin at p = 0 (so s = 0) and perturbed curves whose coefficients in the
numerator are affected by small random vectors. In our application we will want to
estimate p̂, the value of the parameter on the perturbed curve which is closest to the
origin. We will find first- and second-order approximations for p̂.

Suppose that a quadratic path P passes through the origin at p = 0, and that a
perturbed path is P ′. Let us write v = (pt + p2u)/(1 − p)2 for the locus of path P and
v = (s′+pt′+p2u′)/(1−p)2 for P ′. We will approximate P ′ close to p = 0 by its tangent
at p = 0, which passes through s′ and has direction vector dv

dp
|p=0 = t′ + 2s′. This is

closest to the origin at the point whose vector is orthogonal to the direction vector of the
tangent (see Fig. 2), so (s′ + p̂(t′ + 2s′)).(t′ + 2s′) = 0, which occurs when

p̂ = − s′.(t′ + 2s′)

(t′ + 2s′).(t′ + 2s′)
.

Now let us identify the perturbations s′ = δs, t′ = t + δt, u′ = u + δu. We have

p̂ = − δs.t + δs.(δt + 2δs)

t.t + 2t.(δt + 2δs) + (δt + 2δs).(δt + 2δs)
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Figure 2: Small perturbations in quadratic paths.

which, up to first-order (i.e. discarding terms whose magnitude is of the order of the
square of the perturbations), is

p̂ ≈ −δs.t

t.t
. (1)

The second-order approximation (discarding terms with magnitude cubic in the pertur-
bations) is obtained by expanding the denominator using the binomial theorem; after
some simplification, we obtain

p̂ ≈ −δs.t

t.t
+ 2

(

(δt + 2δs).t
)

(δs.t)

(t.t)2
− δs.(δt + 2δs)

t.t
. (2)

These results will be applied in Sect. 4.

3 The Least Squares Method for Steganalysis of LSB Re-
placement

The Least Squares Method [9] is a quantitative detector for LSB replacement steganog-
raphy. It is based on the Sample Pairs method of [3], but varies at the final stage when
a number of approximate equations are combined to make a single overall estimate. Its
fits into the structural framework of [4]: there is a macroscopic property of stego images
which depends on the proportionate (as a fraction of the capacity) amount of hidden
payload p, a vector S(p); determination of how S(p) depends on p and S(0) and inversion
to see how S(0) depends on S(p) and p; finally, a model for cover images, expressed in
terms of S(0). Observing S(p), the estimator for p is the value which implies S(0) closest
to the cover model.

We will describe this estimator in the compact presentation suggested by [4], including
only enough detail for our subsequent analyses. As in [4] we will use calligraphic letters
(X ) for sets, upper-case letters (X) for random variables, and lower-case letters (x) for
constants and realisations of random variables. The cover image is (for now) considered
constant, and the payload random. Suppose that a digital image consists of a series of
samples s1, s2, . . . , sN taking values in the range 0 . . . 2M + 1 (typically M = 127). A
sample pair is a pair (si, sj) for some 1 ≤ i 6= j ≤ N . Let P be a set of sample pairs; we
will use the set of all pairs which come from horizontally or vertically adjacent pixels (as
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Figure 3: Transitions between trace subsets when proportionate payload p is embedded
by LSB replacement.

in [3]). We then consider some subsets of P:

Cm = {(j, k) ∈ P | ⌊k/2⌋ = ⌊j/2⌋ + m}
Em = {(j, k) ∈ P | k = j + m, with j even}
Om = {(j, k) ∈ P | k = j + m, with j odd}

in the first of these, −M ≤ m ≤ M ; for the second, −2M ≤ m ≤ 2M + 1; for the third,
−2M + 1 ≤ m ≤ 2M .

