Fully Abstract Closure Conversion
(in the presence of state and effects)

Amal Ahmed

Northeastern University

Work in progress, with Phillip Mates

Verified compilers for a multi-language world

Existing work: correct compilation guarantee only applies to
whole programs!

Ps

Verified compilers for a multi-language world

Existing work: correct compilation guarantee only applies to
whole programs!

Ps

Verified compilers for a multi-language world

Existing work: correct compilation guarantee only applies to
whole programs!

Ps

Verified compilers for a multi-language world

Existing work: correct compilation guarantee only applies to
whole programs!

Ps

; low-level
libraries +
code compiled
from different
source lang.

Verified compilers for a multi-language world

Correct compilation of components:

Verified compilers for a multi-language world

Correct compilation of components: | Define semantics of

source-target
interoperability:

S Tet TS Cq

Verified compilers for a multi-language world

Correct compilation of components: | Define semantics of

source-target
interoperability:

S Tet TS Cq

Verified compilers for a multi-language world

Secure compilation of components:

L
}
et“

Verified compilers for a multi-language world

Secure compilation of components:

Want guarantee that €t
will remain as secure as €¢
€s when executed in arbitrary

target-level contexts

et“

Verified compilers for a multi-language world

Secure compilation of components:
Want guarantee that €t
will remain as secure as €¢
€s when executed in arbitrary
target-level contexts
\i To preserve two-run security/reliability

properties (e.g., noninterference &
representation independence), compiler

o ‘ I must preserve observational equivalence
t

Type-preserving compilation

e . T ~~ e:T_I_

Equivalence-preserving compilation

Ifei:T ~ e;:T" and ey : T ~ €5 :7TT then:

€1 %(S:tm € : T —> €4 %%m e . T

Fully abstract compilation

Ifei:T ~ e;:T" and ey : T ~ €5 :7TT then:

e ~FT ey T < e AT ey T

/

preserves & reflects equivalence

Security-preserving = Fully abstract

Security-preserving = Fully abstract

e [f compilation is not equivalence-preserving then there
exist contexts (i.e., attackers!) at target that can
distinguish program fragments that cannot be
distinguished by source contexts

e C# to .NET IL compiler [Kennedy’06]: holes in full
abstraction that lead to security exploits

Security-preserving = Fully abstract

e [f compilation is not equivalence-preserving then there
exist contexts (i.e., attackers!) at target that can
distinguish program fragments that cannot be
distinguished by source contexts

e C# to .NET IL compiler [Kennedy’06]: holes in full
abstraction that lead to security exploits

Our eventual goal: security-preserving compilation of
dependently typed, stateful languages (HTT, F*)

Security-preserving = Fully abstract

e [f compilation is not equivalence-preserving then there
exist contexts (i.e., attackers!) at target that can
distinguish program fragments that cannot be
distinguished by source contexts

e C# to .NET IL compiler [Kennedy’06]: holes in full
abstraction that lead to security exploits

Our eventual goal: security-preserving compilation of
dependently typed, stateful languages (HTT, F*)

This talk: fully abstract closure conversion of System F with
mutable references

Why is full abstraction challenging?

source

target

Why is full abstraction challenging?

source €

o O
a

Must ensure that any a we link with behaves like some source context

Why is full abstraction challenging?

source

target

Why is full abstraction challenging?

source €

o O T
a

* Fix (i) Increase expressivity of source

Why is full abstraction challenging?

source €

o O T
a

* Fix (i) Increase expressivity of source
* Fix (ii) Decrease expressivity of target

Why is full abstraction challenging?

source

target

* Fix (i) Increase expressivity of source
* Fix (ii) Decrease expressivity of target

Why is full abstraction challenging?

source e . O

target € : 0 JQ/ D
d

* Fix (i) Increase expressivity of source
* Fix (ii) Decrease expressivity of target
* Fix (iii) Change the translation: use types to rule out bad a’s

Challenge of proving full abstraction

Suppose ' Fe; : T~ e; and I' ey : T~ es.

ke ~§%ex:T

F+ I—e N%ta: €9 ZT_I_

Challenge of proving full abstraction

Suppose ' Fe; : T~ e; and I' ey : T~ es.

