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Abstract— Wireless sensor networks present significant oppor-
tunities for fine-grained and continuous monitoring of road traf-
fic, enabling careful city planning, automated road maintenance
and accident detection. Users are typically willing to tolerate
a small error in car-flow data, in order to reduce the cost of
data propagation from the sensor nodes to the gateway nodes,
to which users are connected. In this paper, we first examine the
relative performance of Fourier- and Wavelet-based algorithms
for compressing traffic data locally at the sensor nodes. Using
real traffic information from the city of Cambridge (UK), we then
demonstrate that car-flow data collected across geographically
dispersed sensor nodes exhibit strong spatial and temporal
correlations. We then combine lossy Fourier-compression with
correlation-based compression to achieve further communication
savings within a user-specified error threshold. Two distinct
algorithms are proposed, one exploiting same-node temporal
correlations and the other spatial correlations across nodes. For a
tolerated error of 5-15 cars / 5 min, it is shown that exploitation of
temporal correlations yields 14-30% savings relative to Fourier
compression alone, whilst use of spatial correlations results in
10-35% savings. Both algorithms are fully distributed and easy
to implement in resource-constrained sensor and relay nodes.

I. INTRODUCTION

The annual cost of road congestion in the UK is estimated
at £20bn. In urban areas, transport is the major source of
carbon dioxide emissions, and traffic monitoring can give
useful insights on how to extend the road network or apply
road usage restrictions to maintain pollution within acceptable
limits. The availability of traffic information is also paramount
to preventing or handling traffic jams observed after accidents,
concerts and soccer games.

It is evident that urban areas would considerably benefit
from a sensor network infrastructure able to detect vehicle
flow, speed and occupancy at high spatial and temporal resolu-
tions. In this paper, we investigate how to use spatio-temporal
correlations in traffic data to reduce the running costs of the
monitoring infrastructure given user-defined accuracy require-
ments. We provide a framework for disseminating traffic data
through a sensor network in an energy-efficient manner. Our
specific contributions are as follows:

• We compare the communication savings and computation
costs incurred by a Fourier-based and a Wavelet-based
compression technique, which we run locally at sensor
nodes with limited storage and processing capabilities.
Our results use real traffic flow data and run on a real
sensor platform. We provide quantitative results to show
the compression rates of typical traffic time series given
user-defined requirements for data accuracy.

• We study the extent of spatial and temporal correlations in
real traffic data, and show how they differ from networks
monitoring physical processes, like temperature fields.
We propose distributed algorithms to identify spatio-
temporal correlations, and exploit them to further reduce
the cost of data propagation from the sensors to the
gateway nodes. This work focuses on periodic traffic
updates sent at the end of each day. Real-time traffic data
propagation will be investigated in future work.

Fig. 1. The Cambridge traffic sensor deployment. Circles represent a sensor
site monitoring one or more lanes on the road.

The remainder of the paper is organized as follows: In Sec-
tion II we present the assumptions of our model, and provide
a brief description of the traffic application scenario, including
the existing Cambridge testbed (Figure 1) and the spatio-
temporal properties of a real traffic dataset. Section III presents
a class of correlation-aware data dissemination algorithms
and compares their performance in terms of communication
cost. We discuss related work in Section IV and present our
conclusions in Section V.

II. APPLICATION SCENARIO

In this section, we establish the main assumptions of our
model: we describe our hybrid sensor network architecture
and point out useful properties of urban traffic data.
Architecture: We assume a hybrid network architecture that
includes three types of nodes: sensor nodes, gateway nodes
and relay nodes.

Sensor nodes are equipped with a variety of sensor devices
and they are targeted at monitoring road traffic in an urban
scenario. For example, Figure 1 shows a real deployment
of 112 sensor nodes in the city of Cambridge (UK), which
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Fig. 2. Correlation coefficient between the time-series of 31st May and that
of every other day in May.

span an area of roughly 3.5km×8km. Observe that most sen-
sors are clustered around intersections, and different clusters
are usually distant from each other. Sensor nodes are set
up to measure traffic flow (cars/time) and street occupancy
(cars/area) every 5 minutes. In this paper we focus on the
readings concerning the flow of cars (i.e., number of cars
observed/5min). Although the current sensor deployment in-
volves wired sensors, our vision is to equip sensor nodes with
radios and enable them to communicate their readings in a
wireless multi-hop manner. In order to keep the installation
cost low, we assume that sensor nodes typically have limited
communication, storage and processing capabilities.

