
The Algebra of Programming in Haskell

Bruno Oliveira

The Algebra of Programming in Haskell – p.1/21

Datatype Generic Programming - Motivation/Goals

• The project is to develop a novel mechanism for parameterizing
programs, namely parametrization by a datatype or type
constructor.

• We aim to develop a calculus for constructing datatype-generic
programs.

• Ultimate goal of improving the state of the art in generic
object-oriented programming, as occurs for example in the C++
Standard Template Library.

The Algebra of Programming in Haskell – p.2/21

Introduction - Algebra of Programming

In the excellent book Algebra of Programming, Bird and de Moor show
us how to calculate programs in a very elegant way. Further, the
problems that they solve are datatype-generic. As they note:

". . . The problems are abstract in the sense that they are
parameterized by one or more datatypes. . . . "

The Algebra of Programming provides us:

• A mathematical framework based in a categorical calculus of
relations

• The categorical calculus allow us to formulate algorithmic
strategies without reference to specific datatypes.

• An important subset of generic functions.

The Algebra of Programming in Haskell – p.3/21

Notation

f ◦ g function composition
id identity function
k constant function
f → curry function
f × uncurry function
i1 left injection to sum
i2 right injection to sum
π1 left component of product
π2 right component of product
1 unit type and value
f M g fork over product
f O g either function
f + g sum mapping
f × g product mapping

The Algebra of Programming in Haskell – p.4/21

A Theory of Lists

Consider the Haskell [A] (we use capitals instead of lower case to
denote types) datatype. A possible definition for it, could be:

data [A] = [] | A : [A]

You can view this data definition as the following isomorphism:

[A] ∼= 1 + A × [A]

out[]

in[]

The Algebra of Programming in Haskell – p.5/21

A Theory of lists

A well known function on lists is the foldr function:

foldr f k [] = k

foldr f k (x : xs) = f x (foldr f k xs)

[A]

B

foldr f k

?

foldr and its dual unfoldr are the basis for many definitions on lists.
"Uncurried" versions of this functions, are the basis for much of the
theory presented in the book.

The Algebra of Programming in Haskell – p.6/21

A Theory of Lists - Morphisms

[A]
out[] - 1 + A × [A]

B

(| f |)[]

?
�

f
1 + A × B

rec[] (| f |)[]

?

We call catamorphism to the "uncurried" version of foldr and we
denote it as (| f |)[].

(| f |)[] = f ◦ rec[] (| f |)[] ◦ out[]

where

out[] = (1 + head M tail) ◦ (≡ [])?

rec[] g = id + id × g

The Algebra of Programming in Haskell – p.7/21

Functors - Generalizing the Theory

By using functors, we can generalize the theory. For instance, we
could abstract the expansion of [A] to:

F X ∼= 1 + A × X

Parameterizing F with [A], we would obtain 1 + A × [A]. A
catamorphism could be expressed generically by:

T
out - F T

X

(| f |)

?
�

f
F X

F (| f |)

?

The Algebra of Programming in Haskell – p.8/21

Functional Dependencies

Allow programmers to specify multiple parameter classes more
precisely. For instance:

class C a b

class D a b | a → b

class E a b | a → b, b → a

From these definitions we can tell that:

• Class C is a binary relation.
• Class D is not only a relation, but actually a (partial) function.
• Class E represents a (partial) one-one mapping.

The Algebra of Programming in Haskell – p.9/21

Related Work - PolyP

PolyP

The original PolyP system allows us to write generic definitions for
regular datatypes of kind ∗ → ∗. The system works by using a type
based translation from PolyP to Haskell at compile time.

PolyP 2

More recently, PolyP 2 introduces a novel translation mechanism
allowing PolyP code to be translated to Haskell classes and instances.
The structure of a regular datatype is described by its pattern functor.
For instance:

data List a = Nil | Cons a (List a)

type ListF = Empty + Par × Rec

The Algebra of Programming in Haskell – p.10/21

Related Work - PolyP 2

All pattern functors (except →) are instances of the class P_fmap2 :

class P_fmap2 f where

fmap2 :: (a → c) → (b → d) → (f a b → f c d)

To convert between a datatype and its pattern functor, the
multi-parameter type class FunctorOf is used:

class FunctorOf f d | d → f where

inn :: f a (d a) → d a

out :: d a → f a (d a)

Having these, we could define, for instance:

(| f |) = f ◦ fmap2 id (| f |) ◦ out

[(f)] = inn ◦ fmap2 id [(f)] ◦ f

The Algebra of Programming in Haskell – p.11/21

APLib

In the Algebra of Programming Library (APLib) we show a similar
framework working for regular datatypes of all kinds.

The class Iso acts like an "weak" isomorphism by establishing an
one-one mapping between A and B

class Iso a b | a → b, b → a where

out :: a → b

inn :: b → a

A ∼= F A

out

inn

Class MorphArrows contains more information than Functor .

class Iso a b ⇒ MorphArrows a b c d

| a b d → c, a b c → d where

down :: (a → d) → b → c

up :: (d → a) → c → b

A B

D

f

?

g

6

C

down f

?

up g

6

The Algebra of Programming in Haskell – p.12/21

APLib - Morphisms

By using MorphArrows we can define catamorphisms as:

(| f |) = f ◦ down (| f |) ◦ out

A
out - B

D

(| f |)

?
�

f
C

down (| f |)

?

