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Bene!ts:
• Easier to write, test, and debug programs
• Can reuse modules across applications
• Possible to port applications to new platforms



Language I
Key ideas:

• A language abstraction between 
programs and hardware

• Constructs for reading state and 
specifying forwarding policies

• Support for modular composition 
through policy combinators

• Run-time system pushes rules to 
switches reactively
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Abstract
Modern networks provide a variety of interrelated services includ-
ing routing, traffic monitoring, load balancing, and access control.
Unfortunately, the languages used to program today’s networks
lack modern features—they are usually defined at the low level of
abstraction supplied by the underlying hardware and they fail to
provide even rudimentary support for modular programming. As a
result, network programs tend to be complicated, error-prone, and
difficult to maintain.

This paper presents Frenetic, a high-level language for program-
ming distributed collections of network switches. Frenetic provides
a declarative query language for classifying and aggregating net-
work traffic as well as a functional reactive combinator library
for describing high-level packet-forwarding policies. Unlike prior
work in this domain, these constructs are—by design—fully com-
positional, which facilitates modular reasoning and enables code
reuse. This important property is enabled by Frenetic’s novel run-
time system which manages all of the details related to installing,
uninstalling, and querying low-level packet-processing rules on
physical switches.

Overall, this paper makes three main contributions: (1) We an-
alyze the state-of-the art in languages for programming networks
and identify the key limitations; (2) We present a language design
that addresses these limitations, using a series of examples to moti-
vate and validate our choices; (3) We describe an implementation of
the language and evaluate its performance on several benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design

Keywords Network programming languages, domain-specific
languages, functional reactive programming, OpenFlow

1. Introduction
Today’s networks consist of hardware and software components
that are closed and proprietary. The difficulty of changing these
components has had a chilling effect on innovation, and forced
network administrators to express policies through complicated and
frustratingly brittle interfaces. As discussed in recent a New York
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Times article [30], the rise of data centers and cloud computing
have brought these problems into sharp relief and led a number
of networks researchers to reconsider the fundamental assumptions
that underpin today’s network architectures.

In particular, significant momentum has gathered behind Open-
Flow, a new platform that opens up the software that controls the
network while also allowing packets to be processed using fast,
commodity switching hardware [31]. OpenFlow defines a standard
interface for installing flexible packet-forwarding rules on physical
network switches using a programmable controller that runs sep-
arately on a stock machine. The most well-known controller plat-
form is NOX [20], though there are several others [1, 8, 25, 39].
OpenFlow is supported by a number of commercial Ethernet switch
vendors, and has been deployed in several campus and backbone
networks. Using OpenFlow, researchers have already created a va-
riety of controller applications that introduce new network func-
tionality, like flexible access control [9, 33], Web server load bal-
ancing [21, 40], energy-efficient networking [22], and seamless
virtual-machine migration [18].

Unfortunately, while OpenFlow and NOX now make it possible
to implement exciting new network services, they do not make it
easy. OpenFlow programmers must constantly grapple with several
difficult challenges.

First, networks often perform multiple tasks, like routing, access
control, and traffic monitoring. Unfortunately, decoupling these
tasks from each other and implementing them independently in
separate modules is effectively impossible, since packet-handling
rules (un)installed by one module often interfere with overlapping
rules (un)installed by other modules.

Second, the OpenFlow/NOX interface is defined at a very low
level of abstraction. For example, the OpenFlow rule algebra di-
rectly reflects the capabilities of the switch hardware (e.g., bit pat-
terns and integer priorities). Simple high-level concepts such as set
difference require multiple rules and priorities to implement cor-
rectly and more powerful “wildcard” rules are a limited hardware
resource that programmers must manage by hand.

Third, controller programs only receive events for packets the
switches do not know how to handle. Code that installs a forward-
ing rule might prevent another, different event-driven call-back
from being triggered. As a result, writing programs for Open-
Flow/NOX quickly becomes a difficult exercise in two-tiered
programming—programmers must simultaneously reason about
the packets that will processed on switches and those that will be
processed on the controller.

