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Abstract

Okasaki introduced the canonical formulation of functional red-black trees when he gave a concise,
elegant method of persistent element insertion. Persistent element deletion, on the other hand, has
not enjoyed the same treatment. For this reason, many functional implementations simply omit
persistent deletion. Those that include deletion typically take one of two approaches. The more-
common approach is a superficial translation of the standard imperative algorithm. The resulting
algorithm has functional airs but remains clumsy and verbose, characteristic of its imperative her-
itage. (Indeed, even the term insertion is a holdover from imperative origins, but is now established
in functional contexts. Accordingly, we use the term deletion which has the same connotation.) The
less-common approach leverages the features of advanced type systems, which obscures the essence
of the algorithm. Nevertheless, foreign-language implementors reference such implementations and,
apparently unable to tease apart the algorithm and its type specification, transliterate the entirety
unnecessarily. Our goal is to provide for persistent deletion what Okasaki did for insertion: a suc-
cinct, comprehensible method that will liberate implementors.1 We conceptually simplify deletion
by temporarily introducing a “double-black” color into Okasaki’s tree type. This third color, with its
natural interpretation, significantly simplifies the preservation of invariants during deletion.

1 Introduction

Red-black trees are an efficient representation of ordered sets, and many common opera-
tions, such as search and insertion, are possible in logarithmic time. Their efficiency stems
from their mostly-balanced nature, which is guaranteed by their structural invariants.

A red-black tree is a binary tree in which each node is colored red or black, and whose
construction satisfies two properties:

1. the local property that every red node has two black children, and
2. the global property that every path from the root to a leaf2 node contains the same

number of black nodes.

1 This material is partially based on research sponsored by DARPA under agreement number
FA8750-12-2-0106 and by NSF under CAREER grant 1350344 The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

2 For our purposes, leaf nodes do not house a value and are colored black.
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These conditions guarantee that the longest path from root to leaf can be no more than
twice the shortest (the only difference being individual red nodes interspersed along the
way), so the penalty of locating an element in a red-black tree is minor relative to that in a
perfectly-balanced tree.

Okasaki properly introduced red-black trees into the functional world when he gave a
concise, elegant method of element insertion (Okasaki, 1999). In Okasaki’s formulation,
insertion of an element begins by traversing the tree, in typical recursive fashion, to find
the location on the fringe to place it (or find that insertion unnecessary, in the case that
the element is encountered). The newly-added node is colored red, an assignment which
may introduce a local property violation. (This act characterizes Okasaki’s algorithm: the
preservation of the global property at the expense of the local one.) To account for the
local property violation, the tree is re-balanced as the traversal recedes. This operation
rearranges trees of one of the forms
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Fig. 2

The final step of Okasaki’s insertion algorithm is to blacken the root of the tree, which
may resolve a red-red violation outside the scope of balance.

The concision and elegance of insertion can be manifest in code as well. We use the
Racket language (Flatt & PLT, 2010) for this purpose, but any modern functional program-
ming language will do.3

First, we define a datatype to represent red-black trees with

(struct RBT {})

3 We also provide a Haskell (Peyton Jones, 2003) implementation in the appendix.
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Its variants include internal nodes, defined by

(struct N RBT {color left-child value right-child})

and leaf nodes, defined by

(struct L RBT {})

We define the macro (R a x b) to match and construct red nodes and the macros (B a x
b) and (B) to match and construct black internal nodes and leaves. We also define (R? a)
and (B? a) which match nodes without deconstructing them, and bind each to a.

With this syntax in hand, Okasaki’s insertion algorithm is indeed concise.

(define (insert t v)
(define-match ins

[(B) (R (B) v (B))]
[(N c a x b)
(switch-compare

(v x)
[< (balance (N c (ins a) x b))]
[= (N c a x b)]
[> (balance (N c a x (ins b)))])])

(blacken (ins t)))

(define-match balance
[(or (B (R (R a x b) y c) z d)

(B (R a x (R b y c)) z d)
(B a x (R (R b y c) z d))
(B a x (R b y (R c z d))))

(R (B a x b) y (B c z d))]
[t t])

(define-match blacken
[(R a x b)
(B a x b)]

[t t])

2 Deletion

Deletion is dual to insertion: where insertion is found unnecessary at the presence of an
element, deletion is found unnecessary at its absence. The deletion of any element from
the empty tree yields, of course, the empty tree.

