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Motivation

Tools to detect changes exist.

For example, traditional line-based diff:

• Pro: diff is very general and programming language agnostic

• Con: diff is not structurally aware:

if( foo ){ if( foo )
bar; {

} bar;
}

We need tools for interpreting changes.
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Motivation

Common looping pattern with loop counter initialized to zero:

for (� = 0; � < �; �) {
�

}

We also want to see how source code changes.
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Example from Clojure: Related edits

Our tool found these related edits:

PersistentArrayMap.java

public Object kvreduce (IFn f, Object init ){
for(int i=0;i < array . length ;i +=2){

init = f. invoke (init , array [i], array [i +1]);
- if(RT. isReduced (init ))
- return (( IDeref )init ). deref ();

}
return init;

}

PersistentHashMap.java

public Object kvreduce (IFn f, Object init ){
- for( INode node : array ){
- if(node != null ){
+ for( INode node : array )
+ {
+ if(node != null)

init = node. kvreduce (f,init );
- if(RT. isReduced (init ))
- return (( IDeref )init ). deref ();
- }
- }
+ }

return init;
}
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Approach

Key Idea: We can find structural patterns by generalizing
sufficiently similar difference trees.

• Difference trees computed using structural diff of AST

• Similarity is measured using a tree edit distance score

• Generalization is accomplished through antiunification
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ATerms

i++;

AAppl "ExpStmt"

[AAppl "PostIncrement"

[AAppl "ExpName"

[AAppl "Name"

[AList

[AAppl "Ident" [AAppl "\"i\"" []]]]]]]

Generic tree structure—programming language agnostic.

Easy to modify parsers to generate ATerms.
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Structural diff

treediff
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Keep just the differences with a bit of context:

ta =
A

mismatch(C,F)
tb =

B

lefthole(D)

Output also gives us an edit distance.
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Similarity grouping

We define the similarity score by:

∆(ta, tb) :=
min(d(ta, tb), d(tb, ta))

max(|ta|, |tb|)
where d is the tree edit distance score.

Similarity matrix D given by Dij = ∆(ti , tj).

Given threshold τ ∈ [0, 1] we say ti and tj are similar if Dij ≥ τ .

Group trees such that all elements in the group are within τ .
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ANTLR similarity groups with τ = 0.01

10 similarity groups from ANTLR source, when τ = 0.01:

7 are patterns:

�;

if( � ) �;

if( � ) { � } �;

return �;

for( � � : � ) �;

for( � = �; � < �; � ) �;

throw RuntimeException ( � + � );
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ANTLR similarity groups with τ = 0.01

3 are constants (no �s):

try {
walker . grammarSpec ();

} catch ( RecognitionException re ){
ErrorManager . internalError ("bad grammar AST structure ",re );

}

while (sp !=
StackLimitedNFAToDFAConverter . NFA_EMPTY_STACK_CONTEXT )

{
n++;
sp = sp. parent ;

}

switch ( gtype ) {
case ANTLRParser . LEXER_GRAMMAR :

return legalLexerOptions . contains (key );
case ANTLRParser . PARSER_GRAMMAR :

return legalParserOptions . contains (key );
case ANTLRParser . TREE_GRAMMAR :

return legalTreeParserOptions . contains (key );
default :

return legalParserOptions . contains (key );
}
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Antiunification

au
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 =

 A

�1 �2

, substl , substr



where,

substl = {�1 7→ B , �2 7→ C}

substr = {�1 7→ B

D

, �2 7→ F}
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Similarity groups versus threshold

What happens to similarity groups when we vary the threshold?

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

0	
   0.2	
   0.4	
   0.6	
   0.8	
   1	
  

N
um

be
r	
  o

f	
  g
ro
up

s	
  

Threshold	
  

addi.ons	
  

dele.ons	
  

modifica.ons	
  

Number of additions, deletions, and modifications by threshold for
the Clojure source.

c© 2013 Galois, Inc. All Right Reserved.



Patterns as a function of threshold

Generic Loop pattern, τ = 0.15:

for (� = �; � < �; �) {
�

}

Loop counter is initialized to zero, τ = 0.25:

for (� = 0; � < �; �) {
�

}

Loop termination criteria becomes more specific, τ = 0.35:

for (� = 0; � < �.�; �) {
�

}
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Future work

• We only consider structural patterns

• Example: We don’t detect design patterns

• Not semantically aware

• Example: changing the name of a loop variable leads to �

• Generate rewrite rules based on before and after patterns

• Use patterns for searching as a structural grep-like mechanism

• Correlate patterns with bug fixes
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Thank you!

Questions?
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