Soundness is not Sufficient*

Fritz Henglein DIKU

WG2.8, 2014-08-13 Estes Park, CO

Disclaimer

- This is an idea (= rambling) talk.
- The ideas and the intentions behind them are important, I believe.
 - The technical definitions may not be the definite ones (yet).
- I have likely overlooked some results of yours -- tell me.
- Ask, comment, interrupt any time.
 - I'll skip slides (which ones I don't know yet)

Goals

- Propose informal criteria for what a static analysis should satisfy to warrant being called a "good" static analysis.
- Propose technical criteria for capturing some aspects of the informal criteria
- Identify questions for further work, both conceptual and technical.

Program property

- A program property is a predicate on programs.
- A program property P is semantic (extensional) if

$$p \cong q \Rightarrow (P(p) \Leftrightarrow P(q))$$

• A program property P is **trivial** if P(p) for all p, or $\neg P(p)$ for all p.

Behavioral equivalence

Rice's Curse

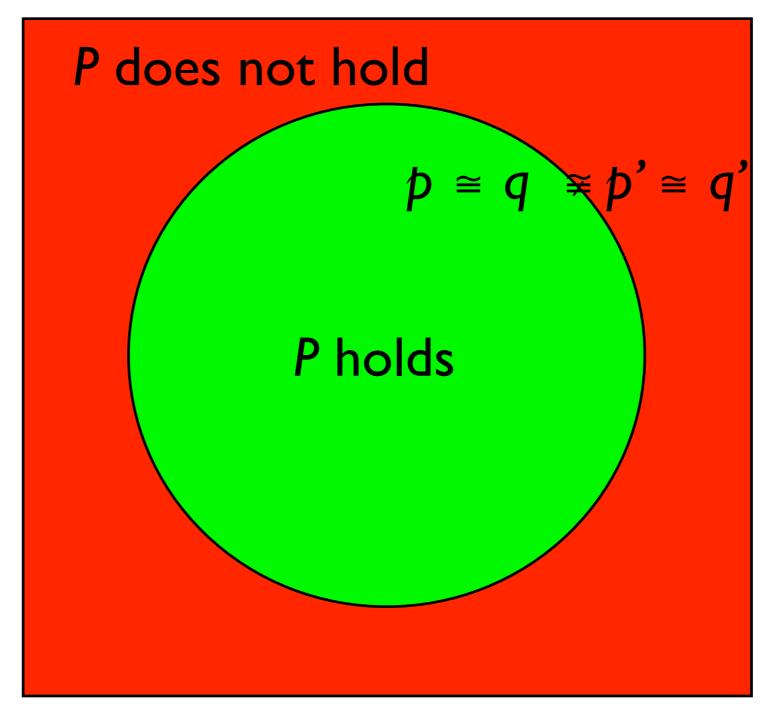
Theorem:

Let L be a Turing-complete programming language, P a nontrivial semantic program property.

Then P is undecidable.