We suppose that the payload of length pN is a random bitstream (it suffices to be
uncorrelated with the cover, so this assumption is not a strong one) embedded using LSB
replacement of a random selection of samples, independent of the content of the cover
or payload. Then each sample in each pair is altered, independently, with probability p

2 .
The sets Cm do not involve the least significant bits of the pairs, so any pair in Cm must
remain there after LSB overwriting. The sets Em and Om we call trace subsets:2 each
Cm is partitioned into E2m, E2m+1,O2m−1,O2m, and LSB replacement moves sample pairs
amongst these four trace subsets according to the transition diagram Fig. 3.

We count the size of the trace subsets: let em (respectively om) represent the number
of sample pairs in Em (Om) before embedding, and the random variable E′

m (O′

m) be the
number after such a random embedding. Considering Fig. 3, [9] (or, in this notation, [4])
shows:









E[E′

2m]
E[O′

2m−1]
E[E′

2m+1]
E[O′

2m]









= M
(

1 − p
2 , p

2

)









e2m

o2m−1

e2m+1

o2m









(3)

2Note that these sets are not quite equivalent to those called Xm and Ym used by Dumitrescu et al.

in [3] or by the original Least Squares Method of [9]. Their definition is symmetrical in the sample pairs
but introduces an unnecessary special case at m = 0. This is explained in [4].
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where

M(α, β) =









α2 αβ αβ β2

αβ α2 β2 αβ
αβ β2 α2 αβ
β2 αβ αβ α2









.

The matrix is invertible as long as p 6= 1: the inverse is 1
(1−p)2

M
(

1 − p
2 ,−p

2

)

.

We need two assumptions. First, appealing to the Law of Large Numbers, that
the observed realisations e′m (o′m) of the random variables E′

m (O′

m) are close to their
expectations:

e′m ≈ E[E′

m], o′m ≈ E[O′

m]. (4)

Second, the cover model which drives the estimator:

e2m+1 − o2m+1 ≈ 0. (5)

Approximate equations of the form of (5) are termed symmetries in [7]. They are jus-
tified because we expect no correlation between parity structure and pixel difference, in
continuous-tone images. (The reason for not including also e2m ≈ o2m is explained in [4].)

As in [3] we will find it very convenient to define dm = em + om, and d′m = e′m + o′m.
Putting together (5) with the relevant elements of the inverse of (3), and (4), gives

0 ≈ e2m+1−o2m+1 ≈ 1

(1 − p)2

(

e′2m+1 − o′2m+1+

p
2(d′2m+2 − d′2m − 2e′2m+1 + 2o′2m+1)+

p2

4 (d′2m − d′2m+2 + o′2m−1 − e′2m+3)
)

(6)

which is an equation for p involving only observations of the stego image. Such an
equation can be found for each m. The novelty in [9] is to find the value p̂ of p which
minimises the sum square error of all of these approximately zero quantities. We will not
include, here, the mechanics of how such a p may be determined, as this may be found
already in [9]3 and is not relevant to our subsequent analysis.

We made two assumptions: (4) and (5). The former is responsible for within-image
error, the latter for between-image error. As stated in Sect. 1, in this work we will
disregard the within-image error and concentrate only on the between-image error, looking
at the steganalysis estimation when no payload is hidden. In that case, e′m = em and
o′m = om, (4) is redundant, and (6) becomes

s′m + pt′m + p2u′

m

(1 − p)2
= 0 (7)

where
s′m = e2m+1 − o2m+1

t′m = 1
2(d2m+2 − d2m) − (e2m+1 − o2m+1)

u′

m = 1
4(d2m − d2m+2 + o2m−1 − e2m+3)

(8)

3The version presented in [9] does differ slightly from the estimator considered here, because the former
uses Dumitrescu’s symmetrical sample pairs definition. It leads to a slightly more complicated formula
for p̂, but the difference in performance is negligible.
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Therefore the least squares estimator can be given a geometric interpretation by

p̂ = arg min
p

∥

∥

∥

∥

s′ + pt′ + p2u′

(1 − p)2

∥

∥

∥

∥

where s′ (respectively t′, u′) are vectors whose entries are each s′m (t′m, u′

m) for −M ≤
m ≤ M , and ‖ · ‖ represents the L2-norm. We see that p̂ is the parameter where the

quadratic path v = s
′+pt

′+p2
u

′

(1−p)2
is closest to the origin.