Gateway nodes collect the readings from the sensor nodes.
They have a fixed power source, unlimited bandwidth, storage
and processing capabilities, and ultimately route data towards
a central server where it is further processed and stored.

Relay nodes are deployed to ensure that every sensor node
remains connected to at least one gateway node. Relay nodes
are required in our architecture because sensor nodes are
sparsely deployed and some of them may not be able to estab-
lish a multi-hop wireless path to reach a gateway node. Relay
nodes are less expensive than gateway nodes, but they are
typically battery-powered and have limited communication,
computation and storage capabilities. Unlike sensor nodes,
they have no sensing capabilities, and they are only used for
routing and processing purposes.

Spatio-temporal properties of urban traffic data: We now
study the properties of a typical urban traffic dataset, focusing
on temporal and spatial correlations in car flow data. We
divide flow measurements to derive a time series per day per
sensor. For example the tuple SID, d, [f1, f2, . . . , ], denotes
that sensor SID reported on date d readings f1 in the first
five minutes, f2 in the next five minutes, etc. To better
understand the traffic dataset, we measured i) the correlation
between two time series of the same node on different dates;
and ii) the correlation between two time series of different
nodes on the same date. In both cases, we used the Pearson
correlation coefficient between time series F = [f1, f2, . . . , ]
and F ′ = [f ′

1, f
′
2, . . . , ]:

r(F, F ′) =
√

cov(F, F ′)2/(var(F ) × var(F ′))

Temporal Correlations: We observed very strong temporal
correlations in the time-series of a sensor node. For example,
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Fig. 3. Percentage of nodes with a given correlation coefficient between
today’s time-series and the time-series of a previous day within the last week.

Figure 2 shows that a very high correlation coefficient (cc ≥
0.9) is observed between the time series of a node on Wednes-
day, 31st of May 2006, and any other day in May, except for
weekends and May 1st, which is a bank holiday in the UK.
Figure 3 summarizes the extent of temporal correlations in the
traffic dataset. It shows the percentage of nodes that exhibit
a given correlation coefficient between today’s time-series
and the time-series of a previous day within the last week.
For more than 80% of the sensors, daily readings are highly
correlated (cc ≥ 0.8) with those on one of the previous seven
days. These results show the strength of temporal correlations
in traffic data, and reveal a unique opportunity for exploiting
these correlations to achieve communication savings.

Spatial Correlations: The next question that arises is whether
we can equally rely on spatial correlations between the time-
series of different sensors, and whether the strength of spatial
correlations depends on the physical distance between them.
In order to determine whether two time series f(M) and
f(N) generated by sensor nodes M and N respectively are
correlated, we allow a time-shift between the time series. For
example if sensors M and N are located along the same road
and if the traffic flows from M to N , we expect that f(M)[t] =
f(N)[t + dt]. Figure 4 shows that the correlation coefficient
between two nodes does not depend on their distance. Unlike
other applications, such as temperature monitoring systems,
many pairs of remotely placed nodes were found to be highly
correlated, whereas many pairs of nearby nodes exhibited little
correlation. This can be explained by the fact that cars tend
to remain in main roads, which traverse our deployment map
from end to end.
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Fig. 4. Spatial correlation between two nodes as a function of their distance.
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Fig. 5. The Fourier approximation of car-flow readings monitored by a sensor
node every 5 minutes over a 24-hour period.

III. CORRELATION-AWARE DISSEMINATION ALGORITHMS

In this section, we present a class of energy-efficient algo-
rithms for sending periodic traffic updates from the sensor
nodes to the gateway nodes. Gateway nodes are placed to
minimize the sum of hop counts from sensor nodes to the
closest gateway. All algorithms discussed in this section use
tree-based routing: Each sensor node selects to forward its data
hop-by-hop to the closest gateway node, i.e. the one accessible
using the least number of hops. It forwards its data to its
parent, which is the sensor or relay node on the min-hop path
to the gateway node. Trees that connect sensor and relay nodes
to gateway nodes through min-hop paths are generated during
an initial network configuration phase using a simple flooding
protocol, and they are maintained throughout the network’s
lifetime. Assuming that routes are set-up and continuously
maintained, we study the problem of reducing the cost of data
propagation by means of in-network lossy compression. In
particular, we investigate in-network reduction of i) a single
time series, ii) multiple time series generated by a single node,
and iii) multiple time series generated by different nodes.

