
The design of Mezzo

François Pottier Jonathan Protzenko

INRIA

CMU, Sep 2013

1 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

2 / 51

Premise

The types of OCaml, Haskell, Java, C#, etc.:

• describe the structure of data,

• but do not distinguish trees and graphs,

• and do not control who has permission to read or write.

3 / 51

Question

Could a more ambitious static discipline:

• rule out more programming errors,

• and enable new programming idioms,

• while remaining reasonably simple and flexible?

4 / 51

Goals

We would like to rule out:

• representation exposure;

• data races;

• violations of object protocols;

and to enable:

• gradual initialization;

• type changes along with state changes;

• (in certain cases) explicit memory re-use.

5 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

6 / 51

Principle 1. Nothing is fixed

A variable x does not have a fixed type throughout its lifetime.

Instead,

• at each program point in the scope of x,
• one may have zero, one, or more (static) permissions to use x
in certain ways.

7 / 51

Layout and ownership go hand in hand

As a consequence, permissions describe layout and ownership.

A permission of the form “x @ t” allows using x at type t.
It describes the shape and extent of a heap fragment, rooted at x,
and describes certain access rights for this memory.

In short, “to know about x” is “to have access to x” is “to own x”.

8 / 51

Principle 2. Just two access modes

The system imposes a global invariant: at any time,

• if x is a mutable object, there exists at most one permission to
access it (for reading and writing);

• if x is an immutable object, there may exist arbitrarily many
permissions to access it (for reading).

No counting. No fractions.

9 / 51

Some syntax and examples

For instance,

• “x @ list int” provides (read) access to an immutable list of
integers, rooted at x.

• “x @ mlist int” provides (exclusive, read/write) access to a
mutable list of integers at x.

• “x @ list (ref int)” offers read access to the spine and
read/write access to the elements, which are integer cells.

10 / 51

Principle 3. Any (known) alias is as good as any other

An equality “x = y” is a permission, sugar for “x @ (=y)”.
In its presence, “x @ t” can be turned into “y @ t”, and vice-versa.

No “borrowing”.

11 / 51

Control of duplication

A value can be copied (always).

Can a permission be copied?

• “x @ list int” can be copied: read access can be shared.

• “x = y” can be copied: equalities are forever.

• “x @ mlist int” and “x @ list (ref int)” must not be
copied, as they imply exclusive access to part of the heap.

One can always tell whether a permission is duplicable or affine.

12 / 51

Control of aliasing: the bad

let x = 0 in
let y = ref x in
let z = (y, y) in
...

We have “x @ int” and “y @ ref (=x)” and “z @ (=y, =y)”.
Thus, we have “x @ int” and “y @ ref int” and “z @ (=y, =y)”.
We cannot deduce “z @ (ref int, ref int)”, as this reasoning
step would require duplicating “y @ ref int”.
Aliasing of mutable data is restricted.

13 / 51

Control of aliasing: the good

let z : (ref int, ref int) = ... in
let (x, y) = z in
...

We have “z @ (ref int, ref int)” and “z @ (=x, =y)”.
I.e., “z @ (=x, =y)” and “x @ ref int” and “y @ ref int”.
We have an exclusive access token for each of x and y. There
follows that these addresses must be distinct.

Technically, the word “and” above is a conjunction * that requires
separation at mutable data and agreement at immutable data.

14 / 51

Summary so far: the good

Why is this a useful discipline?

The uniqueness of read/write permissions:

• rules out representation exposure and data races;

• allows the type of an object to vary with time.

15 / 51

Summary so far: the bad

Isn't this a restrictive discipline?

Yes, it is. In our defense,

• there is no restriction on the use of immutable data;

• there is an escape hatch that involves dynamic checks.

16 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

17 / 51

Immutable lists

The algebraic data type of immutable lists is defined as in ML:

data list a =
| Nil
| Cons { head: a; tail: list a }

18 / 51

Mutable lists

To define a type of mutable lists, one adds a keyword:

data mutable mlist a =
| MNil
| MCons { head: a; tail: mlist a }

19 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

......

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

..

xs @ mlist a

.....

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

...

xs @ MNil

....

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

....

xs @ MCons { head: a; tail: mlist a }

...

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

.....

xs @ MCons { head: (=h); tail: (=t) }
* h @ a
* t @ mlist a

..

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

......

xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a

.