4 Derivation of Between-Image Error

We now derive approximations for the distribution of the between-image error when
the LSM algorithm is used. The key component is a model for natural images which
explains deviations from the cover assumption (5). Note that the cover image is no
longer considered constant, as it was in Sect. 3, but subject to random “error”. But we
will not change notation, so the reader is warned that some lowercase letters are now
random variables.

4.1 A Model for Symmetry Deviation

The assumption em ≈ om is natural, but it does not hold precisely in images. We seek a
model for cover images which explains the deviations from exact equality. We would like
the model to be as gentle as possible, so that it is not too dependent on the image source
for its accuracy.

Model:
4 Consider the set of all sample pairs in a natural image. Of all those pairs

whose values differ by m, the first value in each pair is even or odd with probability 1
2 ,

independently of other pairs.

That is, we assume that the difference histogram (the frequency of differences of
adjacent pixels) is fixed, and that the parity of the first pixel in each pair is uniformly
random. Of course this does not reflect the construction of images, but nonetheless
it represents a plausible hypothesis about parity structure in a continuous-tone image.
We will make an isolated test of this model in Subsect. 5.2: it will be seen to be quite
accurate for |m| > 3, marginally so when |m| = 3, and not accurate for |m| ≤ 2. We will
do no more than restrict our analysis by altering the LSM detector to avoid using the
assumption (5) in cases where this model does not fit well.

It would be possible to make stronger assumptions about cover images, e.g. to model
the shape of the difference histogram (it is common in the literature to use a Generalised
Gaussian distribution). However we resist this temptation for now: the more imposing
the assumption, the less widely applicable it will be.

Given our model, dm are constants but the em are binomial random variables; em

then determines om. Making the Gaussian approximation em ∼ Bi(dm, 1
2) ≈ N(dm

2 , dm

4 )

4We first proposed this model in passing in [7], as part of a method for quantifying the accuracy of
cover symmetries.
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(valid as long as dm is at least about 10; see e.g. [11]) we have

em − om = 2em − dm ∼ N(0, dm)

We only need to use the model for odd m. It will be convenient to write e2m+1 −
o2m+1 = εm =

√

d2m+1Zm, so that the Zm are iid standard Gaussian random variables
encompassing all the randomness in deviations from the exact equations e2m+1 = o2m+1.

4.2 Distribution of Between-Image Error

We now return to the geometric version of the LSM estimator. It is the parameter which

places v = s
′+pt

′+p2
u

′

(1−p)2
closest to the origin. Let us write s′ = s + δs, and so on, where s,

t, u are the values of s′, t′, u′ when (5) holds exactly, and the perturbations δs, δt, δu

are due to ε. Using (8) we derive

s = 0 δs = ε

tm = 1
2(d2m+2 − d2m) δt = −ε

(we do not need to know u or δu). The first-order approximation (1) gives

p̂ ≈ −ε.t

t.t
=

−2
∑

m(d2m+2 − d2m)
√

d2m+1Zm
∑

m(d2m+2 − d2m)2

which implies that p̂ has a Gaussian distribution, p̂ ∼ N
(

µ1, v(d)
)

, where

µ1 = 0, v(d) =
4

∑

m(d2m+2 − d2m)2d2m+1
(
∑

m(d2m+2 − d2m)2
)2 . (9)

Note that, if the relative shape of d is fixed and the size of cover N varies, dm is
O(N), implying that v(d) = O(N−1).

The second-order approximation leads to a more complicated distribution. Equation
(2) simplifies because, here, δt + 2δs = ε. Write X = ε.t

t.t
and Y = ε.ε

t.t
. Then (2) reduces

to
p̂ ≈ −X + 2X2 − Y.

