Compiling NESL for GPUs

John Reppy

University of Chicago

August 2014

Credits

This work is a collaboration with

» Lars Bergstrom (Mozilla)

» Nora Sandler (U. of Chicago)
We also had support from NVIDIA.

August 2014 WG 2.8 — NESL/GPU

GPUs

GPUs provide super-computer levels of parallelism.

For example, NVIDIA’s Fermi architecture has 14 Streaming Multiprocessors (SMs), each with 32
ALUs (1.5 TFlops peak performance).

| S T N S

Shared
Shared L2 Cache (768 Kb) P Global
Memory

August 2014 WG 2.8 — NEsL/GPU

Fermi SM

[Instruction cache |
y y
| warp scheduler/dispatch unitl | warp scheduler/dispatch unitl

! !

32K by 32-bit register file

(holds thread state)
lIUUUUU (U] T LTI

ST DT DT

64Kb LI cachellocal memory

More recent designs (Kepler & Maxwell) have even more compute power.

GPU programming model

v

Single-Instruction, Multiple-Thread execution model.

v

Each warp (32 threads) executes the same instruction.

v

SM-local barrier synchronization (fast); global atomics (slow).

\4

Predication used to handle divergent control flow (conditionals/loops).

v

Explicit memory hierarchy:

per-thread memory in registers on SM

» per-SM shared memory and cache

» global memory (backed by shared L2 cache)
» host memory

v

The “high-level” GPU programming languages (CUDA and OpenCL) expose these properties!

August 2014 WG 2.8 — NESL/GPU 5

Programming becomes harder

C code for dot product (map-reduce):

float dotp (int n, float *a, float «b) {
float sum = 0.0f;
for (int i = 0; i < n; i++)
sum += al[i] = b[i];
return sum;

CUDA code for dot product:

__global__ void dotp (int n, const float +a, const float *b, float rresults)

shared__ float chache[ThreadsPerBlock] ;
float temp;
const unsigned int tid = blockDim.x = blockIdx.x + threadldx.x;

const unsigned int idx = threadldx.x ; // CPU side code

cudaMalloc ((void ++)&V1_D , Nxsizeof (float)) ;

while (tid < n) { . cudaMalloc ((void ++)&V2 D , Nesizeof (float)) ;

temp += a[tid] « b[tid] ; cudaMalloc ((void ++)&V3_D , blockPerGridssizeof (float)) ;

tid += blockDim.x + gridDim.x ;
} cudaMemcpy (V1_D , VI_H , £ (£loat) , ToDevice) ;
chache[idx] = temp ; cudaMemcpy (V2D , V2_H , Nesizeof (float), cudaMemcpyHostToDevice);
__synchthreads () ; dotp <<<blockPerGrid, ThreadPerBlock>>> (N, V1_D, V2_D, V3_D);
im_: i = blockDim.x / 2 ; V3_H = new float [blockPerGrid]
while (i !=0) { cudaMemcpy (V3_H, Nssizeof (float), cudaMemcpyDeviceToHost);

if (chacheindex < i)

chache [chacheindex] += chache [chacheindex + i] ; float sum = 0 ;
__synchthreads () ; for (int i = 0 ;
) i/=2; sum += V3_H[i]
if (chacheindex == 0) delete V3_;
results([blockIdx.x] = chache [0]; N

August 2014

i<blockPerGrid ; it+)

Introduction

Better programming models for GPUs

» Domain-specific languages can be harnessed to both lift the level of programming and
provide portable parallelism.

» Higher-level, but more restricted, programming models can be mapped to efficient parallel
codes.

This talk is about the second approach.

August 2014 WG 2.8 — NESL/GPU

Nested Data Parallelism

NESL

» NESL is a first-order functional language for parallel programming over sequences designed
by Guy Blelloch [CACM ’96].
» Provides parallel for-each operation
{ xty : x in xs; y in ys }
» Provides other parallel operations on sequences, such as reductions, prefix-scans, and
permutations.
function dotp (xs, ys) =
sum ({ x*y : x in xs; y in ys })
» Supports Nested Data Parallelism (NDP) — components of a parallel computation may

themselves be parallel.

August 2014 WG 2.8 — NESL/GPU 8

Nested Data Parallelism

NDP example: sparse-matrix times vector

Represent matrix as
sequence of sequences of

1 0400 1 pairs

03 002 2

00050 3

6 7 0 0 8 4

00900]]|5 oD es

. . —>| (1,3) | 4,2)
Want to avoid computing products where
matrix entries are 0. (.5)
0,6) | (1,7) | 4,8)

> (0,1)

August 2014 WG 2.8 — NESL/GPU 9

Nested Data Parallelism

NDP example: sparse-matrix times vector

In NESL, this algorithm has a compact expression:

function svxv (sv, v) = sum ({ x *= v[i] : (i, x) in sv })

function smxv (sm, v) = { svxv (sv, v) : sv in sm }

Notice that the smxv is a map of map-reduce subcomputations; i.e., nested data parallelism.

