Git as a HIT

Dan Licata Wesleyan University

Darcs -Gitas a HIT

Dan Licata Wesleyan University

HITs

HITs

* Homotopy Type Theory is an extension of Agda/Coq based on connections with homotopy theory
[Hofmann\&Streicher,Awodey\&Warren,Voevodsky,Lumsdaine,Garner\&van den Berg]

HITs

* Homotopy Type Theory is an extension of Agda/Coq based on connections with homotopy theory
[Hofmann\&Streicher,Awodey\&Warren,Voevodsky,Lumsdaine,Garner\&van den Berg]
* Higher inductive types (HITs) are a new type former!

HITs

* Homotopy Type Theory is an extension of Agda/Coq based on connections with homotopy theory
[Hofmann\&Streicher,Awodey\&Warren,Voevodsky,Lumsdaine,Garner\&van den Berg]
* Higher inductive types (HITs) are a new type former!
** They were originally invented $[$ Lumsdaine,Shulman,...] to model basic spaces (circle, spheres, the torus, ...) and constructions in homotopy theory

HITs

* Homotopy Type Theory is an extension of Agda/Coq based on connections with homotopy theory
[Hofmann\&Streicher,Awodey\&Warren,Voevodsky,Lumsdaine,Garner\&van den Berg]
* Higher inductive types (HITs) are a new type former!
** They were originally invented[Lumsdaine,Shulman,...] to model basic spaces (circle, spheres, the torus, ...) and constructions in homotopy theory
* But they have many other applications, including some programming ones!

Patches

q O p

[Yorgey,Jacobson,...]

Simple Setup

$a \leftrightarrow b$ at 0

$a \leftrightarrow b$ at 0

Simple Setup

* "Repository" is a char vector of fixed length n

* Basic patch is $a \leftrightarrow b$ at i where $i<n$

Domain-Specific Language

data Patch : Set where
id : Patch
\square° - : Patch \rightarrow Patch \rightarrow Patch
. : Patch \rightarrow Patch
_↔_at_ : Char \rightarrow Char \rightarrow Fin $n \rightarrow$ Patch

Domain-Specific Language

interp : Patch \rightarrow (Vec Char $\mathrm{n} \rightarrow$ Vec Char n$) \times$ (Vec Char $\mathrm{n} \rightarrow$ Vec Char n)
interp id $=(\lambda x \rightarrow x),(\lambda x \rightarrow x)$
interp (q 。 p) = fst (interp q) o fst (interp p) , snd (interp p) o snd (interp q)
interp (! p) = snd (interp p) , fst (interp p) interp $(a \leftrightarrow b$ at $i)=$ swapat $a b i$, swapat $a b i$

Domain-Specific Language

interp : Patch \rightarrow (Vec Char $\mathrm{n} \rightarrow$ Vec Char n$) \times$ (Vec Char $\mathrm{n} \rightarrow$ Vec Char n)
interp id $=(\lambda x \rightarrow x),(\lambda x \rightarrow x)$
interp (q 。 p) = fst (interp q) o fst (interp p) , snd (interp p) o snd (interp q)
interp (! p) = snd (interp p) , fst (interp p) interp $(a \leftrightarrow b$ at $i)=s w a p a t a b i, ~ s w a p a t ~ a b i$
swapat $a b i \vee$ permutes a and b at position i in \vee

Domain-Specific Language

Spec: \forall p. inter p is a bijection:

$$
\begin{aligned}
& \forall v . g(f v)=v \quad \text { where }(f, g)=\text { inter } p \\
& \forall v \cdot f(g \vee)=v
\end{aligned}
$$

Domain-Specific Language

Spec: \forall p. inter p is a bijection:
$\forall v . g(f v)=v$ where $(f, g)=$ inter p p
$\forall v . f(g \vee)=v$

Domain-Specific Language

undo really un-does

Spec: $\forall \mathrm{p}$. interp p is a bijection: $\forall v . g(f v)=v$ where $(f, g)=$ interp p $\forall \vee \cdot f(g \vee)=v$

Can package this as:
interp : Patch \rightarrow
Bijection (Vec Char n) (Vec Char n)

Merging

Merging

Merging
 $p=b \leftrightarrow d$ at 1 $\mathrm{q}=\mathrm{c} \leftrightarrow \mathrm{e}$ at 2