A. Reducing a single time series

Each node locally produces a large time series of traffic
data per period, which, if propagated in an uncompressed
form, would require a substantial amount of battery power
spent on radio communication. Given the user’s tolerance for
a small error in the reported data, we examine two prominent
signal compression techniques, one based on the Fast Fourier
Transform (FFT) and the other on the Wavelet Transform
(WT), and evaluate their efficiency in reducing the cost of
radio communication.

We first examine the computation cost of Fourier and
Wavelet transforms if they were to run locally on resource-
constrained sensor nodes. We implemented both techniques
in NesC for TinyOS, and measured their computation time
on the Tmote Sky [1] platform, while varying the length of
the input time-series. Computation time was measured to be
linear in the length of the input time-series for all algorithms.
Although the complexity of FFT is higher than that of WT
(O(n log n) for FFT vs. O(n) for WT), FFT computes a time
series approximation twice as fast as WT using Daubechies-
4 wavelet functions, which in turn is twice as fast as WT
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Fig. 6. The Daubechies-4 wavelet approximation of car-flow readings
monitored by a sensor node every 5 minutes over a 24-hour period.

using Daubechies-8 wavelet functions. For instance, in order
to process the time series of a whole day (24 hours) on a
mote, FFT requires 4.6 seconds, whereas WT Daubechies-4
and WT Daubechies-8 require 10.5 seconds and 20.5 seconds
respectively. This is attributed to the fact that WT uses mainly
float operations, which are much slower on our platform than
operations on integers.

Although FFT is a faster algorithm, it yields a higher
maximum absolute error than wavelets as shown in Figures 5
and 6. The comparison is based on using the same number
of bytes to represent the compressed time series. In the
FFT case, the first n coefficients are used to approximate
the time series, which require n ∗ sizeof(int) bytes. The
first FFT coefficients correspond to the lower frequencies
of the signal which account for the major signal variations.
In the WT case, we retain the best m coefficients so that
m ∗ sizeof(waveletCoef) = n ∗ sizeof(fourierCoef).

FFT is an attractive choice for two reasons. Firstly, it has
a lower computation cost than WT, and therefore is easier to
compute in resource-constrained nodes. Secondly, it allows us
to use the Fourier coefficients, instead of the raw time-series
data, to speed up the evaluation of the correlation coefficient
between two time series. Even though the maximum absolute
error exhibited by FFT is significantly larger than that of WT,
this error typically persists for less than 5 minutes, which
is considered acceptable for traffic applications. The benefits
of the FFT algorithm were therefore deemed to outweigh its
limitations in this particular context, which led us to select it
for in-network compression. However, it must be noted that
other signal compression techniques could be used instead in
scenarios where processing power is not a limited resource.

Fourier Compression (FC): The strawman algorithm that
uses FFT for in-network compression does not exploit corre-
lations between different time series. It propagates the Fourier
coefficients that constitute the compressed version of a node’s
time series to the closest gateway through the shortest path.
Say that nodes are requested to send updated traffic infor-
mation at the end of each day with a certain error threshold
ε. Then each node identifies the least number of Fourier
coefficients k that can be used to reconstruct the time series
with a maximum absolute error less than ε. It sends them to
the closest gateway without performing any further reduction
in the way, and temporarily stores them in local memory for
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Fig. 7. Comparison of the total communication cost incurred by the three
proposed algorithms using a single gateway.

fault-tolerance reasons. The FC algorithm compresses a single
time series at the node where it is generated, without exploiting
its similarity with previous time series generated in the same
or different nodes.

B. Reducing multiple time series

In this section, we examine the use of spatio-temporal
correlations to reduce multiple time series generated by the
same or different sensor nodes.

Fourier Compression and Temporal Correlations (FC-
Temporal): This algorithm extends the FC algorithm, in that it
exploits temporal correlations to reduce the cost of time series
propagation. Each sensor node running FC-Temporal tries to
compress today’s time series locally, by expressing it as a
linear function of a previous day’s time series.

