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Network Programming Languages

here's been a lot of recent interest in programmable
networks (“software-defined networking”). ..
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...my group been designing high-level languages for
programming and reasoning about networks




NetKAl Review



NetKAT Predicates

Structures  f = switch | port | ethsrc | ethdst | ...
ok = { switch = n; port = n; ethsrc = n; ethdst=n; ... }
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Syntax a,b,c :=true (* false *)
false (* true ®)
f=n (* test ¥)
ar || az (* disjunction ¥)
a1 && a; (* conjunction ¥)
I3 (* negation *)




NetKAT Predicates

Structures  f = switch | port | ethsrc | ethdst | ...
ok = { switch = n; port = n; ethsrc = n; ethdst=n; ... }

Syntax a,b,c :=true (* false *)
false (* true ®)
f=n (* test ¥)
ar || az (* disjunction ¥)
a1 && a; (* conjunction ¥)
I3 (* negation *)

5emantics [a] e Packet Set
[true] = Packet
[false] = {}
[f=n]={pk|pkf=n}
[a1 |] @21 = [a1] v [a:]]
[a1 && ax] =T[a1] n [a:]
[!a] = Packet \ [a]




NetKAT Policies

Structures .= (pk) |pkzh




NetKAT Policies

Structures .= (pk) |pkzh

Syntax p,q.r = filter a
fi=n
01 + P2
D1, P2
¥
dup

(* filter *)

* modification %)
union ¥)
sequence ¥)
iteration *)
duplication ¥)
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NetKAT Policies

Structures .= (pk) |pkzh

SyﬂTCIX 0,0,r = filter a (* filter *)
fi=n (* modification ¥)
01 + P> (* union ¥)
015 P2 (* sequence )
N* (* iteration *)
dup (* duplication *)

Semantics [p] € History = History Set

[filtera]l pkah=({pk:zh} ifpke [al
{1 otherwise

[f:=n] pk:h={pk[f=n]:h}
[p1+p2lh=[pilhulplh
[p1ep2]h = ([P0 [P0 h
[p"]1h=(Uilpl)h

[dup] pk:h={pkupkah}




drop = filter false
id £ filter true

if a then p; else p, £ (filter a « p1) + (filter !a « py)



Reasoning in NetKAT



Encoding Tables

The forwarding tables
maintained by switches
can be encoded using
conditional policies
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conditional policies
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dstport=22

Drop

srcip=10.0.0.0/8

Forward 1

Forward 2




Encoding Tables

The forwarding ta

maintained by swi

Dles

tches

can be encoded using
conditional policies

Table Normal Form

fwd :=fii=nje... e fie=nx + fwd | drop

true

pat z=1=n e pat

tbl ;= if pat then fwd else tbl | fwd
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dstport=22

srcip=10.0.0.0/8

*

Drop
Forward 1

Forward 2



Encoding Tables

The forwarding tables
maintained by switches
can be encoded using
conditional policies

Table Normal Form

fwd :=fii=nje... e fie=nx + fwd | drop
true

pat z=1=n e pat
tbl ;= if pat then fwd else tbl | fwd

dstport=22 Drop
srcip=10.0.0.0/8 Forward 1
* Forward 2

if dstport=22 then
drop

else if srcip=10.0.0.0/8 then
port =1

else
port := 2



Encoding Topologies

_inks can be modeled as . = |
nolicies that forward SNt =
packets from one end to _I, — =

the other, and topologies - topo

as unions of links



Encoding Topologies

inks can be modeled as
nolicies that forward <
nackets from one end to _I,
the other, and topologies - topo
as unions of links
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Topology Normal Form
Ipred := switch=n « port=n
[pol = switch:=n « port:=n
ink = lpred « [pol
topo := link + topo | drop



