
Compiling NESL for GPUs

John Reppy

University of Chicago

August 2014

Introduction

Credits

This work is a collaboration with
I Lars Bergstrom (Mozilla)
I Nora Sandler (U. of Chicago)

We also had support from NVIDIA.

August 2014 WG 2.8 — NESL/GPU 2

Introduction

GPUs

GPUs provide super-computer levels of parallelism.

For example, NVIDIA’s Fermi architecture has 14 Streaming Multiprocessors (SMs), each with 32
ALUs (1.5 TFlops peak performance).

Shared L2 Cache (768 Kb)
Shared
Global

Memory

August 2014 WG 2.8 — NESL/GPU 3

Introduction

Fermi SM

16-cores 16-cores 16 load/store units

32K by 32-bit register file
(holds thread state)

64Kb L1 cache/local memory

warp scheduler/dispatch unit warp scheduler/dispatch unit

Instruction cache

More recent designs (Kepler & Maxwell) have even more compute power.

August 2014 WG 2.8 — NESL/GPU 4

Introduction

GPU programming model

I Single-Instruction, Multiple-Thread execution model.
I Each warp (32 threads) executes the same instruction.
I SM-local barrier synchronization (fast); global atomics (slow).
I Predication used to handle divergent control flow (conditionals/loops).
I Explicit memory hierarchy:

I per-thread memory in registers on SM
I per-SM shared memory and cache
I global memory (backed by shared L2 cache)
I host memory

The “high-level” GPU programming languages (CUDA and OpenCL) expose these properties!

August 2014 WG 2.8 — NESL/GPU 5

Introduction

Programming becomes harder
C code for dot product (map-reduce):
float dotp (int n, float

*

a, float

*

b) {

float sum = 0.0f;

for (int i = 0; i < n; i++)

sum += a[i]

*

b[i];

return sum;

}

CUDA code for dot product:
__global__ void dotp (int n, const float

*

a, const float

*

b, float

*

results)

{

__shared__ float chache[ThreadsPerBlock] ;

float temp;

const unsigned int tid = blockDim.x

*

blockIdx.x + threadIdx.x;

const unsigned int idx = threadIdx.x ;

while (tid < n) {

temp += a[tid]

*

b[tid] ;

tid += blockDim.x

*

gridDim.x ;

}

chache[idx] = temp ;

__synchthreads () ;

int i = blockDim.x / 2 ;

while (i != 0) {

if (chacheindex < i)

chache[chacheindex] += chache [chacheindex + i] ;

__synchthreads () ;

i /= 2;

}

if (chacheindex == 0)

results[blockIdx.x] = chache [0];

}

// CPU side code

cudaMalloc ((void **)&V1_D , N*sizeof(float)) ;
cudaMalloc ((void **)&V2_D , N*sizeof(float)) ;
cudaMalloc ((void **)&V3_D , blockPerGrid*sizeof(float)) ;

cudaMemcpy (V1_D , V1_H , N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (V2_D , V2_H , N*sizeof(float), cudaMemcpyHostToDevice);

dotp <<<blockPerGrid, ThreadPerBlock>>> (N, V1_D, V2_D, V3_D);

V3_H = new float [blockPerGrid] ;
cudaMemcpy (V3_H, V3_D, N*sizeof(float), cudaMemcpyDeviceToHost);

float sum = 0 ;
for (int i = 0 ; i<blockPerGrid ; i++)

sum += V3_H[i] ;

delete V3_H;

August 2014 WG 2.8 — NESL/GPU 6

Introduction

Better programming models for GPUs

I Domain-specific languages can be harnessed to both lift the level of programming and
provide portable parallelism.

I Higher-level, but more restricted, programming models can be mapped to efficient parallel
codes.

This talk is about the second approach.

August 2014 WG 2.8 — NESL/GPU 7

Nested Data Parallelism

NESL

I NESL is a first-order functional language for parallel programming over sequences designed
by Guy Blelloch [CACM ’96].

I Provides parallel for-each operation
{ x+y : x in xs; y in ys }

I Provides other parallel operations on sequences, such as reductions, prefix-scans, and
permutations.

function dotp (xs, ys) =

sum ({ x

*

y : x in xs; y in ys })

I Supports Nested Data Parallelism (NDP) — components of a parallel computation may
themselves be parallel.

August 2014 WG 2.8 — NESL/GPU 8

Nested Data Parallelism

NDP example: sparse-matrix times vector

2

66664

1 0 4 0 0
0 3 0 0 2
0 0 0 5 0
6 7 0 0 8
0 0 9 0 0

3

77775

2

66664

1
2
3
4
5

3

77775

Want to avoid computing products where
matrix entries are 0.

Represent matrix as
sequence of sequences of
pairs

(0, 1) (2, 4)

(1, 3) (4, 2)

(3, 5)

(0, 6) (1, 7) (4, 8)

(0, 1)

August 2014 WG 2.8 — NESL/GPU 9

Nested Data Parallelism

NDP example: sparse-matrix times vector

In NESL, this algorithm has a compact expression:
function svxv (sv, v) = sum ({ x

*

v[i] : (i, x) in sv })

function smxv (sm, v) = { svxv (sv, v) : sv in sm }

Notice that the smxv is a map of map-reduce subcomputations; i.e., nested data parallelism.