We already know that X has a Gaussian distribution, but the other terms do not.
Therefore the second-order approximation to p̂ is not Gaussian. Rather than proceed to a
complex derivation of the exact distribution of p̂, we will simply note that the contribution
to distributional shape by X2 and Y is small – their variance, and covariance, are all
O(N−2) – whereas their contribution to location is O(N−1). Therefore we will ignore all
except the shift in mean caused by the additional term 2X2 − Y . Using E[Z2

m] = 1 we

can derive E[X2] = v(d) and E[Y ] =
4

P

m
d2m+1

P

m
(d2m+2−d2m)2

. Our second approximation to the

distribution of p̂ is therefore approximate Gaussian

p̂ ≈ N
(

µ2(d), v(d)
)

, µ2(d) = 2v(d) − 4
P

m
d2m+1

P

m
(d2m+2−d2m)2

(10)

and v(d) is as in (9). The results of Sect. 5 will bear out the approximations we have
made here, and the necessity of the more complex second approximation.
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5 Experimental Results

We test these results empirically, computing the LSM estimates over a large set of cover
images. Our primary test set of covers is 3000 never-compressed bitmaps, downloaded
from http://photogallery.nrcs.usda.gov; originally very high resolution colour im-
ages, for most of our testing we reduced them in size to approximately 640 × 450 pixels.
We repeated tests using images reduced to grayscale, and also extracting the colour chan-
nels and using them separately. Further, we report a summary of results for testing more
widely with other sets of covers.

We will often want to know whether data fits a Gaussian distribution. We will use
the Anderson-Darling test [12], which is known to be a generally powerful test with
particular discriminating power in the tails of the distribution. The tails are especially
important if high reliability is the aim, and we will augment these tests by plots of both
the empirical histogram (which effectively checks the centre of the distribution) and a
logarithmic plot of the observed distribution function (which exposes any heavy-tailed
behaviour), compared with the standard Gaussian.

5.1 Results from Synthetic Data

We begin with some synthetic simulations to test the accuracy of the results of Subsect. 4.2
independently of the accuracy of the cover model in Subsect. 4.1.

We begin with the first-order approximation (9). Taking a single grayscale image
(pictured in Fig. 4) we extracted the difference histogram (also displayed). For this
particular vector d, (9) predicts v(d) = 8.941×10−5. We then repeated 2000 simulations,
setting each em according to a binomial random variable with parameters dm and 1

2 , and
om = dm − em, then computing p̂ according to the LSM algorithm. Standardising, we
expect to see a Gaussian distribution with zero mean and unit variance for p̂/

√

v(d).
This histogram, and logarithmic tail plot, is displayed in Fig. 4.

We see close accordance with the theory. The data easily pass the Anderson-Darling
normality test (p = 0.637). The observed mean is −1.634×10−4, not significantly different
from zero (t-test p = 0.433). The observed variance is 8.693 × 10−5, not significantly
different from the theoretical prediction of 8.941 × 10−5 (χ2-test p = 0.366). In Fig. 4
we see that the tail of the observed standardised estimates follows a standard Gaussian
tail very closely. The first-order approximation to the distribution of p̂ has been quite
adequate.

However we also repeated the experiment by artificially reducing the size of each dm by
a factor of 20, simulating a smaller image with the same general characteristics. We do not
show another set of charts, but comment that data still pass a normality test (p = 0.059),
and the variance is not significantly different from the prediction (p = 0.145). But the
observed mean of −0.00617 is significantly lower than zero (p < 10−10). We must go to
the second approximation (10), which would imply a mean of −0.00515, not significantly
different from the observed value (p = 0.270).

We see that the second approximation is necessary for what would be a smaller image,
and that it accords well with the empirical results in this case.

9
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Figure 4: Experiment with synthetic data. Top left, the image used; Top right, the
difference histogram of this image; Bottom left, histogram of standardised p̂ computed
using synthetically-generated em and om, with a standard Gaussian density superimposed;
Bottom right, logarithmic tail plot compared with Gaussian tail.

