A Verified Information-Flow Architecture

Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, Andrew Tolmach

SAFE

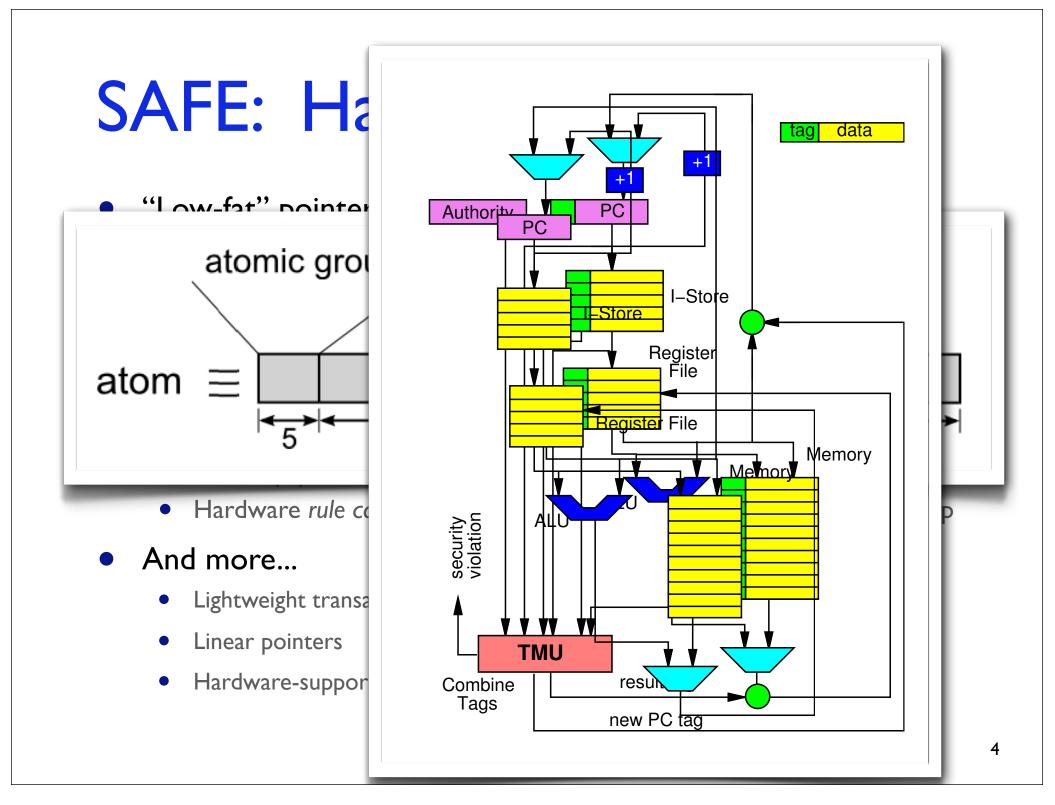
• <u>Clean-slate redesign</u> of the entire system stack

- Hardware
- System software
- Programming languages

• Support for <u>critical security invariants</u> at <u>all levels</u>

- Memory safety
- Strong dynamic typing
- Information flow and access control

<u>Verification of key mechanisms</u> deeply integrated into design process



Why new hardware?

- Explore how to spend hardware resources on security effectively
- Reconsider traditional sources of complexity and vulnerability
- Remove application compiler, libraries, etc. from TCB
 - Strong attack model

This work...

Formal Model of SAFE's Hardware Tagging and Low-Level Tag-Management Software

Proof of correctness

Goal for today...

