Another Excursion

Route & Pace
All negotiable :-)

“Trail Ridge Road provides

. spectacular view of the majestic

Grade

== N~

The road was designed with a ruling
grade generally less than 5% and never
exceeding 7%, less than half as steep
as the Fall River Road.

scenery of RMNP. It is the highest
continuous motorway in the
United States, with more than
eight miles lying above 11,000" and
a maximum elevation of 12,183

rn

Bike Rental

NNNNNNNNNN

Cost: $40-555
Hours: 8am-9pm

Deciding NetKAT Equivalence
using Derivatives

Nate Foster (Cornell)
Dexter Kozen (Cornell)
Matthew Milano (Cornell)

Alexandra Silva (Raboud)
Laure Thompson (Cornell)

ST
o.-é g
8 8| \a o

< 5 (o)
A S B
© % \5

3

MiNe ¢

Network Programming Languages

here's been a lot of recent interest in programmable
networks (“software-defined networking”). ..

—>
—- <=
—> < <
-« -
-> >
= < <
—> —>
<« <« “—

...my group been designing high-level languages for
programming and reasoning about networks

NetKAl Review

NetKAT Predicates

Structures f = switch | port | ethsrc | ethdst | ...
ok = { switch = n; port = n; ethsrc = n; ethdst=n; ... }

NetKAT Predicates

Structures f = switch | port | ethsrc | ethdst | ...
ok = { switch = n; port = n; ethsrc = n; ethdst=n; ... }

Syntax a,b,c :=true (* false *)
false (* true ®)
f=n (* test ¥)
ar || az (* disjunction ¥)
a1 && a; (* conjunction ¥)
I3 (* negation *)

NetKAT Predicates

Structures f = switch | port | ethsrc | ethdst | ...
ok = { switch = n; port = n; ethsrc = n; ethdst=n; ... }

Syntax a,b,c :=true (* false *)
false (* true ®)
f=n (* test ¥)
ar || az (* disjunction ¥)
a1 && a; (* conjunction ¥)
I3 (* negation *)

5emantics [a] e Packet Set
[true] = Packet
[false] = {}
[f=n]={pk|pkf=n}
[a1 |] @21 = [a1] v [a:]]
[a1 && ax] =T[a1] n [a:]
[!a] = Packet \ [a]

NetKAT Policies

Structures .= (pk) |pkzh

NetKAT Policies

Structures .= (pk) |pkzh

Syntax p,q.r = filter a
fi=n
01 + P2
D1, P2
¥
dup

(* filter *)

* modification %)
union ¥)
sequence ¥)
iteration *)
duplication ¥)

X

X

(
(
(
(*
(*

NetKAT Policies

Structures .= (pk) |pkzh

SyﬂTCIX 0,0,r = filter a (* filter *)
fi=n (* modification ¥)
01 + P> (* union ¥)
015 P2 (* sequence)
N* (* iteration *)
dup (* duplication *)

Semantics [p] € History = History Set

[filtera]l pkah=({pk:zh} ifpke [al
{1 otherwise

[f:=n] pk:h={pk[f=n]:h}
[p1+p2lh=[pilhulplh
[p1ep2]h = ([P0 [P0 h
[p"]1h=(Uilpl)h

[dup] pk:h={pkupkah}

drop = filter false
id £ filter true

if a then p; else p, £ (filter a « p1) + (filter !a « py)

Reasoning in NetKAT

Encoding Tables

The forwarding tables
maintained by switches
can be encoded using
conditional policies

Encoding Tables

The forwarding tables
maintained by switches
can be encoded using
conditional policies

=
<=

—

dstport=22

Drop

srcip=10.0.0.0/8

Forward 1

Forward 2

Encoding Tables

The forwarding ta

maintained by swi

Dles

tches

can be encoded using
conditional policies

Table Normal Form

fwd :=fii=nje... e fie=nx + fwd | drop

true

pat z=1=n e pat

tbl ;= if pat then fwd else tbl | fwd

-

<«

—

dstport=22

srcip=10.0.0.0/8

*

Drop
Forward 1

Forward 2

Encoding Tables

The forwarding tables
maintained by switches
can be encoded using
conditional policies

