Type- & Example-Driven
Program Synthesis

Steve Zdancewic
WG 2.8, August 2014

PENN

 Joint work with
Peter-Michael Osera

XLAPE

CAVEATS

« Work in progress
— Similar work been done before

— This is our attempt to understand some of the basic issues, maybe make some
advances

* We have:
— Some theory that describes our approach
— Acouple of (incompatible, likely buggy) implementations
— Implementations that don't (yet) agree with all of our theory

* Feedback welcome!
— Connections to things like Quickcheck, Agda, ...?
— Suggestions for application domains

Background: Program Synthesis

e Recent Highlights:
— Gulwani etal. (Spreadsheets, ...)

— Solar-Lazama et al. (Program Sketching)
— Torlak (Rosette,...)

« ExCAPE - : s\)
— Robotics control (synthesize plans) . }\ I‘ ?.(1 A k“‘:
— (Cache coherence protocols \ \4’

— Education (synthesize feedback based on buggy student code)
* Syntax-guided Synthesis (SyGus) competition
— Surprisingly effective “brute force” enumeration of program snippets by syntax

Inductive Program Synthesis

Summary: Use proof search to generate programs

Old idea: 1960's, 70's, 80's
— Application of theorem proving to problem solving. [Green 1969]
— Synthesis: Dreams — Programs. [Manna & Waldinger 1979]
— Adeductive approach to program synthesis. [Manna & Waldinger 1980]

More modern incarnations:

— Haskell's Djinn [Augustsson 2008]

— Escher[Albarghouthi, Gulwani, Kincaid 2013]

— Synthesis modulo recursive functions [Kuncak et al. 2013]
Good recent survey

— Inductive programming: A survey of program synthesis techniques.
[Kitzelmann 2010]

DEMO

Our Approach

Apply ideas from intuitionistic theorem proving
— Treat programs as proof terms
— Search only for normal forms, not arbitrary terms
— Use substructural logic (relevance)

Use concrete examples as a partial specification
Search for terms in order of the size of their ASTs

Intuition / Hope:

— Simple (i.e. small), well-typed programs that satisfy a few well-chosen tests are
likely to be correct.

Start simple

(Hopeless?) Ideal Goals

 Completeness

— Enumerate in order of size all distinct programs that do not contradict the
examples

* Soundness
— Synthesized programs are well-typed
— Synthesized programs should agree with the examples

(Realizable?) Goals

 Completeness

— Enumerate in order of size (a prefix of) all programs that do not contradict the
examples (after a “reasonable” amount of observation time)

— May enumerate non-distinct (i.e. contextually equivalent) programs.

* Soundness
— Synthesized programs are well-typed

— Synthesized programs (if they terminate in a “reasonable” time) should agree with
the examples

Simplifications (For Now)

Pure (except for divergence), functional programs

Simple, algebraic types and higher-order functions only
— No polymorphism (though this would strongly constrain search)
— Monomorphic programs are still interesting

Specification via examples, not logical properties
— Good starting point
— Probably not sufficient in the long run

Future work: relax these simplifications

(Simple) Target Lanquage

e == zx|erex|fixfx. e]|ctryer..e,
| match ewith pat; — €;

e Recursive, algebraic datatypes
e Arbitrary recursion
e Standard (monomorphic) type system

Proof System for Normal Forms

e Factorterms into intro and elim forms:

E = zh. I, elimination forms
I == FE|fixfz.I|ctry .. I, introduction forms

| match E with pat; — I;

* Inference rules enforce the separation:

z:th —> .. >t,—>bel T,f:th >tz i1t Fix
'tzl.. 1, :b
Sctrf)=t = .. > t, = b
I'HFE:b : -
ELIM '-hL:t1 .. I'HL,:t, CTR
I'HE:b 'betrf .. I, : b

TIFE:b TFopat:b=>T; T;FL:t

- MATCH
I' H match Ewithpat; — I; : 1t

Strategies for Enumeration

* Representation:
— hash-consed locally nameless (closed = Debruijn)
— terms keep track of their free variables (makes closing/substitution faster)

 Memoize the generation functions

let gen_elim (s : Sig.t) (g : GenCtxt.t) (goal_t : typ) (size : int) : elim Rope.t = ...
and gen_intro (s : Sig.t) (g : GenCtxt.t) (goal_t : typ) (size : int) : intro Rope.t = ...

