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What Is Object-Oriented (OO) Programming (OOP)?

An object is a record together with a syntactic signature.
The record binds record label names (symbols) to either:

ground values called fields, or
functions called methods that take the record itself (called this or
self) as an implicit first argument.

Hence, an object is a collection of fields and methods (called
members) together with a signature.
In untyped OO languages, the signature is simply a list of member
names and their arities.
In typed OO languages, the signature specifies the types of all
members of the record as well as this (the record itself).
Formulating data values as objects (together with inheritance) is the
defining feature of OOP.

Note: my terminology is consistent with common Java nomenclature.
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In structural models of OOP, signatures are elided.

Structural models of OOP are based on models for functional
programming (FP).
Objects are simply records of a particular form: the first argument of
every method (a record field containing a function) is bound to the
record itself (this). Hence, all signature information is discarded
except for the names of record members.
In typed structural OO languages, the type of this is the record type
corresponding to its members.
This elision, which produces an incorrect and misleading model for
mainstream OO languages, has far-reaching implications.
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Most OO languages are class-based, nominally typed.

A class is a is a template for constructing objects with the same
members (modulo different field bindings) and signature.

Classes have names (name spaces may be segregated).
In well-designed OO programs, Each class has associated contracts
describing the behavior of objects in the class. The constracts (which
only appear in class documentation), include:

An invariant (predicate) for the values of class fields.
At least one contract for each method stipulating:

what conditions the inputs (including this) should satisfy, and
what output predicate should hold over the velue returned by the
method and what side effects have been performed on this and
perhaps other objects passed as arguments the method.

The output predicate may mention the values of arguments and if
often called an input-output predicate.

In practice, class contracts are expressed in code documentation and
may be incomplete. The are typically informal.
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Classes in Structural vs Nominal OO languages

Structural OO languages
Early models of OOP pre-date explicitly nominal OO languages.

Cardelli published his seminal paper on semantics of inheritance in
1984. C++ was in gestation. SmallTalk is largely agnostic.
In the structural model of OOP, objects are simply records. In
particular, class names are not included as part of object denotations.

Nominal OO languages
Class names are embedded in objects in mainstream OO languages.

Some primitive operations depend on the class name (e.g., Java
instanceof, casting, reflective operations [getClass]).
Class names play a critical role in class signatures which govern
inheritance and subtyping.
Java, C#, and C++ all have nominal type systems.
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Framework for Presenting Concrete Examples

Canonical Core Programming Language for OOP
Enhanced Functional Subset of Java with:

No primitive values (“everything is an object”).
No static members (impure without Class objects).
No mutation.
No interfaces (“use abstract classes instead”).
Multiple inheritance. Multiply inherited fields are not duplicated.
Elided constructors. Outside of model.
Small set of base classes: Object, Boolean, Integer.
Optional (first-class) generics. Model easily accommodates generic
classes and methods. Orthogonal to sequel.
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Sample Classes
Example Classes

Java Virtual Machines preload thousands of classes. Gross overkill.
Model makes no commitment to what base classes are available.

Class Object
class Object {

Boolean equals(Object o){ ... }
}

Class Pair
class Pair extends Object {

Object first, second;
Boolean equals(Object p){ ... }
Pair swap(){

return new Pair(second, first);
}

}
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Semantic Typing

Semantic Type
A type is a set of object values with similar properties and behavior.

In statically-typed languages, the compiler checks that program
operations respect types.
Tractable object-oriented type systems rely on characterizing object
shapes.

Liskov Substitution Principle for Semantic Subtyping
If S is a subtype of T, then the contracts for type T hold for type S.

In nominal OO programming languages, type names are associated
with (informal) contracts. Hence, in well-written programs, these
names have more semantic content that mere shape information.
Poorly written OO programs do not follow Liskov principle. Most
discussions of OO type-checking in PL literature ignore it.
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Syntactic Typing

Types of class members are explicitly declared.
Syntactic types are expressions describing class shapes, perhaps using
class names as tags for contracts restricting the objects belonging to
class types.
Syntactic typing rules are decidable; easily enforced by a compiler.
Structural versus nominal perspectives:

Structural typing ignores class names and inheritance relationships
(Liskov principle); suffers from “spurious subtyping”.
Nominal typing respects inheritance relationships (Liskov
substitutability); programs that fail to conform to the (undecidable)
Liskov principle may type check.
Structural and nominal type checking are generally incompatible; they
are based on different semantic models and different definitions of
syntactic types.