Table Normal Form

fwd :=fii=nje... e fie=nx + fwd | drop
true

pat z=1=n e pat
tbl ;= if pat then fwd else tbl | fwd

dstport=22 Drop
srcip=10.0.0.0/8 Forward 1
* Forward 2

if dstport=22 then
drop

else if srcip=10.0.0.0/8 then
port =1

else
port := 2

Encoding Topologies

_inks can be modeled as . = |
nolicies that forward SNt =
packets from one end to _I, — =

the other, and topologies - topo

as unions of links

Encoding Topologies

inks can be modeled as
nolicies that forward <
nackets from one end to _I,
the other, and topologies - topo
as unions of links

—>

«
~z+ =
_-

Topology Normal Form
Ipred := switch=n « port=n
[pol = switch:=n « port:=n
ink = lpred « [pol
topo := link + topo | drop

Encoding Topologies

_inks can be modeled as . _—= |
nolicies that forward SNt =
packets from one end to _I, — =

the other, and topologies - topo

as unions of links

A T
z <« <«
Topology Normal Form A : C
lpred = switch=n « port=n switch=Aesport=1.switch:=Beport:=2 +
Ipol = switch:=n « port:=n switch=Beport=2.switch:=A.port:=1 +
| switch=Beport=1.switch:=Ceport:=2 +
ink = lpred « [pol

switch=Ceport=2.switch:=Beport:=1 +
topo == link + topo | drop drop

Encoding Networks

An entire network can be
encoded by interleaving policy
and topology processing steps
arbitrarily many number of times

Encoding Networks

An entire network can be
encoded by interleaving policy
and topology processing steps
arbitrarily many number of times

_—= |
\ /?—
=

N — N

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps TN
arbitrarily many number of times N~ =
| =
2

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps s N
arbitrarily many number of times SN~ =
| =
pa

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps M N
arbitrarily many number of times SN~ =
| =
pa

topo
id

dNC

arpi

Encoding Networks

An entire network can be
encoded by interleaving policy

topology processing steps
trarily many number of times

id
+
(policyetopo)

policy

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps s N
arbitrarily many number of times ‘I' ~g+=
-
- topo
id
+
(policyetopo)
+

(policyetopoepolicyetopo)

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps s N
arbitrarily many number of times ‘I' ~g+=
-
- topo
id
+
(policyetopo)
+

(policyetopoepolicyetopo)
+
(policyetopoepolicyetopoepolicyetopo)

Encoding Networks

An entire network can be policy
encoded by interleaving policy -
and topology processing steps s N
arbitrarily many number of times ‘I' ~g+=
-
- topo
id
+
(policyetopo)
+

(policyetopoepolicyetopo)

+
(policyetopoepolicyetopoepolicyetopo)
+
(policyetopo)*

Checking Reachability

Given:
o Ingress predicate: switch = s;
o Egress predicate: switch = sy;
» Jopology:t
e Switch program: p

Check:

e switch =sjeswitch =51+ (pet)* ~(pet)*
o switch=si¢(p«1t)*«switch =5, ~drop

NetKAT Equational Axioms

Kleene Algebra Axioms

p+(@+n~((P+q) +r
P+g~g+p

D+ drop ~ p
P+p~p

e (Qer) ~ (e Qe r
Pe(@+1)~pe g+per
(D+Q)e r~pe r+qger
idep~p

D~peid
drop - p ~ drop

D « drop ~ drop
id+pep*~p°

id+p ep~p°
D+Qqer +r~r=peq+r~r

P+ ger+gq~qg=per+qg-~q

Boolean Algebra Axioms

all (b && o)~ (@]l b) &&(@]||)
a || true ~ true

all!a~true
a&&b~b&&3

a && 'a ~ false

a&&a~a

Packet Axioms

fi=nefii=n'~fi=n'efi=n
fi=nef'=n'~f'=n'efi=n
fi=nef=n~fi=n
f=nefi=n~f=n
fe=nef=n'~fi=n
f=nef=n"~drop
dupef=n~f=ne<dup

fff
fff

ifnzn'

Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q

Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q

NetKAT equivalence is also decidable! ©

...But our earlier algorithm was based on determining a
non-deterministic algorithm using Savitch's theorem, so

it was PSPACE in the best case and the worst case ®

Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [ql, then = p ~q

NetKAT equivalence is also decidable! ©

...But our earlier algorithm was based on determining a
non-deterministic algorithm using Savitch's theorem, so

it was PSPACE in the best case and the worst case ®

Roadmap: starting from a language model of NetKAT. ..