Explain HW/SW architecture; Sketch proof architecture

Simplifications

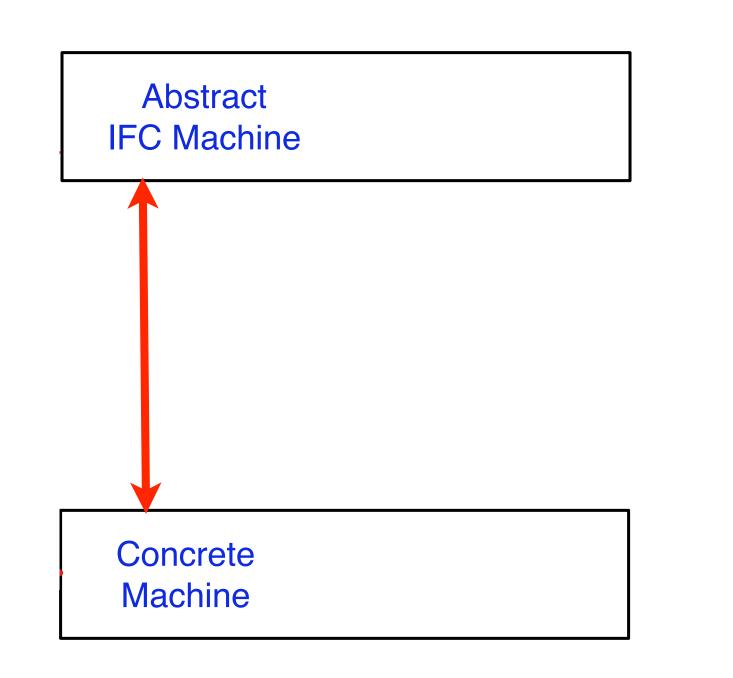
- Deterministic, single-threaded machine
- Conventional memory model
 - pointers are just integers
 - single kernel protection domain
- Stack instead of registers
- No downgrading, public labels, dynamic principal generation, ...
- No exception handling
 - security violation halts the whole machine
- One-line rule cache

