Environmental Bisimulations and Its Open Questions

Eijiro Sumii (Tohoku University)

Executive Summary

- Environmental bisimulations: A proof method for contextual equivalence
 - Syntactic/operational/"elementary"
 - Applicable to rich languages: Polymorphic/untyped λ-calculi with recursive functions/types and general references/encryption, higher-order π-calculi with locations/encryption, etc. [Sumii, Pierce, et al. POPL'04, POPL'05, ESOP'09, CSL'09, APLAS'09, LICS'12, etc.]
 - Complete (but undecidable)
- Open questions: No context closures?
 Semantic interpretation? Generic framework?
 Parameterizing negative recursion?

Talk Outline

Background

- Contextual equivalence
- (Non-environmental) bisimulations
- Problems of non-environmental bisimulations
- Environmental bisimulations
- Up-to techniques
- Open questions

Contextual Equivalence [Morris 73]

Two programs M, N are <u>contextually equivalent</u> $M \equiv N$ if they "behave the same" under any context

E.g., in pure lambda-calculi, $M \equiv N$ if $\forall C. C[M] \Rightarrow true iff C[N] \Rightarrow true$

Direct proof is hard because of "∀C"
 ⇒ Proof technique is desired

(Non-Environmental) Bisimulations

Two programs M, N are <u>bisimilar</u> M ~ N if they can simulate each other's input/output behavior

- Soundness: Bisimilar programs are contextually equivalent
- Completeness: Vice versa
 ⇒ Gives a proof technique for contextual
 - equivalence

Problems of Non-Environmental Bisimulations (1/2)

M ~ **N** if:

 If M outputs M₁ and becomes M', then N outputs N₁ and becomes N' with M' ~ N'

What condition is needed for M₁ and N₁?

 "M₁ ~ N₁" is too strong, because M₁ and M' (N₁ and N') may share a "secret"
 ⇒ Incomplete in impure languages

Problems of Non-Environmental Bisimulations (2/2)

M ~ **N** if:

2. If M becomes M' for input M₂, then N becomes N' for input N₂ with M' ~ N'

<u>What condition is needed for M₂ and N₂?</u>

 "M₂ ~ N₂" is ill-formed, because it appears in a negative position
 ⇒ Bisimilarity (~) may not exist

Talk Outline

- Background
- Environmental bisimulations
 - Key idea
 - General "definition"
 - Specific definitions
- Up-to techniques
- Open questions

Environmental Bisimulations

Key idea: Use <u>relation-indexed relation</u> ~_R to represent the "changing world" or the "knowledge of the context"

- R is called an environment
- Accounts for the generativity of
 - Locations (in λ -calculus with store),
 - Channels (in higher-order π -calculus), etc.

Complete also in impure languages
Monotone (union-closed) and well-defined

General "Definition" (1/3)

X is an environmental simulation if $M X_R N$ implies:

- 1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and $M' X_R N'$
- 2. If M outputs M_1 and becomes M', then N outputs N_1 and becomes N' with M' $X_{R \cup \{(M1, N1)\}}$ N'

General "Definition" (2/3)

X is an environmental simulation if $M X_R N$ implies: 3. For all $M_1 R^* N_1$, if M becomes M' for input M_1 , then N becomes N' for input N_1 with M' X_R N' – R* is the <u>context closure</u> of R { (C[M₁,...,M_n], C[N₁,...,N_n]) | $\forall i. M_i R N_i$ } – Represents "synthesis of knowledge" by the context

General "Definition" (3/3)

 X is an environmental <u>bisimulation</u> if both X and X⁻¹ are environmental simulations
 - X⁻¹ is defined by (X⁻¹)_R = (X_R)⁻¹

 Environmental bisimilarity (~) is the largest environmental bismulation

Instance 1: Env. Bisim. for Higher-Order π -Calculus (Simplified)

X is an environmental simulation if $P X_R Q$ implies: 1. If $P \rightarrow P'$, then $Q \Rightarrow Q'$ and $P' X_R Q'$ 2. If P = c!M.P', then $Q \Rightarrow c!N.Q'$ and P' $X_{R \cup \{(M, N)\}}$ Q' 3. If P = c?x.P', then $Q \Rightarrow c?x.Q'$ and $P'\{P_1/x\} X_R Q'\{Q_1/x\}$ for all $P_1 R^* Q_1$ 4. $P \mid P_1 \mid X_R \mid Q \mid Q_1$ for all $P_1 \mid R \mid Q_1$