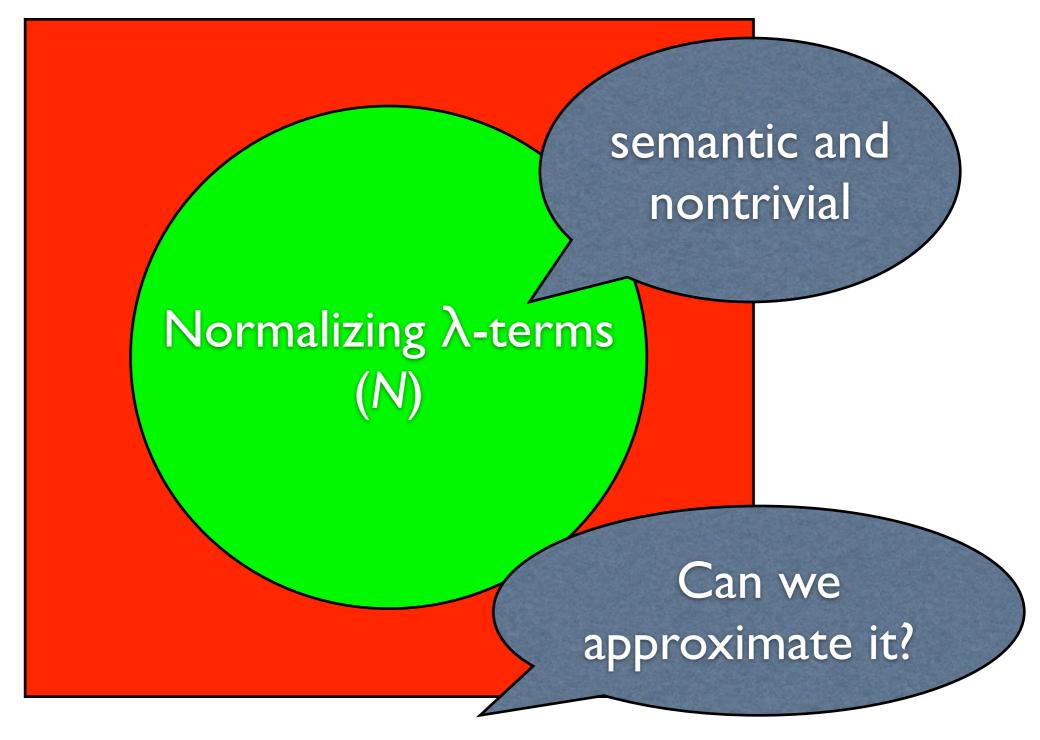
Rice, Classes of recursively enumerable sets and their decision problems, Trans. AMS 1953

Rice's Curse, pictorially



P is not decidable!

Rice's Curse: Example



Corollary: N is not decidable!

Static analysis

- Given:
 - P: Extensional program property
 - (S, S'): Static analysis for P
- We want of (S, S'):
 - Soundness: $S \subseteq P, S' \subseteq \neg P$

Is that sufficient? No, we also want...

Goodness

What does "good" mean??

Goodness characteristics

- Usefulness:
 - Has some effective use, fitness for a purpose
- Declarative specification:
 - Separation of what the analysis computes from how it computes it (the particular algorithm[s] used)

Goodness characteristics

- Unimprovability:
 - Can't get better approximation at lower computational cost
- Predictability:
 - Predictability under certain, specified program transformations and changes

Goodn Algorithm need not be compositional, only its result

- Compositional certification
 - Explicit, modular (syntax-oriented),
 efficiently checkable logical explanation of analysis results
- Constructive interpretation
 - Operational interpretation of certificate, not just of yes/no answer

Goodness characteris

Adaptiveness:

- Easy instances are handled efficiently
- Hard instances may take more time.
- Parameter sensitivity
 - Scale well with parameter, which captures expectations on input distribution.