Fourth, because a network of switches is a distributed system,
it is susceptible to various kinds of race conditions. For example, a
common NOX programming idiom is to handle the first packet of
each network flow on the controller and install switch-level rules
to handle the remaining packets. However, such programs can be
susceptible to errors if the second, third, or fourth packets in a

[ICFP ’11]



Language II
Key ideas:

• NetCore policy language
e	  ::=	  h:w	  
	  	  	  	  |	  switch	  s	  
	  	  	  	  |	  inspect	  e	  f
	  	  	  	  |	  e1	  &	  e2	  
	  	  	  	  |	  !e1
S	  ::=	  {	  s1,	  ...,	  sk	  }
t	  ::=	  e	  =>	  S	  
	  	  	  	  |	  t1	  &	  t1	  
	  	  	  	  |	  !t

• Compiler pushes forwarding rules 
to switches proactively 

• Reactive specialization handles 
features that cannot be translated
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Abstract
Software-defined networks (SDNs) are a new kind of network
architecture in which a controller machine manages a distributed
collection of switches by instructing them to install or uninstall
packet-forwarding rules and report traffic statistics. The recently
formed Open Networking Consortium, whose members include
Google, Facebook, Microsoft, Verizon, and others, hopes to use
this architecture to transform the way that enterprise and data center
networks are implemented.
In this paper, we define a high-level, declarative language, called

NetCore, for expressing packet-forwarding policies on SDNs. Net-
Core is expressive, compositional, and has a formal semantics.
To ensure that a majority of packets are processed efficiently on
switches—instead of on the controller—we present new compila-
tion algorithms for NetCore and couple them with a new run-time
system that issues rule installation commands and traffic-statistics
queries to switches. Together, the compiler and run-time system
generate efficient rules whenever possible and outperform the sim-
ple, manual techniques commonly used to program SDNs today. In
addition, the algorithms we develop are generic, assuming only that
the packet-matching capabilities available on switches satisfy some
basic algebraic laws.
Overall, this paper delivers a new design for a high-level net-

work programming language; an improved set of compiler algo-
rithms; a new run-time system for SDN architectures; the first for-
mal semantics and proofs of correctness in this domain; and an
implementation and evaluation that demonstrates the performance
benefits over traditional manual techniques.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design

Keywords Software-defined Networking, OpenFlow, Frenetic,
Network programming languages, Domain specific languages
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1. Introduction
A network is a collection of connected devices that route traf-
fic from one place to another. Networks are pervasive: they con-
nect students and faculty on university campuses, they send pack-
ets between a variety of mobile devices in modern households,
they route search requests and shopping orders through data cen-
ters, they tunnel between corporate networks in San Francisco
and Helsinki, and they connect the steering wheel to the drive
train in your car. Naturally, these networks have different pur-
poses, properties, and requirements. To service these requirements,
companies like Cisco, Juniper, and others manufacture a variety
of devices including routers (which forward packets based on IP
addresses), switches (which forward packets based on MAC ad-
dresses), NAT boxes (which translate addresses within a network),
firewalls (which squelch forbidden or unwanted traffic), and load
balancers (which distribute work among servers), to name a few.
While each of these devices behaves differently, internally they

are all built on top of a data plane that buffers, forwards, drops,
tags, rate limits, and collects statistics about packets at high speed.
More complicated devices like routers also have a control plane
that run algorithms for tracking the topology of the network and
computing routes through it. Using statistics gathered from the
data plane and the results computed using the device’s specialized
algorithms, the control plane installs or uninstalls forwarding rules
in the data plane. The data plane is built out of fast, special-purpose
hardware, capable of forwarding packets at the rate at which they
arrive, while the control plane is typically implemented in software.
Remarkably, however, traditional networks appear to be on

the verge of a major upheaval. On March 11th, 2011, Deutsche
Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, own-
ers of some of the largest networks in the world, announced the for-
mation of the Open Networking Foundation [19]. The foundation’s
proposal is extraordinarily simple: eliminate the control plane from
network devices. Instead of baking specific control software into
each device, the foundation proposes a standard protocol that a
separate, general-purpose machine called a controller can use to
program and query the data planes of many cooperating devices.
By moving the control plane from special-purpose devices onto
stock machines, companies like Google will be able to buy cheap,
commodity switches, and write controller programs to customize
and optimize their networks however they choose.
Networks built on this new architecture, which arose from ear-

lier work on Ethane [4] and 4D [10], are now commonly referred to
as Software-Defined Networks (SDNs). Already, several commer-
cial switch vendors support OpenFlow [17], a concrete realization
of the switch-controller protocol required for implementing SDNs,
and researchers have used OpenFlow to develop new network-wide
algorithms for server load-balancing, data center routing, energy-
efficient network management, virtualization, fine-grained access
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Key ideas:

• NetCore||
P	  ::=	  f=n	  
	  	  	  	  |	  switch	  s	  
	  	  	  	  |	  P1	  |	  P2	  
	  	  	  	  |	  P1	  &	  P2
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• Sequential composition

• Virtual !elds
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Abstract
Managing a network requires support for multiple con-
current tasks, from routing and traffic monitoring, to ac-
cess control and server load balancing. Software-Defined
Networking (SDN) allows applications to realize these
tasks directly, by installing packet-processing rules on
switches. However, today’s SDN platforms provide lim-
ited support for creating modular applications. This pa-
per introduces new abstractions for building applications
out of multiple, independent modules that jointly man-
age network traffic. First, we define composition opera-
tors and a library of policies for forwarding and querying
traffic. Our parallel composition operator allows multi-
ple policies to operate on the same set of packets, while a
novel sequential composition operator allows one policy
to process packets after another. Second, we enable each
policy to operate on an abstract topology that implic-
itly constrains what the module can see and do. Finally,
we define a new abstract packet model that allows pro-
grammers to extend packets with virtual fields that may
be used to associate packets with high-level meta-data.
We realize these abstractions in Pyretic, an imperative,
domain-specific language embedded in Python.

1 Introduction
Software-Defined Networking (SDN) can greatly sim-
plify network management by offering programmers
network-wide visibility and direct control over the un-
derlying switches from a logically-centralized controller.
However, existing controller platforms [7, 12, 19, 2,
3, 24, 21] offer a “northbound” API that forces pro-
grammers to reason manually, in unstructured and ad
hoc ways, about low-level dependencies between dif-
ferent parts of their code. An application that per-
forms multiple tasks (e.g., routing, monitoring, access
control, and server load balancing) must ensure that
packet-processing rules installed to perform one task do
not override the functionality of another. This results
in monolithic applications where the logic for different

tasks is inexorably intertwined, making the software dif-
ficult to write, test, debug, and reuse.

Modularity is the key to managing complexity in any
software system, and SDNs are no exception. Previous
research has tackled an important special case, where
each application controls its own slice—a disjoint por-
tion of traffic, over which the tenant or application mod-
ule has (the illusion of) complete visibility and con-
trol [21, 8]. In addition to traffic isolation, such a plat-
form may also support subdivision of network resources
(e.g., link bandwidth, rule-table space, and controller
CPU and memory) to prevent one module from affect-
ing the performance of another. However, previous work
does not address how to build a single application out
of multiple, independent, reusable network policies that
affect the processing of the same traffic.

Composition operators. Many applications require
the same traffic to be processed in multiple ways. For
instance, an application may route traffic based on the
destination IP address, while monitoring the traffic by
source address. Or, the application may apply an access-
control policy to drop unwanted traffic, before routing
the remaining traffic by destination address. Ideally, the
programmer would construct a sophisticated application
out of multiple modules that each partially specify the
handling of the traffic. Conceptually, modules that need
to process the same traffic could run in parallel or in se-
ries. In our previous work on Frenetic [6, 14], we in-
troduced parallel composition, which gives each module
(e.g., routing and monitoring) the illusion of operating on
its own copy of each packet. This paper introduces a new
kind of composition—sequential composition—that al-
lows one module to act on the packets already processed
by another module (e.g., routing after access control).

