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Generator for
equality of equality

HITs
Homotopy Type Theory is an extension of Agda/Coq 
based on connections with homotopy theory
[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

Higher inductive types (HITs) are a new type former!

They were originally invented[Lumsdaine,Shulman,…] to model 
basic spaces (circle, spheres, the torus, …) and 
constructions in homotopy theory

But they have many other applications,
including some programming ones!
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[Yorgey,Jacobson,…]
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Simple Setup

5

a u s s o i s

a u s b u s

a ↔ b at 0
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Simple Setup

5

“Repository” is a char vector of fixed length n

a u s s o i s

Basic patch is   a ↔ b at i where i<n

a u s b u s

a ↔ b at 0

a ↔ b at 0
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swapat a b i v permutes a and b at position i in v
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Spec: ∀ p.  interp p is a bijection:
  ∀ v. g (f v) = v   where (f,g)=interp p
  ∀ v. f (g v) = v
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Domain-Specific Language
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Spec: ∀ p.  interp p is a bijection:
  ∀ v. g (f v) = v   where (f,g)=interp p
  ∀ v. f (g v) = v

undo really un-does

Can package this as:
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Merging
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merge : (p q : Patch) 
      ! Σq’,p’:Patch.
        Maybe(q’ o p = 
              p’ o q) 

10



Merging
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merge : (p q : Patch) 
      ! Σq’,p’:Patch.
        Maybe(q’ o p = 
              p’ o q) 

When are two patches equal?
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(a↔b at i)o(c↔d at j) =
   (c↔d at j)o(a↔b at i) if i≠j
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(a↔b at i)o(c↔d at j) =
   (c↔d at j)o(a↔b at i) if i≠j

(a↔a at i) = id

!(a↔b at i) = (a↔b at i)
(a↔b at i) = (b↔a at i)
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(a↔b at i)o(c↔d at j) =
   (c↔d at j)o(a↔b at i) if i≠j

(a↔a at i) = id

!(a↔b at i) = (a↔b at i)
(a↔b at i) = (b↔a at i)

Basic Axioms:
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Patch Equality
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id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

p=p
p=q if q=p
p=r if p=q and q=r

!p = !p’ if p = p’
p o q = p’ o q’ if 
   p = p’ and q = q’

(a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Basic axioms: Group laws:

Congruence:
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Patch as Quotient Type
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id o p ~ p ~ p o id
po(qor) ~ (poq)or

!p o p ~ id ~ p o !p
p~p
p~q if q~p

p~r if p~q and q~r
!p ~ !p’ if p ~ p’
p o q ~ p’ o q’ if p ~ p’ and q ~ q’

(a↔b at i)o(c↔d at j)~
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality:
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Patch as Quotient Type

13

id o p ~ p ~ p o id
po(qor) ~ (poq)or

!p o p ~ id ~ p o !p
p~p
p~q if q~p

p~r if p~q and q~r
!p ~ !p’ if p ~ p’
p o q ~ p’ o q’ if p ~ p’ and q ~ q’

(a↔b at i)o(c↔d at j)~
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality: Elimination rule:

define on Patch’ as before, 
then prove p ~ q implies
interp p = interp q 
for all 14+ rules for ~

Quotient Type:

Patch := Patch’/~
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Patches as a HIT
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1.How do you define Patch 
using a higher inductive type?

2.What is the elimination rule?

3.How do you use the elim. rule
to define interp?
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Higher Inductive Type

16

Type freely generated by constructors for elements, 
equalities, equalities between equalities, … 
RepoDesc : Type
vec : RepoDesc
(a↔b at i) : vec = vec
commute:
 (a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

proof-relevant!

generator for element

generator for equality

generator for equality
between equalities
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(a↔b at i)o(c↔d at j)=
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Equality between equalities:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

… basic axioms only!

Type: Patch

{Patch
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id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
   (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Equality between equalities:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

… basic axioms only!

Type: Patch

{Patch

Everything else comes 
“for free” from
the equality type!
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Typed Patches
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RepoDesc : Type
vec : RepoDesc

a↔b at i : vec = vec

Generator for
equality of equality

compressed : RepoDesc

gzip : vec = compressed

generators for elements

generators for equalities
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Typed Patches
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RepoDesc : Type
vec : RepoDesc

a↔b at i : vec = vec

Generator for
equality of equality

compressed : RepoDesc

gzip : vec = compressed

generators for elements

generators for equalities

{
Patch vec compressed 
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Patches as a HIT
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1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define interp?
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RepoDesc ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of RepoDesc
to elements of A
map the equality generators of RepoDesc
to equalities between the corresponding elements of A
map the equality-between-equality generators to 
equalities between the corresponding equalities in A

RepoDesc recursion
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it suffices to give

Generator for
equality of equality
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f1(a↔b at i) := … : f(vec) = f(vec)
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RepoDesc recursion

21

f : RepoDesc ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b at i)o(c↔d at j))
  = f1((c↔d at j)o(a↔b at j))