Properties
of particular
algorithm A
implementing an
analysis S

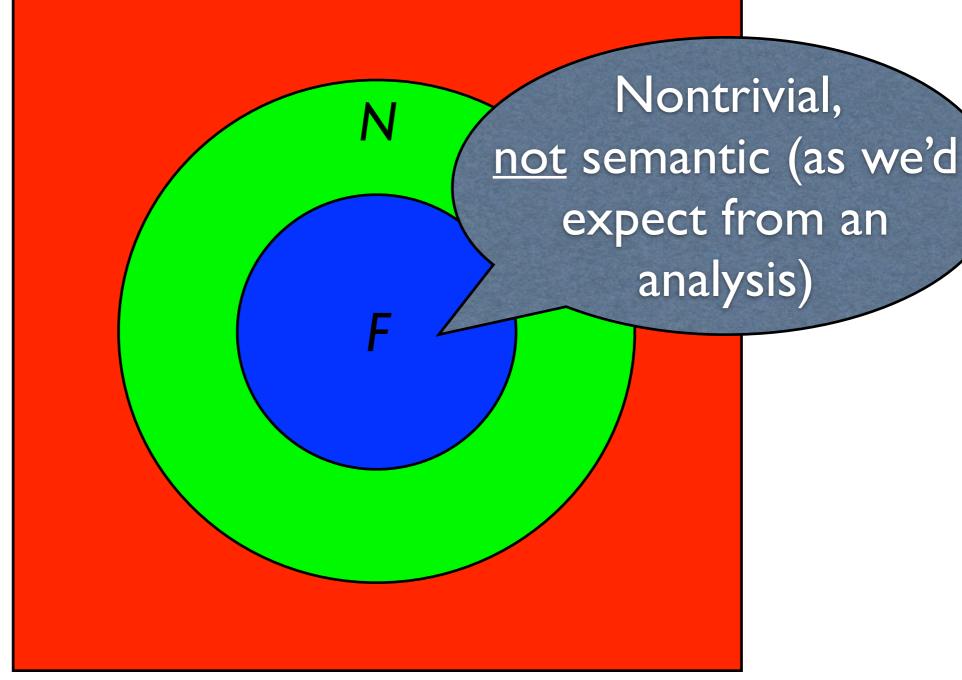
Static Analysis for N

- Consider normalizability of λ -terms.
- Is System F typability a "good" static analysis for N?

System F for N

- Sound? 🗸
- Declarative?
- Compositionally certified?
- Useful?
- Predictability properties? (
- Unimprovability? Hmm...

Static Analysis for N



Theorem: F is undecidable

System F for N: Improvability

 Acceptable for System F (as a static analysis for N) to be undecidable, as long as there is no better approximation of N that is decidable (more efficient).

Unimprovability via separability Property of analysis, not

Property
of analysis, not
any particular
algorithm

- A static analysis (S,S') for P is improvable if there exists (T,T') such that:
 - $S \subseteq T \subseteq P, S' \subseteq T' \subseteq \neg P$, and
 - T and T' have "lower" (structural) complexity than S and S'; e.g. S is NP-hard, but T is in P (with $S' = T' = \emptyset$).

Recursive inseparability

Classical definition in recursion theory: "... from <u>complement of</u> P if there is no B..."

Definition:

Let $A \subseteq P$. A is recursively inseparable from P if there is no B such that $A \subseteq B \subseteq P$ and B is decidable ("recursive").

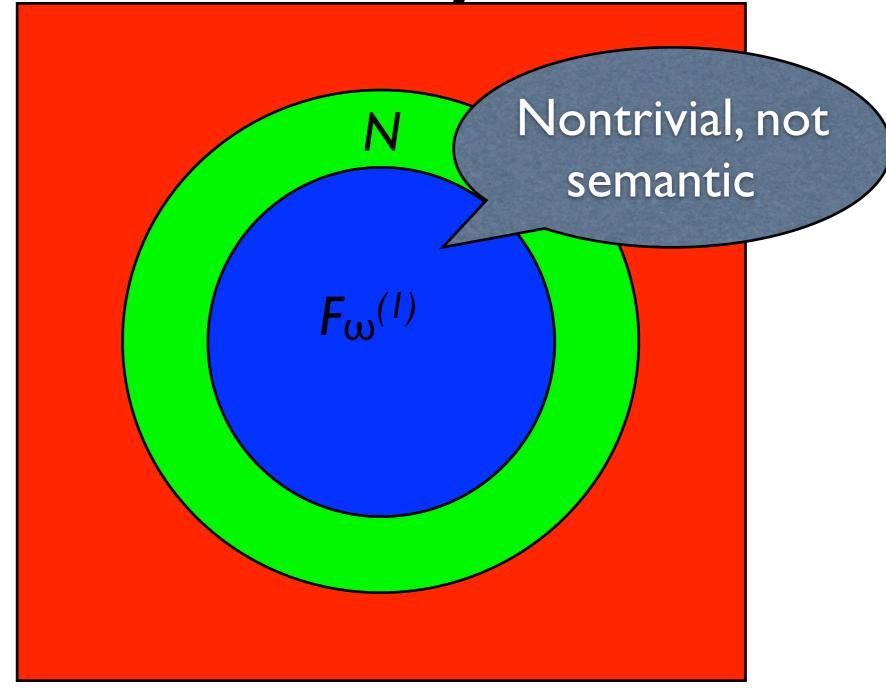
Is F recursively inseparable from N?

Is F recursively inseparable from 122

- The answer is...
- We don't know!
 - Does not follow from Well's proof
- We don't know whether F is improvable:
 - There may be a (type) system out there that extends System F, guarantees N and is decidable.