. Deve
- Chec

op coalgebraic structure of NetKA

K equivalence using bisimulation

- Deploy a host of cunning tricks to make it fast

Regular Expression
Derivatives Review

Reqgular Expressions

Syntax g .- g

(* empty *)
C (* character *)
R1+ R (* union *)
R Ry (* concatenation *)
R* (* Kleene star *)

5emantics gy e s*

[0] ={}

[c] ={c}

[R1 + Rl =[Ri] u [R2]
[R1e Rl = [R1] « [R2]

[R'T]= (Ui [R]")

Language Derivatives

Semantic dcR={w]|c-welR]}

Language Derivatives

Semantic OcR={w/|c-wel[R]}
Syntactic Cont/nuat/on map

{ fc=Db

0 otherwise

Dc(R1 +R2) = Dc(R1) + Dc(R2)
Dc(R1¢R2) = Dc(R1) » Ro+ E(R1) « Dc(R2)
DCR*) — DC(R) e R

Language Derivatives

Semantic OcR={w/|c-wel[R]}
Syntactic Cont/nuat/on map

{ fc=Db

0 otherwise

Dc(R1 +R2) = Dc(R1) + Dc(R2)
Dc(R1¢R2) = Dc(R1) » Ro+ E(R1) « Dc(R2)
)c(%*) — DC(R) e R

Observation map
-(0)=E(c)=0

R+ R) = ERY) || ER2)
R1 ¢ Ro) = E(R1) && E(R>)
R™) =1

/N N N

Theorem [Brzozowski '64]: every regular expression has a finite

number of derivatives (modulo ACl equivalence)

Suilding Automata using Derivatives

Automaton:

- Label initial state by R

. Transition from Rito Ri'on cif Dc(R;)) = Ry’

. Label state Ry as final if E(Ri)) = 1

- Only generate new state for expressions
not seen previously, modulo ACI

Advantages:

- Extremely simple

- Easy to make lazy

- Easy to extend with negative operators
- Easy to optimize by recognizing coarser
equivalences (language equivalence
leads to minimal automaton)

Suilding Automata using Derivatives

Automaton:

- Label initial state by R

- Transition from Ri to R’ on c if Dc(Ri)) = Ry
- Label state Rias final if E(R)) =1

.- Onlv aenerate new state for expressions

Can also build NFAs using a variant called the Antimirov derivative

Advantages: N

- Extremely simple

- Easy to make lazy

- Easy to extend with negative operators
- Easy to optimize by recognizing coarser
equivalences (language equivalence
leads to minimal automaton)

NetKAl Derivatives

Reduced NetKAT

Complete tests
a = switch=ne.port=n

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,q::= (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence)
0¥ (* Kleene star *)
dup (* Duplication *)

Reduced NetKAT

— for simplicity, only
consider two fields

Complete tests
a = switch=ne.port=n ‘s

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,q::= (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence)
0¥ (* Kleene star *)
dup (* Duplication *)

Reduced NetKAT

Complete tests
a = switch=ne.port=n ‘e

— for simplicity, only
consider two fields

Complete assignments
3 :=switch:=ne«port:=n
Reduced terms
0,g::= a (* complete test *)
3 (* complete assignment ¥)
0+ Q (* union *)
ok¥e (* sequence)
0¥ (* Kleene star *)
dup (* Duplication *)

Lemma: For every NetKAT term p, there is a reduced
NetKAT term p'such that =p ~ p'

Regular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:

Regular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:

Regular Interpretation: R(p) € (A u B u {dup})*
R(a) =10}

(B) = {6}

(P +q)=R(p) UR(@Q)

(P +q)=R(p)+R(@)
(
(

0%) = R(p)*

Reqgular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:

Regular Interpretation: R(p) € (A u B u {dup})*
R(a) =10}

(B) = {6}

(P +q)=R(p) UR(@Q)

(P +q)=R(p)+R(@)
(
(

0¥) = R(p)*

Unfortunately [p] = [gl does not imply R(p) = R(q)

