Gödel

Hashing

matt.might.net @mattmight

Disclaimer
"simple, fun idea"

"simple, fun idea"

"works well in practice,"

"simple, fun idea"

"works well in practice,"

"but theory says it will not."

An old problem

An older solution

A big impact

An old problem

"CFA is slow!"

An older solution

Gödel hashing

functional monotonic compact dynamic incremental perfect

Inspired by a true theorem.

Word-level parallelism!

Great cache behavior!

A big impact

Minutes of work

$2 \times 5 x$

${ }_{2 x} 5 \times 8 x$

Motivation

(f x)

f(x)

What is f ?

Why not run the program?
e
e

What is f , here?

What is f , here?
${ }^{e \cdot} \cdot{ }^{\circ}{ }^{\circ} \mathrm{O} \longrightarrow \mathrm{O} \longrightarrow$

${ }^{e \cdot} \cdot{ }^{\circ}{ }^{\circ} \mathrm{O} \longrightarrow \mathrm{O} \longrightarrow$

0
Problem

$$
\hat{\zeta}_{1}=(e, \hat{\rho}, \hat{\sigma}, \hat{\kappa})
$$

$\hat{\sigma}: \widehat{A d d r} \rightarrow \mathcal{P}(\widehat{\text { Value }})$

Value

\bullet

$$
\therefore
$$

$$
\therefore
$$

$$
A K
$$

$$
A K
$$

$$
\begin{array}{lll}
11 & 11 \\
111 & 1
\end{array}
$$

1

First: Hash sets

Prime decomposition

Primes

Primes

ancon

$p_{3} \times p_{4}$

$$
\{O, O\}
$$

$\{\bigcirc, \bigcirc\}$

$$
A \subseteq B
$$

$$
\llbracket B \rrbracket \bmod \llbracket A \rrbracket=0
$$

$$
A \cap B
$$

$\operatorname{gcd}(\llbracket A \rrbracket, \llbracket B \rrbracket)$

$$
\operatorname{lcm}(\llbracket A \rrbracket, \llbracket B \rrbracket)
$$

$$
A \cup B
$$

$$
A \cup B
$$

$$
A-B
$$

$$
\llbracket A \rrbracket / \operatorname{gcd}(\llbracket A \rrbracket, \llbracket B \rrbracket)
$$

\sqsubseteq

$$
n=D_{1}{ }^{m_{1}} D_{2}{ }^{m_{2}} D_{3}^{m_{3}} \ldots
$$

$n=$
 $\{\bigcirc, \bigcirc, \bigcirc\}$

$\because \circ$
$\because \circ$

$x \sqcup y$
$\operatorname{lcm}(\llbracket x \rrbracket, \llbracket y \rrbracket)$

$$
x \sqsubseteq y
$$

$$
\llbracket y \rrbracket \bmod \llbracket x \rrbracket=0
$$

$$
x \sqcap y
$$

$\operatorname{gcd}(\llbracket x \rrbracket, \llbracket y \rrbracket)$

But, does it work for CFA?

$\hat{\sigma}: \widehat{A d d r} \rightarrow \mathcal{P}(\widehat{\text { Value }})$

$\widehat{A d d r}$

Value

$$
\left\{\hat{a}_{1}, \hat{a}_{2}\right\}
$$

$$
\left\{\hat{v}_{1}, \hat{v}_{2}\right\}
$$

$$
\begin{aligned}
& {\left[\hat{a}_{1} \mapsto\left\{\hat{v}_{2}\right\}\right]} \\
& {\left[\hat{a}_{2} \mapsto\left\{\hat{v}_{1}\right\}\right]} \\
& {\left[\hat{a}_{2} \mapsto\left\{\hat{v}_{2}\right\}\right]} \\
& {\left[\hat{a}_{1} \mapsto\left\{\hat{v}_{1}\right\}\right]}
\end{aligned}
$$

L_{1} has a prime basis.
L_{2} has a prime basis.
$L_{1} \times L_{2}$ has a prime basis.
$L_{1}+L_{2}$ has a prime basis.
$X \rightarrow L_{2}$ has a prime basis.

What else?

$$
\llbracket\left\{a^{n}, b^{m}\right\} \rrbracket
$$

$$
\llbracket a \rrbracket^{n} \llbracket b \rrbracket^{m}
$$

$$
A \subseteq B
$$

$$
\llbracket B \rrbracket \bmod \llbracket A \rrbracket=0
$$

$$
A \cup B
$$

$$
\llbracket A \rrbracket \times \llbracket B \rrbracket
$$

$$
\llbracket\langle a, b, c\rangle \rrbracket
$$

$$
p_{1}^{[a]} p_{2}^{[b]} p_{3}^{[c]}
$$

Wait a minute...

gcd is $O\left(n^{2}\right)$

\bmod is $O\left(n^{2}\right)$

How is this more efficient?

Flow sets are sparse.

99% of flow sets: < 5 values

Median flow set: 2 values

Primes are dense.

$$
U
$$

I,000,000 abstract values?

23 bit prime

Most flow sets fit in a word.

Most of the time, $n=1$.

If not, great locality.

Programming
 is about
 making choices.

3 E‘s

Elegance
 Efficiency
 Efficacy

Programmers:

 Pick any two
Functional

 Programmers: Pick any three
Questions?

Algebraic data types?

deriving (Hashable)

$$
\begin{aligned}
& 90 \\
& 0
\end{aligned}
$$

$$
p_{1} p_{2} p_{3} p_{4} p_{5}
$$

$$
\begin{aligned}
& 90 \\
& 0
\end{aligned}
$$