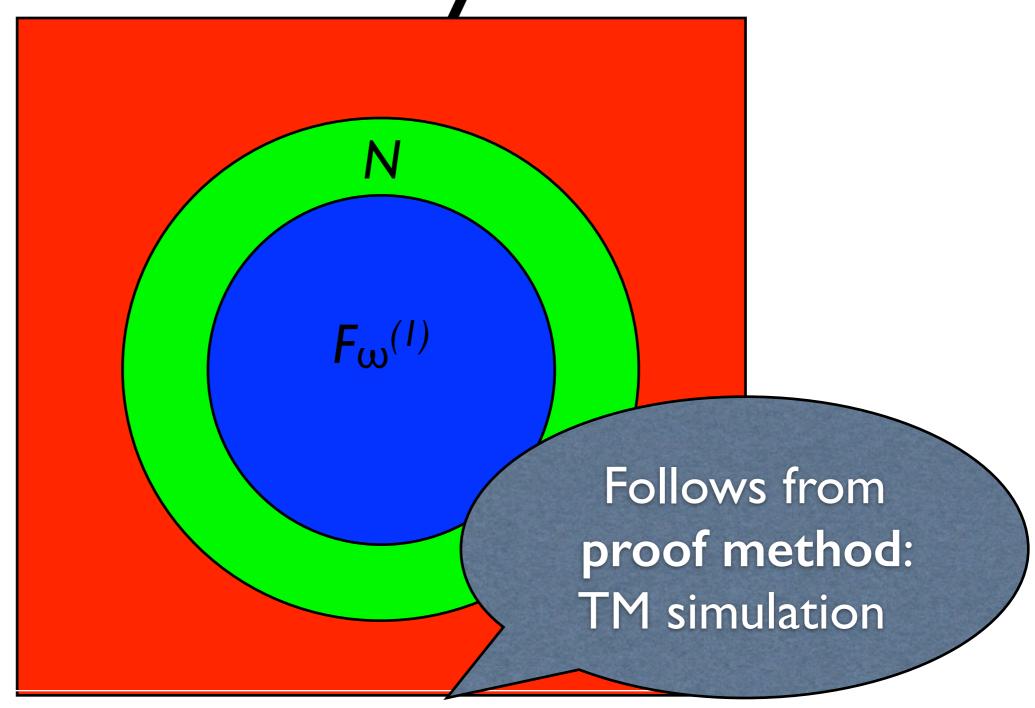
(I don't believe it is improvable)

Another analysis for N



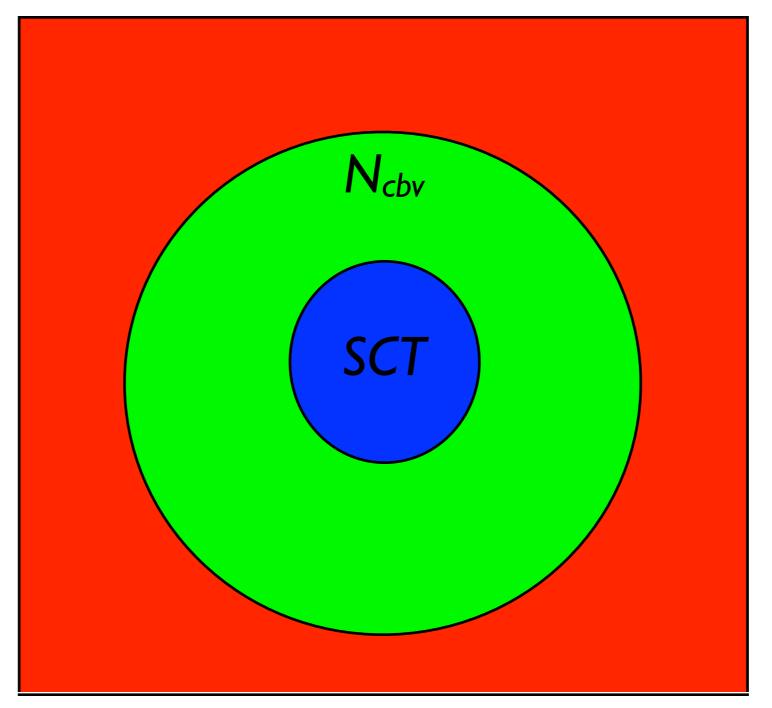
Theorem: $F_{\omega}^{(1)}$ is undecidable