Topology abstraction. Programmers also need ways
to limit each module’s sphere of influence. Rather than
have a programming platform with one (implicit) global
network, we introduce network objects, which allow



Language IV
Key ideas:

• Network-wide semantics

• Detailed “featherweight” model of 
software-de!ned networks

• Machine-checked proofs of 
correctness in Coq

• First real deployment
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Abstract
In many areas of computing, techniques ranging from testing to
formal modeling to full-blown verification have been successfully
used to help programmers build reliable systems. But although net-
works are critical infrastructure, they have largely resisted analysis
using formal techniques. Software-defined networking (SDN) is a
new network architecture that has the potential to provide a foun-
dation for network reasoning, by standardizing the interfaces used
to express network programs and giving them a precise semantics.

This paper describes the design and implementation of the first
machine-verified SDN controller. Starting from the foundations, we
develop a detailed operational model for OpenFlow (the most pop-
ular SDN platform) and formalize it in the Coq proof assistant. We
then use this model to develop a verified compiler and run-time sys-
tem for a high-level network programming language. We identify
bugs in existing languages and tools built without formal founda-
tions, and prove that these bugs are absent from our system. Finally,
we describe our prototype implementation and our experiences us-
ing it to build practical applications.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

Keywords Software-defined networking, OpenFlow, formal veri-
fication, Coq, domain-specific languages, NetCore, Frenetic.

1. Introduction
Networks are some of the most critical infrastructure in modern so-
ciety and also some of the most fragile! Networks fail with alarm-
ing frequency, often due to simple misconfigurations or software
bugs [8, 19, 30]. The recent news headlines contain numerous ex-
amples of network failures leading to disruptions: a configuration
error during routine maintenance at Amazon triggered a sequence
of cascading failures that brought down a datacenter and the cus-
tomer machines hosted there; a corrupted routing table at GoDaddy
disconnected their domain name servers for a day and caused a
widespread outage; and a network connectivity issue at United Air-
lines took down their reservation system, leading to thousands of
flight cancellations and a “ground stop” at their San Francisco hub.

One way to make networks more reliable would be to de-
velop tools for checking important network invariants automati-
cally. These tools would allow administrators to answer questions
such as: “does this configuration provide connectivity to every host
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in the network?” or “does this configuration correctly enforce the
access control policy?” or “does this configuration have a forward-
ing loop?” or “does this configuration properly isolate trusted and
untrusted traffic?” Unfortunately, until recently, building such tools
has been effectively impossible due to the complexity of today’s
networks. A typical enterprise or datacenter network contains thou-
sands of heterogeneous devices, from routers and switches, to web
caches and load balancers, to monitoring middleboxes and fire-
walls. Moreover, each device executes a stack of complex protocols
and is configured through a proprietary and idiosyncratic interface.
To reason formally about such a network, an administrator (or tool)
must reason about the proprietary programs running on each dis-
tributed device, as well as the asynchronous interactions between
them. Although formal models of traditional networks exist, they
have either been too complex to allow effective reasoning, or too
abstract to be useful. Overall, the incidental complexity of networks
has made reasoning about their behavior practically infeasible.

Fortunately, recent years have seen growing interest in a new
kind of network architecture that could provide a foundation for
network reasoning. In a software-defined network (SDN), a program
on a logically-centralized controller machine defines the overall
policy for the network, and a collection of programmable switches
implement the policy using efficient packet-processing hardware.
The controller and switches communicate via an open and standard
interface. By carefully installing packet-processing rules in the
hardware tables provided on switches, the controller can effectively
manage the behavior of the entire network.

Compared to traditional networks, SDNs have two important
simplifications that make them amenable to formal reasoning. First,
they relocate control from distributed algorithms running on indi-
vidual devices to a single program running on the controller. Sec-
ond, they eliminate the heterogeneous devices used in traditional
networks—switches, routers, load balancers, firewalls, etc.—and
replace them with stock programmable switches that provide a
standard set of features. Together, this means that the behavior of
the network is determined solely by the sequence of configuration
instructions issued by the controller. To verify that the network has
some property, an administrator (or tool) simply has to reason about
the states of the switches as they process instructions.