5.2 Testing the Cover Model

We now turn to genuine cover images. First, we test the cover image model of Subsect. 4.1
in isolation. According to this model, the statistic zm = (em−om)/

√
em + om should have

standard Gaussian distribution. We computed this statistic for a set of 3000 grayscale
images and display the results, for m = 1 and m = 5, in Fig. 5. We see that the model
seems appropriate for m = 5 (it passes the normality test with p = 0.276) but completely
inappropriate for m = 1 (p < 10−10). Indeed, in the latter case it would appear to have
tails closer to Pareto [11] than Gaussian.

Rather than repeat such charts for every m, we just display the p-value for the
Anderson-Darling normality test, for |m| ≤ 12, in Fig. 6. It appears that there is no
evidence to reject the model for |m| ≥ 3. Other experiments using covers made of in-
dividual colour channels extracted from 3000 colour images (chart not displayed) leads
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Figure 5: Tests of the cover image model. Top left, histogram of z1, with standard
Gaussian superimposed; Top right logarithmic tail plot of z1; Bottom left, histogram of
z5; Bottom right, logarithmic tail plot of z5.

us to question the validity of the model for |m| = 3 also. But for |m| > 3 the model
fits well. Another experiment was performed using covers which had previously been
subject to JPEG compression, in the firm expectation that the frequency-domain quan-
tization would strongly disrupt any assumptions about parity structure. In fact, to our
surprise, we found that the model still fits for |m| > 3 if the JPEG covers are converted
to grayscale before use: an unlooked-for bonus. The model is not appropriate for single
colour channels extracted from previously JPEG-compressed images, although even here
we found that there were circumstances, highly dependent on the nature of the image
before compression, in which the fit was reasonable. This is worthy of further study but
for now we apply the model only for its intended use on never-compressed images.

Note that we only use the cover image model for odd values of m: the model for
e2m+1 − o2m+1 drives component m of (7). We propose modifying the LSM estimator to
exclude the components m = −2,−1, 0, 1 from the sum-square error computation. The
estimator should then satisfy (9) or (10).
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Figure 6: Tests of the cover image model. Displays the p-value for the Anderson-Darling
goodness-of-fit test for zm against a standard Gaussian distribution. p = 0.05 is indicated.

We must also test the assumption that the random variables zm are independent.
Computing pairwise correlation coefficients between each zm we observed that all were
either not significantly correlated, or weakly correlated with R2 < 0.1. The only exception
is that z1 and z−1 are strongly negatively correlated (R2 = 0.84). As long as least one of
m = −1 and m = 0 is excluded from the sum-square error, we may assume independence
of the components.

5.3 Distribution of the LSM/SPA Estimator

With this modified estimator, we are now ready to test our predictions of between-image
error distribution. According to (9), computing p̂ and d for each image, we should observe
that p̂/

√

v(d) is standard Gaussian. However when we tested our set of 3000 grayscale
images we found that this was not a very good fit. We do not display histograms, but
merely note that the observed mean of this standardised estimate was −0.326 (signifi-
cantly different from the prediction of 0, p < 10−10); also, the standardised distribution
fails a normality test (p < 10−10). It appears that the first-order approximation is not
sufficient. Although the images are the same size as the first synthetic experiment in
Subsect. 5.1, by excluding m = −2,−1, 0, 1 we are ignoring quite a lot of the pixels (most
of the adjacent pixels in an image are close in value) and put ourselves into the case
analogous to small images.

We note in passing that the first-order approximation is sufficient for larger images:
another set of 3000 images, sized approximately 1.5M pixels each, gave results passing all
the tests. However for the images sized 640×450 we move on to the second approximation
(10). We expect to observe that

(

p̂−µ2(d)
)

/
√

v(d) has a standard Gaussian distribution:
the histogram and logarithmic tail-plot of these standardised estimates appears in Fig. 7.
The standardised mean is 0.0199 (not significantly different from 0, p = 0.285), and the
standardised variance is 1.049 (p = 0.0597). The fit passes the Anderson-Darling test
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Figure 7: Observed LSM/SPA estimates in 3000 grayscale covers, standardised according
to (10). Left, histogram; Right, logarithmic tail plot. An excellent fit is observed (the
single outlier should be disregarded).

with p = 0.314. The second approximation (10) accords very well with the experimental
data. Although there appears to be one outlier in the right tail, we caution the reader
against placing too much significance on the last few data points in a logarithmic tail
plot: extreme order statistics are notoriously unreliable measurements.

