
The

project

2 / 22

The Generic Haskell project

The Generic Haskell project started in 2000, and will finish in 2004.
The people that are or have been involved: Frank Atanassow, Dave
Clarke, Ralf Hinze, Johan Jeuring, and Andres Löh, together with
some students.

The project consists of three subprojects:

➙ Programming language and compiler.
➙ Theory.
➙ Applications of generic programming.

3 / 22

Generic Haskell: programming language

In the Generic Haskell programming language (which is not defined
precisely) we can write:

➙ Generic (type-indexed) functions with kind-indexed types.
➙ Type-indexed data types.
➙ Dependencies between generic functions.
➙ Cases for specific types and constructors.

4 / 22

Generic functions with kind-indexed types

➙ Ralf Hinze. Polytypic values possess polykinded types. In
MPC 2000.

equal〈t ::κ〉 :: Equal〈〈κ〉〉 t

type Equal〈〈?〉〉 t = t → t → Bool
type Equal〈〈κ → ν〉〉 t = ∀u.Equal〈〈κ〉〉 u → Equal〈〈ν〉〉 (t u)
equal〈Unit〉 Unit Unit = True
equal〈Int〉 i j = eqInt i j
equal〈+〉 eqa eqb (Inl a1) (Inl a2) = eqa a1 a2
equal〈+〉 eqa eqb (Inr b1) (Inr b2) = eqb b1 b2
equal〈+〉 eqa eqb = False
equal〈×〉 eqa eqb (a1 , b1) (a2 , b2) = eqa a1 a2 ∧ eqb b1 b2

5 / 22

Type-indexed data types

➙ Ralf Hinze, Johan Jeuring and Andres Löh. Type-indexed data
types. In MPC 2002.

type FMap〈Unit〉 v = FMUnit (Maybe v)
type FMap〈Char〉 v = FMChar (DictChar v)
type FMap〈+〉 fma fmb v = FMEither (fma v, fmb v)
type FMap〈×〉 fma fmb v = FMProd (fma (fmb v))

6 / 22

Dependencies between generic functions

➙ Andres Löh, Dave Clarke and Johan Jeuring.
Dependency-style Generic Haskell. In ICFP 2003. (With a
slightly different syntax.)

equal〈Unit〉 Unit Unit = True
equal〈Int〉 i j = eqInt i j
equal〈a + b〉 (Inl a1) (Inl a2) = equal〈a〉 a1 a2
equal〈a + b〉 (Inr b1) (Inr b2) = equal〈b〉 b1 b2
equal〈a + b〉 = False
equal〈a× b〉 (a1 , b1) (a2 , b2) = equal〈a〉 a1 a2 ∧ equal〈b〉 b1 b2
equal〈a → b〉 f1 f2 = equal〈[b]〉 (map f1 enum〈a〉) (map f2 enum〈a〉)
equal〈a :: ?〉 :: (equal, enum) ⇒ a → a → Bool

7 / 22

Cases for specific types and constructors

➙ Dave Clarke, Andres Löh, Generic Haskell, Specifically . In
Working Conference on Generic Programming, 2003.

equal〈 case Whitespace〉 = True
equal〈Set a〉 s1 s2 = eqSet s1 s2

8 / 22

Generic Haskell: compiler

➙ The Generic Haskell compiler compiles Generic Haskell
modules to Haskell.

➙ The compiler is a bit behind theoretical developments. In
particular, (part of) dependency-style Generic Haskell has only
been implemented in a separate type checker.

➙ The generated code is still rather inefficient. Efficient code can
be obtained via partial evaluation. Partial evaluation
techniques are given in

– Alimarine and Smetsers, MPC 2004 (for Clean),
– Martijn de Vries’ MSc thesis (for Generic Haskell, using a

compiler flag).

9 / 22

Generic Haskell: theory

➙ Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and
Theory. In Generic Programming, LNCS 2793, 2003.

➙ Andres Löh. Exploring Generic Haskell. Forthcoming PhD
thesis (September 2004).

10 / 22

Generic Haskell: methodology

➙ Look at a couple of examples, and generalise from those to
obtain a generic program.

➙ ‘Translate’ category theory into Generic Haskell.

11 / 22

Applications of generic programming

➙ A generic dictionary.
➙ XComprez, a generic compressor.
➙ A generic zipper.
➙ A generic structure editor.
➙ A generic database binding.
➙ UUXML: A Type-Preserving XML Schema Haskell Data

Binding.
➙ Inferring type isomorphisms generically.

12 / 22

UUXML

➙ Frank Atanassow, Dave Clarke, and Johan Jeuring. UUXML: A
Type-Preserving XML Schema Haskell Data Binding. In PADL
2004.

➙ Translates an XML Schema S into a Haskell data type DS.
➙ A parser that parses an XML document that is valid with

respect to S into a value of type DS.
➙ Takes care of XML Schema subtyping, mixed content, number

of occurrences, arbitrary attribute order, etc.