Merging

$p=b \leftrightarrow d$ at 1 $\mathrm{q}=\mathrm{c} \leftrightarrow \mathrm{e}$ at 2

๘
d
e

b
$p^{\prime}=p$
$q^{\prime}=q$

Merging

$p=b \leftrightarrow d$ at 1 $\mathrm{q}=\mathrm{c} \leftrightarrow \mathrm{e}$ at 2

๘
d
e

b
p'
a
b
e
$p^{\prime}=p$
q' $=q$

Merging

merge : (p q : Patch)
$\rightarrow \Sigma q^{\prime}, p^{\prime}:$ Patch.
$\operatorname{Maybe}(q$ ' o $p=$
$p^{\prime} o$ q)

Merging

merge : (p q : Patch)
$\rightarrow \Sigma q^{\prime}, p^{\prime}:$ Patch.
$\operatorname{Maybe}(q$ ' o $p=$
p^{\prime} o q)

When are two patches equal?

Patch Equality

$(a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)=$ $(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i) if $i \neq j$

Patch Equality

$(a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)=$ $(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i) if $i \neq j$
$(a \leftrightarrow a$ at i) $=i d$
$!(a \leftrightarrow b$ at $i)=(a \leftrightarrow b a t i)$
$(a \leftrightarrow b a t i)=(b \leftrightarrow a$ at $i)$

Patch Equality

Basic Axioms:
$(a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)=$ $(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i) if $i \neq j$
$(a \leftrightarrow a$ at i) $=i d$
$!(a \leftrightarrow b$ at $i)=(a \leftrightarrow b a t i)$
$(a \leftrightarrow b$ at $i)=(b \leftrightarrow a$ at $i)$

Patch Equality

Basic axioms:

($a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)$
$=(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)

Patch Equality

Basic axioms:

($a \leftrightarrow b$ at i)o(c↔d at j)
$=(c \leftrightarrow d$ at $j) o(a \leftrightarrow b a t i)$

Group laws:
id o $p=p=p$ o id po(qor) = (poq)or ! p o p = id = p o ! p

Patch Equality

Basic axioms:

($a \leftrightarrow b$ at i) $o(c \leftrightarrow d$ at j)
$=(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)

Congruence:

$$
\begin{aligned}
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r
\end{aligned}
$$

Group laws:

id o $p=p=p$ o id po(qor) = (poq)or $!p \circ p=i d=p o \quad!p$
!p = ! p^{\prime} if $p=p^{\prime}$
p o $q=p^{\prime}$ o q^{\prime} if
$p=p^{\prime}$ and $q=q^{\prime}$

Patch as Quotient Type

Elements:

```
data Patch' : Set where
id : Patch'
_`_ : Patch' -> Patch' -> Patch'
! : Patch' }->\mathrm{ Patch'
_↔_at_ : Char -> Char -> Fin n -> Patch'
```

Equality:
($a \leftrightarrow b$ at i)o(c↔d at j)~
$(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)
id op ~ p ~ p o id
po(qor) ~ (poq)or
! p o p ~ id ~ p o !p
$p \sim p$
$p \sim q$ if q~p
$\mathrm{p} \sim \mathrm{r}$ if $\mathrm{p} \sim \mathrm{q}$ and $\mathrm{q} \sim \mathrm{r}$
!p ~ ! p' if p ~ p'
p o $q \sim p^{\prime}$ o q' if $p \sim p^{\prime}$ and $q \sim q^{\prime}$

Patch as Quotient Type

Elements:

Quotient Type:

data Patch' : Set where id : Patch'
${ }^{\circ}{ }^{\circ} \quad:$ Patch' \rightarrow Patch' \rightarrow Patch'
! : Patch' \rightarrow Patch' _↔_at_ : Char \rightarrow Char \rightarrow Fin $n \rightarrow$ Patch'

Patch := Patch'/~

Equality:

```
(a\leftrightarrowb at i)o(c\leftrightarrowd at j)~
    (c\leftrightarrowd at j)o(a\leftrightarrowb at i)
id o p ~ p ~ p o id
po(qor) ~ (poq)or
!p o p ~ id ~ p o !p
p~p
p~q if q~p
p~r if p~q and q~r
!p ~ !p' if p ~ p'
p o q ~ p' o q' if p ~ p' and q ~ q'
```


