
Gordon Stewart (Princeton), Mahanth Gowda (UIUC),
Geoff Mainland (Drexel), Cristina Luengo (UPC), Anton Ekblad (Chalmers),

Bozidar Radunovic (MSR), Dimitrios Vytiniotis (MSR)

What is ZIRIA*

 A programming language for bit stream and packet processing

 Programming abstractions well-suited for wireless PHY
implementations in software (e.g. 802.11a/g)

 Optimizing compiler that generates real-time code

 Developed @ MSR Cambridge, open source under Apache 2.0
www.github.com/dimitriv/Ziria

http://research.microsoft.com/projects/Ziria

 Repo includes a protocol compliant line-rate WiFi RX & TX PHY implementation

2

http://www.github.com/dimitriv/Ziria
http://research.microsoft.com/projects/Ziria

ZIRIA: A 2-level language

 Lower-level
 Imperative C-like language for manipulating bits, bytes, arrays, etc.

 Aimed at EE crowd (used to C and Matlab)

 Higher-level:
 Monadic language for specifying and composing stream processors

 Enforces clean separation between control and data flow

 Intuitive semantics (in a process calculus)

 Runtime implements low-level execution model
 inspired by stream fusion in Haskell

 provides efficient sequential and pipeline-parallel executions

3

stream transformer t,

of type:

ST T a b

ZIRIA programming abstractions

4

t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

stream computer c,

of type:

ST (C v) a b

stream transformer t,

of type:

ST T a b

ZIRIA programming abstractions

4

t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

stream computer c,

of type:

ST (C v) a b

Control-aware streaming abstractions

5

t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

take :: ST (C a) a b
emit :: v -> ST (C ()) a v

Data- and control-path composition

(>>>) :: ST T a b -> ST T b c -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c -> ST (C v) a c

(>>>) :: ST T a b -> ST (C v) b c -> ST (C v) a c

6

(>>=) :: ST (C v) a b -> (v -> ST x a b) -> ST x a b

return :: v -> ST (C v) a b

Data- and control-path composition

(>>>) :: ST T a b -> ST T b c -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c -> ST (C v) a c

(>>>) :: ST T a b -> ST (C v) b c -> ST (C v) a c

6

(>>=) :: ST (C v) a b -> (v -> ST x a b) -> ST x a b

return :: v -> ST (C v) a b

Data- and control-path composition

(>>>) :: ST T a b -> ST T b c -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c -> ST (C v) a c

(>>>) :: ST T a b -> ST (C v) b c -> ST (C v) a c

6

(>>=) :: ST (C v) a b -> (v -> ST x a b) -> ST x a b

return :: v -> ST (C v) a b

Reinventing a classic:

The “Fudgets” GUI monad

[Carlsson & Hallgren, 1996]

Data- and control-path composition

(>>>) :: ST T a b -> ST T b c -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c -> ST (C v) a c

(>>>) :: ST T a b -> ST (C v) b c -> ST (C v) a c

6

(>>=) :: ST (C v) a b -> (v -> ST x a b) -> ST x a b

return :: v -> ST (C v) a b

Reinventing a classic:

The “Fudgets” GUI monad

[Carlsson & Hallgren, 1996]

Composing pipelines, in diagrams

7

c1

t1

t2

t3

C T

Composing pipelines, in diagrams

7

c1

t1

t2

t3

C T

Composing pipelines, in diagrams

7

c1

t1

t2

t3

C T

Composing pipelines, in diagrams

7

c1

t1

t2

t3

C T

WiFi receiver (simplified)

8

removeDC

Detect

Carrier

Channel

Estimation

Invert

Channel

Packet

start
Channel

info

Decode

Header

Invert

Channel

Decode

Packet

Packet

info

Fitting together low and high-level parts

9

let comp scrambler() =
var scrmbl_st: arr[7] bit := {'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

};

emit (y)
}

Optimizing ZIRIA code

1. Exploit monad laws, partial evaluation

2. Fuse parts of dataflow graphs

3. Reuse memory, avoid redundant memcopying

4. Compile expressions to lookup tables (LUTs)

5. Pipeline vectorization transformation

6. Pipeline parallelization

10

Optimizing ZIRIA code

1. Exploit monad laws, partial evaluation

2. Fuse parts of dataflow graphs

3. Reuse memory, avoid redundant memcopying

4. Compile expressions to lookup tables (LUTs)

5. Pipeline vectorization transformation

6. Pipeline parallelization

10

Pipeline vectorization

Problem statement: given (c :: ST x a b), automatically rewrite it to

c_vect :: ST x (arr[N] a) (arr[M] b)

for suitable N,M.