We have repeated this experiment for a number of different sets of covers. We report
only a summary of the results. When single colour channels are used (simulating LSB
replacement in colour images) we still see a good fit for a Gaussian distribution and
standardised variance of 1, but sometimes observe that the mean of standardised estimates
is a little away from zero. This “bias” is less than 0.1, which is statistically significant
but not very substantial given that the data are otherwise standard Gaussian. Similar
results arise in a set of 3000 smaller images (320 × 225), and with a set of 1000 large
raw images converted to grayscale directly from a variety of digital cameras (with no
resizing). The slightly inaccurate mean would not greatly damage the calculation of a
p-value by the Warden. In particular there are no extreme outliers, which in the non-
standardised estimates would cause unavoidable false positive results. Similar results are
again obtained when a set of 10000 previously JPEG-compressed, grayscale, covers were
used (almost regardless of the quality factor used in compression), but extracting single
colour channels from JPEG-compressed covers gave rise to non-Gaussian results. Clearly
this is due to failure of the cover model.

The same experiments were carried out without removing m = −2,−1, 0, 1 but there
we observe no Gaussian fit: we already know that the model for cover images does not
hold well here, and we have merely verified that it means that the failure carries through
into the distribution of the estimator. Removing these components does have a negative
impact on the estimator, increasing its variance by not making full use of the data in
the stego image. But what is lost in general accuracy is gained in allowing us to remove
outliers using this new theory. We postpone detailed benchmarking of modified detectors
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Figure 8: Observed mixture parameters: image-specific bias µ2(d) and variance v(d)
predicted for p̂ in 3000 grayscale bitmap images.

to further work, but note that use of the p-value allows for much lower false positive rates
than previously.

Finally, we return to Fig. 1; we must change to the modified LSM estimator which
excludes m = −2,−1, 0, 1, but the histogram of the modified estimator (not displayed)
has very much the same shape. We now know that we are observing an (approximate)
Gaussian mixture. For the same set of 3000 grayscale covers we show histograms of the
mixture parameters µ2(d) and v(d), and a scatterplot showing how they are correlated,
in Fig. 8. The image-specific bias µ2(d) is almost always negative (the largest observed
value was 0.00011 and 99.3% are negative), explaining the negative bias in Fig. 1. The
variance v(d) is long-tailed: some images have very high variance. This, along with some
outliers in the bias, accounts for the long tails in Fig. 1.
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6 Applications

An immediate application of a sound model for estimator error is a measure of confidence
for the steganalyst. We would like to be able to provide not only an estimate but a
confidence interval for the size of hidden payload. However our theory does not enable
us to go that far, for two reasons. First, we have only identified the between-image
error: whilst the within-image error is negligibly small, relative to between-image error,
for small payloads this is not so for large embedding rates [6]. Second, computing the
expected bias and variance of the between-image error requires knowledge of d, which is
a property of the cover. Of course, the steganalyst does not have access to both cover
and stego object.

However the theory is sufficient to form the most important measure of confidence:
the p-value of the hypothesis test that no payload is present versus some payload is
present. The p-value is the (im)probability of the observation, given the null hypothe-
sis, i.e. assuming that the object under consideration is itself a cover. Therefore we can
use the observed d for a standardised statistic

(

p̂ − µ2(d)
)

/
√

v(d) and we know that
its distribution is standard Gaussian under the null hypothesis, although we should be
prepared for a small bias up to 0.1 and must take care to use the method only on “well-
behaved” images (either never-compressed, or previously JPEG-compressed grayscale).
The steganalyst must use the modified LSM/SPA detector which disregards the compo-
nents m = −2,−1, 0, 1 else the cover model on which the theory is founded cannot be
relied upon.