You only specify f on generators,
not id,o,!,group laws,congruence,…
(1 patch and 4 basic axioms, instead of 4 and 14!)
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f : RepoDesc ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b at i)o(c↔d at j))
  = f1((c↔d at j)o(a↔b at j))

Type-generic equality rules say that functions act 
homomorphically on id,o,!,… 

=f1(a↔b at i)o
 f1(c↔d at j)

22



RepoDesc recursion

23

f : RepoDesc ! ATo define a function 
it suffices to give

Generator for
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f(vec) := … : A
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RepoDesc recursion

23

f : RepoDesc ! ATo define a function 
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := … 
  : f1((a↔b at i)o(c↔d at j))
  = f1((c↔d at j)o(a↔b at j))

All functions on RepoDesc respect patches
All functions on patches respect patch equality
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1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define interp?
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Interp
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Goal is to define:

Generator for
equality of equality

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 
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Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over proofs of equality

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 
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Generator for
equality of equality

Need to pick A and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose) := … 

interp(a↔b at i) = swapat a b i
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Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
f2(compose) := … 
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Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
f2(compose) := … 

Voevodky’s univalence axiom ⊃
bijective types are equal

30
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Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
f2(compose) := <proof about swapat as before> 
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Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

I(vec) := Vec Char n : Type
I1(a↔b at i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before> 
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Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)

I(vec) := Vec Char n : Type
I1(a↔b at i) := ua(swapat a b i) 
                : Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before> 

interp(p) = ua-1(I1(p))
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Generator for
equality of equality

interp : vec = vec 
       " Bijection (Vec Char n) (Vec Char n)
interp(p) = ua-1(I1(p))

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p) 

Satisfies the desired equations (as propositional equalities):
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Generator for
equality of equality

Summary
I : RepoDesc ! Type interprets RepoDesc’s as Types, 
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality: 
you specify what happens on the generators; 
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality 
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code than using quotients:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

35
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Generator for
equality of equality

Where does this 
programming technique 
come from?

36



Homotopy type theory

37

a b

p

37



Homotopy type theory

37

a b

p

a space is a type A

37



Homotopy type theory

37

a b

p

points are 
elements
a:A

a space is a type A

37



Homotopy type theory

37

a b

p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

37



Homotopy type theory

37

a b

p

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

37



Homotopy type theory

37

a b

pid

points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id    : a = a (refl)

37



Homotopy type theory

37

a b

pid
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elements
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a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id    : a = a (refl)
!p     : b = a  (sym)
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paths are
proofs of equality

p : a =A b

path operations
id    : a = a (refl)
!p     : b = a  (sym)
q o p : a = c (trans)

homotopies
id o p = p
!p o p = id
r o (q o p) 
   = (r o q) o p 
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points are 
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id    : a = a (refl)
!p     : b = a  (sym)
q o p : a = c (trans)

homotopies
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Equality elimination rule

38

Type of equalities
between a and -        

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2
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Equality elimination rule

38

Fix a type A with element a:A. 
For a family of types C(y:A, p:a=y), 
to give an element of
                     C(y,p) for all y and p:a=y,
suffices to give an element of
                     C(a,id)

Type of equalities
between a and -        

a

id

a

is inductively
generated by 

y3y1

y2

p1 p3
p2

38



39

Composition and Assoc
_o_ : a = b " b = c " a = c
id o p = p

o-assoc : (p : a=b)(q : b=c)(r : c=d)
        " p o (q o r) = (p o q) o r
o-assoc id id id = id

39



40

Functions are functors

f : A " B has action at all levels
  f1 : (a1 a2 : A) 
     " a1 =A a2  "  f(a1) =B f(a2)
  f2 : (a1 a2 : A)(p p’ : a1 =A a2) " 
       p =a1=a2 p’ " 
       f1(p) =f(a1)=f(a2) f1(p’)
  and so on

40
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The Circle

41

Circle S1 is HIT generated by 
base : S1
loop : base = base

loop

base

Free type: equipped with

idloop-1

inv : loop o loop-1 = idid
loop-1
loop o loop

...

41



The Circle

42

Circle recursion:
  function S1 ! X determined by

base’ : X
loop’ : base’ = base’ 

loop

base

loop’
base’

42
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Fundamental group of circle

44

Theorem. Group of loops on the circle
                  is isomorphic to ℤ
Proof: Define universal cover

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
  ua(successor) : ℤ = ℤ

interpret loop as 
“add 1” bijection

44



Homotopy in HoTT

45

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ 
Hopf fibration

π3(S2) = ℤ 

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James 
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou, 
 Licata, Lumsdaine, Shulman] 
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Generator for
equality of equality

What’s next?
Operational semantics of HITs and univalence is still an 
open problem in general, though some special cases 
are known

Have just started exploring programming applications

Extensions to this example: more realistic basic 
patches, patches that can fail (partial bijections), 
implement merge
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