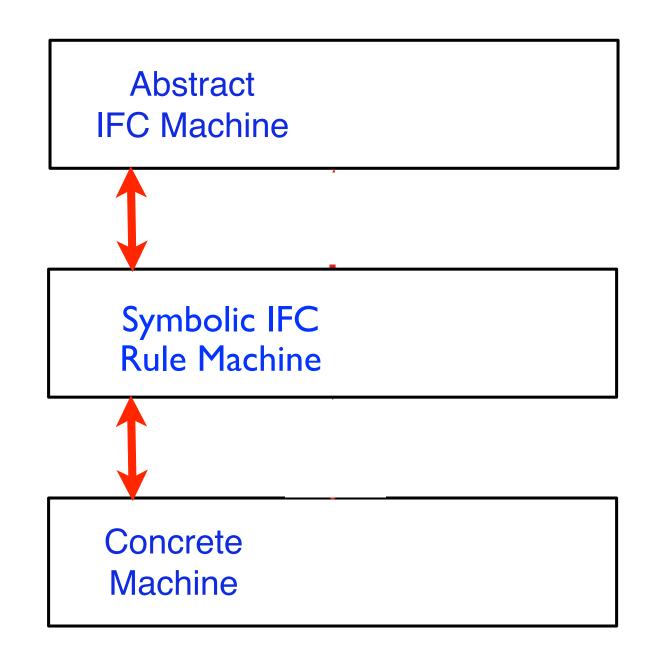
Major

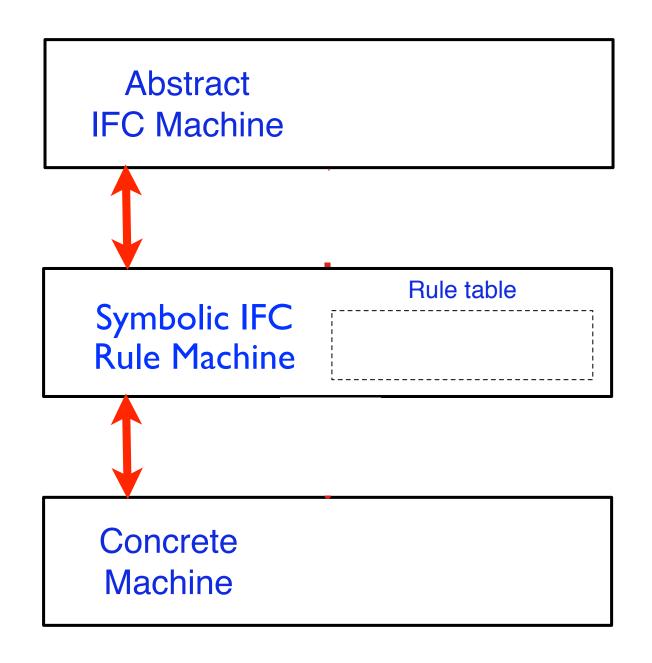
Minor

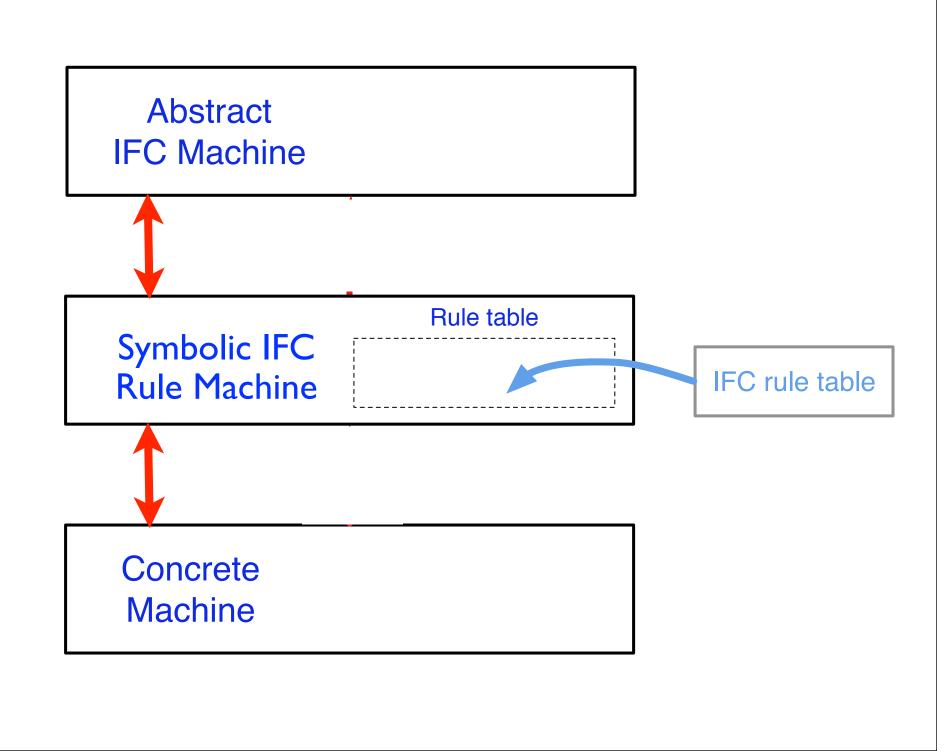
Outline

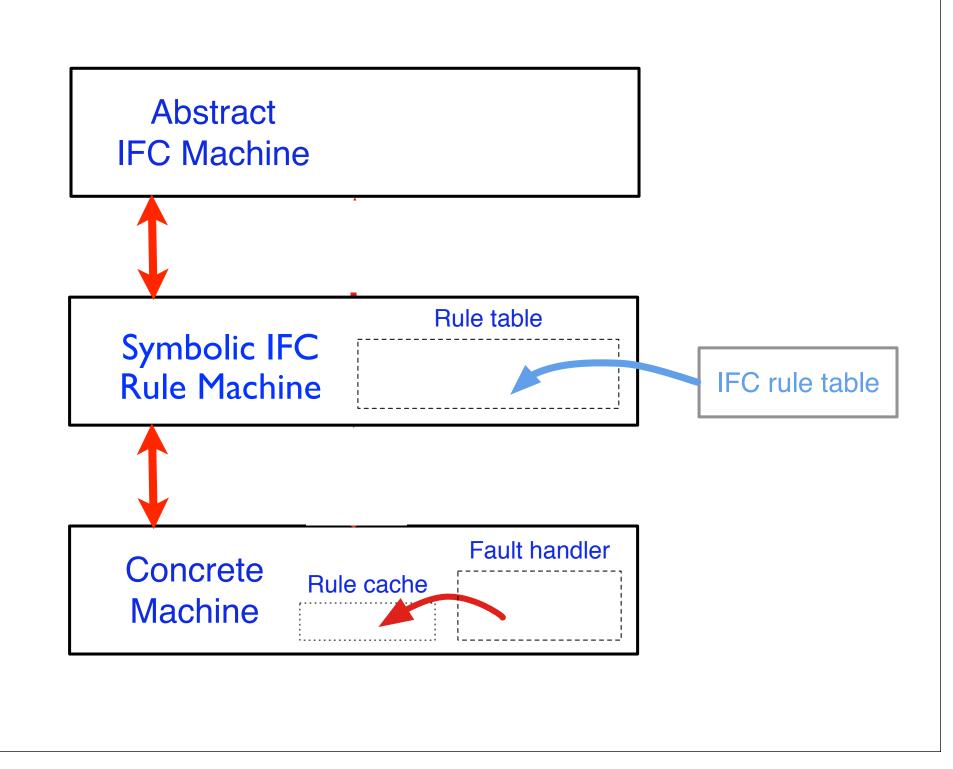
Concrete Machine

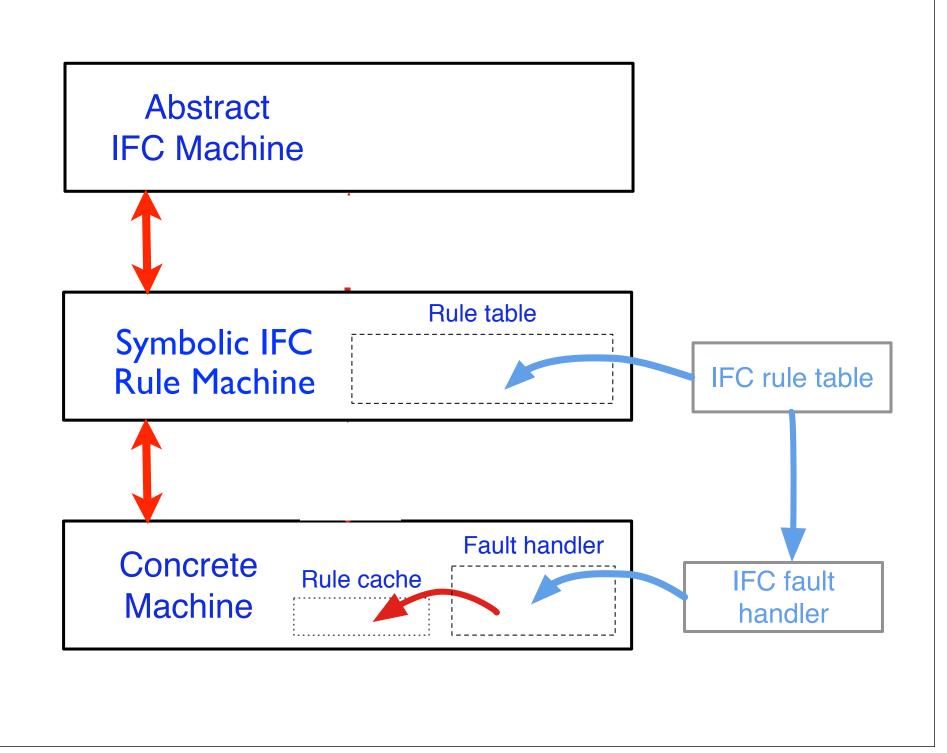












Abstract Machine

Non-interference

- We design the abstract machine so that it is easy to prove a non-interference property