The most important contribution here, we believe, is the removal of outliers. Outliers
to the right correspond to false positive results and, until now, a certain false positive
rate has been almost unavoidable because of the presence of a few stubborn images with
a huge positive bias. Computing a true p-value removes this problem and paves the way
for genuinely high-reliability steganalysis.

A second application is in the development of better steganalysis estimators. Consider
a weighted least squares method, in which a weighted sum-square error

∑

wm

(

s′
m

+pt′
m

+p2u′

m

(1−p)2

)2

(cf. (7)) is minimised to find p̂. We can apply the theory to determine the weights vector
w which gives rise to an estimator with the lowest between-image variance.

We postpone detailed discussion of this to further work, but note that elementary
calculations show that the optimal weight is given by wm = 1

d2m+1
. In practice this

achieves a reduction of around 20% in between-image variance, but at the cost of increased
bias (which we can now correct for).

A more speculative application is to aid the steganographer in selection of a cover
image. There might be many considerations for the steganographer, but one is to choose
a cover which makes steganalysis difficult. They can use these results to ensure that the
steganalyst must have relatively low confidence in their results, by picking a cover with
high v(d). (However the steganographer can probably do better by using just about any
form of embedding other than LSB replacement.)
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Finally, we note that the variance of the between-image error has been shown to be
O(N−1) if the shape of the difference histogram is fixed, so that the “secure capacity” of
a cover, measured in terms of the steganalyst’s ability to discriminate stego objects from
cover objects, increases as

√
N . The accords with some of our other work [13], which

conjectures that steganography capacity in general is proportional only to the square-root
of the total cover size.

7 Conclusions

A theoretical model of steganalysis error is valuable, not just for the insights it gives
into the robustness of the estimator, and the mathematical roots of any weakness. Apart
from explaining the long tails and negative bias in the LSM estimator we have noted some
possible applications, even of this analysis which only considers between-image error.

We believe that this is the first rigorous derivation of its kind, and perhaps sets a
template for derivation of error distributions of other quantitative estimators. The two
key components are a model for covers which quantifies deviations from the ideal model
driving the steganalysis, and some algebra of probabilities to turn this into a distribution
for p̂. Some other estimators (e.g. the Triples analysis of [4]) should only require an
extension of the work in this paper. For detectors not based on LSM some new algebra
of probabilities will be needed.

The most immediate direction for further work is to consider within-image error for
this estimator. It is likely that the results of Sect. 2 will apply again. The within-image
errors are due to (4), and the true distribution of E′

m and O′

m is a small multinomial
mixture. The multivariate Gaussian approximation exposes the first obstacle: the com-
ponents are not independent. This seems to complicate the analysis.

Also we must address the question of how to estimate v(d) and µ2(d), for situations
when the cover is not known to the steganalyst. There seems an obvious solution: d can
be estimated, using the inverse to (3), observations of the stego object, and the estimate
of p. But errors in the estimate of p will feed back into errors in estimates of d, whereas
we would like to use the latter to correct the bias of the former. However it may be
possible to break this circularity.

Finally, to tidy up this particular work, we aim to refine our cover model of Sub-
sect. 4.1, so that it works also for |m| ≤ 3. At first sight it appears that we must
account for lack of independence between parity of nearby pixels. If a good model for
the cover which fits the case of small m could be developed, even if it is not Gaussian,
we could in principle include it in our calculations to determine the resulting distribution
of p̂, although the algebra might be complex. But note that if it were to turn out that
e2m+1 − o2m+1 is not Gaussian (which some experimental evidence indicates is probably
the case) then the principle of least squares estimation is suboptimal. We are gradually
moving towards genuine maximum-likelihood estimation of p̂, which should be viewed as
the long-term goal of this research.
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