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What is ZIRIA*

 A programming language for bit stream and packet processing

 Programming abstractions well-suited for wireless PHY 
implementations in software (e.g. 802.11a/g)

 Optimizing compiler that generates real-time code

 Developed @ MSR Cambridge, open source under Apache 2.0
www.github.com/dimitriv/Ziria

http://research.microsoft.com/projects/Ziria

 Repo includes a protocol compliant line-rate WiFi RX & TX PHY implementation
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ZIRIA: A 2-level language

 Lower-level 
 Imperative C-like language for manipulating bits, bytes, arrays, etc.

 Aimed at EE crowd (used to C and Matlab)

 Higher-level: 
 Monadic language for specifying and composing stream processors

 Enforces clean separation between control and data flow

 Intuitive semantics (in a process calculus)

 Runtime implements low-level execution model
 inspired by stream fusion in Haskell

 provides efficient sequential and pipeline-parallel executions
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stream transformer t, 

of type: 

ST T a b

ZIRIA programming abstractions
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Control-aware streaming abstractions
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t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

take :: ST (C a) a b
emit :: v -> ST (C ()) a v 



Data- and control-path composition

(>>>) :: ST T a b     -> ST T b c     -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c     -> ST (C v) a c

(>>>) :: ST T a b     -> ST (C v) b c -> ST (C v) a c
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return :: v -> ST (C v) a b
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Composing pipelines, in diagrams
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WiFi receiver (simplified)
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Fitting together low and high-level parts
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let comp scrambler() =
var scrmbl_st: arr[7] bit := {'1,'1,'1,'1,'1,'1,'1}; 
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

}; 

emit (y)
}



Optimizing ZIRIA code

1. Exploit monad laws, partial evaluation

2. Fuse parts of dataflow graphs

3. Reuse memory, avoid redundant memcopying

4. Compile expressions to lookup tables (LUTs)

5. Pipeline vectorization transformation 

6. Pipeline parallelization
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Pipeline vectorization

Problem statement: given (c :: ST x a b), automatically rewrite it to 

c_vect :: ST x (arr[N] a) (arr[M] b) 

for suitable N,M.
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Benefits of vectorization

 Fatter pipelines => lower dataflow graph interpretive overhead 

 Array inputs vs individual elements => more data locality

 Especially for bit-arrays, enhances effects of LUTs



Computer vectorization feasible sets
seq { x <- takes 80

; var y : arr[64] int

; do { y := f(x) }

; emit y[0]

; emit y[1]

}
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ain = 80 aout = 2

seq { var x : arr[80] int

; for i in 0..10 {

(xa : arr[8] int) <- take;

x[i*8,8] := xa; 

}

; var y : arr[64] int

; do { y := f(x) }

; emit y }

e.g.

din = 8, 
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Impl. keeps feasible sets and not just singletons
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seq { x <- c1

; c2  

}



Transformer vectorizations

Without loss of generality, every ZIRIA transformer can be treated as:

repeat c

where c is a computer
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How to vectorize (repeat c)? 
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16







Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }



Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1 

vectorizes to input 

(arr[4] int)



Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1 

vectorizes to input 

(arr[4] int)

ain = 1, aout =1



Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1 

vectorizes to input 

(arr[4] int)

ain = 1, aout =1



Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1 

vectorizes to input 

(arr[4] int)

ain = 1, aout =1

• ANSWER: No! (repeat c) may consume data 

destined for c2 after the switch

• SOLUTION: consider (K*ain, N*K*aout), NOT 

arbitrary multiples˚



Transformers-before-computers

16

LET ME 

QUESTION THIS 

ASSUMPTION

seq { x <- (repeat c) >>> c1
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• ANSWER: No! (repeat c) may consume data 

destined for c2 after the switch

• SOLUTION: consider (K*ain, N*K*aout), NOT 

arbitrary multiples˚

(˚) caveat: assumes that

(repeat c) >>> c1 terminates when 

c1 and c have returned. No 

“unemitted” data from c
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Transformers-after-computers
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seq { x <- c1 >>> (repeat c)

; c2 }

Assume c1 

vectorizes to 

output (arr[4] int)

ain = 1, aout =1

• ANSWER: No! (repeat c) may not 

have a full 8-element array to emit 

when c1 terminates! 

• SOLUTION: consider (N*K*ain, 

K*aout), NOT arbitrary multiples 

[symmetrically to before]



How to choose final vectorization?
 In the end we may have very different vectorizations

 Which one to choose? Intuition: prefer fat pipelines

 Failed idea: maximize sum of pipeline arrays

 Alas it does not give uniformly fat pipelines: 256+4+256 > 128+64+128
18
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How to choose final vectorization?
 Solution: From paper of Kelly et al. on distributed optimization

 Idea: maximize sum of a convex function (e.g. log ) of sizes of pipeline arrays

 log 256+log 4+log 256 = 8+2+8 = 18 < 20 = 7+6+7 = log 128+log 64+log 128

 Sum of log(.) gives uniformly fat pipelines and can be computed locally
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Final piece of the puzzle: pruning
 As we build feasible sets from the bottom up we must not discard vectorizations

 But there may be multiple vectorizations with the same type, e.g:

 Which one to choose? [They have same type (ST x (arr[8] bit) (arr[8] bit)]

 We must prune by choosing one per type to avoid search space explosion

 Answer: keep the one with maximum utility from previous slide
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Vectorizing the Wifi TX 
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Vectorization and LUT synergy
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let comp scrambler() =
var scrmbl_st: arr[7] bit := 

{'1,'1,'1,'1,'1,'1,'1}; 
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

}; 

emit (y)
}

RESULT: ~ 1Gbps scrambler
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Conclusions and current work

 Similar correctness issues as in vectorization appear in pipeline parallelization. 
Currently in the workings

 Exploring process calculus semantics to help prove optimizations correct (or 
discover bugs  ). For a long time our canonical semantics was the CPU 
execution model but that choice WAS JUST WRONG (too low-level)

 Ask me to see code, more optimizations, detailed evaluation of the optimizations 
and end-to-end performance numbers on our WiFi TX/RX implementation
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Thanks!

www.github.com/dimitriv/Ziria
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