Patch as Quotient Type

Elements:

```
data Patch' : Set where
    id : Patch'
    __ : Patch' }->\mathrm{ Patch' }->\mathrm{ Patch
    _↔_at_ : Char -> Char -> Fin n -> Patch'
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j) \sim \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at i) }
\end{aligned}
$$

id op $\sim p \sim p o i d$
po(qor) ~ (poq)or
! p o p ~ id ~ p o !p
$p \sim p$
$p \sim q$ if q~p
$p \sim r$ if $p \sim q$ and $q \sim r$
! $p \sim!p$ if $p \sim p^{\prime}$
p o $q \sim p^{\prime}$ o q^{\prime} if $p \sim p^{\prime}$ and $q \sim q^{\prime}$

Quotient Type:

Patch := Patch'/~

Elimination rule:
interp : Patch \rightarrow Bijection (Vec Char n) (Vec Char n) define on Patch' as before, then prove $p \sim q$ implies interp p = interp q for all $14+$ rules for ~

Patches as a HIT

1. How do you define Patch using a higher inductive type?
2.What is the elimination rule?
2. How do you use the elim. rule to define interp?

Patches as a HIT

1.How do you define Patch using a higher inductive type?
2.What is the elimination rule?
3.How do you use the elim. rule to define interp?

Higher Inductive Type

Higher Inductive Type

Type freely generated by constructors for elements, equalities, equalities between equalities, ...

Higher Inductive Type

Type freely generated by constructors for elements,

 equalities, equalities between equalities, ...RepoDesc : Type

Higher Inductive Type

Type freely generated by constructors for elements,

 equalities, equalities between equalities, ...RepoDesc : Type
vec : RepoDesc
generator for element

Higher Inductive Type

Type freely generated by constructors for elements,

 equalities, equalities between equalities, ...RepoDesc : Type
vec : RepoDesc
($a \leftrightarrow b$ at i): vec = vec generator for equality

Higher Inductive Type

Type freely generated by constructors for elements,

 equalities, equalities between equalities, ...RepoDesc : Type
vec : RepoDesc
$(a \leftrightarrow b$ at i) : vec = vec

Higher Inductive Type

Type freely generated by constructors for elements,

 equalities, equalities between equalities, ...RepoDesc : Type
vec : RepoDesc
$(a \leftrightarrow b$ at i) : vec = vec
commute:
($a \leftrightarrow b$ at i) o(c $\leftrightarrow d$ at j)
$=(c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)

Type: Patch

Elements:

```
id : Patch
_o_ : Patch -> Patch -> Patch
! : Patch }->\mathrm{ Patch
_↔_at_ : Char -> Char -> Fin n -> Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) \circ(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) \circ(a \leftrightarrow b \text { at i) } \\
& \ldots \text { id } \circ p=p=p \circ \text { id } \\
& p o(q o r)=(p o q) o r \\
& !p \circ p=i d=p \circ \text { !p } \\
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r \\
& !p=!p^{\prime} \text { if } p=p^{\prime} \\
& p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
\end{aligned}
$$

Type: Patch

Type: RepoDesc

Elements:

```
id : Patch
_`_ : Patch -> Patch -> Patch
! : Patch }->\mathrm{ Patch
_↔_at_ : Char -> Char -> Fin n -> Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at i) } o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) \circ(a \leftrightarrow b \text { at i) } \\
& \ldots \text { id } \circ p=p=p \circ \text { id } \\
& p \circ(q o r)=(p o q) o r \\
& !p \circ p=i d=p \circ \text { !p } \\
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r \\
& !p=!p^{\prime} \text { if } p=p^{\prime} \\
& p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
\end{aligned}
$$

Type: Patch

Type: RepoDesc

Element: vec : RepoDesc

Elements:

```
id : Patch
_o_ : Patch }->\mathrm{ Patch }->\mathrm{ Patch
! : Patch }->\mathrm{ Patch
_↔_at_ : Char -> Char -> Fin n -> Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { id } \circ p=p=p \text { o id } \\
& \text { po(qor) }=(p o q) \text { or } \\
& \text { ! } p \text { o } p=\text { id }=p \text { o ! } p \\
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r \\
& !p=!p, \text { if } p=p \prime \\
& p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
\end{aligned}
$$