More specifically, on the first day, each node computes k
Fourier coefficients that can be used to reconstruct the original
time series within the input error threshold ε, as in the case
of the FC algorithm. On any of the following days, say day
cur, the node iterates through the previous approximated time
series {f̂cur−w, . . . , f̂cur−1}, which are stored locally, and
computes the correlation coefficient between them and the
current time series cc(fcur, f̂d), ∀d ∈ [cur − w, cur − 1]. As
soon as it identifies a strongly correlated time series, say of
day pr, it evaluates the regression parameters of the linear
function that approximates cur’s time series based on pr’s
readings: f̂cur [j] = r1 + r2 · f̂pr [j], where j ranges over
all readings of a day’s time series. If the maximum absolute
error between the approximated and the original time series on
day cur does not exceed the user threshold ε, the node sends
to the gateway only the regression parameters of the linear
fit: If max

j

∣∣
∣f̂cur [j] − fcur [j]

∣∣
∣ < ε, send (pr, r1, r2) to the

gateway. When the gateway receives such a triplet, it retrieves
f̂pr from its cache, and estimates the current day’s time series
as r1 +r2 · f̂pr with adequate accuracy. If no linear correlation
with a previous day is detected (within a window of w days),
the sensor node approximates and forwards today’s time series
independently of previous days as in FC.

The FC-temporal algorithm requires that each node stores
locally the approximate time series detected in the previous
w days. This is realistic since, for traffic data, very strong

correlations occur by setting w = 7. This algorithm is
similar to FC, in that in-network computation occurs where
data is first generated, and the algorithm does not try to
merge data generated by different sensors to achieve further
communication savings.

Fourier Compression and Spatial Correlations (FC-
Spatial): The next step is to exploit spatial correlations only,
i.e. correlations between the time series of different sensor
nodes on the same day. We propose a fully-distributed algo-
rithm, named FC-Spatial, which operates similarly on both
sensor and relay nodes. Each intermediate node in the commu-
nication tree (sensor or relay node) receives approximated time
series from its descendant nodes, and tries to further reduce
them by exploiting their correlations. The only difference
between sensor and relay nodes is that sensor nodes receive
an additional time series from their local sensor device, which
they compress using FFT, as discussed in FC.

Let an intermediate node I receive an approximate time
series f̂(N) of today’s traffic monitored by node N . This
information is sent from N to I in the form of Fourier
coefficients annotated with the Fourier compression error
ε(N). Node I searches its local memory for correlated time
series and, depending on the search result, it takes one of the
following steps:

Step A: Suppose that the local cache includes another time-
series f̂(M) of today’s traffic monitored by node M , such that
f̂(N) ≈ r1 + r2 × f̂(M) with regression error ε′(N). If the
combined error of Fourier compression and linear regression
(ε(N) + ε′(N)) does not exceed the user-defined threshold ε,
then node I compresses f̂(N) into tuple (N, M, r1, r2) before
forwarding it to the gateway. When the gateway receives this
tuple it can approximate the time series of N based on f̂(M)
with sufficient accuracy. To ensure that f̂(M) arrives at the
gateway node intact, we update its entry in the cache of node
I with a read-only flag. When node I finishes processing
incoming traffic and forwards cached entries to the gateway,
the read-only flag of f̂(M) prevents it from being modified at
intermediate nodes.

Step B: If f̂(N) cannot be approximated as a linear function
of another node’s time series, (f̂(N), ε(N)) is cached in local
memory. Node I forwards cached tuples to its parent, once it
has finished processing incoming traffic.

C. Experimental evaluation

We have evaluated the performance of FC, FC-temporal and
FC-spatial using real traffic data generated during a period
of 14 days. In our simulations, we placed sensor nodes as
in the Cambridge deployment and added a number of relay
nodes to bridge disconnected network components. We set the
communication range to 250m, and carefully placed gateway
nodes to minimize the sum of hop counts from sensor nodes
to the closest gateway. We then measured the communication
cost of the three algorithms as we vary i) the user-defined error
threshold and ii) the number of gateway nodes.

Figure 7 shows the total communication cost of FC, FC-
Temporal and FC-Spatial in the simple scenario where we have
only one gateway in the middle of the network. If data was
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Fig. 8. Effect of varying the number of gateways on the communication
savings of the proposed algorithms.

propagated in an uncompressed form, it would generate 32.3
MBytes of traffic. If the error tolerance is increased from 5
to 15 cars per 5 minutes, Fourier Compression (FC) yields
communication savings that range from 44% to 90%. FC-
temporal is 14%-30% more efficient than FC for tolerated
errors of 5-15 cars per 5-min interval. Similarly, FC-spatial
outperforms FC by 10%-35% for the same error range.

