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Datatype Generic Programming - Motivation/Goals

• The project is to develop a novel mechanism for parameterizing
programs, namely parametrization by a datatype or type
constructor.

• We aim to develop a calculus for constructing datatype-generic
programs.

• Ultimate goal of improving the state of the art in generic
object-oriented programming, as occurs for example in the C++
Standard Template Library.
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Introduction - Algebra of Programming

In the excellent book Algebra of Programming, Bird and de Moor show
us how to calculate programs in a very elegant way. Further, the
problems that they solve are datatype-generic. As they note:

". . . The problems are abstract in the sense that they are
parameterized by one or more datatypes. . . . "

The Algebra of Programming provides us:

• A mathematical framework based in a categorical calculus of
relations

• The categorical calculus allow us to formulate algorithmic
strategies without reference to specific datatypes.

• An important subset of generic functions.
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Notation

f ◦ g function composition
id identity function
k constant function
f → curry function
f × uncurry function
i1 left injection to sum
i2 right injection to sum
π1 left component of product
π2 right component of product
1 unit type and value
f M g fork over product
f O g either function
f + g sum mapping
f × g product mapping
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A Theory of Lists

Consider the Haskell [A] (we use capitals instead of lower case to
denote types) datatype. A possible definition for it, could be:

data [A] = [ ] | A : [A]

You can view this data definition as the following isomorphism:

[A] ∼= 1 + A × [A]

out[ ]

in[ ]
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A Theory of lists

A well known function on lists is the foldr function:

foldr f k [ ] = k

foldr f k (x : xs) = f x (foldr f k xs)

[A]

B

foldr f k

?

foldr and its dual unfoldr are the basis for many definitions on lists.
"Uncurried" versions of this functions, are the basis for much of the
theory presented in the book.
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A Theory of Lists - Morphisms

[A]
out[ ] - 1 + A × [A]

B

(| f |)[ ]

?
�

f
1 + A × B

rec[ ] (| f |)[ ]

?

We call catamorphism to the "uncurried" version of foldr and we
denote it as (| f |)[ ].

(| f |)[ ] = f ◦ rec[ ] (| f |)[ ] ◦ out[ ]

where

out[ ] = (1 + head M tail) ◦ (≡ [ ])?

rec[ ] g = id + id × g
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Functors - Generalizing the Theory

By using functors, we can generalize the theory. For instance, we
could abstract the expansion of [A] to:

F X ∼= 1 + A × X

Parameterizing F with [A], we would obtain 1 + A × [A]. A
catamorphism could be expressed generically by:

T
out - F T

X

(| f |)

?
�

f
F X

F (| f |)

?
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Functional Dependencies

Allow programmers to specify multiple parameter classes more
precisely. For instance:

class C a b

class D a b | a → b

class E a b | a → b, b → a

From these definitions we can tell that:

• Class C is a binary relation.
• Class D is not only a relation, but actually a (partial) function.
• Class E represents a (partial) one-one mapping.
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Related Work - PolyP

PolyP

The original PolyP system allows us to write generic definitions for
regular datatypes of kind ∗ → ∗. The system works by using a type
based translation from PolyP to Haskell at compile time.

PolyP 2

More recently, PolyP 2 introduces a novel translation mechanism
allowing PolyP code to be translated to Haskell classes and instances.
The structure of a regular datatype is described by its pattern functor.
For instance:

data List a = Nil | Cons a (List a)

type ListF = Empty + Par × Rec
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Related Work - PolyP 2

All pattern functors (except →) are instances of the class P_fmap2 :

class P_fmap2 f where

fmap2 :: (a → c) → (b → d) → (f a b → f c d)

To convert between a datatype and its pattern functor, the
multi-parameter type class FunctorOf is used:

class FunctorOf f d | d → f where

inn :: f a (d a) → d a

out :: d a → f a (d a)

Having these, we could define, for instance:

(| f |) = f ◦ fmap2 id (| f |) ◦ out

[( f )] = inn ◦ fmap2 id [( f )] ◦ f
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APLib

In the Algebra of Programming Library (APLib) we show a similar
framework working for regular datatypes of all kinds.

The class Iso acts like an "weak" isomorphism by establishing an
one-one mapping between A and B

class Iso a b | a → b, b → a where

out :: a → b

inn :: b → a

A ∼= F A

out

inn

Class MorphArrows contains more information than Functor .

class Iso a b ⇒ MorphArrows a b c d

| a b d → c, a b c → d where

down :: (a → d) → b → c

up :: (d → a) → c → b

A B

D

f

?

g

6

C

down f

?

up g

6
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APLib - Morphisms

By using MorphArrows we can define catamorphisms as:

(| f |) = f ◦ down (| f |) ◦ out

A
out - B

D

(| f |)

?
�

f
C

down (| f |)

?