Type: Patch

Elements:

```
id : Patch
_`_ : Patch -> Patch -> Patch
! : Patch }->\mathrm{ Patch
_@_at_ : Char }->\mathrm{ Char }->\mathrm{ Fin n }->\mathrm{ Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at i) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { id o } p=p=p \text { o id } \\
& \text { po(qor) }=(p o q) \text { or } \\
& \text { ! } p \text { o } p=\text { id }=p \text { o ! } p \\
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r \\
& !p=!p \prime \text { if } p=p \prime \\
& p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
\end{aligned}
$$

Type: RepoDesc

Element: vec : RepoDesc Equality:
$a \leftrightarrow b$ at $i \quad: ~ v e c=v e c$

Type: Patch

Elements:

```
id : Patch
_o_ : Patch }->\mathrm{ Patch }->\mathrm{ Patch
    Patch -> Patch
_↔_at_ : Char -> Char -> Fin n -> Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { id o } p=p=p \text { o id } \\
& \text { po(qor) }=(p o q) \text { or } \\
& \text { ! } p \text { o } p=\text { id }=p \text { o ! } p \\
& p=p \\
& p=q \text { if } q=p \\
& p=r \text { if } p=q \text { and } q=r \\
& !p=!p \prime \text { if } p=p \prime \\
& p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
\end{aligned}
$$

Type: RepoDesc

Element: vec : RepoDesc Equality:

Patch

$a \leftrightarrow b$ at $i \quad$: vec = vec

Type: Patch

Elements:

```
id : Patch
_ -_ : Patch }->\mathrm{ Patch }->\mathrm{ Patch
: Patch -> Patch
_@_at_ : Char -> Char -> Fin n -> Patch
```


Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } i)
\end{aligned}
$$

$$
\text { id } \circ p=p=p \circ \text { id }
$$

$$
\text { po(qor) }=(p \circ q) \circ r
$$

$$
!p \circ p=i d=p \circ!p
$$

$$
p=p
$$

$$
\mathrm{p}=\mathrm{q} \text { if } \mathrm{q}=\mathrm{p}
$$

$$
p=r \text { if } p=q \text { and } q=r
$$

$$
!p=!p^{\prime} \text { if } p=p^{\prime}
$$

$$
p \circ q=p^{\prime} \circ q^{\prime} \text { if } p=p^{\prime} \text { and } q=q^{\prime}
$$

Type: RepoDesc

Element: vec : RepoDesc Equality:

Patch
$a \leftrightarrow b$ at $i: v e c=v e c$

Equality between equalities:

 commute :$(a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)=$
($c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)
... basic axioms only!

Type: Patch

Elements:

Equality:

$$
\begin{aligned}
& (a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)= \\
& \quad(c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at i) }
\end{aligned}
$$

```
id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p
p=p
p=q if q=p
p=r if p=q and q=r
!p = !p' if p = p'
p o q = p' o q' if p = p' and q = q'
```


Type: RepoDesc

Element: vec : RepoDesc Equality:

Patch
$a \leftrightarrow b$ at $i \quad$: vec = vec

Equality between equalities:

 commute :$(a \leftrightarrow b$ at $i) o(c \leftrightarrow d$ at $j)=$
($c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at i)
... basic axioms only!
Everything else comes "for free" from the equality type!

Typed Patches

RepoDesc : Type
vec : RepoDesc compressed : RepoDesc
$a \leftrightarrow b$ at $i \quad$: vec = vec generators for elements generators for equalities gzip : vec = compressed

Typed Patches

RepoDesc : Type
vec : RepoDesc compressed : RepoDesc
$\mathrm{a} \leftrightarrow \mathrm{b}$ at $\mathrm{i}: \mathrm{vec}=\mathrm{vec}$

generators for elements

generators for equalities
gzip : vec = compressed
Patch vec compressed

Patches as a HIT

1. How do you define Patch using a higher inductive type?
2.What is the elimination rule for RepoDesc?
2. How do you use the elim. rule to define interp?

