The Algebra of Programming in Haskell

Bruno Oliveira

I
The Algebra of Programming in Haskell — p.1/21

Datatype Generic Programming - Motivation/Goals

® The project is to develop a novel mechanism for parameterizing
programs, namely parametrization by a datatype or type
constructor.

®* We aim to develop a calculus for constructing datatype-generic
programs.

® Ultimate goal of improving the state of the art in generic
object-oriented programming, as occurs for example in the C++
Standard Template Library.

I
The Algebra of Programming in Haskell — p.2/21

Introduction - Algebra of Programming

In the excellent book Algebra of Programming, Bird and de Moor show
us how to calculate programs in a very elegant way. Further, the
problems that they solve are datatype-generic. As they note:

"... The problems are abstract in the sense that they are
parameterized by one or more datatypes. ..."

The Algebra of Programming provides us:

®* A mathematical framework based in a categorical calculus of
relations

® The categorical calculus allow us to formulate algorithmic
strategies without reference to specific datatypes.

® An important subset of generic functions.

I
The Algebra of Programming in Haskell — p.3/21

Notation

fog function composition

id identity function

k constant function

[curry function

[uncurry function

i1 left injection to sum

9 right injection to sum

1 left component of product
D right component of product
1 unit type and value

fAg fork over product

fVvag either function

f+yg sum mapping

fxg product mapping

I
The Algebra of Programming in Haskell — p.4/21

A Theory of Lists

Consider the Haskell [A] (we use capitals instead of lower case to
denote types) datatype. A possible definition for it, could be:

data [A] =[] | A: [4]

You can view this data definition as the following isomorphism:

OUt[]

A7 = X4+ Ax 4]

—

in[]

I
The Algebra of Programming in Haskell — p.5/21

A Theory of lists

A well known function on lists is the foldr function:

foldr f k] =k
foldr f k (x:xs) =f x (foldr f k xs) foldr f k

foldr and its dual unfoldr are the basis for many definitions on lists.
"Uncurried" versions of this functions, are the basis for much of the
theory presented in the book.

I
The Algebra of Programming in Haskell — p.6/21

A Theory of Lists - Morphisms

out[]
[A] ~ 1+ A x [A]
0f D reci) (f D)
B <« 1+ Ax B
/

We call catamorphism to the "uncurried" version of foldr and we
denoteitas (f |);

(fDy=rforec)(fyoout

where
out;] = (1 + head A tail) o (= [])?
rec) g =1d +1d X g

I
The Algebra of Programming in Haskell — p.7/21

Functors - Generalizing the Theory

By using functors, we can generalize the theory. For instance, we
could abstract the expansion of [A] to:

FX=21+4AxX

Parameterizing F' with [A], we would obtain 1 + A x [A]. A
catamorphism could be expressed generically by:

out
T - T

(/) F(Qf)

FX

A

I
The Algebra of Programming in Haskell — p.8/21

Functional Dependencies

Allow programmers to specify multiple parameter classes more
precisely. For instance:

class C a b
classDab|a—b
class Eab|a— b,b— a

From these definitions we can tell that:

® Class C' is a binary relation.
® Class D is not only a relation, but actually a (partial) function.
® Class F represents a (partial) one-one mapping.

I
The Algebra of Programming in Haskell — p.9/21

Related Work - PolyP

PolyP

The original PolyP system allows us to write generic definitions for
regular datatypes of kind x — . The system works by using a type
based translation from PolyP to Haskell at compile time.

PolyP 2

More recently, PolyP 2 introduces a novel translation mechanism
allowing PolyP code to be translated to Haskell classes and instances.
The structure of a regular datatype is described by its pattern functor.
For instance:

data List a = Nil | Cons a (List a)

type Listl' = Empty + Par X Rec

I
The Algebra of Programming in Haskell — p.10/21

Related Work - PolyP 2

All pattern functors (except —) are instances of the class P_fmap?2:

class P_fmap2 f where
fmap2 ::(a—c)— (b—d)— (fab—fcd)

To convert between a datatype and its pattern functor, the
multi-parameter type class FunctorOf is used:

class FunctorOf f d | d — f where
inn::f a(da)—da
out::d a— fa(da)

Having these, we could define, for instance:

(f)=7fofmap2id ([o out
(f)] =innofmap2 id [f)of

I
The Algebra of Programming in Haskell — p.11/21

APLib

In the Algebra of Programming Library (APLib) we show a similar
framework working for regular datatypes of all kinds.

The class Iso acts like an "weak" isomorphism by establishing an
one-one mapping between A and B

class Iso a b | a — b, b — a where out
— .
out ::a — b A ~ A
mn i b — a —

Class MorphArrows contains more information than Functor.