Fe =% eyt Given:
No (g can
distinguish €1, €2
Show:
Given arbitrary Ct
it cannot distinguish e, e-
F+ - €1 %%ta: €o . T_I_

Need to be able to
“back-translate” Ct
to an equivalent Cg

Challenge of proving full abstraction

Suppose ' Fe; : T~ e; and I' ey : T~ es.

F"Gl ﬁgm €y . T
“Back-translation”
What if target language
is more expressive than
source!
Equivalence-preserving CPS
[Mhe =" ey 1" from STLC to System F

[Ahmed-Blume ICFP’| |]

Quick note: “same language trick”

If target happens to be no more expressive than source,
use the same language: back-translation can be avoided in

lieu of wrappers between T and T

* Closure conversion: System F with recursive types
[Ahmed-Blume ICFP’08]

o f*(STLC with refs) to js* (encoding of JavaScript in f*)
[Fournet et al. POPL’ 3]

Closure Conversion

Source

w= a | unit | int | V[@.(F) = 7 | pa.t | refr | (F)
+ | = | *

c=x| ()| n| ANal(xiT).e | foldyarv | £ | ()

=V |Vv[T]V|vpv|newv |v:=v|!lv|unfoldv | m(v) | letx=eine | if0vee

m o < T S

=[] | letx=Eine

Target

Closure Conversion

Source

T =« | unit | int | V[a|.(T)—= 7 | pa.T | ref7 | (7)

p =+] — [

v i=x| ()| n| Aal(xiT).e | foldya v | €| (V)

e s=vVv |Vv[T]V|vpv|newv |v:=v|!v|unfoldv | m(v) | letx=eine | if0vee
E:=[]|letx=Eine

Target

T = o | unit | int | V[a].(T) = 7 | Ja.T | pa.T | ref 7 | (T) | cont T

p =4+ | — | %

v i=x| () | n| A[a](x:7).e | pack (T, v)asTJa.7 | fold,n.- Vv | €| (V) | cont; E

e :=v | unpack{(a,x) =vine | V[V |Vv[r] | vpVv |newv |v:i=v | !v | unfoldv | m;(v)

| letx =eine | if0vee | call/cc (x.€) | throw, vtoe
E :=[]]|letx=Eine | throw,vtoE

Static & Dynamic Semantics

Source

VAT Fe:r

Target

v A;I'He:T

(Hle)— (H"] ¢)

/
o.;X:THe:T

AT Aa](xz7).e:V[al.(F) — 7

(H | e)— (H' | &)

(H | E[call/cc(x.e)])

— (H | E[e[cont. E/x]])

(H | E[throw, vtocont. E’']) —— (H|E’[v])

Translation

Type translation

ot =« (Y[a].(F) — 7’

unit™ = unit
intT = int
(ref)T =ref 7+

Term translation

AT FerT e

)-I—
(Jo.7)T = Jar Tt
(poe.m)t = por™
(11, ;)T = (0,

where AT TT Fe: 7T

Is our translation fully abstract”?

7 = (unit — unit) — int)

e; = let x = new 0 In
M.(x:=0;f(); x:=1; f(); x)

e = AM.(f(); £(); 1)

Is our translation fully abstract”?

7 = (unit — unit) — int)

e; = let x = new 0 In
M.(x:=0;f(); x:=1; f(); x)

e = AM.(f(); £(); 1)

C=letg=|]inlet b= new ffin
letf = (A_. if !b then call/cc(k. g (A_. throw () to k))
else b := tt) in

gf

Is our translation fully abstract”?