20 / 51

Permission analysis & refinement

..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

.......

xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a
* x = h

20 / 51

Principles

This illustrates two mechanisms:

• A nominal permission can be unfolded and refined to a
structural one.

• A structural permission can be decomposed into a
conjunction of permissions for the fields.

These reasoning steps are reversible.

This means that “xs @ list (ref a)” denotes a list of pairwise
distinct references.

21 / 51

A recursive function

val length: [a] mlist a -> int

This type should be understood as follows:

• length requires one argument xs, along with the static
permission “xs @ mlist a”.

• length returns one result n, along with the static permission
“xs @ mlist a * n @ int”.

By convention, the permissions demanded by a function are also
returned, unless the “consumes” keyword is used.

22 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

........

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

xs @ mlist a

.......

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

...

xs @ MNil

......

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

....

xs @ MNil

.....

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

.....

xs @ mlist a

....

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

......

xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

...

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

.......

xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

..

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

........

xs @ MCons { head: a; tail: mlist a }

.

23 / 51

A recursive function

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..
| MCons -> ..

length_aux (accu + 1, xs.tail) ..
end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

.........

xs @ mlist a

23 / 51

Tail recursion versus iteration

The analysis of this code is surprisingly simple.

• This is a tail-recursive function, i.e.,
a loop in disguise.

• As we go, there is a list ahead of us and
a list segment behind us.

• Ownership of the latter is implicit, i.e.,
framed out.

Recursive reasoning, iterative execution.

24 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

25 / 51

What's here

A couple more examples:

• melding mutable lists;

• concatenating immutable lists.

Both feature iteration as tail recursion.

The latter also demonstrates gradual initialization.

26 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

.......

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

..

not consumed!

......

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

...

consumed!

.....

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

.... xs @ MCons { head: a; tail = t }
t @ MNil
ys @ mlist a

....

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

..... xs @ MCons { head: a; tail = ys }
t @ MNil
ys @ mlist a

...

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

...... xs @ MCons { head: a; tail: mlist a }
t @ MNil

..

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

.......
xs @ MCons { head: a; tail: mlist a }

.

27 / 51

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a }, ..
consumes ys: mlist a ..) : () =

match xs.tail with
| MNil -> ..

xs.tail <- ys ..
| MCons ->

meld_aux (xs.tail, ys) ..
end

........

xs @ MCons { head: a; tail = t }
is framed out during the call

27 / 51

Melding mutable lists (2/2)

val meld [a] (consumes xs: mlist a,
consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys
| MCons -> meld_aux (xs, ys); xs
end

28 / 51

Concatenating immutable lists

..
Cons

.head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

29 / 51

Concatenating immutable lists

..
Cons

.head.

tail

.
MCons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

29 / 51

Concatenating immutable lists

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

29 / 51

Concatenating immutable lists (1/3)

We define a type for a partially-initialized “cons” cell:

alias mcons a =
MCons { head: a; tail: () }

The permission “c @ mcons a” allows updating c.tail.
It also allows freezing the cell c.

30 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

......

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

all three inputs consumed!

.....

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

...

upon return, dst is a list

....

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

....

dst.tail is initialized

...

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

.....

dst becomes an immutable block

..

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

......

dst' becomes a valid list

.

31 / 51

Concatenating immutable lists (2/3)

val rec append_aux [a] (consumes ..(
dst: mcons a, xs: list a, ys: list a))

: (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

.......

hence, dst too becomes a valid list

31 / 51

Concatenating immutable lists (3/3)

val append [a] (consumes (xs: list a, ys: list a))
: list a =

match xs with
| Cons ->

let dst = MCons { head = xs.head; tail = () } in
append_aux (dst, xs.tail, ys);
dst

| Nil ->
ys

end

32 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

33 / 51

Aliasing is restricted

By default, mutable data cannot be aliased.

Several independent mechanisms circumvent this restriction:

• locks in the style of concurrent separation logic;

• adoption and abandon, an original feature;

• nesting in the style of Boyland.

The first two are more flexible, but are runtime mechanisms and
can cause deadlocks and runtime errors.

34 / 51

Locks (1/2)

We need two types:

abstract lock (p: perm)
fact duplicable (lock p)

abstract locked

35 / 51

Locks (2/2)

The basic operations are:

val new: [p: perm]
(| consumes p) -> lock p

val acquire: [p: perm]
(l: lock p) -> (| p * l @ locked)

val release: [p: perm]
(l: lock p | consumes (p * l @ locked)) -> ()

“try acquire” can also be expressed.