Another analysis for N



Theorem: $F_{\omega}^{(I)}$ is recursively inseparable from N

SCT for N

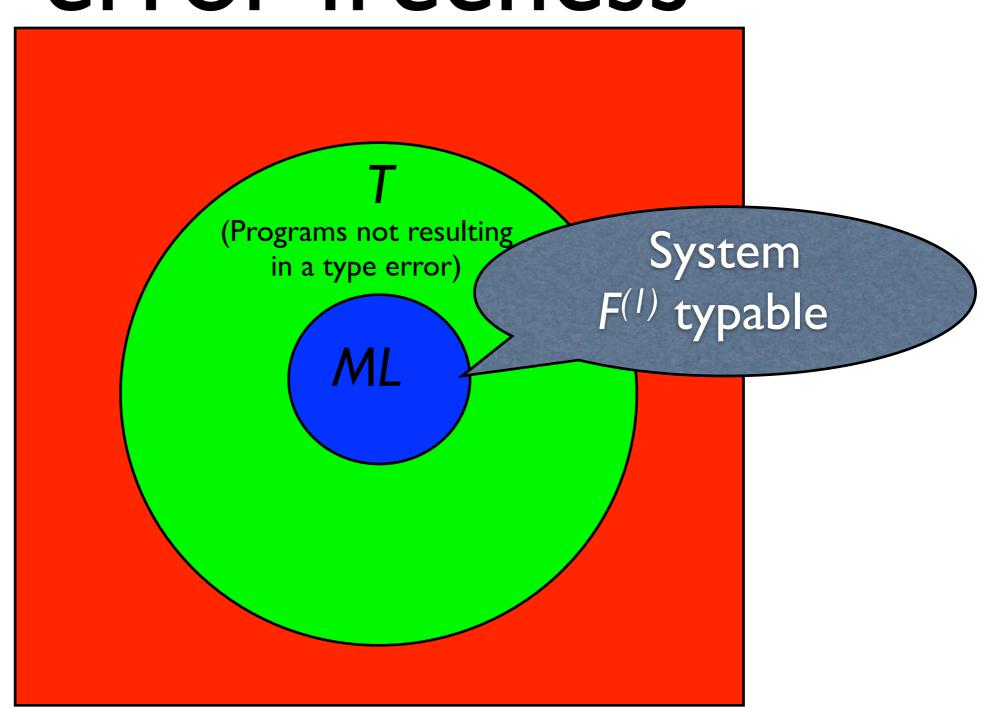


Theorem: SCT is decidable.

(Complexity: PSCACE-complete)

Bohr, Jones, Termination analysis of the untyped lambda-calculus, RTA 2004

An analysis for type error freeness



ML goodness

- Invariant under let-reduction: $ML(let x = e in e') \Leftrightarrow ML(e'[e/x])$
- Preservation under β -reduction: ML($(\lambda x.e)e'$) => ML(e[e'/x])

if x occurs in e

- Preservation under eta-reduction: $ML(\lambda x.ex) => ML(e)$
- ML is invariant under arbitrary unfolding (inlining) and folding (refactoring) of (nonrecursive) definitions

ML typability as static analysis for type error freeness

• Is ML typability improvable?

ML typability as static analysis for type No, ML is not improvable for type error detection

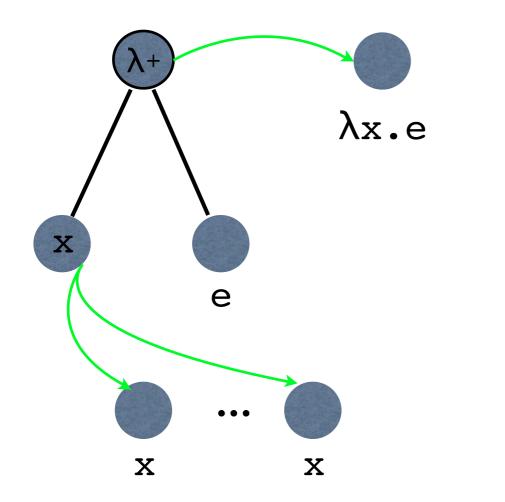
Theorem: Let $ML \subseteq B \subseteq T$. Then B is DEXPTIME-hard.