August 2014 WG 2.8 — NESL/GPU 10

Nested Data Parallelism

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in sub-problem sizes.

(0, 1) (2, 4)

(1, 3) (4, 2)

(3, 5)

(0, 6) (1, 7) (4, 8)

(0, 1)

0 2 1 4 3 0 1 4 0

1 4 3 2 5 6 7 8 1

2 2 1 3 1

Flattening transformation converts NDP
to flat DP (including AoS to SoA)

August 2014 WG 2.8 — NESL/GPU 11

Nested Data Parallelism

NESL on GPUs

I NESL was designed for wide-vector machines (SIMD)
I Good fit for GPU computation
I First try [ICFP ’12]:

I Implement Blelloch’s VCODE VM on GPUs using CUDA and Thrust.
I Added map fusion.
I Outperforms CPU on NDP benchmarks.
I As fast as hand-written CUDA in some cases (Quickhull), but usually slower (worst case: 100

times slower on Barnes-Hut).

August 2014 WG 2.8 — NESL/GPU 12

Nested Data Parallelism

Areas for improvement

There are a number of areas for improvement.
I Better fusion:

I Fuse generators, scans, and reductions with maps.
I “Horizontal fusion,” (fuse independent maps over the same index space).

I Better segment descriptor management.
I Better memory management.

It proved difficult/impossible to support these improvements.

August 2014 WG 2.8 — NESL/GPU 13

Nessie

Nessie

New NESL compiler built from scratch.

I Designed to support better fusion, etc..
I Backend transforms flattened code to CUDA in several steps.
I Testbed for future optimization experiments:

I Vectorization avoidance (works for SIMT but not SIMD) [Keller et al ’12]
I Piecewise execution [Prins ’96; Madsen and Filinski ’13]
I Blocking (i.e., multiple elements per CUDA thread)

August 2014 WG 2.8 — NESL/GPU 14

Nessie

Nessie compiler

I Front-end produces monomorphic, direct-style IR.
I Flattening eliminates NDP and produces Flan, which is a flat-vector language.
I Shape analysis is used to tag vectors with size information (symbolic in some cases).
I Backend transforms flattened code to CUDA in several steps.

August 2014 WG 2.8 — NESL/GPU 15

Nessie

Generating CUDA from Flan

To get from Flan to CUDA takes a number of transformation steps.

I Translate Flan to FuseAST, which makes maps, reductions, etc. explicit.
I Fuse map compositions (“vertical fusion”).
I Compute the PDG for the FuseAST program [Ferrante et al 1987]
I For each group of computational nodes in a control region, we compute a schedule based on

data dependencies and synchronization requirements.
I Using the schedules, we translate the program into �cu, which makes the CPU/GPU

distinction explicit.
I CUDA code is generated from the �cu (plus some library code).

August 2014 WG 2.8 — NESL/GPU 16

Nessie

Example

Consider the following NESL function:

function sumprods (xs, ys, zs) = let

s1 = sum ({x

*

y : x in xs; y in ys});

s2 = sum ({x

*

z : x in xs; z in zs})

in

s1 + s2 ;

Stage 1 is translated to a CUDA kernel that produces two scalar results

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

Consider the following NESL function:

function sumprods (xs, ys, zs) = let

s1 = sum ({x

*

y : x in xs; y in ys});

s2 = sum ({x

*

z : x in xs; z in zs})

in

s1 + s2 ;

sumprods

EXIT

+

+ REDUCE + REDUCE

map MUL (xs, ys)map MUL (xs, ys)

Stage 1 is translated to a CUDA kernel that produces two scalar results

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

Consider the following NESL function:

function sumprods (xs, ys, zs) = let

s1 = sum ({x

*

y : x in xs; y in ys});

s2 = sum ({x

*

z : x in xs; z in zs})

in

s1 + s2 ;

Stage 1

Stage 2+

+ REDUCE + REDUCE

MAP MUL (xs, zs)MAP MUL (xs, ys)

Stage 1 is translated to a CUDA kernel that produces two scalar results

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

The �cu representation:
task task1 () (xs : [int], ys : [int], zs : [int]) =

let (t1 : [int], t2 : [int]) =

map (kernel (x, y, z) => (x

*

y, x

*

z)) (xs, ys, zs)

let s1 = reduce t1

let s2 = reduce t2

in

(s1, s2)

function sumprods (xs : [int], ys : [int], zs : [int]) =

let (s1, s2) = run task1 () (xs, ys, zs)

in

s1+s2

August 2014 WG 2.8 — NESL/GPU 18

Conclusion

Status and future work

I Generating running code for a number of the simpler examples (e.g., dot product).
I Optimized reduce, scan, etc., operations [NVIDIA].
I Early performance measurements are promising (1.3 speedup on dot product over VCODE

version).
I Lots of work to do, particularly for segmented operations.
I Want to develop a proper calculus of heterogeneous computation (�cu is a first step).
I Lots of optimizations to explore!

August 2014 WG 2.8 — NESL/GPU 19

	Introduction
	Nested Data Parallelism
	Nessie
	Conclusion