36 / 51

Locks are safe

In the presence of threads & locks,

• well-typed programs do not go wrong...

• ...and are data-race-free (Thibaut Balabonski, F.P.).

The type system does not prevent deadlocks.

37 / 51

Benefits of locks

Although “x @ a” cannot be shared, “l @ lock (x @ a)” can.
A value x, without any permission, can be shared too.

Thus, an object that is protected by a lock can be shared:

alias protected a =
(x: unknown, lock (x @ a))

This allows an encoding of ML into Mezzo, of theoretical interest
only, where every mutable object is protected by a lock.

38 / 51

Hiding

Hiding a function's internal state allows sharing this function:

val hide : [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) -> (a -> b)

39 / 51

Hiding

Hiding a function's internal state allows sharing this function:

val hide [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) : (a -> b) =

let l : lock s = new () in ..
fun (x : a) : b = ..

acquire l; ..
let y = f x in
release l;
y

...

40 / 51

Hiding

Hiding a function's internal state allows sharing this function:

val hide [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) : (a -> b) =

let l : lock s = new () in ..
fun (x : a) : b = ..

acquire l; ..
let y = f x in
release l;
y

..

l @ lock s

..

40 / 51

Hiding

Hiding a function's internal state allows sharing this function:

val hide [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) : (a -> b) =

let l : lock s = new () in ..
fun (x : a) : b = ..

acquire l; ..
let y = f x in
release l;
y

...

l @ lock s

.

40 / 51

Hiding

Hiding a function's internal state allows sharing this function:

val hide [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) : (a -> b) =

let l : lock s = new () in ..
fun (x : a) : b = ..

acquire l; ..
let y = f x in
release l;
y

....

l @ locked
s

40 / 51

Adoption and abandon

Adoption and abandon, also known as give & take, allow a single
static permission to control a group of (mutable) objects.

The objects in the group can be aliased in arbitrary ways.

41 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

.

.

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: overview

..

x @ node

.

x @ dynamic

.

give x to y

. x @ dynamic.

c

.

o

.

p

.

y

. x @ dynamic.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ dynamic

.

c

.

o

.

p

.

y

.

x @ node

.

take x from y

.

x @ node

.

?

..

Uniqueness is guaranteed via a runtime check.

42 / 51

give & take: dynamic semantics

Mutable objects can serve as adopters or adoptees.

Every object maintains a (possibly null) pointer to its adopter.

“give x to y” sets this field; “take x from y” tests it and clears it.

“take” can fail.

43 / 51

give & take: static semantics

“give x to y” and “take x from y” need exclusive ownership of y.

“give x to y” consumes “x @ u”, while “take x from y” produces
“x @ u”, where the type u of the adoptee is determined by the type
of the adopter.

Owning an object implicitly means owning all of its adoptees too.

44 / 51

give & take: bottom line

Well-typed programs do not go wrong, but can fail at “take”.
This is a dynamic version of Fähndrich and DeLine's regions with
adoption & focus.

The ownership hierarchy is partly static, partly dynamic.

45 / 51

Outline

Motivation

Design principles

Algebraic data structures

Extra examples

Aliasing

Project status

46 / 51

Who we are

The project was launched in late 2011 and currently involves

• Jonathan Protzenko (Ph.D student, soon to graduate),

• Thibaut Balabonski (post-doc researcher),

• and myself (INRIA researcher).

47 / 51

Where we are

We currently have:

• a formal definition and type soundness proof for Core Mezzo,
including give & take and threads & locks;

• a prototype type-checker.

48 / 51

What next?

In the short term, we would like to:

• put more work into type inference, which is tricky;

• experimentally evaluate Mezzo's expressiveness and usability;

• compile Mezzo down to untyped OCaml, or some other target.

49 / 51

What next?

Many as-yet-unanswered questions!

• Is this a good mix between static and dynamic mechanisms?

• Can we write modular code?

• Can we express object protocols?

• What about specifications & proofs of programs?

50 / 51

Thank you

More information is online at
http://gallium.inria.fr/~protzenk/mezzo-lang/

51 / 51

http://gallium.inria.fr/~protzenk/mezzo-lang/

	Motivation
	Design principles
	Algebraic data structures
	Extra examples
	Aliasing
	Project status

