Modular Type Checking With Decision Procedures

lavor S. Diatchki

Galois Inc

lavor S. Diatchki Modular Type Checking With Decision Procedures

Can we provide a generic mechanism for integrating decision
procedures into the type system of a programming language?

lavor S. Diatchki Modular Type Checking With Decision Procedures

An Observation

@ GHC's constraint solver looks a bit like an SMT solver
@ SMT: decision procedures cooperate to solve a problem

e Each algorithm is good at solving one kind of problem
e Use common coordination logic to:

@ partion original probelm among the decision procedures, and
@ propagate results from one procedure to the rest.

lavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Equality of Datatypes

@ The type checker needs to decide if two types are the same:

Maybe a = f Int --> (Maybe = f, a = Int)
Int = Char --> Impossible

@ Decidable with first order unification.

lavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Type Classes

@ The type-checker needs to solve class constraints:

instance Eq Int
instance Eq a => Eq (Maybe a)

Eq (Maybe Int) --> Eq Int --> ()

@ Decidable with restrictions on user-defined instances.

lavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Open Type Families

@ The type checker needs to evaluate user-defined type

functions:

type instance Elem (Maybe a) = a

type instance Elem [a] = a

Elem (Maybe Int) = x --> Int = x

(Elem x = Int, Elem x = Char) --> Impossible

@ Decidable with restrictions on type-family instances.

lavor S. Diatchki Modular Type Checking With Decision Procedures

More Theories of Haskell

Type-level natural numbers
Functional dependencies
Closed type families
Representational equality

@ 6 6 o o

probably more to come ...

o Injective type functions?
e Operations on Symbol?
o Type-level integers?

Common language: type variables and ordinary types.

lavor S. Diatchki Modular Type Checking With Decision Procedures

Reasoning in the Combined Theory

@ The type-checker is presented with a combined problem:
(Eq (Elem (f a)), Maybe a = f (Elem [Int])

@ Here we are using:

e classes,
o type families, and
o type equality.

A modular approach is essential to manage the complexity of the
resulting system.

lavor S. Diatchki Modular Type Checking With Decision Procedures

Canonicalization: Partitioning the Problem

@ Transform the problem so that each constraint belongs to a
single theory

@ This is done by naming terms that belong to a foreign theory:

(Eq (Elem (f a)), Maybe a = f (Elem [Int])

-=>

(Eq x -- type classes
, Elem (f @) = x -- type families
, Maybe a = f y -— type equality
, Elem [Int] =y -- type families

lavor S. Diatchki Modular Type Checking With Decision Procedures

A Solver's Responses

@ For each new constraint a solver may:

e report an inconsistency (i.e., we found an error);
e discharge the constraint, maybe adding extra sub-goals;
e give up, storing the constraint for later use.

@ Example
(Eq x -- give up
, Elem (f a) = x -- give up
, Maybe a = f y --> solve if (Maybe = f, a = y)
, Elem [Int] =y --> solve if Int =y
)

lavor S. Diatchki Modular Type Checking With Decision Procedures

Communication Between Solvers

@ Of particular interest are subgoals of the form x = t
@ tis a “simple” type, understood by all theories.

@ These may be used to rewrite existing constraints, which may
enable further progress

(Eq x, Elem (Maybe Int) = x, f = Maybe, y = a = Int)
(Eq Int, x = Int, f = Maybe, y = a = Int)
(x = Int, f = Maybe, y = a = Int)

lavor S. Diatchki Modular Type Checking With Decision Procedures

Solver For Natural Numbers

@ Assume an existing decision procedure:

sat (x +2=y) ==Sat {x=0,y=21}
sat (2 + 3 6) == Unsat

@ Satisfying assignment contains concrete numbers

@ A useful wrapper:

prove p = sat (Not p) == Unsat

o Example:
prove (2 + 3 = 5) == True
prove (x + y = z) == False

lavor S. Diatchki Modular Type Checking With Decision Procedures

Adding a New Constraint

We want to add a new constraint P, to an existing set of stuck
constraints Ps (the inert set in GHC lingo).
@ Check for redundancy

if prove (Ps => P) then Done
else

@ Check for consistency

case sat (Ps && P) of
Unsat -> report error
Sat su ->

lavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement

@ Adding P to the inert set may result in opportunities for
improvement

o If prove (Ps && P => x = t)
e t is simple, and x in fvs(Ps && P)
@ then we add a new sub-goal x=t

o The new goal does not make the problem harder
o It ensures progress: a variable gets instantiated

@ How to find t7?

lavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement With Concrete Values

© Check for improvements with ground type. We have
candidates from the consistency check:

[x=n| (x,n) <- su, prove (Ps && P => x = n)]

@ Example:

Ps = (O, P=(5+x=28)

sat (6 + x=8) ==Sat { x =3} &
prove (5 + x = 8 => x = 3)

new sub-goal: x = 3

lavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement With Variables

@ For any distinct x and y in fvs(Ps && P):

[x=y | prove (Ps & P => x = y)]

@ For example, consider a constraint like x + 0 = y:

o Improvement with ground values fails (no unique solution)
o However, prove (x + 0 = y => x = y) is True
o new sub-goal: (x =)

lavor S. Diatchki Modular Type Checking With Decision Procedures

Finally: Simplify Delayed Constraints

© Check if we can discharge existing delayed constraints, using
the new constraint: check P Ps

check done (q:gs)

| prove (done && qs => q) = do discharge q

check done gs

| otherwise check (q && done) gs

check done [] = return done

lavor S. Diatchki Modular Type Checking With Decision Procedures

Conclusion

@ A practical implementations should probably optimize things:

e Avoid calls to decision procedure for common simple cases
(e.g., evaluation)

e Lazy canonicalization

o Combine multiple solver steps into a single step.

@ The technique did not make essential use of the fact that we
are working with numbers

@ It'd be interesting to provide a general mechanism for
integrating decision procedures in a language's type-checker.

lavor S. Diatchki Modular Type Checking With Decision Procedures

Given and Wanted Constraints

@ Given constraints do not need to be discharged

e they state known facts
@ They arise from type signatures, existentials, GADTs
@ Processed in a similar way:

e Inconsistency indicates unreachable code

e Improvement with other givens results in new givens
@ No need to keep them minimal, so we can skip step 5
e Adding a given kciks-out all wanteds

lavor S. Diatchki Modular Type Checking With Decision Procedures

@ Usually decision procedures do not produce proofs
@ Proofs could be large, often they involve search
@ One option:

e ‘“oracle” proofs, just record call to decision procedure
e only store facts that the decision procedure used?

lavor S. Diatchki Modular Type Checking With Decision Procedures