Defining anamorphisms and hylomorphisms is easy:

[(f)] = inn ◦ up [(f)] ◦ f

J f , g K = (| f |) ◦ [(g)]

The Algebra of Programming in Haskell – p.13/21

APLib - Example

data Expr op a = Leaf a

| Binary op (Expr op a) (Expr op a)

data Op = Sum | Sub

instance MorphArrows

(Expr op a)

(a + op × Expr op a × Expr op a)

(a + op × b × b)

b where

down f = id + id × f × f

up f = id + id × f × f

Calculating the value of an expression:

eval :: Expr Op Int → Int

eval = (| id O evalOp |)

where

evalOp = ((+)× ◦ π2 O (−)× ◦ π2) ◦ (isSum ◦ π1)?

The Algebra of Programming in Haskell – p.14/21

APLib - Defining Generic Map

We can define a generic map by having a class MapArrows which
transforms the Functor that we are working with. The parameters f

and g are similar to kind-indexed types.

class Iso a b ⇒ MapArrows a b c f g

| a b c → f g where

left :: f → c → b

right :: g → b → c

gmap f = (| h |)

where

h = inn ◦ left f

T
out - X

A

(| h |)

?
� h

C

down (| h |)

?

B

�

le
ft

f

�
inn

The Algebra of Programming in Haskell – p.15/21

Specializations

Two possible approaches to specializations:

1. By Type - define a new function with a more restrictive type.
Usefull for having less generic functions.

cata∗→∗ :: MorphArrows (f a) u c b ⇒ (c → b) → f a → b

cata∗→∗ g = (| g |)

2. By Definition - define a new function based on the definition of the
most generic one, but specific to a type. Useful for optimization.

out[] = (1 + head M tail) ◦ (≡ [])?

down[] g = id + id × g

(| f |)[] = f ◦ down[] (| f |)[] ◦ out[]

The Algebra of Programming in Haskell – p.16/21

Abstract Data Types

data Ord a ⇒ BTree a =

Empty

| Branch a (BTree a) (BTree a)

class OrdList f where

isNil :: f a → Bool

nil :: f a

add :: Ord a ⇒ a → f a → f a

getNext :: Ord a ⇒ f a → Maybe (a, f a)

The instance for BTree a could be:

instance (OrdList f ,Ord a) ⇒ Iso (f a) (1 + a × f a) where

out = (1 + fromJust ◦ getNext) ◦ isNil?

inn = (nil O add×)

Given that, we could define a sorting function:

sort :: [Int] → [Int]
sort = (| inn |) ◦ ([(out)] :: [Int] → BTree Int)

The Algebra of Programming in Haskell – p.17/21

Future Research

• Generate the instance for MorphArrows and MapArrows

automatically. Template Haskell seems to fit well. A mechanism
like Derivable type classes might be another possibility.

• Try to minimize the number of classes/instances.
• Consider a larger range of datatypes: Ian Bailey and Paul

Blampied work.
• Consider using the framework in a dependent type system.

The Algebra of Programming in Haskell – p.18/21

Future and Related Work - Type Transformers

Type transformers allow us define types and definitions based on
types. For instance, for out we could have:

The type is given by:

θ <Type > ::Type

The definition is given by:

out < T > ::T → θ <T>

This would fit nicely into classes with functional dependencies.

class Iso T θ | T → θ, θ → T where

out < T > ::T → θ

inn < θ,T > :: θ → T

When defining out , we will be interested in matching the recursive
pattern of T in F T .

out < T > ::T → θ

out < Data T> = out ′ < T ,Data T>

The Algebra of Programming in Haskell – p.19/21

Future and related work - Type Transformers

out ′ < T ,Rec > ::T → θ

out ′ < Rec,Rec> = id

out ′ < 1, > = ()

out ′ < Prim, > = id

out ′ < Data t ,Rec> = t out ′ < t ,Rec>

out ′ < a + b,Rec> = out ′ < a,Rec > +out ′ < a,Rec>

out ′ < a × b,Rec> = out ′ < a,Rec > ×out ′ < b,Rec>

out ′ < Con c,Rec> = out ′ < a,Rec > ◦isC ?

θ <T ,Rec > ::Type

θ <Rec,Rec> = Rec

θ <1, > = ()
θ <Prim, > = Prim

θ <Data t ,Rec> = t θ <t ,Rec>

θ <a + b,Rec> = θ <a,Rec > + θ <a,Rec>

θ <a × b,Rec> = θ <a,Rec > × θ <b,Rec>

θ <Con c a,Rec> = θ <a,Rec > ◦isC ?

The Algebra of Programming in Haskell – p.20/21

Conclusions

• Theory based on categorical calculus of relations allows us to
reason about the programs.

• Integrates nicely with other features of Haskell (ex. type classes)
• Possible application for optimization.
• Support for regular datatypes with no restriction on the kind.
• Restricted support for generic functions.
• Still not "quite" right: no explicit Functor concept, need for dual

definitions.

The Algebra of Programming in Haskell – p.21/21

	Datatype Generic Programming - Motivation/Goals
	Introduction - Algebra of Programming
	Notation
	A Theory of Lists
	A Theory of lists
	A Theory of Lists - Morphisms
	Functors - Generalizing the Theory
	Functional Dependencies
	Related Work - PolyP
	Related Work - PolyP 2
	APLib
	APLib - Morphisms
	APLib - Example
	APLib - Defining Generic Map
	Specializations
	Abstract Data Types
	Future Research
	Future and Related Work - Type Transformers
	Future and related work - Type Transformers
	Conclusions