11

Pipeline vectorization

Problem statement: given (c :: ST x a b), automatically rewrite it to

c_vect :: ST x (arr[N] a) (arr[M] b)

for suitable N,M.

11

Benefits of vectorization

 Fatter pipelines => lower dataflow graph interpretive overhead

 Array inputs vs individual elements => more data locality

 Especially for bit-arrays, enhances effects of LUTs

Computer vectorization feasible sets
seq { x <- takes 80

; var y : arr[64] int

; do { y := f(x) }

; emit y[0]

; emit y[1]

}

12

Computer vectorization feasible sets
seq { x <- takes 80

; var y : arr[64] int

; do { y := f(x) }

; emit y[0]

; emit y[1]

}

12

ain = 80 aout = 2

Computer vectorization feasible sets
seq { x <- takes 80

; var y : arr[64] int

; do { y := f(x) }

; emit y[0]

; emit y[1]

}

12

ain = 80 aout = 2

seq { var x : arr[80] int

; for i in 0..10 {

(xa : arr[8] int) <- take;

x[i*8,8] := xa;

}

; var y : arr[64] int

; do { y := f(x) }

; emit y }

e.g.

din = 8,

dout =2

Computer vectorization feasible sets
seq { x <- takes 80

; var y : arr[64] int

; do { y := f(x) }

; emit y[0]

; emit y[1]

}

12

ain = 80 aout = 2

seq { var x : arr[80] int

; for i in 0..10 {

(xa : arr[8] int) <- take;

x[i*8,8] := xa;

}

; var y : arr[64] int

; do { y := f(x) }

; emit y }

e.g.

din = 8,

dout =2

Impl. keeps feasible sets and not just singletons

13

seq { x <- c1

; c2

}

Transformer vectorizations

Without loss of generality, every ZIRIA transformer can be treated as:

repeat c

where c is a computer

14

How to vectorize (repeat c)?

Transformer vectorizations in isolation

15

How to vectorize (repeat c)?

 Let c have cardinality info (ain, aout)

 Can vectorize to all divisors of ain (aout) [as before]



Transformer vectorizations in isolation

15

How to vectorize (repeat c)?

 Let c have cardinality info (ain, aout)

 Can vectorize to all divisors of ain (aout) [as before]

 Can also vectorize to all multiples of ain (aout)

Transformer vectorizations in isolation

15

How to vectorize (repeat c)?

 Let c have cardinality info (ain, aout)

 Can vectorize to all divisors of ain (aout) [as before]

 Can also vectorize to all multiples of ain (aout)

Transformer vectorizations in isolation

15

How to vectorize (repeat c)?

 Let c have cardinality info (ain, aout)

 Can vectorize to all divisors of ain (aout) [as before]

 Can also vectorize to all multiples of ain (aout)

Transformers-before-computers

16





Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1

vectorizes to input

(arr[4] int)

Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1

vectorizes to input

(arr[4] int)

ain = 1, aout =1

Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1

vectorizes to input

(arr[4] int)

ain = 1, aout =1

Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1

vectorizes to input

(arr[4] int)

ain = 1, aout =1

• ANSWER: No! (repeat c) may consume data

destined for c2 after the switch

• SOLUTION: consider (K*ain, N*K*aout), NOT

arbitrary multiples˚

Transformers-before-computers

16

LET ME

QUESTION THIS

ASSUMPTION

seq { x <- (repeat c) >>> c1

; c2 }

Assume c1

vectorizes to input

(arr[4] int)

ain = 1, aout =1

• ANSWER: No! (repeat c) may consume data

destined for c2 after the switch

• SOLUTION: consider (K*ain, N*K*aout), NOT

arbitrary multiples˚

(˚) caveat: assumes that

(repeat c) >>> c1 terminates when

c1 and c have returned. No

“unemitted” data from c

Transformers-after-computers

17

seq { x <- c1 >>> (repeat c)

; c2 }

Transformers-after-computers

17

seq { x <- c1 >>> (repeat c)

; c2 }

Assume c1

vectorizes to

output (arr[4] int)

ain = 1, aout =1

Transformers-after-computers

17

seq { x <- c1 >>> (repeat c)

; c2 }

Assume c1

vectorizes to

output (arr[4] int)

ain = 1, aout =1

Transformers-after-computers

17

seq { x <- c1 >>> (repeat c)

; c2 }

Assume c1

vectorizes to

output (arr[4] int)

ain = 1, aout =1

• ANSWER: No! (repeat c) may not

have a full 8-element array to emit

when c1 terminates!