A B

A

class Iso a b = MorphArrows a b ¢ d
labd— c,abc— dwhere
down :: (a — d) — b — ¢ fl lg down f| |upg

up :: (d — a) - ¢c— b |

Y

D C |

The Algebra of Programming in Haskell — p.12/21

APLIib - Morphisms

By using MorphArrows we can define catamorphisms as:

out

A

&

(f)=1Ffodown (f]oout (/D

down (| f

Defining anamorphisms and hylomorphisms is easy:

(f) =innoup [f)of
[fi9]=0fDeollg)

The Algebra of Programming in Haskell — p.13/21

APLIib - Example

data Ezpr op a = Leaf a instance MorphArrows
| Binary op (Ezpr op a) (Ezpr op a) (Expr op a)
(a + op x Expr op a X FExpr op a)

data Op = Sum | Sub (a+op xbxb)
b where

down f =1id +1d X f X f
up f =1d +1id X f X f

Calculating the value of an expression:

eval :: Expr Op Int — Int
eval = (| id V evalOp |
where

evalOp = ((+) oy V (=)™ omg) o (isSum o 71)?

I
The Algebra of Programming in Haskell — p.14/21

APLIib - Defining Generic Map

We can define a generic map by having a class MapArrows which
transforms the Functor that we are working with. The parameters f
and ¢ are similar to kind-indexed types.

out
T

S

class Iso a b = MapArrows a b c f g
| a b ¢ — f g where
left ::f — c— b
right :: g — b — ¢ i h \

(R down (| h)

gmap f = (h)

where

h = inn o left f

I
The Algebra of Programming in Haskell — p.15/21

Specializations

Two possible approaches to specializations:

1. By Type - define a new function with a more restrictive type.
Usefull for having less generic functions.

cata_ 4 :: MorphArrows (f a) uc b= (¢ —b) = fa—b
catax— g =19

2. By Definition - define a new function based on the definition of the
most generic one, but specific to a type. Useful for optimization.

out;1 = (1 + head A tail) o (= [])?
down[] g=id+7)d>< q
(7 Dpy=7Fodownpy (f o out

I
The Algebra of Programming in Haskell — p.16/21

Abstract Data Types

data Ord a = BTree a = class OrdList f where
Empty wsNil i f a — Bool
| Branch a (BTree a) (BTree a) nil 2 fa
add 2Orda=a—fa—fa

getNext :: Ord a = f a — Maybe (a,f a)

The instance for BTree a could be:

instance (OrdList f, Ord a) = Iso (f a) (14 a X f a) where
out = (1 + fromJust o getNext) o isNil?
inn = (nil V add™)

Given that, we could define a sorting function:

sort :: [Int] — [Int]
sort = (| inn |) o (|(out) :: [Int] — BTree Int)

I
The Algebra of Programming in Haskell — p.17/21

Future Research

® Generate the instance for MorphArrows and MapArrows
automatically. Template Haskell seems to fit well. A mechanism
like Derivable type classes might be another possibility.

® Try to minimize the number of classes/instances.

® Consider a larger range of datatypes: lan Bailey and Paul
Blampied work.

® Consider using the framework in a dependent type system.

I
The Algebra of Programming in Haskell — p.18/21

Future and Related Work - Type Transformers

Type transformers allow us define types and definitions based on
types. For instance, for out we could have:

The type is given by: The definition is given by:

0 <Type > :: Type out < T >:T —0<T>

This would fit nicely into classes with functional dependencies.

class Iso T 0| T — 60, 06 — T where
out < T >uT — 0
mn < 0, T>:0— T

When defining out, we will be interested in matching the recursive
patternof T'in F' T.

out < T >:T — 0
out < Data T> = out’ < T, Data T>

The Algebra of Programming in Haskell — p.19/21

Future and related work - Type Transformers

out' < T,Rec>:T — 0

out’ < Rec, Rec> = id

out' <1,_> =)

out’ < Prim,_> = id

out’ < Data t, Rec> = t out’ < t, Rec>

out’ < a + b, Rec> = out’ < a, Rec > +out’ < a, Rec>
out’ < a x b, Rec> = out’ < a, Rec > xout’ < b, Rec>
out’ < Con ¢, Rec> = out’ < a, Rec > 0isC'?

60 <T, Rec > ::Type
60 <Rec, Rec> = Rec
0 <1, >=()
0 <Prim,_> = Prim
0 <Data t, Rec> =1t 0 <t, Rec>
0 <a—+ b, Rec> =0 <a, Rec >+ 0 <a, Rec>
0 <a X b, Rec> =0 <a, Rec > x 0 <b, Rec>
0 <Con c a, Rec> = 0 <a, Rec > 01sC?
|

I
The Algebra of Programming in Haskell — p.20/21

Conclusions

®* Theory based on categorical calculus of relations allows us to
reason about the programs.

® Integrates nicely with other features of Haskell (ex. type classes)
® Possible application for optimization.

® Support for regular datatypes with no restriction on the kind.

® Restricted support for generic functions.

* Still not "quite" right: no explicit Functor concept, need for dual
definitions.

I
The Algebra of Programming in Haskell — p.21/21

	Datatype Generic Programming - Motivation/Goals
	Introduction - Algebra of Programming
	Notation
	A Theory of Lists
	A Theory of lists
	A Theory of Lists - Morphisms
	Functors - Generalizing the Theory
	Functional Dependencies
	Related Work - PolyP
	Related Work - PolyP 2
	APLib
	APLib - Morphisms
	APLib - Example
	APLib - Defining Generic Map
	Specializations
	Abstract Data Types
	Future Research
	Future and Related Work - Type Transformers
	Future and related work - Type Transformers
	Conclusions

