Compiling NESL for GPUs

John Reppy

University of Chicago
August 2014

Credits

This work is a collaboration with

- Lars Bergstrom (Mozilla)
- Nora Sandler (U. of Chicago)

We also had support from NVIDIA.

GPUs

GPUs provide super-computer levels of parallelism.
For example, NVIDIA's Fermi architecture has 14 Streaming Multiprocessors (SMs), each with 32 ALUs (1.5 TFlops peak performance).

Fermi SM

More recent designs (Kepler \& Maxwell) have even more compute power.

GPU programming model

- Single-Instruction, Multiple-Thread execution model.
- Each warp (32 threads) executes the same instruction.
- SM-local barrier synchronization (fast); global atomics (slow).
- Predication used to handle divergent control flow (conditionals/loops).
- Explicit memory hierarchy:
- per-thread memory in registers on SM
- per-SM shared memory and cache
- global memory (backed by shared L2 cache)
- host memory

The "high-level" GPU programming languages (CUDA and OpenCL) expose these properties!

Programming becomes harder

C code for dot product (map-reduce):

```
float dotp (int n, float *a, float *b) {
    float sum = 0.0f;
    for (int i = 0; i < n; i++)
        sum += a[i] * b[i];
    return sum;
}
```


CUDA code for dot product:

```
_global__ void dotp (int n, const float *a, const float *b, float *results)
    __shared__ float chache[ThreadsPerBlock] ;
    float temp;
    const unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
    const unsigned int idx = threadIdx.x.
    while (tid< n)
        temp += a[tid] * b[tid]
        tid += blockDim.x * gridDim.x ;
    f
    chache[idx] = temp ;
```

 __synchthreads ()
 int \(i=\) blockDim.x / 2 ;
 int i = blockDim
 if (chacheindex < i)
 chache[chacheindex] += chache [chacheindex + i]
 i \(\quad \begin{aligned} & \text { synchthreads } \\ & \text { e }\end{aligned}\)
 if (chacheindex \(=0\))
 results[blockIdx.x] = chache \([0]\);
 ,

```
C CPU side code
    cudaMalloc ((void **)&V1_D, N*sizeof(float))
    cudaMalloc ((void **)&V3_D ,'blockPerGrid*sizeof(float)) ;
    cudaMemcpy (V1_D, V1_H, N*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy (V2_D, V2_H, N*sizeof(float), cudaMemcpyHostToDevice);
    dotp <<<blockPerGrid, ThreadPerBlock>>> (N, V1_D, V2_D, V3_D);
    V3_H = new float [blockPerGrid]
    cudaMemcpy (V3_H, V3_D, N*sizeof(float), cudaMemcpyDeviceToHost);
float sum = 0;
for (int i = 0; i<blockPerGrid ; i++)
    sum += V3_H[i] ;
delete V3_H;
```


Better programming models for GPUs

- Domain-specific languages can be harnessed to both lift the level of programming and provide portable parallelism.
- Higher-level, but more restricted, programming models can be mapped to efficient parallel codes.

This talk is about the second approach.

NESL

- NESL is a first-order functional language for parallel programming over sequences designed by Guy Blelloch [CACM '96].
- Provides parallel for-each operation

$$
\{x+y: x \text { in } x s ; y \text { in } y s\}
$$

- Provides other parallel operations on sequences, such as reductions, prefix-scans, and permutations.

```
function dotp (xs, ys) =
    sum ({ x*y : x in xs; y in ys })
```

- Supports Nested Data Parallelism (NDP) - components of a parallel computation may themselves be parallel.

NDP example: sparse-matrix times vector

$\left[\begin{array}{lllll}\mathbf{1} & 0 & \mathbf{4} & 0 & 0 \\ 0 & \mathbf{3} & 0 & 0 & \mathbf{2} \\ 0 & 0 & 0 & \mathbf{5} & 0 \\ \mathbf{6} & \mathbf{7} & 0 & 0 & \mathbf{8} \\ 0 & 0 & \mathbf{9} & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$

Represent matrix as sequence of sequences of pairs

NDP example: sparse-matrix times vector

```
In NESL, this algorithm has a compact expression:
function svxv (sv, v) = sum ({ x * v[i] : (i, x) in sv })
function smxv (sm, v) = { Svxv (sv, v) : Sv in sm }
```

Notice that the smxv is a map of map-reduce subcomputations; i.e., nested data parallelism.