* Relevance logic:
— Fix and match introduce new variable bindings to the context: G,x:utE:t
— Memoization won't work (the context changes)

— Split the judgment into two parts

* General rule that uses context arbitrarily
 A"relevance” rule that requires a particular variable to be used at least once
 Original rule recovered by: G,x:u-E:t = GFE:t + G <xu>rE:

Strategies for Pruning

* Eliminate “redundant” matches:

match x with
| 0 -> match x with ...
'Sy -> ...|

e Prune matches with redundant branches:

match x with
10 -> e = e
'Sy ->e

* Question: How much impact does moving from lambda to fix have?

(Super) Exponential Growth

Rec / match* / redundant

Rec / match* / distinct
Rec / unique / redundant
Rec / unique / distinct

Smpl / match* / redundant

-> nat

Smpl / match* / distinct
Smpl / unique / redundant
[1M Smpl / unique / distinct

nat
i

32768 1

1024

closed normal terms of type

4
#nodes in AST

Pushing Examples Around

* Extend the language grammar with examples
— Examples are first-class values
— They can be given types
— At function type, consist of input/output pairs:
{fsum=> (0@ = (C|] =0
| [1] => 1
12 1] = 3))
L incr = (0 = ([] = 0
| [1] = 1
| [2; 1] =>2))}

 "math” notation: X,ex i={*v,v,v3=Vv, =uU;U,U3=1U,...}

e.g. {=sumO0[]=0,=sum0[1]=1,..., }

Adding Examples to Typechecking

® _—
|
|

O, x:t> X

S(ctrf)=t; > .. > t, > b

'=1L:ty .. THIL,:t
1-1 ne wrl_CTR

Thctrfl . I, : b

Y(c)=t —> .. > t, —>b
X = {ctr w_jl761"" . ctr w_jk]a"”}
OF?: t1 > {wll,..,wlk} ~ I

@ }_ ? . tn > {wnl,..,wnk} g In

OF?2:b>X~octrl Ly .. Iy sYNTHL_CTR

Synthesis contexts

Old: Constructors
without examples

New: Constructors
with examples

Pushing Examples Through Functions

Ifiti =>t,x:tiE1:tp Old: Functions
. wrl_F1x .
IF'Hfixfx.I:ty —t without examples

X={wy.wn=w . - Wy. Wy = W}

O = O, f:t; — t2|>Xk, X:t) > {w11,..,w1k}

Q' F?: tr > { Wrj .. Wy = wiZEL'k}’\f)I
OF?:t > tHh>X~fixfxl

SsYNTHI FUN

New: Functions
with examples

Examples through Elim Forms

x:t1—> .. >ty >berl
T|F?2:t1>{}~1

'+=?:t,> I
[] . {}M ! SYNTHE APP

TIF?2:b~ xIy ..

O] IF?:b~xI .. I,
®|i | x11..In ~ X|i b

icl.k

HI_A
@(k)l—?:bDX(k)MXIl..In SYNTHLAPY

New: Compatibility requirement - application must respect
the provided examples.

Compatibility

« Evaluator: an abstract interpreter for the nonstandard language
* + approximation to equivalence.

O(E)=e IFe~ex

COMPATE_COMPAT
OIFE~ex:b

Felw w~ex

SAT E
e ~ ex

e Seeinference rules.

Heuristics

May compromise completeness, but can greatly reduce search space.

Maximum number of evaluation steps for compatibility checking.
— Prevents infinite loops
— May miss correct programs

Size restrictions

Limit recursion to “well-behaved” subsets:
— e.g.structural recursion

For the demo: Stop at first “good” program

Conclusions / Future

» Program synthesis is experiencing a resurgence.
— Some old ideas are new again

* Fun to think about automatic program generation.
— Many limitations too: sensitivity to particular examples

e Future work:
— Experiments:
* i.e.can't yet measure impact of "example pushing” on size of search space
— Think about richer ways to “push” example information through the search.
* might require "negative” constraints
— Thing about richer specifications
» something like Quickcheck properties
» suites of related functions
— Polymorphism? Dependency?
— Interactivity?
— Connect to other kinds of work (e.g. SMT-solver based approaches)

