
A Verified
Information-Flow

Architecture
 Arthur Azevedo de Amorim, Nathan Collins,

André DeHon, Delphine Demange, Cătălin Hriţcu,
David Pichardie, Benjamin C. Pierce,

Randy Pollack, Andrew Tolmach

Crash/
SAFE

SAFE
• Clean-slate redesign of the entire system stack
• Hardware

• System software

• Programming languages

• Support for critical security invariants at all levels
• Memory safety

• Strong dynamic typing

• Information flow and access control

• Verification of key mechanisms deeply integrated into
design process

3

• “Low-fat” pointers [CCS ’13]
• Every pointer includes ase, bounds, and offset

• Compact encoding into 64 bit words

• Hardware types (“atomic groups”)
• instruction ≠ integer ≠ pointer

• Hardware tagging
• atom = payload + atomic group + software-defined tag

• Hardware rule cache supports tag propagation with every machine step

• And more...
• Lightweight transactions

• Linear pointers

• Hardware-supported stream operations

SAFE: Hardware level

4

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1
+1

PC

ALU

Memory

Register File

I−Store

Why new hardware?

• Explore how to spend hardware resources on
security effectively

• Reconsider traditional sources of complexity
and vulnerability

• Remove application compiler, libraries, etc. from
TCB
• Strong attack model

5

This work...

 Formal Model of SAFE’s Hardware
Tagging and Low-Level Tag-

Management Software

Proof of correctness

6

Goal for today...

 Explain HW/SW architecture;
Sketch proof architecture

7

• Deterministic, single-threaded machine

• Conventional memory model
• pointers are just integers

• single kernel protection domain

• Stack instead of registers

• No downgrading, public labels, dynamic principal
generation, ...

• No exception handling
• security violation halts the whole machine

• One-line rule cache

Simplifications

8

Minor

Major

Outline

10

Concrete
Machine

11

Abstract
IFC Machine

Concrete
Machine

12

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Symbolic IFC
Rule Machine

13

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table
Symbolic IFC
Rule Machine

14

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table
Symbolic IFC
Rule Machine

15

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

Symbolic IFC
Rule Machine

16

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

IFC fault
handler

Symbolic IFC
Rule Machine

Abstract Machine

Non-interference	

• We design the abstract machine so that it is
easy to prove a non-interference property
• Strictly: termination-insensitive non-interference

• Over arbitrary semi-lattice of labels, from point of
view of arbitrary observer

• Roughly: “high” inputs cannot affect “low”
outputs.
• If two executions of a program start with the same

“low” data, the “low” parts of their output traces will
be the same

18

Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine

19

Instruction memory (user)

Program counter

Machine state

Data memory (user)

Stack
...

Output
...

Abstract Machine

20

Atom

Written

payload label

payload @ label

memory

output

pc
stack

next state

21

22

23

Example

Suppose:

Then:

index n

24

25

26

Symbolic IFC Rule
Machine

Symbolic IFC Rule Machine

• Alternative presentation of abstract machine
• Same machine states

• Same step relation

• IFC side conditions factored out into a
separate, explicit rule table

28

consult rule table...
for tags...

and opcode...
to obtain result tags...

29

is this operation allowed?
new pc label

label for result

30

IFC Rule Table

=

subtraction is always allowed
pc label is unchanged

result label is join of arg labels

31

IFC Rule Table

=

Concrete Machine

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine

33

concrete atom:

n @ p

integer integer

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

Concrete machine

34

PC tag op1 tag op2 tag op3 tag new PC tag result tag

Inputs Outputs

Rule cache:
(single-line)

Kernel mode User mode
(cache hit)

User-to-kernel mode
(cache miss)

pc

stack

user
memory

kernel
memory

privilege bit

35

user mode
(cache hit)

user mode
(cache miss)

kernel mode the new
cache is set

User mode
(cache hit)

Kernel modeUser-to-kernel mode
(cache miss)

36

Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)

37

Kernel modeUser mode
(cache hit)

User-to-kernel mode
(cache miss)

38

39

Example (cache hit case)

Suppose
 tag 0 represents label ⊥
 tag 1 represents label ⊤

cache inputs match
current machine state!

40

Example (cache miss case)

mismatch!

Fault Handler

42

Handler Generation

• IFC rule table entries form a small DSL for
computing labels and booleans

• parameterized over lattice ⊥, ⨆ and ⊑

• The handler is constructed by compiling the
DSL into concrete machine instructions
• Table-driven interpreter would be an alternative

• We use structured code generators to simplify
verification

43

Non-interference
for concrete

machine
• Running this particular fault handler

• Together with arbitrary user code

preserved bypreserved by

45

satisfies
noninterference

refines

refines

satisfies
noninterference

correctly
compiled from

Abstract
IFC Machine

Concrete
Machine

Quasi-Abstract
IFC Machine

Rule table

IFC rule table

Rule cache
Fault handler

IFC fault
handler

Symbolic IFC
Rule Machine

• Refinement framework very useful for reasoning
• start with concrete object

• propose abstracted version
• incorporate convenient structure and annotations

• prove refinement

• prove interesting property of abstract object

• automatically follows for concrete object

• Need a generic notion of noninterference that makes
sense for all machines
• Includes a notion of abstracting concrete tags (and associated

memory states) into labels

Points to note

46

Some Verification
Challenges...

• SAFE architecture is quite generic
• Can be used to implement a range of IFC label models

just by varying the rule table [Montagu CSF ’13]

• Other potential uses
• access control (clearance)

• memory protection

• linearity

• dynamic typing

More uses for tags

48

• Downgrading

• “Least Privilege”

• Concurrency

More Security Issues

49

Real SAFE Machine

• Scaling methodology to full SAFE hardware and
ConcreteWare
• random testing vs. verification

• Breeze compiler correctness
• for defense in depth

50

Thank you!
PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

Questions??

Instruction memory (user) Instruction memory (kernel)

Privilege bitProgram counter

Machine state

Data memory (user) Rule cache (= kernel data memory)

Stack

...

Output
...