• SOLUTION: consider (N*K*ain,

K*aout), NOT arbitrary multiples

[symmetrically to before]

How to choose final vectorization?
 In the end we may have very different vectorizations

 Which one to choose? Intuition: prefer fat pipelines

 Failed idea: maximize sum of pipeline arrays

 Alas it does not give uniformly fat pipelines: 256+4+256 > 128+64+128
18

c1_vect c2_vect

c1_vect’ c2_vect’

How to choose final vectorization?
 Solution: From paper of Kelly et al. on distributed optimization

 Idea: maximize sum of a convex function (e.g. log) of sizes of pipeline arrays

 log 256+log 4+log 256 = 8+2+8 = 18 < 20 = 7+6+7 = log 128+log 64+log 128

 Sum of log(.) gives uniformly fat pipelines and can be computed locally
19

c1_vect c2_vect

c1_vect’ c2_vect’

Final piece of the puzzle: pruning
 As we build feasible sets from the bottom up we must not discard vectorizations

 But there may be multiple vectorizations with the same type, e.g:

 Which one to choose? [They have same type (ST x (arr[8] bit) (arr[8] bit)]

 We must prune by choosing one per type to avoid search space explosion

 Answer: keep the one with maximum utility from previous slide
20

c1_vect c2_vect

c1_vect’ c2_vect’

Vectorizing the Wifi TX

21

Vectorization and LUT synergy

22

let comp scrambler() =
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

};

emit (y)
}

RESULT: ~ 1Gbps scrambler

Vectorization and LUT synergy

22

let comp scrambler() =
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

};

emit (y)
}

let comp v_scrambler () =
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

var vect_ya_26: arr[8] bit;
let auto_map_71(vect_xa_25: arr[8] bit) =
LUT for vect_j_28 in 0, 8 {

vect_ya_26[vect_j_28] :=
tmp := scrmbl_st[3]^scrmbl_st[0];
scrmbl_st[0:+6] := scrmbl_st[1:+6];
scrmbl_st[6] := tmp;
y := vect_xa_25[0*8+vect_j_28]^tmp;
return y

};
return vect_ya_26

in map auto_map_71

RESULT: ~ 1Gbps scrambler

Vectorization and LUT synergy

22

let comp scrambler() =
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

repeat {
(x:bit) <- take;
do {

tmp := (scrmbl_st[3] ^ scrmbl_st[0]);
scrmbl_st[0:5] := scrmbl_st[1:6];
scrmbl_st[6] := tmp;
y := x ^ tmp

};

emit (y)
}

let comp v_scrambler () =
var scrmbl_st: arr[7] bit :=

{'1,'1,'1,'1,'1,'1,'1};
var tmp,y: bit;

var vect_ya_26: arr[8] bit;
let auto_map_71(vect_xa_25: arr[8] bit) =
LUT for vect_j_28 in 0, 8 {

vect_ya_26[vect_j_28] :=
tmp := scrmbl_st[3]^scrmbl_st[0];
scrmbl_st[0:+6] := scrmbl_st[1:+6];
scrmbl_st[6] := tmp;
y := vect_xa_25[0*8+vect_j_28]^tmp;
return y

};
return vect_ya_26

in map auto_map_71

RESULT: ~ 1Gbps scrambler

Conclusions and current work

 Similar correctness issues as in vectorization appear in pipeline parallelization.
Currently in the workings

 Exploring process calculus semantics to help prove optimizations correct (or
discover bugs ). For a long time our canonical semantics was the CPU
execution model but that choice WAS JUST WRONG (too low-level)

 Ask me to see code, more optimizations, detailed evaluation of the optimizations
and end-to-end performance numbers on our WiFi TX/RX implementation

23

Thanks!

www.github.com/dimitriv/Ziria

24

http://www.github.com/dimitriv/Ziria