In the networking community, there is burgeoning interest in
tools for checking network-wide properties automatically. Sys-
tems such as FlowChecker [1], Header Space Analysis [12],
Anteater [17], VeriFlow [13], and others, work by generating a
logical representation of switch configurations and using an auto-
matic solver to check properties of those configurations. The con-
figurations are obtained by “scraping” state off of the switches or
inspecting the instructions issued by an SDN controller at run-time.

These tools represent a good first step toward making networks
more reliable, but they have two important limitations. First, they
are based on ad hoc foundations. Although SDN platforms such as
OpenFlow [21] have precise (if informal) specifications, the tools
make simplifying assumptions that are routinely violated by real



Report Card

☺
- Established a beachhead for network programming languages
- Got a lot of folks thinking seriously about modular composition
- Details of the compiler and run-time system interesting



Report Card

☺
- Established a beachhead for network programming languages
- Got a lot of folks thinking seriously about modular composition
- Details of the compiler and run-time system interesting

☹
- Key design choices revisited on each iteration
- Each semantics had a precise de!nition but was rather ad hoc
- Unclear how new features should interact with old ones
- Could not reason equationally about network-wide behavior
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Language Features
What features should a network programming language provide?*

• Packet transformations
• Packet predicates

• Path concatenation
• Path union
• Path iteration

*Focusing just on packet forwarding

• Path construction
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NetKAT
f ::= switch | inport | srcmac | dstmac | ... 
v ::= 0 | 1 | 2 | 3 | ... 
a,b,c ::= true                                    (* true *)
             | false                                   (* false *)
             | f = v                                    (* test *)
             | a1 | a2                                         (* disjunction *)
             | a1 & a2                                      (* conjunction *)
             | ! a                                        (* negation *)
p,q,r ::= !lter a                                (* !lter *)
             | f := v                                   (* modi!cation *)
             | p1 | p2                                                 (* union *)
             | p1 ;  p2                                                (* sequence *)
             | p*                                            (* iteration *)
             | dup                                      (* duplication *)

if a then p1 else p2 ≜ (!lter a; p1) | (!lter !a; p2)
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if srcip = 10.0.0.1 & !(dstport = 22) then 
  port := 1
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Basic Primitives

Controller Platform

Pattern Actions
dstport=22 Drop

srcip=10.0.0.1 Forward	  1

* Forward	  2

if srcip = 10.0.0.1 & !(dstport = 22) then 
  port := 1
else 
  port := 2

Firewall



Union

Controller Platform

Monitor Route|

if srcip = 1.2.3.4  then port := 3
if dstip = 10.0.0.1  then port := 1
else if dstip = 10.0.0.1  then port := 2



Union

Controller Platform

Monitor Route|

Pattern Actions
srcip=1.2.3.4,	  dstip=10.0.0.1 Forward	  1,	  Forward	  3

srcip=1.2.3.4,	  dstip=10.0.0.2 Forward	  2,	  Forward	  3

srcip=1.2.3.4 Forward	  3

dstip=10.0.0.1 Forward	  1

dstip=10.0.0.2 Forward	  2

if srcip = 1.2.3.4  then port := 3
if dstip = 10.0.0.1  then port := 1
else if dstip = 10.0.0.1  then port := 2
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Sequence

Controller Platform

Load Balance Route;

Pattern Actions
srcip=*0 dstip:=10.0.0.1,	  Forward	  1

srcip=*1 dstip:=10.0.0.2,	  Forward	  2

if srcip = *0  then dstip := 10.0.0.1 
else if srcip = *1 then dstip := 10.0.0.2

if dstip = 10.0.0.1  then port := 1
else if dstip = 10.0.0.2  then port := 2



Iteration

Controller Platform

Tenant A Tenant B|( )*

if dstip = 192.168.0.0/16  then 
  port := B 
else if port = A & dstport = 80 then
  port := 1

if dstip = 10.0.0.0/8  then 
  port := A 
else if port = B & dstport = 22 then
  port := 2



Iteration

Controller Platform

Tenant A Tenant B|

Pattern Actions
dstip=10.0.0.0/8,	  dstport=80 Forward	  1

dstip=192.168.0.0/16,	  dstport=22 Forward	  2

* Drop

( )*

if dstip = 192.168.0.0/16  then 
  port := B 
else if port = A & dstport = 80 then
  port := 1

if dstip = 10.0.0.0/8  then 
  port := A 
else if port = B & dstport = 22 then
  port := 2



Semantic Foundation

Its foundation rests upon canonical mathematical structure:
• Regular operators (|, ;, and *) encode paths through topology
• Boolean operators (&, |, and !) encode switch tables

The design of NetKAT is not an accident! 