Regular Interpretation

Can interpret reduced terms as regular languages over an
“alphabet” of complete tests, complete assignments, and dup:

Regular Interpretation: R(p) € (A u B u {dup})*
R(a) =10}

(B) = {6}

(P +q)=R(p) UR(@Q)

(P +q)=R(p)+R(@)
(
(

0%) = R(p)*

Unfortunately [p] = [gl does not imply R(p) = R(q)

Counterexample:
switch=1 * port=1 * switch=1 * port=2 ~
switch=1 * port=1 * switch=2 * port=]

Language Model

del
Language Mo

* B
- {dup})
CA-(B
Interpretation: G(p)

uage In
Lalzg) = {0 * TTq} A
: - %5‘(3 U G(q)
0+ Q) =

G()
GEO q) = G(p) ¢ Gla
(5 -

G(

G(

G C * }
D*) —({)‘Bg‘dup'BQ‘Qe
dup) = {a A

Language Model

Language Interpretation: G(p) € A« (B - {dup})*

G(a) ={a -1}
) ={a-BlaecA] \Guarded

Gl strings
G(p + g) = G(p) u G(q)

G(p - qg) =G(p) ¢ G(g)
G(
G(

0%) = G(p)*
dup) ={a:Bq-dup:Ba|aeA}

Language Model

Language Interpretation: G(p) € A« (B - {dup})*

G(a) = {a -4}

Guarded
GP)={a-plaeA} \stzigfggi
G(p +) =G(p) u G(q)
G(p+q)=G(p) ¢ G(q) - Guijfdej
G(Q*) _ G(p)* concdatendtion
G(dup) ={a+Pa-dup:Ba|aeA}

Language Model

Language Interpretation: G(p) € A« (B - {dup})*

G(a) = {a -4}

Guarded
GP)={a-plaeA} \stzigfggi
G(p +) =G(p) u G(q)
G(p+q)=G(p) ¢ G(q) - Guijfdej
G(Q*) _ G(p)* concdatendtion
G(dup) ={a+Pa-dup:Ba|aeA}

Example: a;+ 3;-dup - 33 -dup- _ -dup- 3

Language Model

Language Interpretation: G(p) € A« (B « {dup})”
G(a) ={a - 1}
G@) =la-BlacA) \iiﬁﬁéid
G(p + g) = G(p) u G(q)
G(p-q) =G(p) © G(Q) «— B Guarded.
G(Q*) — G(p)* concatenation
G(dup) ={a+Po-dup-Ra]aeA}

Example: a;+ 3;-dup - 33 -dup- _ -dup- 3

Intuition: models trajectories through the network

Language Model

Language Interpretation: G(p) € A« (B - {dup})”
G(a) ={a - 1}
G@) =la-BlacA) \iiﬁﬁi]id
G(p + g) = G(p) u G(q)
G(p-q) =G(p) © G(Q) «— B Guarded.
G(Q*) — G(p)* concatenation
G(dup) ={a+Po-dup-Ra]aeA}

Example: a;+ 3;-dup - 33 -dup- _ -dup- 3

Intuition: models trajectories through the network

Theorem: [p] =1qglifandonlyif G(p) = G(q)

NetKAT Derivatives

Goal: match all of the guarded strings of the form
A« (B-{dup})*-B
in the set denoted by a given NetKAT term p

Continuation map Dqg(p):

« Attempts to match a -« 3 - dup at the start of string

« Returns the residual NetKAT term, if successful or drop if not
 Note that we elide dup to streamline the notation

Observation map Eqp(p):
- Tries to match the final a - 3 at the end of the string
« Returns a term equivalent to true if successful or false if not

NetKAT Derivatives

NetKAT Derivatives

Continuation Map:

Dop(f = n) = Dep(f:=n) = drop

Dop(dup) = a *[a=[3]

(o + a) = Dap(p) + Dap(Q)

Dap(P *) = Dag(p) * g + 2y Eay(p) * Dyp(Q)
(0*) =Dag(p) * p* + 2y Eay(p) = Dyp(p¥)

NetKAT Derivatives

Continuation Map:

Dop(f = n) = Dep(f:=n) = drop

Dop(dup) = a ¢[a=p]

(0 +) = Dap(p) + Dagl(a)