Both forms of type-checking are open; each class is type-checked
against potential new classes belonging to the types in its declaration.
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Spurious Subtyping in Structural OOP

All statically-typed mainstream OOP languages are nominally typed.
Each class C is identified with the semantic type consisting of all
instances of the class C and instances of the classes extending C.
(subclasses via inheritance).
Essentially all papers (books, methodologies) on OO design take a
nominal perspective. Liskov substitutability is wired into the literature
on OOP. From this perspective, structural type checking is not just
foreign, it is WRONG.
In putative structurally-typed OOP languages (in PL papers), a class
is identified with the domain of records conforming to its shape
ignoring its name, Record subytping is allowed (extra members are
ignored and method types may be narrowed). The Liskov substitution
principle is ignored. In essence, a type is simply a shape; a class name
does not serve as a tag for a set of contracts. Classes with compatible
shapes may have different contracts.
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Example of Spurious Subtyping

Class MultiSet
class MultiSet extends Object {
Boolean equals(Object ms) { ... }
Void insert(Object o) { ... }
Void remove(Object o) { ... }
Boolean isMember(Object o) { ... }
}

Class Set
Class Set
class Set extends Object {
Boolean equals(Object s){ ... }
Void insert(Object o) { ... }
Void remove(Object o) { ... }
Boolean isMember(Object o) { ... }
}
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Syntactic Typing

Concrete text for describing types.
Type inference systems manipulate syntactic types.
In nominal (mainstream) OO languages, syntactic types are typically
class names with associated superclasses and shapes.
In putative structurally-typed OO languages, class names are not
included in syntactic types. Objects are simply treated as records.
Avoids undecidability in checking; enforceable by compiler.
Structural typing versus nominal typing:

Structural typing ignores class names and inheritance relationships.
Nominal typing focuses on class names as tags (proxies) for sets of
contracts. Class extension relationships are paramount because they
reveal contract propagation. Subtyping is identified with inheritance
following the Liskov Substitution Principle.
From the perspective of nominal typing, structural typing is WRONG.
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Early Models of OOP

Cardelli’s Model of OOP [1984]
Cardelli’s OO language does not include recursive types.
Inheritance is simply a syntactic abbreviation. All inheritance
relationships in a program can be eliminated by repeatedly expansion
of type definitions.
No recursive types.
Cardelli’s domain (distilled to exclude variants):

V = B + (V → V) + (L → V)
where B is the domain of base values and L is the flat domain of
labels.
This model is structural; objects do not contain any nominal
information.
Syntactic inheritance implies subtyping but spurious subtyping can
occur.
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Subsequent Models of OOP

Elaborations on Cardelli’s Model of OOP
The subsequent quest by Cook for more precise typing (including
recursive types) leads to the conclustion: inheritance is not subtyping.
But Cook’s perspective ignores the Liskov principle. In fact, the more
precise typings he proposes to support “binary methods” explicitly
violate the Liskov principle.
Common binary method example is a class hierarchy where the
equals method only accepts inputs of the the same type (narrowly
defined) as this. Such typings for equals mean that instances of
subclasses will generate run-time type errors when compared with
objects belonging to a supertype.
The OO software engineering community completely ignores PL
research on inhertiance and OO typing for good reason.
The denotational models that PL researchers use when thinking about
OO programs are WRONG for nominal OO languages.
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Overview: Constructing A Nominal Model of OOP

Each object is a record augmented by a signature consisting of a class
name and the descriptions of the types of all the class members.
Signatures play a critical role in object denotations.
The signature for an object specifies the signatures of all the class
names mentioned in S.
More precisely, an object denotation is a pair (sig , rec) where sig is
closed (binds all class names in sig).
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Class Signatures

Equations Defining Set of Signatures S
Given a set of class names N and a set of label names L:

S = N × N∗ × S∗F × S∗M
SF = L× N
SM = L× N∗ × N

where
SF is the set of field signatures; and
SM is the set of method signatures.