 - Strictly: termination-insensitive non-interference
 - Over arbitrary semi-lattice of labels, from point of view of arbitrary observer
- Roughly: "high" inputs cannot affect "low" outputs.
 - If two executions of a program start with the same "low" data, the "low" parts of their output traces will be the same

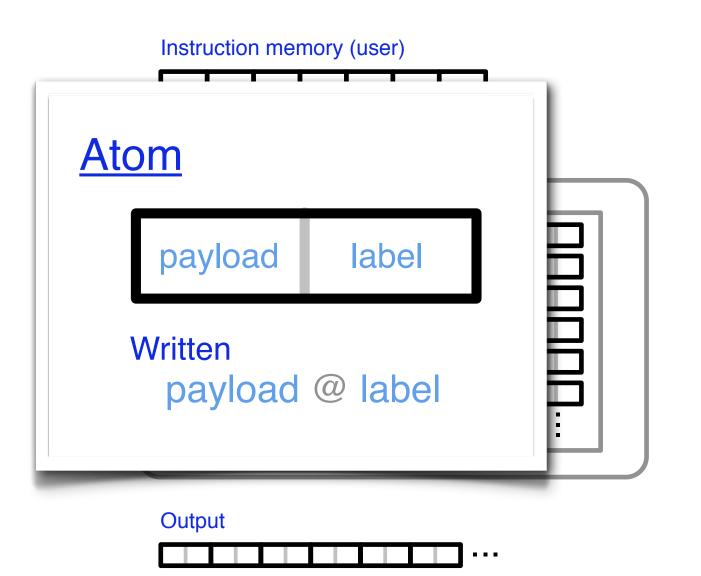
Abstract Machine

Instruction memory (user)