Encoding Topologies

_inks can be modeled as . _—= |
nolicies that forward SNt =
packets from one end to _I, — =

the other, and topologies - topo

as unions of links

A T
z <« <«
Topology Normal Form A : C
lpred = switch=n « port=n switch=Aesport=1.switch:=Beport:=2 +
Ipol = switch:=n « port:=n switch=Beport=2.switch:=A.port:=1 +
| switch=Beport=1.switch:=Ceport:=2 +
ink = lpred « [pol

switch=Ceport=2.switch:=Beport:=1 +
topo == link + topo | drop drop



Encoding Networks

An entire network can be
encoded by interleaving policy
and topology processing steps
arbitrarily many number of times
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Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps M N
arbitrarily many number of times SN~ =
| =
pa

topo
id
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Encoding Networks

An entire network can be
encoded by interleaving policy

topology processing steps
trarily many number of times

id
+
(policyetopo)

policy
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Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps s N
arbitrarily many number of times ‘I' ~g+=
-
- topo
id
+
(policyetopo)
+

(policyetopoepolicyetopo)

+
(policyetopoepolicyetopoepolicyetopo)
+
(policyetopo)*



Checking Reachability

Given:
o Ingress predicate: switch = s;
o Egress predicate: switch = sy;
» Jopology:t
e Switch program: p

Check:

e switch =sjeswitch =51+ (pet)* ~(pet)*
o switch=si¢(p«1t)*«switch =5, ~drop



NetKAT Equational Axioms

Kleene Algebra Axioms

p+(@+n~((P+q) +r
P+g~g+p

D+ drop ~ p
P+p~p

e (Qer) ~ (e Qe r
Pe(@+1)~pe g+per
(D+Q)e r~pe r+qger
idep~p

D~peid
drop - p ~ drop

D « drop ~ drop
id+pep*~p°

id+p ep~p°
D+Qqer +r~r=peq+r~r

P+ ger+gq~qg=per+qg-~q

Boolean Algebra Axioms

all (b && o)~ (@]l b) &&(@]|| )
a || true ~ true

all!a~true
a&&b~b&&3

a && 'a ~ false

a&&a~a

Packet Axioms

fi=nefii=n'~fi=n'efi=n
fi=nef'=n'~f'=n'efi=n
fi=nef=n~fi=n
f=nefi=n~f=n
fe=nef=n'~fi=n
f=nef=n"~drop
dupef=n~f=ne<dup

fff
fff

ifnzn'



Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q




Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q

NetKAT equivalence is also decidable! ©

...But our earlier algorithm was based on determining a
non-deterministic algorithm using Savitch's theorem, so

it was PSPACE in the best case and the worst case ®



Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q

NetKAT equivalence is also decidable! ©

...But our earlier algorithm was based on determining a
non-deterministic algorithm using Savitch's theorem, so

it was PSPACE in the best case and the worst case ®

Roadmap: starting from a language model of NetKAT. ..

. Deve
- Chec

op coalgebraic structure of NetKA

K equivalence using bisimulation

- Deploy a host of cunning tricks to make it fast



Regular Expression
Derivatives Review



Reqgular Expressions

Syntax g .- g

(* empty *)
C (* character *)
R1+ R (* union *)
R Ry (* concatenation *)
R* (* Kleene star *)

5emantics gy e s*

[0] ={}

[c] ={c}

[R1 + Rl =[Ri] u [R2]
[R1e Rl = [R1] « [R2]

[R'T]= (Ui [R]")




Language Derivatives

Semantic dcR={w]|c-welR]}




Language Derivatives

Semantic OcR={w/|c-wel[R]}
Syntactic Cont/nuat/on map

{ fc=Db

0 otherwise

Dc(R1 +R2) = Dc(R1) + Dc(R2)
Dc(R1¢R2) = Dc(R1) » Ro+ E(R1) « Dc(R2)
DCR*) — DC(R) e R




Language Derivatives

Semantic OcR={w/|c-wel[R]}
Syntactic Cont/nuat/on map

{ fc=Db

0 otherwise

Dc(R1 +R2) = Dc(R1) + Dc(R2)
Dc(R1¢R2) = Dc(R1) » Ro+ E(R1) « Dc(R2)
)c(%*) — DC(R) e R

Observation map
-(0)=E(c)=0

R+ R) = ERY) || ER2)
R1 ¢ Ro) = E(R1) && E(R>)
R™) =1

/N N N




Theorem [Brzozowski '64]: every regular expression has a finite

number of derivatives (modulo ACl equivalence)



Suilding Automata using Derivatives

Automaton:

- Label initial state by R

. Transition from Rito Ri'on cif Dc(R;)) = Ry’

. Label state Ry as final if E(Ri)) = 1

- Only generate new state for expressions
not seen previously, modulo ACI

Advantages:

- Extremely simple

- Easy to make lazy

- Easy to extend with negative operators
- Easy to optimize by recognizing coarser
equivalences (language equivalence
leads to minimal automaton)




Suilding Automata using Derivatives

Automaton:

- Label initial state by R

- Transition from Ri to R’ on c if Dc(Ri)) = Ry
- Label state Rias final if E(R)) =1

.- Onlv aenerate new state for expressions

Can also build NFAs using a variant called the Antimirov derivative

Advantages: N

- Extremely simple

- Easy to make lazy

- Easy to extend with negative operators
- Easy to optimize by recognizing coarser
equivalences (language equivalence
leads to minimal automaton)




NetKAl Derivatives



Reduced NetKAT

Complete tests
a = switch=ne.port=n

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,q::= (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence )
0¥ (* Kleene star *)
dup (* Duplication *)




Reduced NetKAT

— for simplicity, only
consider two fields

Complete tests
a = switch=ne.port=n ‘s

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,q::= (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence )
0¥ (* Kleene star *)
dup (* Duplication *)




Reduced NetKAT

Complete tests
a = switch=ne.port=n ‘e

— for simplicity, only
consider two fields

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,g::= a (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence )
0¥ (* Kleene star *)
dup (* Duplication *)

Lemma: For every NetKAT term p, there is a reduced
NetKAT term p'such that =p ~ p'



Regular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:
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Unfortunately [p] = [gl does not imply R(p) = R(q)



Regular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:

Regular Interpretation: R(p) € (A u B u {dup})*
R(a) =10}

(B) = {6}

(P +q)=R(p) UR(@Q)

(P +q)=R(p)+R(@)
(
(

0%) = R(p)*

Unfortunately [p] = [gl does not imply R(p) = R(q)

Counterexample:
switch=1 * port=1 * switch=1 * port=2 ~
switch=1 * port=1 * switch=2 * port=]




Language Model



del
Language Mo

* B
- {dup})
CA-(B
Interpretation: G(p)

uage In
Lalzg) = {0 * TTq} A
: - %5‘(3 U G(q)
0+ Q) =

G( )
GEO q) = G(p) ¢ Gla
(5 -

G(

G(

G C * }
D*) —({ )‘Bg‘dup'BQ‘Qe
dup) = {a A



Language Model

Language Interpretation: G(p) € A« (B - {dup})*

G(a) ={a -1}
) ={a-BlaecA] \Guarded

Gl strings
G(p + g) = G(p) u G(q)

G(p - qg) =G(p) ¢ G(g)
G(
G(

0%) = G(p)*
dup) ={a:Bq-dup:Ba|aeA}



Language Model

Language Interpretation: G(p) € A« (B - {dup})*

G(a) = {a -4}

Guarded
GP)={a-plaeA} \stzigfggi
G(p + ) =G(p) u G(q)
G(p+q)=G(p) ¢ G(q) - Guijfdej
G(Q*) _ G(p)* concdatendtion
G(dup) ={a+Pa-dup:Ba|aeA}
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Language Model

Language Interpretation: G(p) € A« (B « {dup})”
G(a) ={a - 1}
G@) =la-BlacA) \iiﬁﬁéid
G(p + g) = G(p) u G(q)
G(p-q) =G(p) © G(Q) «— B Guarded.
G(Q*) — G(p)* concatenation
G(dup) ={a+Po-dup-Ra]aeA}

Example: a;+ 3;-dup - 33 -dup- _ -dup- 3

Intuition: models trajectories through the network



Language Model

Language Interpretation: G(p) € A« (B - {dup})”
G(a) ={a - 1}
G@) =la-BlacA) \iiﬁﬁi]id
G(p + g) = G(p) u G(q)
G(p-q) =G(p) © G(Q) «— B Guarded.
G(Q*) — G(p)* concatenation
G(dup) ={a+Po-dup-Ra]aeA}