 This is called a Kleene Algebra with Tests (KAT) [Kozen ’96]

KAT has an accompanying proof system for showing 
equivalences of the form p ~ q



Semantic Foundation

Theorems
• Soundness: programs related by the axioms are equivalent
• Completeness: equivalent programs are related by the axioms
• Decidabilty: there is an algorithm for deciding equivalence

Its foundation rests upon canonical mathematical structure:
• Regular operators (|, ;, and *) encode paths through topology
• Boolean operators (&, |, and !) encode switch tables

The design of NetKAT is not an accident! 

 This is called a Kleene Algebra with Tests (KAT) [Kozen ’96]

KAT has an accompanying proof system for showing 
equivalences of the form p ~ q



NetKAT Equational Theory
Boolean Algebra
a | (b & c) ~ (a | b) & (a | c)
a | true ~ true
a | ! a ~ true
a & b ~ b & a
a & !a ~ false
a & a ~ a

Packet Algebra
f := n; f ’ := n’ ~ f ’ := n’ ; f := n         if f ≠ f ’
f := n; f ’ = n’ ~ f ’ = n’; f := n            if f ≠ f ’
f := n; f = n ~ f := n
f = n; f := n ~ f = n
f := n; f := n’ ~ f := n’
f = n; f = n’ ~ !lter false             if n ≠ n’
dup ; f = n ~ f = n ; dup

Kleene Algebra
p | (q | r) ~ (p | q)  | r
p | q ~ q | p
p | !lter false ~ p
p | p ~ p
p ; (q ; r) ~ (p ; q) ; r
p; (q | r) ~ p ; q | p ; r
(p | q) ; r ~ p ; r | q ; r
!lter true ; p ~ p 
p ~ p ; !lter true
!lter false ; p ~ !lter false 
p ; !lter false ~ !lter false
!lter true | p ; p* ~ p*

!lter true | p* ; p ~ p*

p | q ; r  | r ~ r ⇒ p* ; q | r ~ r

p |  q ; r | q ~ q ⇒ p ; r* | q ~q



Application: Reachability

s1

s0

s17

s13

s3

s10

s2

s7 s12

s9

s11

s8

s6 s5 s4 s19 s18

s16 s15 s14 s20 s21

Given:
• Ingress predicate i
• Topology t
• Switch program p
• Egress predicate e

Test:
  !lter i; dup; (p; dup; t)*; !lter e ~ !lter false
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A B

Given a program and a topology:

Want to be able to answer questions like:
“Will my network behave the same if I put the !rewall 
rules on A, or on switch B (or both)?”



Application: Optimization

A B

Given a program and a topology:

Formally, does the following equivalence hold?
  (!lter switch = A ; !rewall; routing) | (!lter switch = B; routing)

  ~ 
  (!lter switch = A ; routing) | (!lter switch = B; !rewall; routing)

Want to be able to answer questions like:
“Will my network behave the same if I put the !rewall 
rules on A, or on switch B (or both)?”
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Optimization Proof

in; (pA; t) ; pA;out
≡ { in out pA }

sA; ; ((sA;¬ ; p+ sB; p); t) ; pA; sB
≡ { }

sA; ; ((sA;¬ ; p+ sB; p); t; ) ; pA; sB
≡ { }

sA; ; (sA;¬ ;p; t; + sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sA;¬ ; ; p; t+ sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sA; drop; p; t+ sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sB; p; t; ) ; pA; sB
≡ { }
sA; ; (id+ (sB; p; t; ); (sB; p; t; ) ); pA; sB
≡ { }