RepoDesc recursion

To define a function RepoDesc $\rightarrow \mathrm{A}$ it suffices to

RepoDesc recursion

To define a function RepoDesc $\rightarrow \mathrm{A}$ it suffices to

* map the element generators of RepoDesc to elements of A

RepoDesc recursion

To define a function RepoDesc $\rightarrow \mathrm{A}$
it suffices to

* map the element generators of RepoDesc to elements of A
* map the equality generators of RepoDesc to equalities between the corresponding elements of A

RepoDesc recursion

To define a function RepoDesc $\rightarrow \mathrm{A}$
it suffices to

* map the element generators of RepoDesc to elements of A
* map the equality generators of RepoDesc to equalities between the corresponding elements of A
* map the equality-between-equality generators to equalities between the corresponding equalities in A

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

$$
f(\mathrm{vec}):=. . .: A
$$

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

$$
\begin{aligned}
& f(\mathrm{vec}):=\ldots: A \\
& f_{1}(a \leftrightarrow b \text { at } i):=\ldots: f(\mathrm{vec})=f(\mathrm{vec})
\end{aligned}
$$

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give
$f(\mathrm{vec}):=\ldots: A$
$f_{1}(a \leftrightarrow b$ at $i):=\ldots: f(\mathrm{vec})=f(\mathrm{vec})$
f_{2} (compose ab c di j $i \neq j$) := ...
: $f_{1}((a \leftrightarrow b$ at i)o(c $\leftrightarrow d$ at $j))$
$=f_{1}((c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at $j))$

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

$$
\begin{aligned}
& f(v e c):=\ldots: A \\
& f_{1}(a \leftrightarrow b \text { at } i):=\ldots: f(v e c)=f(v e c) \\
& f_{2}(\text { compose } a \text { b c d } i \quad j \text { i夫j) }:=\ldots \\
& \quad: f_{1}((a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)) \\
& \quad=f_{1}((c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } j))
\end{aligned}
$$

You only specify f on generators, not id, o, !, group laws, congruence,...
(1 patch and 4 basic axioms, instead of 4 and 14!)

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give
$f(\mathrm{vec}):=\ldots: A$
$f_{1}(a \leftrightarrow b$ at $i):=\ldots: f(\mathrm{vec})=f(\mathrm{vec})$
f_{2} (compose ab c di j $i \neq j$) := ...
: $f_{1}((a \leftrightarrow b$ at i)o(c $\leftrightarrow d$ at $j))$
$=f_{1}((c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at $j))$

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

$$
\begin{aligned}
& f(v e c):=\ldots: A \\
& f_{1}(a \leftrightarrow b \text { at } i):=\ldots: f(v e c)=f(v e c) \\
& f_{2}(\text { compose } a \text { b c d } i \quad j \text { i*j) }:=\ldots \\
& \quad: f_{1}((a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)) \\
& \quad=f_{1}((c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } j))
\end{aligned}
$$

Type-generic equality rules say that functions act homomorphically on id, o, !,...

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$
it suffices to give

$$
\begin{aligned}
& f(v e c):=\ldots: A \\
& f_{1}(a \leftrightarrow b \text { at } i):=\ldots: f(v e c)=f(v e c) \\
& f_{2}(\operatorname{compose} a \text { b c d } i \quad j \quad i \neq j):=\ldots \\
& \quad: f_{1}((a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)) \\
& \quad=f_{1}((c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } j))
\end{aligned}
$$

Type-generic equality rules say that functions act homomorphically on id, o, !,...

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give
$f(\mathrm{vec}):=\ldots: A$
$f_{1}(a \leftrightarrow b$ at $i):=\ldots: f(\mathrm{vec})=f(\mathrm{vec})$
f_{2} (compose ab c di j $i \neq j$) := ...
: $f_{1}((a \leftrightarrow b$ at i)o(c $\leftrightarrow d$ at $j))$
$=f_{1}((c \leftrightarrow d$ at $j) o(a \leftrightarrow b$ at $j))$

RepoDesc recursion

To define a function $f:$ RepoDesc $\rightarrow A$ it suffices to give

$$
\begin{aligned}
& f(v e c):=\ldots: A \\
& f_{1}(a \leftrightarrow b \text { at } i):=\ldots: f(v e c)=f(v e c) \\
& f_{2}(\text { compose } a \text { b c d } i \quad j \quad i \neq j):=\ldots \\
& \quad: f_{1}((a \leftrightarrow b \text { at } i) o(c \leftrightarrow d \text { at } j)) \\
& \quad=f_{1}((c \leftrightarrow d \text { at } j) o(a \leftrightarrow b \text { at } j))
\end{aligned}
$$

All functions on RepoDesc respect patches
All functions on patches respect patch equality

Patches as a HIT

1. How do you define Patch using a higher inductive type?
2.What is the elimination rule for RepoDesc?
2. How do you use the elim. rule to define interp?