Instance 2: Env. Bisim. for Pure Call-by-Name λ -Calculus

X is an environmental simulation if $M X_R N$ implies: 1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and M' X_R N' 2. If $M = \lambda x.M'$, then $N \Longrightarrow \lambda x.N'$ and $\lambda x.M' X_{R \cup \{(\lambda x.M', \lambda x.N')\}} \lambda x.N'$ • Moreover, $M'\{M_1/x\} X_R N'\{N_1/x\}$ for all $M_1 R^* N_1$

Simple Example (for Pedagogy)

$M = \lambda x.(\lambda y.y)x$ and $N = \lambda x.x$

- Consider $X_0 = \{ (R, M, N) \}$ where $R = \{ (M, N) \}$ • For any $M_1 R^* N_1$, $M M_1 \rightarrow (\lambda y.y) M_1 \rightarrow M_1$ $N N_1 \rightarrow N_1$
- Extend X₀ to X =
 { (R*, (λy.y)M₁, N₁), (R*, M₁, N₁) | M₁ R* N₁ }
 X is an environmental bisimulation

Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
 - Big-step environmental bisimulation up to reduction and context
- Open questions

Big-Step Env. Bisim. up to Reduction and Context

X is a <u>big-step environmental simulation</u> <u>up to reduction and context</u> if $M X_R N$ impilies:

• If $M \Longrightarrow \lambda x.M'$, then $N \Longrightarrow \lambda x.N'$ and for all $M_1 R^* N_1$, $M'\{M_1/x\} \Longrightarrow (X_{R \cup \{(\lambda x.M', \lambda x.N')\}})^* \leftarrow N'\{N_1/x\}$

Recall R* is the context closure of R

The Example Revisited

$M = \lambda x.(\lambda y.y)x$ and $N = \lambda x.x$

- Take X = { (R, M, N) } where R = {(M, N)}
- For any $M_1 R^* N_1$,
 - $M M_1 \Longrightarrow M_1$
 - R R* $R^* = (X_R)^*$

 $\overline{N} \overline{N}_1 \Rightarrow \overline{N}_1$

- X is a big-step environmental bisimulation up to reduction and context
 - The proof is now as easy as it should be!

Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
- Open questions
 - No context closures?
 - Semantic interpretation?
 - Generic framework?
 - Parameterizing negative recursion?

Open Question 1: No Context Closures?

- X is a big-step env. bisim. up to reduction and context if $M X_R N$ implies:
- If $M \Rightarrow \lambda x.M'$, then $N \Rightarrow \lambda x.N'$ and for all $M_1 \stackrel{*}{R} N_1$, $M'\{M_1/x\} \Rightarrow \begin{pmatrix} X_{R \cup \{(\lambda x.M', \lambda x.N')\}} \end{pmatrix}^{*} \leftarrow N'\{N_1/x\}$
- $R^* = \{ (C[M_1,...,M_n], C[N_1,...,N_n]) | \forall i. M_i R N_i \}$ $\underbrace{Syntactically identical C (not C and C')}_{\Rightarrow Cannot relate "bisimilar contexts"}$

Open Question 2: Semantic Interpretation?

Relation-indexed relation ~_R to represent the "changing world" or the "knowledge of the context"

What *is it, denotationally?*

Open Question 3: Generic Framework?

"Applicable to rich languages"
"General definition"

How to <u>formalize</u>? Generic operational semantics and generic env. bisim.?

Open Question 4: Parameterizing Negative Recursion?

- "λx.M ~ λy.N iff for any M' ~ N' we have M{M'/x} ~ N{N'/x}" is not a valid (co)inductive definition
 - Cf. type t = Abs of $(t \rightarrow t)$ (* HOAS *) \Rightarrow type 'a t = Abs of ('a \rightarrow t) (* PHOAS *)
- By analogy, "λx.M ~_R λy.N iff for any M' R N' we have M{M'/x} ~_R N{N'/x}"?
 Cf. [Hur, Dreyer, et al. POPL'12] is incomplete because of "uncivilized" R's (disrespect equivalence)