Example: a;+ 3;-dup - 33 -dup- _ -dup- 3

Intuition: models trajectories through the network

Theorem: [p] =1qglifandonlyif G(p) = G(q)



NetKAT Derivatives

Goal: match all of the guarded strings of the form
A« (B-{dup})*-B
in the set denoted by a given NetKAT term p

Continuation map Dqg(p):

« Attempts to match a -« 3 - dup at the start of string

« Returns the residual NetKAT term, if successful or drop if not
 Note that we elide dup to streamline the notation

Observation map Eqp(p):
- Tries to match the final a - 3 at the end of the string
« Returns a term equivalent to true if successful or false if not



NetKAT Derivatives



NetKAT Derivatives

Continuation Map:

Dop(f = n) = Dep(f:=n) = drop

Dop(dup) = a *[a=[3]

(o + a) = Dap(p) + Dap(Q)

Dap(P * ) = Dag(p) * g + 2y Eay(p) * Dyp(Q)
(0*) =Dag(p) * p* + 2y Eay(p) = Dyp(p¥)




NetKAT Derivatives

Continuation Map:

Dop(f = n) = Dep(f:=n) = drop

Dop(dup) = a ¢[a=p]

(0 + ) = Dap(p) + Dagl(a)

Dap(P * 4) = Dap(p) * g + 2y Eay(p) * Dyp(a)
(0*) =Dag(p) * p* + 2 Eay(p) * Dyp(p*¥)

Observation Map:
Eap(f=n) = [0=0 < f=n]
Cap dup) drop
= [f:=n = pg]
) = Eap(p) + Eap(Q)
D * ) =2y Eay(p) * Eypla)

0¥) = [a=[3] + 2y Eay(p) * Eyp(p¥)
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Lemma [Foster et al. "14]: every NetKAT term has a finite number

of derivatives (modulo ACl equivalence)



Matrix Representation

Observation: can streamline definitions using matrices



Matrix Representation
Observation: can streamline definitions using matrices

Continuation Map:
D(f =n) = D(f:=n) =drop




Matrix Representation

Observation: can streamline definitions using matrices

Continuation Map: Matrix with as
D(f =n) =D(f:=n) =drop on diagonal and 0s
D(dup) = - — everywhere else
D(p + ) =D(p) + D(a)

D(p + ) = D(p) + l(q) + E(p) * D(q)
D(p*) = E(p¥) « D(p) * (p¥)




Matrix Representation
Observation: can streamline definitions using matrices

Continuation Map: Matrix with as
D(f =n) = D(f:=n) =drop on diagonal and 0s

—1

D(dup) = - everywhere else
0 + ) = D(p) + D(q)

0+ q)=D(p) - () + E(p) - D(q)

0*) = E(p¥) * D(p) * 1(p¥)

Observation Map:
—(f=n) =

-(dup) = false
(f:=n) = ...
P+9) = E(p) + E(g)
(o= q)=E(p) - E)
(p%) = E(p)*




lmplementation and
CXperiments



Implementation Highlights

Representations:

- Bases encode sets of complete tests and assignments
- “Spines” encode sets of terms

- Sparse matrix library

Algorithmic optimizations:
 Smart constructors

» Hash consing

- Memoization

- Base set compaction

- Fast multiplication

- Fast fixpoints

- Union-find in bisimulation




EXperiments

Networks:

- Topology Zoo

- Fatlree

- Stanford Backbone

Policies:
- Shortest-path forwarding
- Stanford production policy

Questions:

- Point-to-point reachability
- All-Pairs connectivity

- Loop freedom

- Translation validation
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Conclusion

o Still (1) lots of great PL problems in networking
« SDN is an enabling technology for this kind of research

« NetKAT is a new framework for programming and reasoning
about network behavior

« Brzozowski derivatives are an elegant technique for building
automata that has borne fruit for 40 years and counting. ..

» Ongoing work
- Proof carrying code
- Probabilistic NetKAT

- Network-wide optimizations using matrices




Thank youl!

Collaborators
« Dexter Kozen (Cornell)
« Matthew Milano (Cornell)
» Alexandra Silva (Nijmegen)
e Laure Thompson (Cornell)

Papers, code, etc.

http://frenetic-lang.org/

frenetic