Defining anamorphisms and hylomorphisms is easy:

[( f )] = inn ◦ up [( f )] ◦ f

J f , g K = (| f |) ◦ [( g )]
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APLib - Example

data Expr op a = Leaf a

| Binary op (Expr op a) (Expr op a)

data Op = Sum | Sub

instance MorphArrows

(Expr op a)

(a + op × Expr op a × Expr op a)

(a + op × b × b)

b where

down f = id + id × f × f

up f = id + id × f × f

Calculating the value of an expression:

eval :: Expr Op Int → Int

eval = (| id O evalOp |)

where

evalOp = ((+)× ◦ π2 O (−)× ◦ π2) ◦ (isSum ◦ π1)?
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APLib - Defining Generic Map

We can define a generic map by having a class MapArrows which
transforms the Functor that we are working with. The parameters f

and g are similar to kind-indexed types.

class Iso a b ⇒ MapArrows a b c f g

| a b c → f g where

left :: f → c → b

right :: g → b → c

gmap f = (| h |)

where

h = inn ◦ left f

T
out - X

A

(| h |)

?
� h

C

down (| h |)

?

B

�

le
ft

f

�
inn
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Specializations

Two possible approaches to specializations:

1. By Type - define a new function with a more restrictive type.
Usefull for having less generic functions.

cata∗→∗ :: MorphArrows (f a) u c b ⇒ (c → b) → f a → b

cata∗→∗ g = (| g |)

2. By Definition - define a new function based on the definition of the
most generic one, but specific to a type. Useful for optimization.

out[ ] = (1 + head M tail) ◦ (≡ [ ])?

down[ ] g = id + id × g

(| f |)[ ] = f ◦ down[ ] (| f |)[ ] ◦ out[ ]
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Abstract Data Types

data Ord a ⇒ BTree a =

Empty

| Branch a (BTree a) (BTree a)

class OrdList f where

isNil :: f a → Bool

nil :: f a

add :: Ord a ⇒ a → f a → f a

getNext :: Ord a ⇒ f a → Maybe (a, f a)

The instance for BTree a could be:

instance (OrdList f ,Ord a) ⇒ Iso (f a) (1 + a × f a) where

out = (1 + fromJust ◦ getNext) ◦ isNil?

inn = (nil O add×)

Given that, we could define a sorting function:

sort :: [Int ] → [Int ]
sort = (| inn |) ◦ ([( out )] :: [Int ] → BTree Int)
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Future Research

• Generate the instance for MorphArrows and MapArrows

automatically. Template Haskell seems to fit well. A mechanism
like Derivable type classes might be another possibility.

• Try to minimize the number of classes/instances.
• Consider a larger range of datatypes: Ian Bailey and Paul

Blampied work.
• Consider using the framework in a dependent type system.
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Future and Related Work - Type Transformers

Type transformers allow us define types and definitions based on
types. For instance, for out we could have:

The type is given by:

θ <Type > ::Type

The definition is given by:

out < T > ::T → θ <T>

This would fit nicely into classes with functional dependencies.

class Iso T θ | T → θ, θ → T where

out < T > ::T → θ

inn < θ,T > :: θ → T

When defining out , we will be interested in matching the recursive
pattern of T in F T .

out < T > ::T → θ

out < Data T> = out ′ < T ,Data T>
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Future and related work - Type Transformers

out ′ < T ,Rec > ::T → θ

out ′ < Rec,Rec> = id

out ′ < 1, > = ()

out ′ < Prim, > = id

out ′ < Data t ,Rec> = t out ′ < t ,Rec>

out ′ < a + b,Rec> = out ′ < a,Rec > +out ′ < a,Rec>

out ′ < a × b,Rec> = out ′ < a,Rec > ×out ′ < b,Rec>

out ′ < Con c,Rec> = out ′ < a,Rec > ◦isC ?

θ <T ,Rec > ::Type

θ <Rec,Rec> = Rec

θ <1, > = ()
θ <Prim, > = Prim

θ <Data t ,Rec> = t θ <t ,Rec>

θ <a + b,Rec> = θ <a,Rec > + θ <a,Rec>

θ <a × b,Rec> = θ <a,Rec > × θ <b,Rec>

θ <Con c a,Rec> = θ <a,Rec > ◦isC ?
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Conclusions

• Theory based on categorical calculus of relations allows us to
reason about the programs.

• Integrates nicely with other features of Haskell (ex. type classes)
• Possible application for optimization.
• Support for regular datatypes with no restriction on the kind.
• Restricted support for generic functions.
• Still not "quite" right: no explicit Functor concept, need for dual

definitions.
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