NDP example: sparse-matrix times vector

Naive parallel decomposition will be unbalanced because of irregularity in sub-problem sizes.

1	4	3	2	5	6	7	8	1

Flattening transformation converts NDP to flat DP (including AoS to SoA)

NESL on GPUs

- NeSL was designed for wide-vector machines (SIMD)
- Good fit for GPU computation
- First try [ICFP '12]:
- Implement Blelloch's VCODE VM on GPUs using CUDA and Thrust.
- Added map fusion.
- Outperforms CPU on NDP benchmarks.
- As fast as hand-written CUDA in some cases (Quickhull), but usually slower (worst case: 100 times slower on Barnes-Hut).

Areas for improvement

There are a number of areas for improvement.

- Better fusion:
- Fuse generators, scans, and reductions with maps.
" "Horizontal fusion," (fuse independent maps over the same index space).
- Better segment descriptor management.
- Better memory management.

It proved difficult/impossible to support these improvements.

Nessie

New NesL compiler built from scratch.

- Designed to support better fusion, etc..
- Backend transforms flattened code to CUDA in several steps.
- Testbed for future optimization experiments:
- Vectorization avoidance (works for SIMT but not SIMD) [Keller et al '12]
- Piecewise execution [Prins '96; Madsen and Filinski '13]
- Blocking (i.e., multiple elements per CUDA thread)

Nessie compiler

- Front-end produces monomorphic, direct-style IR.
- Flattening eliminates NDP and produces Flan, which is a flat-vector language.
- Shape analysis is used to tag vectors with size information (symbolic in some cases).
- Backend transforms flattened code to CUDA in several steps.

Generating CUDA from Flan

To get from Flan to CUDA takes a number of transformation steps.

- Translate Flan to FuseAST, which makes maps, reductions, etc. explicit.
- Fuse map compositions ("vertical fusion").
- Compute the PDG for the FuseAST program [Ferrante et al 1987]
- For each group of computational nodes in a control region, we compute a schedule based on data dependencies and synchronization requirements.
- Using the schedules, we translate the program into $\lambda_{c u}$, which makes the CPU/GPU distinction explicit.
- CUDA code is generated from the $\lambda_{c u}$ (plus some library code).

Example

Consider the following NESL function:

```
function sumprods (xs, ys, zs) = let
    s1 = sum ({x * y : x in xs; y in ys});
    s2 = sum ({x * z : x in xs; z in zs})
in
    s1 + s2 ;
```


Example

Consider the following NESL function:

```
function sumprods (xs, ys, zs) = let
    s1 = sum ({x * y : x in xs; y in ys});
    s2 = sum ({x * z : x in xs; z in zs})
in
    s1 + s2 ;
```


Example

Consider the following NESL function:

```
function sumprods (xs, ys, zs) = let
    s1 = sum ({x * y : x in xs; y in ys});
    s2 = sum ({x * z : x in xs; z in zs})
in
    s1 + s2 ;
```


Stage 1 is translated to a CUDA kernel that produces two scalar results

Example

The $\lambda_{c u}$ representation:

```
task task1 () (xs : [int], ys : [int], zs : [int]) =
    let (t1 : [int], t2 : [int]) =
            map (kernel (x, y, z) => (x*y, x*z)) (xs, ys, zs)
    let s1 = reduce t1
    let s2 = reduce t2
    in
        (s1, s2)
```

function sumprods (xs : [int], ys : [int], zs : [int]) =
let (s1, s2) = run task1 () (xs, ys, zs)
in
s1+s2

Status and future work

- Generating running code for a number of the simpler examples (e.g., dot product).
- Optimized reduce, scan, etc., operations [NVIDIA].
- Early performance measurements are promising (1.3 speedup on dot product over VCODE version).
- Lots of work to do, particularly for segmented operations.
- Want to develop a proper calculus of heterogeneous computation ($\lambda_{c u}$ is a first step).
- Lots of optimizations to explore!