Interp

Goal is to define:
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
interp(id) $=(\lambda x . x, . .$.
interp $(q \quad \circ p)=(i n t e r p q) o_{b}(i n t e r p p)$
interp $(!p)=!_{b}($ interp $p)$
interp $(a \leftrightarrow b$ at $i)=$ swapat $a b i$

Interp

Goal is to define:
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
interp(id) $=(\lambda x . x, . .$.
interp (q o p) = (interp q) ob (interp p)
interp(!p) = ! \quad (interp p)
interp $(a \leftrightarrow b$ at $i)=$ swapat $a b i$
But only tool available is RepoDesc recursion: no direct recursion over proofs of equality

```
interp : vec = vec
        -> Bijection (Vec Char n) (Vec Char n)
interp (a\leftrightarrowb at i) = swapat a b i
```

Need to pick A and define

```
f(vec) := ... : A
    f}(a\leftrightarrowb at i) := ... : f(vec) = f(vec
    f2(compose) := ...
```

inter : vec = vec
\rightarrow Bijection (Vac Char n) (Vac Char n)
interp $(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Key idea: pick $\mathrm{A}=$ Type and define

$$
\begin{aligned}
& f(\mathrm{vec}):=\ldots: \text { Type } \\
& f_{1}(\mathrm{a} \leftrightarrow \mathrm{~b} \text { at } \mathrm{i}):=\ldots: f(\mathrm{vec})=f(\mathrm{vec}) \\
& \mathrm{f}_{2}(\text { compose }):=. . .
\end{aligned}
$$

```
interp : vec = vec
        -> Bijection (Vec Char n) (Vec Char n)
interp (a\leftrightarrowb at i) = swapat a b i
```

Key idea: pick $\mathrm{A}=$ Type and define

```
    f(vec) := Vec Char n : Type
    f}(a\leftrightarrowb at i) := ... : f(vec) = f(vec
    f2(compose) := ...
```

inter : vec = vec
\rightarrow Bijection (Vac Char n) (Vac Char n)
interp $(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Key idea: pick $\mathrm{A}=$ Type and define $\mathrm{f}(\mathrm{vec}):=$ Vec Char n : Type
$f_{1}(a \leftrightarrow b$ at i) := ... : Vec Char $n=$ Vec Char n
$f_{2}($ compose $):=. .$.
inter : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
$\operatorname{interp}(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Key idea: pick $\mathrm{A}=$ Type and define
$\mathrm{f}(\mathrm{vec}):=$ Vec Char n : Type
$f_{1}(a \leftrightarrow b$ at i) $:=$ ua(swapat $a b i)$
: Vac Char $\mathrm{n}=$ Vac Char n
f_{2} (compose) := ...
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
interp $(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Key idea: pick $\mathrm{A}=$ Type and define

$$
\begin{aligned}
& \mathrm{f}(\mathrm{vec}):=\text { Vec Char } \mathrm{n} \text { : Type } \\
& f_{1}(a \leftrightarrow b \text { at i) }:=\text { ua(swapat } a b i) \\
& \text { : Vec Char } \mathrm{n}=\text { Vec Char } \mathrm{n} \\
& f_{2} \text { (compose) := ... } \\
& \text { Voevodky's univalence axiom } \supset \\
& \text { bijective types are equal }
\end{aligned}
$$

interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
interp $(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Key idea: pick $\mathrm{A}=$ Type and define

$$
f(\mathrm{vec}):=\text { Vec Char } n \text { : Type }
$$

$f_{1}(a \leftrightarrow b$ at i) $:=u a(s w a p a t ~ a b i)$
: Vec Char $\mathrm{n}=$ Vec Char n
f_{2} (compose) := <proof about swapat as before>
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
interp $(a \leftrightarrow b$ at $i)=$ swapat $a b i$

Key idea: pick $\mathrm{A}=$ Type and define
I(vec) $:=$ Vec Char n : Type
$I_{1}(a \leftrightarrow b$ at i) $:=u a(s w a p a t ~ a b i)$
: Vec Char $\mathrm{n}=$ Vec Char n
I_{2} (compose) := <proof about swapat as before>
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
$\operatorname{interp}(p)=u a^{-1}\left(I_{1}(p)\right)$