(sA; ; pA; sB)+
(sA; ; sB; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
(sA; sB; ; pA)+
(sA; sB; ; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
(drop; ; pA)+
(drop; ; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
drop
≡ { }

sA; (pB; t) ; ( ;drop; p+ sB;drop; p; sB)
≡ { }

sA; (pB; t) ; ( ; sA; sB; p+ sB; ;¬ ; p; sB)
≡ { }

sA; (pB; t) ; ( ; sA;p; sB + ; sB;¬ ; p; sB)
≡ { }

sA; (pB; t) ; ; (sA; p+ sB;¬ ; p); sB
≡ { }

sA; ; (pB; t) ; (sA; p+ sB;¬ ; p); sB
≡ { in out pB }

in; (pB; t) ; pB; out

!p" : H→ P(H) [·]
[p] ⊆ H× H

(h1, h2) ∈ [p] ⇔ h2 ∈ !p" (h1).

[p] p

in; (pA; t) ; pA;out
≡ { in out pA }

sA; ; ((sA;¬ ; p+ sB; p); t) ; pA; sB
≡ { }

sA; ; ((sA;¬ ; p+ sB; p); t; ) ; pA; sB
≡ { }

sA; ; (sA;¬ ;p; t; + sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sA;¬ ; ; p; t+ sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sA; drop; p; t+ sB; p; t; ) ; pA; sB
≡ { }

sA; ; (sB; p; t; ) ; pA; sB
≡ { }
sA; ; (id+ (sB; p; t; ); (sB; p; t; ) ); pA; sB
≡ { }

(sA; ; pA; sB)+
(sA; ; sB; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
(sA; sB; ; pA)+
(sA; sB; ; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
(drop; ; pA)+
(drop; ; p; t; ; (sB; p; t; ) ; pA; sB)

≡ { }
drop
≡ { }

sA; (pB; t) ; ( ;drop; p+ sB;drop; p; sB)
≡ { }

sA; (pB; t) ; ( ; sA; sB; p+ sB; ;¬ ; p; sB)
≡ { }

sA; (pB; t) ; ( ; sA;p; sB + ; sB;¬ ; p; sB)
≡ { }

sA; (pB; t) ; ; (sA; p+ sB;¬ ; p); sB
≡ { }

sA; ; (pB; t) ; (sA; p+ sB;¬ ; p); sB
≡ { in out pB }

in; (pB; t) ; pB; out

!p" : H→ P(H) [·]
[p] ⊆ H× H

(h1, h2) ∈ [p] ⇔ h2 ∈ !p" (h1).

[p] p

A B
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Application: Security

Slice 1 Slice 2 Slice 3 Slice N...
Controller Platform

Each module controls a 
different portion of the traffic

A slice is a lightweight abstraction for expressing isolated programs:

    s::=	  {i}	  p	  {e}

Slices can be desugared into NetKAT by a simple translation

Theorem: (s1	  |	  s2;topo)*	  =	  (s1;topo)*	  |	  (s2;topo)*



Ongoing Work
• NetKAT co-algebraically

- Brzozowski derivative (DFA)
- Antimirov partial derivative (NFA)
- Algorithms for deciding equivalence

• Global compilation
- Simulate automata state using header bits
- Optimizations to reduce state space
- Useful for compiling virtual paths, trees, etc.

• Non-deterministic NetKAT
- Fault-tolerance
- In-network load-balancing

• Veri!cation tools
- Z3-based backend
- Automata-based backend (in progress)



Thank you!

NetKAT collaborators
• Carolyn Anderson (Swarthmore)
• Arjun Guha (UMass Amherst)
• Jean-Baptiste Jeannin (Cornell)
• Dexter Kozen (Cornell)
• Cole Schlesinger (Princeton)
• David Walker (Princeton)

https://github.com/frenetic-lang/frenetic
https://github.com/frenetic-lang/pyretic

Formal Foundations for Networks
Seminar 30-0613, February 2015
Co-organizers:
• Nikolaj Bjørner (MSR)
• Nate Foster (Cornell)
• Brighten Godfrey (UIUC)
• Pamela Zave (AT&T)

http://frenetic-lang.org
http://frenetic-lang.org
https://github.com/frenetic-lang/pyretic
https://github.com/frenetic-lang/pyretic


Completeness


