
Modular Type Checking With Decision Procedures

Iavor S. Diatchki

Galois Inc

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Question

Can we provide a generic mechanism for integrating decision
procedures into the type system of a programming language?

Iavor S. Diatchki Modular Type Checking With Decision Procedures

An Observation

GHC’s constraint solver looks a bit like an SMT solver

SMT: decision procedures cooperate to solve a problem

Each algorithm is good at solving one kind of problem

Use common coordination logic to:

partion original probelm among the decision procedures, and

propagate results from one procedure to the rest.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Equality of Datatypes

The type checker needs to decide if two types are the same:

Maybe a = f Int --> (Maybe = f, a = Int)

Int = Char --> Impossible

Decidable with first order unification.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Type Classes

The type-checker needs to solve class constraints:

instance Eq Int

instance Eq a => Eq (Maybe a)

Eq (Maybe Int) --> Eq Int --> ()

Decidable with restrictions on user-defined instances.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

The Theories of Haskell: Open Type Families

The type checker needs to evaluate user-defined type
functions:

type instance Elem (Maybe a) = a

type instance Elem [a] = a

Elem (Maybe Int) = x --> Int = x

(Elem x = Int, Elem x = Char) --> Impossible

Decidable with restrictions on type-family instances.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

More Theories of Haskell

Type-level natural numbers

Functional dependencies

Closed type families

Representational equality

. . . probably more to come . . .

Injective type functions?

Operations on Symbol?

Type-level integers?

Common language: type variables and ordinary types.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Reasoning in the Combined Theory

The type-checker is presented with a combined problem:

(Eq (Elem (f a)), Maybe a = f (Elem [Int])

Here we are using:

classes,

type families, and

type equality.

A modular approach is essential to manage the complexity of the
resulting system.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Canonicalization: Partitioning the Problem

Transform the problem so that each constraint belongs to a
single theory

This is done by naming terms that belong to a foreign theory:

(Eq (Elem (f a)), Maybe a = f (Elem [Int])

-->

(Eq x -- type classes

, Elem (f a) = x -- type families

, Maybe a = f y -- type equality

, Elem [Int] = y -- type families

)

Iavor S. Diatchki Modular Type Checking With Decision Procedures

A Solver’s Responses

For each new constraint a solver may:

report an inconsistency (i.e., we found an error);

discharge the constraint, maybe adding extra sub-goals;

give up, storing the constraint for later use.

Example

(Eq x -- give up

, Elem (f a) = x -- give up

, Maybe a = f y --> solve if (Maybe = f, a = y)

, Elem [Int] = y --> solve if Int = y

)

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Communication Between Solvers

Of particular interest are subgoals of the form x = t

t is a “simple” type, understood by all theories.

These may be used to rewrite existing constraints, which may
enable further progress

(Eq x, Elem (Maybe Int) = x, f = Maybe, y = a = Int)

(Eq Int, x = Int, f = Maybe, y = a = Int)

(x = Int, f = Maybe, y = a = Int)

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Solver For Natural Numbers

Assume an existing decision procedure:

sat (x + 2 = y) == Sat { x = 0, y = 2 }

sat (2 + 3 = 6) == Unsat

Satisfying assignment contains concrete numbers

A useful wrapper:

prove p = sat (Not p) == Unsat

Example:

prove (2 + 3 = 5) == True

prove (x + y = z) == False

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Adding a New Constraint

We want to add a new constraint P, to an existing set of stuck
constraints Ps (the inert set in GHC lingo).

1 Check for redundancy

if prove (Ps => P) then Done

else ...

2 Check for consistency

case sat (Ps && P) of

Unsat -> report error

Sat su -> ...

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement

Adding P to the inert set may result in opportunities for
improvement

If prove (Ps && P => x = t)

t is simple, and x in fvs(Ps && P)

then we add a new sub-goal x=t

The new goal does not make the problem harder

It ensures progress: a variable gets instantiated

How to find t?

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement With Concrete Values

3 Check for improvements with ground type. We have
candidates from the consistency check:

[x = n | (x,n) <- su, prove (Ps && P => x = n)]

Example:

Ps = (), P = (5 + x = 8)

sat (5 + x = 8) == Sat { x = 3 } &&

prove (5 + x = 8 => x = 3)

new sub-goal: x = 3

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Improvement With Variables

4 For any distinct x and y in fvs(Ps && P):

[x = y | prove (Ps && P => x = y)]

For example, consider a constraint like x + 0 = y:

Improvement with ground values fails (no unique solution)

However, prove (x + 0 = y => x = y) is True

new sub-goal: (x = y)

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Finally: Simplify Delayed Constraints

5 Check if we can discharge existing delayed constraints, using
the new constraint: check P Ps

check done (q:qs)

| prove (done && qs => q) = do discharge q

check done qs

| otherwise = check (q && done) qs

check done [] = return done

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Conclusion

A practical implementations should probably optimize things:

Avoid calls to decision procedure for common simple cases
(e.g., evaluation)

Lazy canonicalization

Combine multiple solver steps into a single step.

The technique did not make essential use of the fact that we
are working with numbers

It’d be interesting to provide a general mechanism for
integrating decision procedures in a language’s type-checker.

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Given and Wanted Constraints

Given constraints do not need to be discharged

they state known facts

They arise from type signatures, existentials, GADTs

Processed in a similar way:

Inconsistency indicates unreachable code

Improvement with other givens results in new givens

No need to keep them minimal, so we can skip step 5

Adding a given kciks-out all wanteds

Iavor S. Diatchki Modular Type Checking With Decision Procedures

Evidence

Usually decision procedures do not produce proofs

Proofs could be large, often they involve search

One option:

“oracle” proofs, just record call to decision procedure

only store facts that the decision procedure used?

Iavor S. Diatchki Modular Type Checking With Decision Procedures