Fig. 3

However, insertion into binary trees has the advantage that a new node is added only
to the fringe, whereas deletion might also target an interior node. We accommodate this
complication by replacing the value in a targeted interior node with its inorder successor4,
if it exists, and deleting its fringe node. If its inorder successor doesn’t exist, we can replace
the targeted interior node with its left subtree. This substree may be empty, to be handled
by the following example on the left, or may be a red singleton, to be handled by the same
example on the right.

4 That is, the value of the leftmost node of the interior node’s right child.
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In order to preserve the global property, the root color of the resulting tree must be a
combination of the root colors of the original tree and its left child that preserves their
respective path contributions. For pre-transformation root colors of red and black, a post-
transformation black root satisfies this requirement. So constrained, we are naturally led to
wonder how the tree root of

�

should be colored under deletion of v.
In response, we introduce a transitory color, double-black, to temporarily preserve the

global invariant which both nodes and leaves can take on. We permit double-black leaves
by another variant of the red-black tree datatype with

(struct L2 RBT {})

and double-black nodes by another color ’BB. As before, we also define macros to match
and construct double-black (BB) nodes and leaves. The -B function demotes a double-black
node or leaf to its black counterpart and will prove useful.

Double-black nodes and leaves, depicted with “reversed polarity” as

� �

�

contribute two black nodes to any path through them. With a color with this property made
available, it becomes obvious how to handle a singleton black node:

�

Fig. 5

Of course, a tree which includes double-black nodes is not a red-black tree, but just
as Okasaki balanced red-red violations away by pulling them higher in the tree, we can
rotate double-black nodes (and leaves) away in the same fashion. We attempt to discharge
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a double-black node, if one exists, at each step of the traversal unwinding. If discharge
isn’t possible at a particular step, we arrange for it to be considered by the next step by
pulling it higher in the tree. In this way, the double-black node bubbles upward until it
is extinguished. At each of these steps, we encounter one of only three tree arrangements
(and their reflections) which require double-black node treatment.
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In the first case, we can discharge the double-black node immediately with the rotation
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Fig. 6

but, if the subtree c is red-rooted, this rotation introduces a red-red violation. We com-
pose balance with the rotation to rectify the violation if it occurs. We match this case and
its reflection within the rotate function by

[(R (BB? a-x-b) y (B c z d))
(balance (B (R (-B a-x-b) y c) z d))]

[(R (B a x b) y (BB? c-z-d))
(balance (B a x (R b y (-B c-z-d))))]

It’s simple to verify that this rotation preserves the global property: count the number of
black nodes in each path through the original subtree and see that the rotation preserves
each.

In the next case, a similar rotation
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does not discharge the double-black node. This case is susceptible to the same red-
red violation as the previous, but, rooted by a double-black node, cannot be handled by
balance. We solve this simply by extending balance to include the transformations
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i.e., by adding

[(or (BB (R a x (R b y c)) z d)
(BB a x (R (R b y c) z d)))

(B (B a x b) y (B c z d))]

to its case analysis. Unlike the original cases of its design, these cases of balance, intro-
ducing no red nodes themselves, cannot introduce red-red violations.

It is hopeless to attempt to rearrange the final case

� �

�

� �

�

�

to satisfy the global and local properties simultaneously (not to mention ordering), even
with the help of balance and rotate. However, we observe that in order for each path
through this tree to have the same number of black nodes, the red node must have black
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nodes as children. Including the inner child in our consideration gives us just enough to
satisfy every property.
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Fig. 9

The possibility of a red-red violation is present here, but occurs deeper in the tree, and
so cannot readily be handled after the rotation. Instead, we must integrate balance into the
process. As cases for the rotate function, this is expressed by

[(B (BB? a-w-b) x (R (B c y d) z e))
(B (balance (B (R (-B a-w-b) x c) y d)) z e)]

[(B (R a w (B b x c)) y (BB? d-z-e))
(B a w (balance (B b x (R c y (-B d-z-e)))))]

At the final step of unwinding, a double-black node might reach the root of the tree,
outside the domain of rotate. Such an occurrence would not be fatal since the newly-
colored root node could be soundly demoted by unilaterally blackening it after deletion,
just as Okasaki does for insertion. This would expose blacken to the transient double-black
color. In the interest of containing double-black to balance and rotate, we adopt a coloring
policy which prevents a double-black node from ever reaching the root.

Observe that, in any non-empty red-black tree, either one of the root’s children is red or
the root can be colored red without violating any invariant. So colored, this configuration
guarantees a bubbling double-black node will be discharged before it reaches the root, if
only just before. We codify this strategy by prefixing deletion with a redden operation,
which provides that a tree’s root may be blackened after an insertion only to be reddened
before a deletion. To avoid such unnecessary operations, we admit red roots in red-black
trees—our invariants in fact never excluded them—and weaken blacken to do so only if
the red-black construction demands it. This reveals another view of the duality of insertion
and deletion: just as the final step of insertion is to blacken the root if necessary, the initial
step of deletion is to redden it if possible.