13 / 22

The problem with UUXML

Suppose I have an XML Schema for representing books. An example
document which validates against this schema is:

<doc key="homer-iliad">
<author>Homer</author>
<title>The Iliad</title>

</doc>

13 / 22

The problem with UUXML

Suppose I have an XML Schema for representing books. An example
document which validates against this schema is:

<doc key="homer-iliad">
<author>Homer</author>
<title>The Iliad</title>

</doc>

UUXML translates this to:
EQ E doc (E doc (Elem () (EQ T docType (T docType (Seq (A key
(Attr (EQ T string (T string "homer-iliad"))))(Seq (Rep (ZI
[EQ E author (E author (Elem () (EQ T string (T string "Homer"))))]))
(Seq (EQ E title (E title (Elem () (EQ T string (T string
"The Iliad"))))) (Rep (ZS Nothing (Rep ZZ))))))))))

14 / 22

Inferring type isomorphisms generically

Ideal translation target

data Doc = Doc{key :: String, authors :: [String],
title :: String, pubDate :: Maybe PubDate}

data PubDate = PubDate{year :: Integer, month :: Integer}

➙ We have written generic functions to automatically convert
values of one (complicated, generated) type to another (simple,
user-specified, and canonically isomorphic) type.

➙ Frank Atanassow, and Johan Jeuring. Inferring type
isomorphisms generically. In MPC 2004.

15 / 22

XComprez

➙ Ralf Hinze and Johan Jeuring. Generic Haskell: Applications.
In Generic Programming, LNCS 2793, 2003.

➙ Compressor that uses the structure of the data.
➙ Four versions:

– Constructors to bits (based on earlier work by Patrik
Jansson and myself)

– (Adaptive) Huffman coding (Paul Hagg)
– (Adaptive) arithmetic coding (Jeroen Snijders)
– (To be done:) PPM

➙ Together with the XML data binding this gives a useful tool for
XML compression.

16 / 22

Current work

At the moment or in the near future we will work on:

➙ Views on data types.
➙ Partial type-inference for generic functions.
➙ Other translation techniques (goal: first-class generic

functions).
➙ Adminstrative applications (model/view/controller).
➙ . . .

17 / 22

Function children

Suppose we want to define a function that calculates the recursive
children of a data type. Here are two examples:

data List a = Nil | Cons a (List a)
childrenList :: List a → [List a]
childrenList Nil = []
childrenList (Cons x xs) = [xs]
data Tree a = Empty | Bin (Tree a) a (Tree a)
childrenTree :: Tree a → [Tree a]
childrenTree Empty = []
childrenTree (Bin l x r) = [l, r]

We cannot define a generic function in Generic Haskell that
generalizes from these examples.

18 / 22

A fixed-point view

Suppose we would view data types as fixed points of functors

data Fix f = In (f (Fix f))
data ListF a r = Unit + a× r
type List a = Fix (ListF a)

then we could define function children as

children〈Fix f〉 (In r) = flatten〈f〉 (λx → [x]) r

19 / 22

Views on data types: motivation

➙ In Generic Haskell we use a particular view on data types: for
each data type the compiler automatically constructs:

– a structure type, using binary, right associative, sums and
products;

– an embedding-projection pair, translating a data type
value to a structure type value and vice versa.

➙ This view on data types partially determines which generic
functions can be defined. Using this view, we can

– write functions that depend on the order of the
constructors of a data type.

– not write the generic catamorphism.
➙ It is desirable to be able to pick a view depending on the kind

of function you write:
– a fixed-point view when defining catamorphisms,
– a list of product elements view when editing.

20 / 22

Defining a view on data types

➙ The current view is not perfect.
➙ Suppose there exists an ideal semantic view of data types: a set

of data types is given by a set of declarations using
– type abstraction and type application,
– labelled associative and commutative sums,
– associative anonymous products,
– and labelled associative and commutative products.

➙ A view on a data type maps (a subset of) these data types on a
particular set of data type constructors. A view consists of:

– a type-indexed data type (on the ideal semantic view)
mapping a data type onto a structure type,

– An embedding-projection pair mapping a value of a data
type onto a value of the structure type and vice versa.

21 / 22

Views on data types

➙ We want to be able to define different views on data types.
➙ We have to answer several questions:

– How do we generate code for a generic function using a
different view?

– Should we adapt the current standard view of Generic
Haskell?

– How do we combine several different views in a single
program?

– Which properties should the structure type and the
embedding-projection pair satisfy in order to constitute a
meaningful view?

– . . .

22 / 22

Conclusions

➙ The Generic Haskell project has made a valuable contribution
to the field.

➙ The number of questions raised exceeds the number of
problems solved (like in any good project?).

➙ The future in the Netherlands is uncertain.

22 / 22

Conclusions

➙ The Generic Haskell project has made a valuable contribution
to the field.

➙ The number of questions raised exceeds the number of
problems solved (like in any good project?).

➙ The future in the Netherlands is uncertain.
➙ Want to know more about generic programming in Clean:

register for the next Advanced Functional Programming
School!

22 / 22

Conclusions

➙ The Generic Haskell project has made a valuable contribution
to the field.

➙ The number of questions raised exceeds the number of
problems solved (like in any good project?).

➙ The future in the Netherlands is uncertain.
➙ Want to know more about generic programming in Clean:

register for the next Advanced Functional Programming
School!

➙ The next datatype generic programming workshop will be in
Utrecht next year.

22 / 22

Conclusions

➙ The Generic Haskell project has made a valuable contribution
to the field.

➙ The number of questions raised exceeds the number of
problems solved (like in any good project?).

➙ The future in the Netherlands is uncertain.
➙ Want to know more about generic programming in Clean:

register for the next Advanced Functional Programming
School!

➙ The next datatype generic programming workshop will be in
Utrecht next year.

➙ Lets thank Jeremy