Figure 8 shows the effect of adding more gateway nodes on
the total communication cost, assuming a fixed error threshold
of 10 cars. The use of more gateway nodes results in better
load balancing, and improves the performance of all three
algorithms. This is anticipated since the more the gateway
nodes, the shorter the paths that packets traverse to reach a
gateway. FC-Temporal continues to yield significant commu-
nication savings compared to FC as we increase the number
of gateways. However, the savings of FC-spatial diminish in
networks with more than two gateways. As messages travel
fewer hops to the gateway, they get fewer opportunities to be
compressed along the way based on spatial correlations.

IV. RELATED WORK

A lot of recent work has focused on exploiting relaxed
precision requirements to compress data and reduce the com-
munication load in the network. Lazaridis et al. [2] use a
compression approach called piecewise constant approxima-
tion (PCA), a lossy compression scheme that represents a
time series as a sequence of value-interval pairs (ci, ei), i.e.
a constant value ci during ei epochs. Using PCA on the
road traffic dataset would incur a high update frequency due
to heavy fluctuations in the time-series (see Figure 5). Jain
et al. [3] propose the use of Kalman filters, caching filter
parameters that help predict the data instead of the static
data itself. We plan to use this technique to propagate real-
time traffic updates based on previous real-time and periodic
updates. Deligiannakis et al. [4] construct a base signal from
the node’s time series characteristics and subsequently use it
to approximate time series using regression. Their approach,
which aims to exploit correlations between different time
series on a single node, can be embedded in our framework
as a replacement of Fourier and wavelet transforms.

Guestrin et al. [5] introduce the usage of kernel functions,
which can efficiently compress data in regions of the network

where significant spatial correlations are observed. In our
traffic scenario, proximity of streams is not an indicator of
high spatial correlation and therefore kernel functions cannot
be fully exploited. Deshpande et al. [6] utilize Kalman filters
to exploit temporal correlations, combined with probabilistic
schemes to exploit spatial correlations between nodes. Their
prototype, called BBQ, is a centralized pull-based system,
which fails to detect outliers in the network. Ken [7] uses
the same ideas as BBQ to compress data, but it is push-based,
which means that source nodes proactively push data towards
the gateway only when there is a need to update the gateway’s
model. Ken partitions the sources into clusters and examines
spatial correlations within cluster boundaries. In contrast,
our FC-Spatial algorithm does not only examine correlations
between nearby nodes, as it seeks spatial correlations at each
intermediate node of the communication tree.

Sadler et al. propose computationally-efficient compression
algorithms for resource-constrained devices [8]. Unlike our
work, they consider lossless compression and they do not
exploit spatio-temporal correlations in data streams. Chou et
al. exploit spatial correlations in [9], but, unlike our work, they
use distributed compression techniques wherein each sensor
compresses its data without knowing what the other sensors
are measuring [10]. This technique requires the gateways to
continuously predict an accurate structure of spatial correla-
tions, which is not always possible in the case of traffic data.

V. CONCLUSIONS

We have presented an energy-efficient push-based approach
to extracting traffic data periodically from a sensor network.
Fourier-based lossy compression implemented locally at the
sensor nodes was shown to offer 44-90% savings in communi-
cation costs for tolerated car-flow errors of 5-15 cars per 5-min
interval. Furthermore, real traffic data obtained from traffic-
monitoring sensors in the city of Cambridge were shown to
exhibit significant temporal and spatial correlations. Our two
novel algorithms, FC-temporal and FC-spatial, exploit such
correlations to achieve significant benefits compared to Fourier
compression alone. FC-temporal is 14%-30% more efficient
than FC for tolerated errors of 5-15 cars per 5-min interval,
whilst FC-spatial outperforms FC by 10%-35% for the same
error range. Both algorithms are fully distributed and easy to
implement in resource-constrained sensor and relay nodes. In
the future, we plan to exploit consistent spatial correlations
to identify redundant nodes, and optimize sensor placement.
We will also investigate how to efficiently propagate real-time
updates in order to provide users with timely information about
unusual traffic events.
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