Dap(P * 4) = Dap(p) * g + 2y Eay(p) * Dyp(a)
(0*) =Dag(p) * p* + 2 Eay(p) * Dyp(p*¥)

Observation Map:
Eap(f=n) = [0=0 < f=n]
Cap dup) drop
= [f:=n = pg]
) = Eap(p) + Eap(Q)
D *) =2y Eay(p) * Eypla)

0¥) = [a=[3] + 2y Eay(p) * Eyp(p¥)

O
o
—h
5
SN——+~"

©) ©)

o O
/\/\/-\/-\/\
@)

QO

Lemma [Foster et al. "14]: every NetKAT term has a finite number

of derivatives (modulo ACl equivalence)

Matrix Representation

Observation: can streamline definitions using matrices

Matrix Representation
Observation: can streamline definitions using matrices

Continuation Map:
D(f =n) = D(f:=n) =drop

Matrix Representation

Observation: can streamline definitions using matrices

Continuation Map: Matrix with as
D(f =n) =D(f:=n) =drop on diagonal and 0s
D(dup) = - — everywhere else
D(p +) =D(p) + D(a)

D(p +) = D(p) + l(q) + E(p) * D(q)
D(p*) = E(p¥) « D(p) * (p¥)

Matrix Representation
Observation: can streamline definitions using matrices

Continuation Map: Matrix with as
D(f =n) = D(f:=n) =drop on diagonal and 0s

—1

D(dup) = - everywhere else
0 +) = D(p) + D(q)

0+ q)=D(p) - () + E(p) - D(q)

0*) = E(p¥) * D(p) * 1(p¥)

Observation Map:
—(f=n) =

-(dup) = false
(f:=n) = ...
P+9) = E(p) + E(g)
(o= q)=E(p) - E)
(p%) = E(p)*

lmplementation and
CXperiments

Implementation Highlights

Representations:

- Bases encode sets of complete tests and assignments
- “Spines” encode sets of terms

- Sparse matrix library

Algorithmic optimizations:
 Smart constructors

» Hash consing

- Memoization

- Base set compaction

- Fast multiplication

- Fast fixpoints

- Union-find in bisimulation

EXperiments

Networks:

- Topology Zoo

- Fatlree

- Stanford Backbone

Policies:
- Shortest-path forwarding
- Stanford production policy

Questions:

- Point-to-point reachability
- All-Pairs connectivity

- Loop freedom

- Translation validation

Results
Topology Zo0o

Connectivity Loop Freedom Translation Validation
10000 ¢ ' e 10000 F ' A 100000
o ¢ ° % ¢ | . bS o
1000 | “;] 1000 | . _ 10000 . s &
— ¥ — . — _ i
& KX °° L/l . % o Lf}/ 1000 o -‘Oé
o 100 e - v 100 =l v v~
¥ s 100 | o
g ° :ﬁ g .$?. g .
= 10 ¢t 1 = 10 ¢ y 1 = 10| _she
e N Lo
P . . 1 L_as? . . 1 & : '
1000 10000 100000 1000 10000 100000 1000 10000 10000
Policy Size Policy Size Policy Size

Fatlree

Scalability Relative Performance
30000 T - .
_Connectivity ~— + Connectivity s
25000 | Translation Validation — x | Translation Validation s
Loop Freedom * 100% Loop Freedom s
i (+]
@ 20000
£ 10000 | S Sl 50%
5000 | T
0 M= '; L —
0 50000 100000 150000 200000 > 4 6 10 20 30 40 44 46

Policy Size Fanout

Stanford Backbone
Point-to-point reachability in 0.67s (vs 13s for HSA)

Conclusion

o Still (1) lots of great PL problems in networking
« SDN is an enabling technology for this kind of research

« NetKAT is a new framework for programming and reasoning
about network behavior

« Brzozowski derivatives are an elegant technique for building
automata that has borne fruit for 40 years and counting. ..

» Ongoing work
- Proof carrying code
- Probabilistic NetKAT

- Network-wide optimizations using matrices

Thank youl!

Collaborators
« Dexter Kozen (Cornell)
« Matthew Milano (Cornell)
» Alexandra Silva (Nijmegen)
e Laure Thompson (Cornell)

Papers, code, etc.

http://frenetic-lang.org/

frenetic