Machine state

instr	::= 	Instructions	
		Output	output top of stack
	Í	Sub	subtract
	i	$Push\ n$	push constant integer
	İ	Load	indirect load from data memory
	İ	Store	indirect store to data memory
	İ	Jump	unconditional indirect jump
	j	$\operatorname{Bnz} n$	conditional relative jump
	İ	Call	indirect call
	ĺ	Ret	return

Abstract Machine



$$\mu_{1} (n) = \text{Sub}$$

$$\mu_{1} (n_{1} - n_{2}) \in (1 + L_{p}), \sigma_{1}^{T} + 1 \oplus L_{pc}}^{T}$$

$$\mu_{1} (n_{1} - n_{2}) \in (1 + L_{p}), \sigma_{1}^{T} + 1 \oplus L_{pc}}^{T}$$

$$\mu_{1} (\sigma_{1}) \rho_{1} \rightarrow \mu_{2} (\sigma_{2}) \rho_{2}$$

$$\mu_{1} (\sigma_{1}) \rho_{1} \rightarrow \mu_{2} (\sigma_{2}) \rho_{2}$$

$$\mu_{1} (\sigma_{1}) \rho_{2} = \mu_{1}^{P} + \mu_{2} (\sigma_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{1} - \sigma_{1}) = \mu_{1}^{P} + \mu_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \mu_{1}^{P} + \mu_{1} (\rho_{1} - \sigma_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{1}^{P} + \mu_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \sigma_{2}) = \rho_{2}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2}$$

$$\mu_{1} (\rho_{2} - \rho_{2}) = \rho_{1}^{P} + \rho_{2} (\rho_{2} - \rho_{2}) \rho_{2} + \rho_{2} (\rho_{2$$

Example

index n

Suppose: $\iota = [..., Sub, ...]$

Then:

 $\begin{array}{ccc} \mu & [7@\bot, 5@\top] & n@\bot & \longrightarrow \\ \\ \mu & [2@\top] & (n+1)@\bot \end{array} \end{array}$

$$\frac{\iota(n) = \operatorname{Sub}}{\mu [(n_1 - n_2) \otimes (L_1 \vee L_2), \sigma]} \xrightarrow{\tau} (n_1 - n_2) \otimes (L_1 \vee L_2), \sigma]} (n_1 - n_2 + (m_1 - n_2) \otimes (L_1 \vee L_2), \sigma] (n_1 - n_1 - n_1) = 0$$

$$\frac{\iota(n) = \operatorname{Bnz} k \qquad n' = n + ((m = 0)?1:k) \\ \mu [m \otimes L_1, \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu [\sigma] n' \otimes (L_1 \vee L_{pc})$$

$$\frac{\iota(n) = \operatorname{Store} \qquad \mu(p) = k \otimes L_3 \qquad L_1 \vee L_{pc} \leq L_3 \\ (\mu(p) \leftarrow (m \otimes L_1 \vee L_2 \vee L_{pc}) = \mu' \\ \mu [p \otimes L_1, m \otimes L_2, \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu' [\sigma] n + 1 \otimes L_{pc}$$

$$\frac{\iota(n) = \operatorname{Jump}}{\mu [n' \otimes L_1, \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu [\sigma] n' \otimes (L_1 \vee L_{pc})}$$

$$\frac{\iota(n) = \operatorname{Bnz} k \qquad n' = n + (m = 0)?1:k \\ \mu [m \otimes L_1, \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu [\sigma] n' \otimes (L_1 \vee L_{pc})$$

$$\frac{\iota(n) = \operatorname{Call}}{\mu [n' \otimes L_1, a, \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu [a, n + 1 \otimes L_{pc}; \sigma] n' \otimes (L_1 \vee L_{pc})}$$

$$\frac{\iota(n) = \operatorname{Ret}}{\mu [n' \otimes L_1; \sigma] n \otimes L_{pc} \xrightarrow{\tau} \mu [\sigma] n' \otimes L_{1}}$$

