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Question

Can we provide a generic mechanism for integrating decision
procedures into the type system of a programming language?
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An Observation

GHC’s constraint solver looks a bit like an SMT solver

SMT: decision procedures cooperate to solve a problem

Each algorithm is good at solving one kind of problem

Use common coordination logic to:

partion original probelm among the decision procedures, and

propagate results from one procedure to the rest.
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The Theories of Haskell: Equality of Datatypes

The type checker needs to decide if two types are the same:

Maybe a = f Int --> (Maybe = f, a = Int)

Int = Char --> Impossible

Decidable with first order unification.
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The Theories of Haskell: Type Classes

The type-checker needs to solve class constraints:

instance Eq Int

instance Eq a => Eq (Maybe a)

Eq (Maybe Int) --> Eq Int --> ()

Decidable with restrictions on user-defined instances.
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The Theories of Haskell: Open Type Families

The type checker needs to evaluate user-defined type
functions:

type instance Elem (Maybe a) = a

type instance Elem [a] = a

Elem (Maybe Int) = x --> Int = x

(Elem x = Int, Elem x = Char) --> Impossible

Decidable with restrictions on type-family instances.
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More Theories of Haskell

Type-level natural numbers

Functional dependencies

Closed type families

Representational equality

. . . probably more to come . . .

Injective type functions?

Operations on Symbol?

Type-level integers?

Common language: type variables and ordinary types.
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Reasoning in the Combined Theory

The type-checker is presented with a combined problem:

(Eq (Elem (f a)), Maybe a = f (Elem [Int])

Here we are using:

classes,

type families, and

type equality.

A modular approach is essential to manage the complexity of the
resulting system.
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Canonicalization: Partitioning the Problem

Transform the problem so that each constraint belongs to a
single theory

This is done by naming terms that belong to a foreign theory:

(Eq (Elem (f a)), Maybe a = f (Elem [Int])

-->

( Eq x -- type classes

, Elem (f a) = x -- type families

, Maybe a = f y -- type equality

, Elem [Int] = y -- type families

)
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A Solver’s Responses

For each new constraint a solver may:

report an inconsistency (i.e., we found an error);

discharge the constraint, maybe adding extra sub-goals;

give up, storing the constraint for later use.

Example

( Eq x -- give up

, Elem (f a) = x -- give up

, Maybe a = f y --> solve if (Maybe = f, a = y)

, Elem [Int] = y --> solve if Int = y

)
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Communication Between Solvers

Of particular interest are subgoals of the form x = t

t is a “simple” type, understood by all theories.

These may be used to rewrite existing constraints, which may
enable further progress

( Eq x, Elem (Maybe Int) = x, f = Maybe, y = a = Int)

( Eq Int, x = Int, f = Maybe, y = a = Int)

( x = Int, f = Maybe, y = a = Int)
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Solver For Natural Numbers

Assume an existing decision procedure:

sat (x + 2 = y) == Sat { x = 0, y = 2 }

sat (2 + 3 = 6) == Unsat

Satisfying assignment contains concrete numbers

A useful wrapper:

prove p = sat (Not p) == Unsat

Example:

prove (2 + 3 = 5) == True

prove (x + y = z) == False
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Adding a New Constraint

We want to add a new constraint P, to an existing set of stuck
constraints Ps (the inert set in GHC lingo).

1 Check for redundancy

if prove (Ps => P) then Done

else ...

2 Check for consistency

case sat (Ps && P) of

Unsat -> report error

Sat su -> ...
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Improvement

Adding P to the inert set may result in opportunities for
improvement

If prove (Ps && P => x = t)

t is simple, and x in fvs(Ps && P)

then we add a new sub-goal x=t

The new goal does not make the problem harder

It ensures progress: a variable gets instantiated

How to find t?
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Improvement With Concrete Values

3 Check for improvements with ground type. We have
candidates from the consistency check:

[ x = n | (x,n) <- su, prove (Ps && P => x = n) ]

Example:

Ps = (), P = (5 + x = 8)

sat (5 + x = 8) == Sat { x = 3 } &&

prove (5 + x = 8 => x = 3)

new sub-goal: x = 3
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Improvement With Variables

4 For any distinct x and y in fvs(Ps && P):

[ x = y | prove (Ps && P => x = y) ]

For example, consider a constraint like x + 0 = y:

Improvement with ground values fails (no unique solution)

However, prove (x + 0 = y => x = y) is True

new sub-goal: (x = y)
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Finally: Simplify Delayed Constraints

5 Check if we can discharge existing delayed constraints, using
the new constraint: check P Ps

check done (q:qs)

| prove (done && qs => q) = do discharge q

check done qs

| otherwise = check (q && done) qs

check done [] = return done

Iavor S. Diatchki Modular Type Checking With Decision Procedures



Conclusion

A practical implementations should probably optimize things:

Avoid calls to decision procedure for common simple cases
(e.g., evaluation)

Lazy canonicalization

Combine multiple solver steps into a single step.

The technique did not make essential use of the fact that we
are working with numbers

It’d be interesting to provide a general mechanism for
integrating decision procedures in a language’s type-checker.
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Given and Wanted Constraints

Given constraints do not need to be discharged

they state known facts

They arise from type signatures, existentials, GADTs

Processed in a similar way:

Inconsistency indicates unreachable code

Improvement with other givens results in new givens

No need to keep them minimal, so we can skip step 5

Adding a given kciks-out all wanteds
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Evidence

Usually decision procedures do not produce proofs

Proofs could be large, often they involve search

One option:

“oracle” proofs, just record call to decision procedure

only store facts that the decision procedure used?
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