7 = (unit — unit) — int)

e; = let x = new 0 In
M.(x:=0;f(); x:=1; f(); x)

e = AM.(f(); £(); 1)

C=letg=|]inlet b= new ffin
letf = (A_. if !b then call/cc(k. g (A_. throw () to k))
else b := tt) in

gf

e;| returns 0
e, | returns 1

M N

Proof of Equivalence Preservation

Suppose -; A;[Fej:7~ejand Al Fex:m v es

AT e Cter:T

l

AT TT ey =8 ey 7T

Given arbitrary Ct: (AT T F77) = (+;+;- F int)
show it cannot distinguish €1, e2

Suffices to be able to “back-translate” e of translation
type to an equivalent e

“Back-translation” from T to S

AT ~e:TT »e
where A := - | A, o
and T':o=-|T,x:77"

and e &S
and A7 I'7Fe:T

“Back-translation” from T to S

AT Fe:7T e

where A := - | A, o

and T':o=-|T,x:77"

and eé€S

and AT I'7Fe:T

S AT = () :unit™ — () AT - n:intt = n
x:7T €Tl

AT - x:TT X

Back-translation: values

5 AT Ft vt [pott /o] =V
s AT - foldluom.+ Vot - fold 0.+ V'
5 AT |_V117'1_|_—>>V’1 S AT |_Vn1’7'n+—»V;

S AT - <V1,...,Vn>2<’7'1,...,7'n>+ — (Vy,..., V)

n

Back-translation: values (pack)

() [# /e
l

‘QA;F» = v ? +—»v’

5 AT - pack (7, v) as Ja.7T : Ja.rT —

Back-translation: values (pack)

(TT)[7/ e
S AT I—\lf: ?7 TV

5 AT - pack (7, v) as Ja.7 : Ja.7T — pack (?,Vv) asJa.T

Back-translation: values (pack)

(TT)[7/ e

l

AT |‘VZ’7’[7A'/04]+ — v/
5 AT - pack (7, v) as Ja.7 : Ja.7T — pack (?,Vv) asJa.T

Back-translation: values (pack)

(TT)[7/ e

l

AT |‘VZ’7’[7A'/04]+ — v/
5 AT - pack (7, v) as Ja.7T : Ja.7T — pack (#,Vv/) asJa.T

Back-translation: values (pack)

—I— A
(T)|7/
S AT - viT[f/a]T =V
AT - pack (7, v) as Joo.r T : Joe.T T — pack (7,v') as Ja.T

Need to require that witness type (7) of any package of
type Joe.7 T must be a translation type

Back-translation: values (pack)

—I— A
(7)) /a
T =7 AT |_VZ’7'[7A'/CV]+ —» v
5 AT - pack (7, v) as Ja.7T : Ja.7T — pack (#,Vv/) asJa.T

Need to require that witness type (7) of any package of
type Joe.7 T must be a translation type

Back-translation: values (pack)

—I— A
(7)) /a
T =7 AT FV:T[?/@]"’ —» v
5 AT - pack (7, v) as Ja.7T : Ja.7T — pack (#,Vv/) asJa.T

Need to require that witness type (7) of any package of
type Joe.7 T must be a translation type

Fix the type translation! Add “trans” kinds ¢ to target and
kinding judgment that says all translation types have kind ¢

Fixing type translation...

< T A

=0 | %

= « | unit | int | V[a=:s].(7) —» 7 | Jass.t | pa.T | ref 7 | (T) | cont T
S

=x| () | n| Alaczss|(x:7).e | pack (7, v) asJa::s.7 | foldya.r v | £ | (V) | cont E

2= v | unpack (a,x) =vine | v[[V|Vv|[r] | vpVv |newv | v:i=v | !v | unfoldv | m;(v)
| letx =eine | if0vee | call/cc (x.e) | throw,vtoe

=[] | letx = E in e | throw, vtoE

<7'1,. .

Fixing type translation...

S =90 | %

T = « | unit | int | V[a::s].(7) > 7 | Ja:s.t | pa.T | ref 7 | (F) | cont T

p =+ | =[x

v i=x | () | n | Alazzs](x:7).e | pack (7, v) asdac::s.T | fold,n.r v | €| (V) | cont; E

e :=v | unpack(a,x) =vine | Vv[V|Vv|[r]| vpVv |newv | v:=v |!v | unfoldv | m(v)

| letx =eine | if0vee | call/cc (x.e) | throw,vtoe

E =[] |letx=Eine | throw,vtoE
ot =« V[@a].(7)— 7T =3Buo. (V[ans].(8, 7)) — 1), B)
unit™ = unit Ja.rT = Jano. 7T
ref 7T =ref rt po.tt = pott
Lttt =(nt, o T int™ = int