Notes:
N and L are countable sets of symbols.
Only the ordering in N∗ within SM matters.
Every class signature has a name (its first component).
Class signatures refer to other signatures by name.
The supersignatures component N∗ specifies immediate superclasses.
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Signature Environments and Signature Closures

Signature Environment
A signature environment is a finite set of class signatures that:

Has unique signature names, implying signature environments can be
viewed as functions from class names to class signatures.
Is referentially-closed.
Has no class signature containing duplicate member names.
Has no cycles in the supersignatures relation.
Has member (field and method) signatures of supersignatures
included in a class signature (enforcing inheritance constraints).

Signature Closure
A signature closure is a pair (nm, se) consisting of a class name nm and a
signature environment se where: nm is defined in se; and every signature
in se is reference-accessible from se(nm), implying se is minimal.
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Relations on Signatures

Extension of signature environments
se1 J se2 ⇔ se1 ⊇ se2.

Subsigning of signature closures
Immediate subsigning (E1):

(nm1, se1) E1 (nm2, se2)⇔

(se1 J se2) ∧ (nm2 ∈ supSigs(se1(nm1))).

Subsigning (E):

E = ReflexiveTransitiveClosure(E1).
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Signature Examples

Class Signatures
Obj = (Object, [], [], [(equals, [Object], Boolean)])

P = (Pair, [Object], [(first, Object), (second, Object)],

[(equals, [Object], Boolean), (swap, [], Pair)])

Bool = ..

Signature Environments
ObjSE = Obj ,Bool
PairSE = Obj ,Bool ,P

Signature Closures
ObjSC = (Object,ObjSE )
PairSC = (Pair ,PairSE )

Environment Extension
PairSE J ObjSE

Subsigning
PairSC E1 ObjSC
PairSC E ObjSC
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Constructing A Domain O of Nominal Objects

Domain Equation for Ô

Ô = S × (L( Ô)× (L( (Ô+ (→ Ô))

where S is the flat domain of signature closures, L is the flat domain of
label names, ( constructs the domain of finite records over the specified
flat label domain and value domain, and (→ is the strict function space
constructor.
Ô is the least domain satisfying this equation.

Filtering Ô to form O
The domain Ô is a simple construction that includes many ill-formed
objects with member names or values that are inconsisent with the
specified signature closure. Every inconsistent finite object in the basis for
Ô can be filtered out to form a clean basis for objects with proper
signatures.
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Inheritance = Subtyping

Semantic Type of Signature Closure
The class type corresponding to a signature closure sc is the subset of O
containing the bottom object and all objects that have a signature closure
that subsigns sc.

O[sc] = {(scs, fr ,mr) ∈ O | scs J sc} ∪ {⊥O}

Key Theorem
Subsigning ⇔ Subtyping: For two signature closures sc1 and sc2,

sc1 J sc2⇔ O[sc1] ⊆ O[sc2]

In other words, inheritance between two classes, formalized as subsigning,
directly corresponds to semantic subtyping between between these classes.
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Conclusions

Extended Technical Exercise in Denotational Semantics
The construction of the model proceeded much as I expected with two
surprises:

All possible nominal objects neatly fit into a single domain. OO
programs introduce so many new forms of data that I originally
expected build domains on a per program basis.
The fact that the nominal OO domain is in some sense universal casts
some light on why compilers for nominal OO languages can accurately
type check open programs that are subsequently extended in arbitrary
ways. All of the possible new object classes and instances (assuming
the existing code base does not change) are already in the domain
and included in the types specified in the existing program signatures.
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Future of Nominal OO Languages

Better OO Type Systems?
Scala and F# are far ahead of major commercial platforms.
Perhaps Java 8+K will support a richer type system, but backward
compatibility is an impediment.
Better type systems for nominal OO languages is still a fertile
research area. Nominal OO type systems is an under-researched area.
Perhaps a more appropriate semantic model can help.

Better Compilers?
Object-inlining is the key to major increases in performance on a fixed
architecture. CLR based languages have better prospects than JVM
based languages in this regard. Some unfortunate design decisions in
the evolution of Java/JVM (which are difficult to reverse given Java’s
commitment to backward compatibility) are likely to impede this form
of optimization. The decision to use the existing wrapper classes in
java.lang for autoboxing in Java 5 particularly stands out.
Scaling across an increasing number of cores on a chip will become
common as more programs are written using task parallelism, as in
Habanero Java and Habanero C. All the same ideas are applicable to
C#, F# but the pioneering implementations will probably appear in
Java and C.
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