Key idea: pick $\mathrm{A}=$ Type and define
I(vec) := Vec Char n : Type
$I_{1}(a \leftrightarrow b$ at i) := ua(swapat $a b$ i)
: Vec Char $\mathrm{n}=$ Vec Char n
I_{2} (compose) := <proof about swapat as before>
interp : vec = vec
\rightarrow Bijection (Vec Char n) (Vec Char n)
$\operatorname{interp}(p)=u a^{-1}\left(I_{1}(p)\right)$

Satisfies the desired equations (as propositional equalities):
interp $(i d)=(\lambda x . x, . .$.
interp $(q \quad o p)=(i n t e r p q) o_{b}(i n t e r p p)$
interp $(!p)=$!b (interp p)
interp $(a \leftrightarrow b$ at $i)=\operatorname{swapat} a b i$

Summary

Summary

* I : RepoDesc \rightarrow Type interprets RepoDesc's as Types, patches as bijections, satisfying patch equalities

Summary

* I : RepoDesc \rightarrow Type interprets RepoDesc's as Types, patches as bijections, satisfying patch equalities
* Higher inductive elim. defines functions that respect equality: you specify what happens on the generators; homomorphically extended to id,o,!,...

Summary

* I : RepoDesc \rightarrow Type interprets RepoDesc's as Types, patches as bijections, satisfying patch equalities
** Higher inductive elim. defines functions that respect equality: you specify what happens on the generators; homomorphically extended to id,o,! ,...
* Univalence lets you give a computational model of equality proofs (here, patches); guaranteed to satisfy laws

Summary

* I : RepoDesc \rightarrow Type interprets RepoDesc's as Types, patches as bijections, satisfying patch equalities
* Higher inductive elim. defines functions that respect equality: you specify what happens on the generators; homomorphically extended to id,o,! ,...
* Univalence lets you give a computational model of equality proofs (here, patches); guaranteed to satisfy laws
* Shorter definition and code than using quotients: 1 basic patch \& 4 basic axioms of equality, instead of 4 patches \& 14 equations

Where does this programming technique come from?

Homotopy type theory

Homotopy type theory

a space is a type A

Homotopy type theory

a space is a type A

points are
elements

$$
a: A
$$

Homotopy type theory

a space is a type A

paths are
proofs of equality

$$
p: a=A b
$$

Homotopy type theory

a space is a type A

paths are
proofs of equality

$$
p: a=A b
$$

points are elements a:A
path operations

Homotopy type theory

a space is a type A

paths are
proofs of equality

$$
p: a=A b
$$

points are elements a:A
path operations

$$
\text { id } \quad: a=a(r e f l)
$$

Homotopy type theory

a space is a type A

path operations

$$
\begin{aligned}
\mathrm{id} & : a=a(r e f l) \\
!p & : b=a(s y m)
\end{aligned}
$$

elements a:A
points are a:A proofs of equality

$$
p: a=A b
$$

Homotopy type theory

a space is a type A

paths are
proofs of equality

$$
p: a=A b
$$

points are elements $a: A$
path operations

$$
\begin{array}{rlrl}
\text { id } & & : a=a \text { (refl) } \\
!p & : b=a \text { (sym) } \\
q o p & : a=c \text { (trans) }
\end{array}
$$

Homotopy type theory

a space is a type A
 $a: A$
path operations

$$
\begin{array}{rlrl}
\text { id } & & : a=a \text { (refl) } \\
!p & : b=a \text { (sym) } \\
q \circ p & : a=c \text { (trans) }
\end{array}
$$

homotopies
id $o p=p$
!p op = id
$r \circ(q \circ p)$

$$
=\left(\begin{array}{lll}
r & \circ & q) \circ p
\end{array}\right.
$$

Homotopy type theory

a space is a type A
points are elements
$a: A$
paths are
proofs of equality

$$
p: a=A b
$$

path operations

$$
\begin{aligned}
\text { id } & : a=a \text { (refl) } \\
!p & : b=a \text { (sym) } \\
q \circ p & : a=c \text { (trans) }
\end{aligned}
$$