Now our translation is fully abstract

7 = (unit — unit) — int)
e; = letx =new 0 iIn
M.(x:=0;f(); x:=1; f(); x)

e = AM.(f(); £(); 1)

g wants (unit — unit) ™

C=letg=/|]inlet b= new ff in /
letf = (A_. if !b then call/cc(k. g|(A_. throw () to k)))
else b := tt) in

gf

Now our translation is fully abstract

7 = (unit — unit) — int)
e; = letx =new 0 iIn
M.(x:=0;f(); x:=1; f(); x)

e = AM.(f(); £(); 1)

g wants (unit — unit) ™

C=letg=/|]inlet b= new ff in /
letf = (A_. if !b then call/cc(k. g|(A_. throw () to k)|

else b := tt) in
g f

pack (cont 7, A(z,_). throw () to 7, z)

Back-translation: values (pack-closure)

vy = pack {Tenvs (V, Venv)) as 3o’ 10 . (V[a:9].(a/, 7T) — 7/ 1), a’)
v=Aa:o|(z:Ten T, x:71).e Tenv = Tenv

. [. /

env

/ /
a0, ZiTem LX:TT| et e
/
—>

SAT T var(Val®) —)T > A@)(xr) Jetz = v, in e

Back-translation: trans subterms (easy)

AT - viintT -V S AT |—e1:7'+—»e'1 AT I—e2:7'+—»e/2
AT - if0v ey ex: 7T = ifOV €] €
SUAN & —e i T €] SAT, x:m T R A

AT Fletx = e; inex:mT = letx =€} in €

Back-translation: trans subterms (easy)

AT Fv:da.r T -V SA oo D x: T et — €
5 AT - unpack (o, x) = v in e: 77 — unpack (o, x) =V in ¢’
S AT - viparT >V
S AT ~ unfold v: 7T [pua.7T /a] — unfold v/
AT FvitT =V AT T verefrt =V
';A;F |—+ neWV:refT+—»newv’ .;A;F '|_!V27'+—»!V/
S AT - vyiref 7t = V) S AT R O SV A

AT T vy i= szuni’cJr —>» V/1 — vé

Back-translation: trans subterms

ST, x: (V[a).(r)— ")t - unpack (3,y) =xine: 7T — ¢

Back-translation: trans subterms

AT, x:(V[a].(r)—)| ®F unpack (3,y) =xine: 7T — ¢

Back-translation: trans subterms

D' =P, (Beny ::0,X¢: V[a:0].(Benv, T T) = 77T, Xenv : Benv; X)
*y A; F‘ (I), - e[(xf, Xenv>/y] : 7‘+ —» e/

AT, x:(V[a].(r)—)| ®F unpack (3,y) =xine: 7T — ¢

Back-translation: trans subterms

D' =P, (Beny ::0,X¢: V[a:0].(Benv, T T) = 77T, Xenv : Benv; X)
7A7F‘ o’ I_e[<Xf9Xenv>/Y]37_+ — ¢’

AT, x:(V[a].(r)—)| ®F unpack (3,y) =xine: 7T — ¢

(Benv :: 0, szv[a::0]°(ﬁerw7 7J+) — T/,_I_aXenv : /Benvax) c P
To = 7o v =7"1/alT AT ®EviTtrmg/alt —» v

SAT] @ F (% [70]) [] (Xenvs ¥)) : 77 = x [To] ¥

Back-translation: non-trans subterms

vo = (A[a=s|(x:77).e) [77] ST @lqe[r”/allv/x]:TT =€
ST @Eve[[virT =€

Back-translation: non-trans subterms

vo = (A[a=s|(x:77).e) [77] ST @lqe[r”/allv/x]:TT =€
ST @Eve[[virT =€

SA T ®kletx = (newv) ine: 7T — ¢

Back-translation: non-trans subterms

vo = (A[a=s|(x:77).e) [77] ST @lqe[r”/allv/x]:TT =€
ST @Eve[[virT =€

SATIH; @ Fletx = (newv) ine: 717 — ¢

Back-translation: non-trans subterms

vo = (A[a=s|(x:77).e) [77] ST @lqe[r”/allv/x]:TT =€
ST @Eve[[virT =€

¢:7" ¢ dom(H) SATIHE: 7/ = v]; @ g e[l/x]: 7T — ¢

AP
SATIH; @ Fletx = (newv) ine: 717 — ¢ (AT ™)