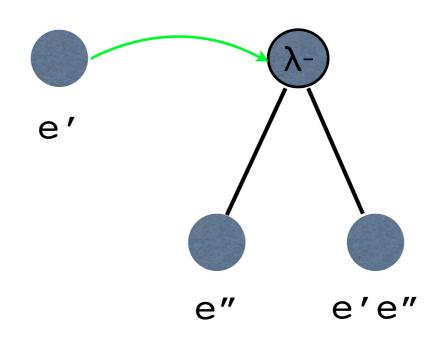
Henglein, A Lower Bound for Full Polymorphic Type Inference: Girard-Reynolds Typability is DEXPTIME-hard, Utrecht U.TR RUU-CS-90-14, 1990

(0CFA in direct style)

Build graph with flow and tree edges. One node per subexpression, plus some extra ones (λ -).

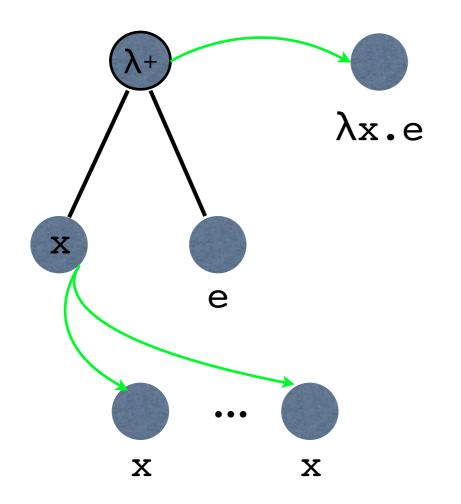
I. Base flow rules, resulting in graph G:

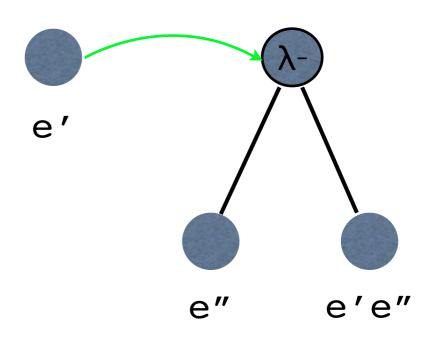




OCFA in direct style

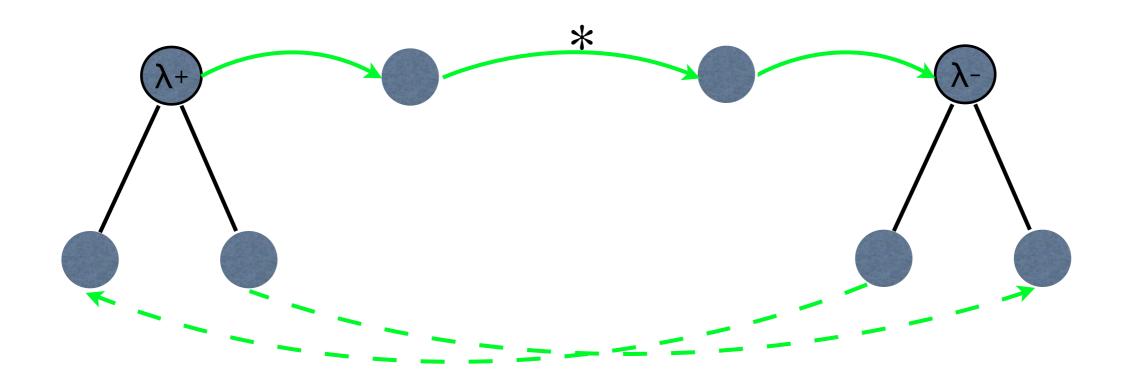
O(n) nodes O(n) edges





0CFA in direct style

2. Closure rule:



mVFA 0CFA in direct style

Algorithm:

Close base graph under closure rule, resulting in graph G.