Deleting the inorder successor from the right child can be accomplished by invoking
delete directly, but this requires many unnecessary comparisons and that the value of
the successor be retrieved beforehand. We define min/delete to extract and delete a tree’s
minimum element efficiently.
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(define-match min/delete
[(B) (error ’min/delete "empty tree")]
[(R (B) x (B)) (values x (B))]
[(B (B) x (B)) (values x (BB))]
[(B (B) x (R a y b)) (values x (B a y b))]
[(N c a x b) (let-values ([(v a∗) (min/delete a)])

(values v (rotate (N c a∗ x b))))])

With these definitions, the deletion algorithm can be expressed succinctly.

(define-match balance
; Figures 1 and 2
[(or (B (R (R a x b) y c) z d)

(B (R a x (R b y c)) z d)
(B a x (R (R b y c) z d))
(B a x (R b y (R c z d))))

(R (B a x b) y (B c z d))]
; Figure 8
[(or (BB (R a x (R b y c)) z d)

(BB a x (R (R b y c) z d)))
(B (B a x b) y (B c z d))]

[t t])

(define-match rotate
; first case, Figure 6
[(R (BB? a-x-b) y (B c z d))
(balance (B (R (-B a-x-b) y c) z d))]

[(R (B a x b) y (BB? c-z-d))
(balance (B a x (R b y (-B c-z-d))))]

; second case, Figure 7
[(B (BB? a-x-b) y (B c z d))
(balance (BB (R (-B a-x-b) y c) z d))]

[(B (B a x b) y (BB? c-z-d))
(balance (BB a x (R b y (-B c-z-d))))]

; third case, Figure 9
[(B (BB? a-w-b) x (R (B c y d) z e))
(B (balance (B (R (-B a-w-b) x c) y d)) z e)]

[(B (R a w (B b x c)) y (BB? d-z-e))
(B a w (balance (B b x (R c y (-B d-z-e)))))]

; fall through
[t t])

(define-match -B
[(BB) (B)]
[(BB a x b) (B a x b)])

(define (delete t v)
(define-match del

; Figure 3
[(B) (B)]
; Figure 4
[(R (B) (== v) (B))
(B)]

; Figure 4
[(B (R a x b) (== v) (B))
(B a x b)]

; Figure 5
[(B (B) (== v) (B))
(BB)]

[(N c a x b)
(switch-compare
(v x)
[< (rotate (N c (del a v) x b))]
[= (let-values ([(v∗ b∗) (min/delete b)])

(rotate (N c a v∗ b∗)))]
[> (rotate (N c a x (del b v)))])])

(del (redden t)))

(define-match redden
[(B (B? a) x (B? b))
(R a x b)]

[t t])

3 Evaluation

The primary goal of the preceding account of persistent deletion is comprehensibility. Once
the algorithm is understood, many opportunities become apparent to make the algorithm
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Fig. 10. Time benchmark comparison

more efficient (but, we contend, less clear). For instance, the balance cases can be par-
titioned by the root node color—black or double-black–and in which child the red-red
violation may occur—left or right.

We evaluated the implementation, both as presented and so-“optimized”, against the
so-called untyped formulation of Kahrs (Kahrs, 2001).5 In order to make a more direct
comparison, we translated Kahrs’ formulation into Racket. While originally implemented
in Haskell, his untyped formulation, as one would expect, does not leverage Haskell’s type
system in any appreciable way, so we are confident our port to Racket is faithful.

We performed a benchmark consisting of a sequence of cascading deletions from trees
increasing exponentially in size, repeated five times for each size.

Figure 10 illustrates the execution time of each implementation as a graph of execution
time over log-scaled tree size. Kahrs’ algorithm performed twice as fast as the presented
implementation and still significantly faster than the optimized version. This advantage
may be due to his extraction method: instead of replacing the target node’s value with that
of its inorder successor, it stitches the subtrees of the target node together.

Each implementation uses essentially the same representation for red-black trees, so
memory usage for a given tree in each is the same. An instrumented garbage collector
revealed revealed differences in the behavior of each implementation with regard to it. For
each benchmark, the presented and optimized implementations allocated in total 26G and
25G, and 22% and 32% of execution time was under control of the garbage collector, re-
spectively. In contrast, Kahrs’ implementation allocated 34G in total, and 32% of execution
time was under control of the garbage collector.