homotopies
id $o p=p$
! p o $p=i d$
$r \circ(q \circ p)$

$$
=\left(\begin{array}{lll}
r & \circ & q
\end{array}\right) \circ p
$$

Equality elimination rule

Type of equalities between a and -

is inductively generated by

Equality elimination rule

Type of equalities between a and -

is inductively
generated by

Fix a type A with element a : A.
For a family of types $C(y: A, \quad p: a=y)$, to give an element of

$$
C(y, p) \text { for all } y \text { and } p: a=y,
$$

suffices to give an element of

$$
C(a, i d)
$$

Composition and Assoc

o : $a=b \rightarrow b=c \rightarrow a=c$
id op $=p$

$$
\begin{aligned}
o-a s s o c & :(p: a=b)(q: b=c)(r: c=d) \\
& \rightarrow p \circ(q \circ r)=(p \circ q) \circ r \\
o-a s s o c & \text { id id id }=i d
\end{aligned}
$$

Functions are functors

$f: A \rightarrow B$ has action at all levels
$f_{1}:\left(a_{1} a_{2}: A\right)$
$\rightarrow a_{1}=A a_{2} \rightarrow f\left(a_{1}\right)=B f\left(a_{2}\right)$
$f_{2}:\left(a_{1} a_{2}: A\right)\left(p p^{\prime}: a_{1}=A a_{2}\right) \rightarrow$
$p=a 1=a 2 p^{\prime} \rightarrow$
$f_{1}(p)=f(a 1)=f(a 2) \quad f_{1}\left(p^{\prime}\right)$
and so on

The Circle

Circle S^{1} is HIT generated by

The Circle

Circle S^{1} is HIT generated by base : S^{1}
loop : base = base

The Circle

Circle S^{1} is HIT generated by base : S^{1}
loop : base = base

Free type: equipped with
id inv : loop o loop-1 $=$ id
loop-1
loop o loop

The Circle

Circle recursion:
function $S^{1} \rightarrow X$ determined by base' : X
loop' : base' = base'

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop $^{-1}$

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop-1

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

0
1

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1

0
1
-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

0
1
-1
2

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

0
1
-1
2
-2

Fundamental group of circle

How many different loops are there on the circle, up to homotopy?

id
loop
loop-1
loop o loop
loop $^{-1}$ o loop ${ }^{-1}$
loop o loop ${ }^{-1}=$ id

0
1
-1
2
-2
0

Fundamental group of circle

Theorem. Group of loops on the circle is isomorphic to \mathbb{Z}
Proof: Define universal cover

Fundamental group of circle

Theorem. Group of loops on the circle is isomorphic to \mathbb{Z}
Proof: Define universal cover

Cover : $\mathrm{S}^{1} \rightarrow$ Type
Cover(base) $:=\mathbb{Z}$
Cover $_{1}($ loop $):=$ ua(successor) : $\mathbb{Z}=\mathbb{Z}$

Fundamental group of circle

Theorem. Group of loops on the circle is isomorphic to \mathbb{Z}
Proof: Define universal cover

$$
\text { Cover : } S^{1} \rightarrow \text { Type }
$$

$$
\text { Cover(base) }:=\mathbb{Z}
$$

$$
\text { Cover }_{1}(\text { loop }):=
$$

$$
\text { ua(successor) : } \mathbb{Z}=\mathbb{Z}
$$

interpret loop as
"add 1" bijection

Homotopy in HoTT

$\pi_{1}\left(\mathbf{S}^{1}\right)=\mathbb{Z}$
$\pi_{k<n}\left(S^{n}\right)=0 \quad \pi_{n}\left(S^{n}\right)=\mathbb{Z}$
Hopf fibration
$\pi_{2}\left(\mathbf{S}^{2}\right)=\mathbb{Z}$
$\Pi_{3}\left(\mathrm{~S}^{2}\right)=\mathbb{Z}$
James
Construction
$\pi_{4}\left(S^{3}\right)=\mathbb{Z}$?

Freudenthal

K(G,n)
Cohomology axioms

Blakers-Massey

Van Kampen
Covering spaces
Whitehead
for n-types
[Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

What's next?

* Operational semantics of HITs and univalence is still an open problem in general, though some special cases are known
* Have just started exploring programming applications
** Extensions to this example: more realistic basic patches, patches that can fail (partial bijections), implement merge