Back-translation: non-trans subterms

vo = (A[as|(x:77).e) [T"] SATIH; @ Fq e[t /a[v/x]: 7T — €
SATH; @ v [[virT — €

¢:7" ¢ dom(H) SATIHE: 7/ = v]; @ g e[l/x]: 7T — ¢

/. 1+ :T,
SATIH; @ Fletx = (newv) ine: 717 — ¢ (AT)

Back-translation: non-trans subterms

vo = (A[as|(x:77).e) [7"] SATIH; @ b e[t /a][v/x] 7T — €
SATIH; @ F v [[VirT — €

E:ngdom(H) ';A;F’H[K:T,'—>V];<I)|—Qe[£/x];7-‘|‘_»e/
SATIH; @ Fletx = (newv) ine: 717 — ¢

(/HT/.T/_i_ = T')

H(E:T’):V ';A;F]H;(IH—Q e[V/X]:T"’—»e’

/. 1+ :’T’
7A7F‘H,@I_letxz!£ine7-+%}e’ (/HTT)

£:7" € dom(H) SATH[E: T v]: @ g e[()/x]:T'I' Y
°;A§F’H;(I)|_letX:(£;:V) ine: 71T — ¢

Back-translation: non-trans subterms

Ui A, Ag; I T Fver’ SATIH; @ Fg e[v/x]:7T — €
-;A;F|H;<I> Fletx=vine:rT — ¢

\I’H;A,A(I);F,F(I) |—62:’T,

,A,F|H,(I) |_ let X1 = € in (let Xo = €9 in 63):T+ s e
(/HT’.T"" = 7')

’A,F‘H, ()] |_ let Xo = (let X1 = €1 in e2) in 63:T+ s e

U A, Ag; I, T Fer,ex: 7 SATIH; @ F viintT — v/
SATH; @ Fletx = e ineg: 7t —» e SATIH; @ Fletx = ep ineg: 71T — &)

SATIH; @ Fletx = (if0v eq e2) ineg: 7T — if0v €] €}

Back-translation: well-foundedness!

\IJH;A,A(I);F,F(I) - e St Q:T_I_
SATH; @ Fge:tT — Q

@H;A,A@;F,F@Feﬁf\zﬂc Q:7T -;A;F\H;é[)l—e:f"—»e’

SATH; @ Fgertt — €

Back-translation: well-foundedness!

\IJH;A,A(I);F,F(I) - e St Q:T_I_
SATH; @ Fge:tT — Q

@H;A,A@;F,F@Feﬁf\zﬂc Q:7T -;A;F\H;é[)l—e:f"—»e’

SATH; @ Fgertt — €

Intuition: have an “oracle” that checks, after every partial
evaluation step, if the term is equivalent to (2

Back-translation: well-foundedness!

\IJH;A,A(I);F,F(I) - e St Q:T_I_
SATH; @ Fge:tt — Q

@H;A,A@;F,F@Feﬁf\zﬂc Q:7T -;A;F\H;é[)l—e:f"—»e’

SATH; @ Fgertt — €

Intuition: have an “oracle” that checks, after every partial
evaluation step, if the term is equivalent to (2

Prove backtranslation is well-founded using a logical relation.

Back-translation: call/cc, throw

Same intuition as for heap effects.
e Rules maintain “state” -- i.e., current continuation E
e for call/cc and throw subterms, do partial evaluation

* current continuation E is reset to empty when we go
under a lambda

Takeaways

* Advanced languages like HTT and F* are ideal for
verifying security properties alongside development of
code

* Need correct and secure compilers to ensure that
source-level guarantees are preserved at the target level

* To build realistic fully abstract compilers, we need proof
techniques (back-translation)

* Main idea: use types/type-translation to ensure compiled
code will only be run in well-behaved target contexts

* |f type-translation is right, back-translation will work!

Questions?