5 We intended to include a zipper-based implementation in the evaluation, but the Scheme port as
found was incorrect.
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4 Related Work

The standard imperative algorithm can be found in many textbooks, such as Cormen et
al. (Cormen et al., 2001). Translations of this algorithm have been found in SML/NJ (Appel
& MacQueen, 1991) and some Scheme implementations (Dybvig, 2003). Despite the use
of Huet’s zippers (Huet, 1997) and Hinze’s linear-time construction method (Hinze et al. ,
1999), these translations retain the imperative character of their ancestry.

Static type systems have been used to great effect to encode the red-black tree invariants.
Kahrs (Kahrs, 2001) leverages Haskell’s type system to promote correctness and Ap-
pel (Appel, 2011) outright proves Kahrs’ approach correct using Coq (Bertot & Castéran,
2004), as Filliâtre does with his own implementation (Filliâtre & Letouzey, 2004). Kahrs’
algorithm has been transliterated into languages with ill-suited type systems such as Scala’s
collections library (Odersky, 2009) and several Scheme implementations.

5 Conclusion

In spite of the existence of faster methods of persistent deletion, the numerous transliterated
and even incorrect implementations underscore the need for a comprehensible account. We
have endeavored to give such an account. Once the method is understood, clarity can be
spent for efficiency, and the performance of the resulting algorithm is competetive with
other methods.
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A Haskell code

data Color = R | B | BB deriving (Show)

data Tree elt = E | EE | T Color (Tree elt) elt (Tree elt) deriving (Show)

type Set a = Tree a

empty :: Set elt

empty = E

insert :: Ord elt => elt -> Set elt -> Set elt

insert x s = blacken (ins s)

where ins E = T R E x E

ins (T color a y b) | x < y = balance color (ins a) y b

| x == y = T color a y b

| x > y = balance color a y (ins b)

blacken (T R (T R a x b) y c) = T B (T R a x b) y c

blacken (T R a x (T R b y c)) = T B a x (T R b y c)

blacken t = t

balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)

balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)

balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)

balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)

balance BB a x (T R (T R b y c) z d) = T B (T B a x b) y (T B c z d)

balance BB (T R a x (T R b y c)) z d = T B (T B a x b) y (T B c z d)

balance color a x b = T color a x b

delete :: Ord elt => elt -> Set elt -> Set elt

delete x s = del (redden s)

where del E = E

del (T R E y E) | x == y = E

| x /= y = T R E y E

del (T B E y E) | x == y = EE

| x /= y = T B E y E

del (T B (T R E y E) z E) | x < z = T B (del (T R E y E)) z E

| x == z = T B E y E

| x > z = T B (T R E y E) z E

del (T c a y b) | x < y = rotate c (del a) y b

| x == y = let (y’,b’) = min_del b

in rotate c a y’ b’

| x > y = rotate c a y (del b)
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redden (T B (T B a x b) y (T B c z d)) =

T R (T B a x b) y (T B c z d)

redden t = t

rotate R (T BB a x b) y (T B c z d) = balance B (T R (T B a x b) y c) z d

rotate R EE y (T B c z d) = balance B (T R E y c) z d

rotate R (T B a x b) y (T BB c z d) = balance B a x (T R b y (T B c z d))

rotate R (T B a x b) y EE = balance B a x (T R b y E)

rotate B (T BB a x b) y (T B c z d) = balance BB (T R (T B a x b) y c) z d

rotate B EE y (T B c z d) = balance BB (T R E y c) z d

rotate B (T B a x b) y (T BB c z d) = balance BB a x (T R b y (T B c z d))

rotate B (T B a x b) y EE = balance BB a x (T R b y E)

rotate B (T BB a w b) x (T R (T B c y d) z e) =

T B (balance B (T R (T B a w b) x c) y d) z e

rotate B EE x (T R (T B c y d) z e) = T B (balance B (T R E x c) y d) z e

rotate B (T R a w (T B b x c)) y (T BB d z e) =

T B a w (balance B b x (T R c y (T B d z e)))

rotate B (T R a w (T B b x c)) y EE = T B a w (balance B b x (T R c y E))

rotate color a x b = T color a x b

min_del (T R E x E) = (x,E)

min_del (T B E x E) = (x,EE)

min_del (T B E x (T R E y E)) = (x,T B E y E)

min_del (T c a x b) = let (x’,a’) = min_del a

in (x’,rotate c a’ x b)