0CFA in direct style

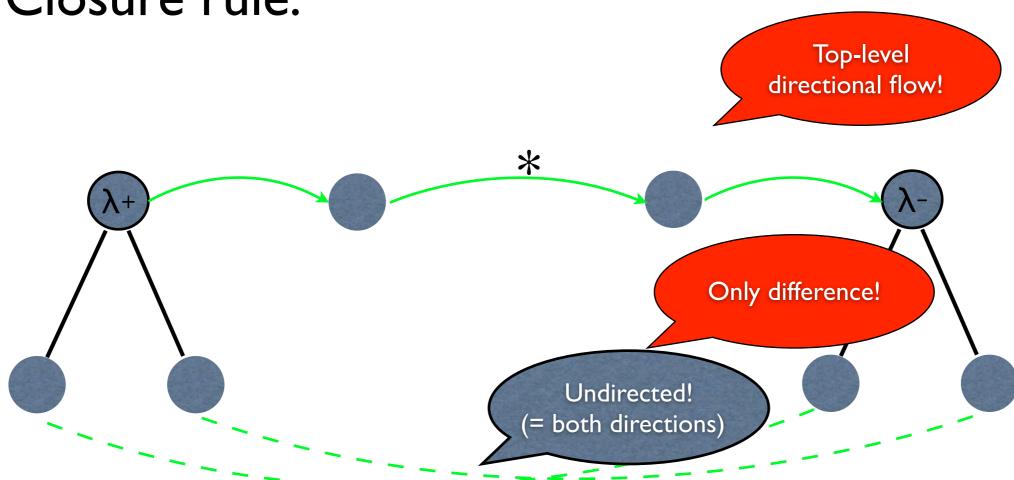
Theorem: mVFA can be implemented in time $O(d m^* + p n + q)$, where

- •n: number of nodes
- •d: maximum outdegree of nodes in G,
- • m^* : number of flow edges in G^* (flow-transitive closure of G),
- •p: number of closure rule applications.
- •q: number of reachability queries

Simple closure analysis

I. Base rules: As for mVFA

2. Closure rule:



Simple closure analysis

Algorithm:

Close base graph under closure rule by unification closure, using union/find data structure.

Simple closure analysis

Theorem: sVFA can be implemented in time $O(n \alpha(n,n) + q n)$, where

- • $\alpha(m,n)$: inverse Ackerman function
- •q: number of reach set queries

Henglein, Simple Closure Analysis, TOPPS TR D-193, 1992

Simple closure analysis

- Very fast in practice
- Applications:
 - Binding-time analysis

Henglein, Efficient Type Inference for Higher-Order Binding-Time Analysis, FPCA 1991

Dynamic type inference for Scheme

Henglein, Global tagging optimization by type inference, LFP 1992

Closure analysis in Similix

Bondorf, Jørgensen, Efficient Analysis for Realistic Off-Line Partial Evaluation, JFP 1993

- No significant reduction in precision vis a vis mVFA observed
 - Flows are not undirectional ("equational")

sVFA predictability

- sVFA is invariant under
 - linear beta-reduction
 - eta-reduction (for pure λ -terms)

sVFA predictability

Theorem:

sVFA-reachability is P-complete

Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

Not a corollary. Follows from proof method used: invariance under linear λ-term reduction

Theorem:

Let B be such that $sVFA \subseteq B \subseteq R$, where R is semantic (un)reachability. Then B is P-hard.

Adaptiveness

• Assume $S_0 \subseteq S_1 \subseteq P$, with algorithms A_0, A_1 for S_0, S_1 , respectively. $(S_0' = S_1' = \emptyset)$

Not a proper definition formal

- A_1 is naturally **adaptive** over A_0 if its (time) complexity is as good as the complexity of A_0 on instances from S_0 , without explicitly invoking A_0
 - A_1 is allowed to take substantially more time than A_0 on instances outside S_0 . (where A_0 and A_1 give different results).

Adaptiveness

• Intuition: A static analysis algorithm should not be slower on instances where a less precise analysis algorithm manages to compute the semantically correct result (on "easy instances").

Questions

- Are the various kCFA-algorithms adaptive over sVFA?
- Is (functional) kCFA improvable for $k \ge 1$?
- Is SCT improvable? How predictable is it?

• ...

End of talk