August 2014 WG 2.8 — NESL/GPU 10

Nested Data Parallelism

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in sub-problem sizes.

©,1)

2,4)

(1.3)

4.2)

(3.5

(0,6)

.7

4.8

> (0,1)

August 2014

Flattening transformation converts NDP
to flat DP (including AoS to SoA)

WG 2.8 — NESLGPU 1

NESL on GPUs

» NESL was designed for wide-vector machines (SIMD)
» Good fit for GPU computation
» First try [ICFP *12]:
» Implement Blelloch’s VCODE VM on GPUs using CUDA and Thrust.
» Added map fusion.
» Outperforms CPU on NDP benchmarks.
>

As fast as hand-written CUDA in some cases (Quickhull), but usually slower (worst case: 100
times slower on Barnes-Hut).

August 2014 WG 2.8 — NESL/GPU 12

Nested Data Parallelism

Areas for improvement

There are a number of areas for improvement.

» Better fusion:

» Fuse generators, scans, and reductions with maps.
» “Horizontal fusion,” (fuse independent maps over the same index space).

» Better segment descriptor management.

» Better memory management.

It proved difficult/impossible to support these improvements.

August 2014 WG 2.8 — NESL/GPU 13

Nessie

Nessie

New NESL compiler built from scratch.

» Designed to support better fusion, efc..
» Backend transforms flattened code to CUDA in several steps.

» Testbed for future optimization experiments:

» Vectorization avoidance (works for SIMT but not SIMD) [Keller et al *12]
» Piecewise execution [Prins "96; Madsen and Filinski *13]
» Blocking (i.e., multiple elements per CUDA thread)

August 2014 WG 2.8 — NESL/GPU 14

Nessie

Nessie compiler

v

Front-end produces monomorphic, direct-style IR.

v

Flattening eliminates NDP and produces Flan, which is a flat-vector language.

v

Shape analysis is used to tag vectors with size information (symbolic in some cases).

v

Backend transforms flattened code to CUDA in several steps.

August 2014 WG 2.8 — NESL/GPU 15

Nessie

Generating CUDA from Flan

To get from Flan to CUDA takes a number of transformation steps.

»

Translate Flan to Fuse AST, which makes maps, reductions, efc. explicit.
Fuse map compositions (“vertical fusion”).
Compute the PDG for the FuseAST program [Ferrante et al 1987]

For each group of computational nodes in a control region, we compute a schedule based on
data dependencies and synchronization requirements.

Using the schedules, we translate the program into \.,, which makes the CPU/GPU
distinction explicit.

CUDA code is generated from the A, (plus some library code).

August 2014 WG 2.8 — NESL/GPU 16

Nessie

Example

Consider the following NESL function:

function sumprods (xs, ys, zs) = let
sl = sum ({x y : x in xs; y in ys});
s2 = sum ({x * z : x in xs; z in zs})
in
sl + s2 ;

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

Consider the following NESL function: -
sumprods

function sumprods (xs, ys, zs) = let
sl = sum ({x y : x in xs; y in ys});
s2 = sum ({x * z : x in xs; z in zs})
in
sl + s2 ;

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

Consider the following NESL function:

function sumprods (xs, ys, zs) = let

s2 = sum ({x * z : x in xs; z in zs})
in
sl + s2 ;

+ REDUCE + REDUCE

Stage 2

Stage 1 is translated to a CUDA kernel that produces two scalar results

August 2014 WG 2.8 — NESL/GPU 17

Nessie

Example

The A, representation:

task taskl () (xs : [int], ys : [int], zs : [int]) =
let (tl1 : [int], t2 : [int]) =
map (kernel (x, y, z) =>
let sl = reduce tl
let s2 = reduce t2

(x*xy, x*z)) (xs, ys, zs)

in
(sl, s2)
function sumprods (xs : [int], ys : [int], zs : [int]) =
let (sl, s2) = run taskl () (xs, ys, zs)
in
sl+s2

August 2014 WG 2.8 — NESL/GPU

Conclusion

Status and future work

» Generating running code for a number of the simpler examples (e.g., dot product).
» Optimized reduce, scan, efc., operations [NVIDIA].

» Early performance measurements are promising (1.3 speedup on dot product over VCODE
version).

» Lots of work to do, particularly for segmented operations.
» Want to develop a proper calculus of heterogeneous computation (A, is a first step).

» Lots of optimizations to explore!

August 2014 WG 2.8 — NESL/GPU 19

	Introduction
	Nested Data Parallelism
	Nessie
	Conclusion

