Gödel Hashing

matt.might.net
@mattmight

Disclaimer

"simple, fun idea"

"simple, fun idea"

"works well in practice,"

"simple, fun idea"

"works well in practice,"

"but theory says it will not."

An old problem

An older solution

A big impact

An old problem

"CFA is slow!"

An older solution

Gödel hashing

functional monotonic compact dynamic incremental perfect

Inspired by a true theorem.

Word-level parallelism!

Great cache behavior!

A big impact

Minutes of work

Motivation

(f x)

What is f?

Why not run the program?

e

Problem

$\hat{S_1} \sqsubseteq \hat{S_2}$

$\hat{\varsigma_1} = (e, \hat{\rho}, \hat{\sigma}, \hat{\kappa})$

Value

0	1	0	0	0	1	0	1
0	0	0	0	1	1	0	0
0	0	0	1	0	1	0	0
0	1	0	0	0	0	1	0
1	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	0	0	0	1	1	1
0	0	1	0	0	0	1	0

lddr

О	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
О	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	0	0	0
О	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0
О	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0
О	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0
																					-								-	0			
																														0			
																														1			
О	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0

First: Hash sets

Prime decomposition

$p_3 \times p_4$

 $\{ \bigcirc, \bigcirc \}$

$\{ \bigcirc, \bigcirc \}$

$A \subseteq B$

$\llbracket B \rrbracket \mod \llbracket A \rrbracket = 0$

$A \cap B$

$\gcd(\llbracket A \rrbracket, \llbracket B \rrbracket)$

$\operatorname{lcm}(\llbracket A \rrbracket, \llbracket B \rrbracket)$

A U B

A U B

A - B

$\llbracket A \rrbracket / \gcd(\llbracket A \rrbracket, \llbracket B \rrbracket)$

$n = p_1^{m_1} p_2^{m_2} p_3^{m_3} \cdots$

$n = \left[\left\{ \mathbf{O}, \mathbf{O}, \mathbf{O} \right\} \right]$

$x \sqcup y$

$\operatorname{lcm}(\llbracket x \rrbracket, \llbracket y \rrbracket)$

$x \sqsubseteq y$

$\llbracket y \rrbracket \mod \llbracket x \rrbracket = 0$

$x \sqcap y$

$gcd(\llbracket x \rrbracket, \llbracket y \rrbracket)$

But, does it work for CFA?

 $\{\hat{a}_1, \hat{a}_2\}$

 $|\hat{a}_1 \mapsto \{\hat{v}_2\}|$ $|\hat{a}_2 \mapsto \{\hat{v}_1\}|$ $|\hat{a}_2 \mapsto \{\hat{v}_2\}|$ $[\hat{a}_1 \mapsto \{\hat{v}_1\}]$

L_1 has a prime basis.

L_2 has a prime basis.

$L_1 \times L_2$ has a prime basis.

 $L_1 + L_2$ has a prime basis.

 $X \rightarrow L_2$ has a prime basis.

What else?

$\llbracket \{a^n, b^m\} \rrbracket$

$\llbracket a \rrbracket^n \llbracket b \rrbracket^m$

$A \subseteq B$

$\llbracket B \rrbracket \mod \llbracket A \rrbracket = 0$

A U B

$\llbracket A \rrbracket \times \llbracket B \rrbracket$

$\llbracket a \rrbracket \ \llbracket b \rrbracket \ \llbracket c \rrbracket$ $p_1 \ p_2 \ p_3$

Wait a minute...

gcd is $O(n^2)$

mod is $O(n^2)$

How is this more efficient?

Flow sets are sparse.

99% of flow sets: < 5 values

Median flow set: 2 values

Primes are dense.

UIInU

1,000,000 abstract values?

23 bit prime

Most flow sets fit in a word.

Most of the time, n = 1.

If not, great locality.

Programming

is about

making choices.

3 E's

Elegance

Efficiency

Efficacy

Programmers:

Pick any two

Functional

Programmers:

Pick any three

Questions?

Algebraic data types?

deriving (Hashable)

$p_1 p_2 p_3 p_4 p_5$

