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SAFE
• Clean-slate redesign of the entire system stack
• Hardware

• System software 

• Programming languages

• Support for critical security invariants at all levels
• Memory safety

• Strong dynamic typing

• Information flow and access control

• Verification of key mechanisms deeply integrated into 
design process
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• “Low-fat” pointers  [CCS ’13]   
• Every pointer includes ase, bounds, and offset

• Compact encoding into 64 bit words 

• Hardware types (“atomic groups”)
• instruction ≠ integer ≠ pointer

• Hardware tagging 
• atom = payload + atomic group + software-defined tag

• Hardware rule cache supports tag propagation with every machine step

• And more...
• Lightweight transactions

• Linear pointers

• Hardware-supported stream operations

SAFE:  Hardware level
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Why new hardware?

• Explore how to spend hardware resources on 
security effectively

• Reconsider traditional sources of complexity 
and vulnerability

• Remove application compiler, libraries, etc. from 
TCB
• Strong attack model
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This work...

 Formal Model of SAFE’s Hardware 
Tagging and Low-Level Tag-

Management Software

Proof of correctness
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Goal for today...

 Explain HW/SW architecture;
Sketch proof architecture
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• Deterministic, single-threaded machine

• Conventional memory model 
• pointers are just integers

• single kernel protection domain

• Stack instead of registers

• No downgrading, public labels, dynamic principal 
generation, ...

• No exception handling
• security violation halts the whole machine

• One-line rule cache

Simplifications
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Abstract Machine



Non-interference	


• We design the abstract machine so that it is 
easy to prove a non-interference property
• Strictly: termination-insensitive non-interference

• Over arbitrary semi-lattice of labels, from point of 
view of arbitrary observer

• Roughly:  “high” inputs cannot affect “low” 
outputs.
•  If two executions of a program start with the same 

“low” data, the “low” parts of their output traces will 
be the same
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Example

Suppose:

Then:

index n
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Symbolic IFC Rule Machine

• Alternative presentation of abstract machine
• Same machine states 

• Same step relation

• IFC side conditions factored out into a 
separate, explicit rule table
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consult rule table...
for tags...

and opcode...
to obtain result tags...
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is this operation allowed?
new pc label

label for result
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subtraction is always allowed
pc label is unchanged

result label is join of arg labels
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Example (cache hit case)

Suppose 
  tag 0 represents label ⊥ 
  tag 1 represents label ⊤

cache inputs match 
current machine state!
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Example (cache miss case)

mismatch!



Fault Handler
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Handler Generation

• IFC rule table entries form a small DSL for 
computing labels and booleans

• parameterized over lattice ⊥, ⨆ and ⊑

• The handler is constructed by compiling the 
DSL into concrete machine instructions
• Table-driven interpreter would be an alternative

• We use structured code generators to simplify 
verification
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Non-interference 
for concrete 

machine
• Running this particular fault handler 

• Together with arbitrary user code
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• Refinement framework very useful for reasoning 
• start with concrete object

• propose abstracted version 
• incorporate convenient structure and annotations 

• prove refinement

• prove interesting property of abstract object

• automatically follows for concrete object

• Need a generic notion of noninterference that makes 
sense for all machines 
• Includes a notion of abstracting concrete tags (and associated 

memory states) into labels

Points to note
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Some Verification 
Challenges...



• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models 

just by varying the rule table   [Montagu CSF ’13]

• Other potential uses
• access control  (clearance)

• memory protection

• linearity

• dynamic typing

More uses for tags
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• Downgrading

• “Least Privilege”

• Concurrency 

More Security Issues
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Real SAFE Machine

• Scaling methodology to full SAFE hardware and 
ConcreteWare
• random testing vs. verification

• Breeze compiler correctness
• for defense in depth
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Thank you!
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