$$\begin{split} \frac{\iota(n) = \operatorname{Sub}}{\mu \quad [n_1 \oplus L_1, n_2 \oplus L_2, \sigma] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to}} \\ \iota(n) = \operatorname{Output} \\ \\ \hline \iota(n) = \operatorname{Store} \quad \mu(p) = k \oplus L_3 \quad L_1 \lor L_{pc} \leq L_3 \\ \mu(p) \leftarrow (m \oplus L_1 \lor L_2 \lor L_{pc}) = \mu' \\ \hline \mu \left[p \oplus L_1, m \oplus L_2, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu' \left[\sigma \right] (n+1) \oplus L_{pc} \\ \\ \hline \frac{\mu(p) \leftarrow (m \oplus L_1 \lor L_2 \lor L_{pc}) = \mu'}{\mu \left[p \oplus L_1, m \oplus L_2, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu' \left[\sigma \right] (n+1) \oplus L_{pc} \\ \hline \frac{\iota(n) = \operatorname{Sup}}{\mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu' \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \\ \hline \frac{\iota(n) = \operatorname{Bnz} k \quad n' = n + (m = 0)?1 : k}{\mu \left[m \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \frac{\iota(n) = \operatorname{Call}}{\mu \left[n' \oplus L_1, a, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \frac{\iota(n) = \operatorname{Ret}}{\mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[\sigma \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus (L_1 \lor L_{pc}) \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_{pc} \quad \stackrel{\tau}{\to} \mu \left[\sigma \right] n' \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_1 \\ \hline \mu \left[n' \oplus L_1, \sigma \right] \quad n \oplus L_1 \\ \hline \mu \left[n' \oplus L_1$$

$$\begin{split} \iota(n) &= \mathsf{Sub} \\ \hline \mu & [n_1 @L_1, n_2 @L_2, \sigma] \ n @L_{pc} & \xrightarrow{\tau} \\ \mu & [(n_1 - n_2) @(L_1 \lor L_2), \sigma] \ n + 1 @L_{pc} \\ \hline \iota(n) &= \mathsf{Output} \\ \hline \mu & [m @L_1, \sigma] \ n @L_{pc} & \frac{m @L_1 \lor L_{pc}}{m @L_1 \lor L_{pc}} \ \mu & [\sigma] \ n + 1 @L_{pc} \\ \hline \mu & [\sigma] \ n @L_{pc} & \xrightarrow{\tau} \mu & [m @\bot, \sigma] \ n + 1 @L_{pc} \\ \hline \iota(n) &= \mathsf{Load} \qquad \mu(p) &= m @L_2 \\ \hline \mu & [p @L_1, \sigma] \ n @L_{pc} & \xrightarrow{\tau} \mu & [m @L_1 \lor L_2, \sigma] \ n + 1 @L_{pc} \\ \iota(n) &= \mathsf{Store} \qquad \mu(p) &= k @L_3 \qquad L_1 \lor L_{pc} \leq L_3 \\ \hline \mu(p) \leftarrow & (m @L_1 \lor L_2 \lor L_{pc}) &= \mu' \\ \hline \mu & [p @L_1, m @L_2, \sigma] \ n @L_{pc} & \xrightarrow{\tau} \mu' & [\sigma] \ n + 1 @L_{pc} \end{split}$$

$$\begin{split} \iota(n) &= \mathsf{Call} \\ \overline{\mu \; [n'@L_1, \, a, \sigma] \; n@L_{pc} \; \stackrel{\tau}{\to} \; \mu \; [a, n+1@L_{pc}; \sigma] \; n'@(L_1 \lor L_{pc})}} \\ \frac{\iota(n) = \mathsf{Ret}}{\mu \; [n'@L_1; \sigma] \; n@L_{pc} \; \stackrel{\tau}{\to} \; \mu \; [\sigma] \; n'@L_1} \end{split}$$

Symbolic IFC Rule Machine

Symbolic IFC Rule Machine

- Alternative presentation of abstract machine
 - Same machine states
 - Same step relation
- IFC side conditions factored out into a separate, explicit *rule table*

$$\frac{\iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, \cdot) \rightsquigarrow_{\operatorname{sub}} L_{rpc}, L_{r}}{\mu \begin{bmatrix} n_{1} \oplus L_{1}, n_{1} \oplus L_{2}, \sigma \end{bmatrix} \underbrace{n \oplus L_{pc}} \xrightarrow{\tau} \\ \mu \begin{bmatrix} n_{1} \oplus \dots & r & to obtain result tags... \\ \mu \begin{bmatrix} m \oplus L_{1}, & and opcode... & L_{rpc} \\ \vdots & \vdots & \vdots & \vdots \\ n \oplus L_{r}, & \sigma \end{bmatrix} \xrightarrow{(L_{pc}, \dots, \tau)} \xrightarrow{\sim} \operatorname{sub} L_{rpc}, L_{r} \\ \frac{\iota(n) = \operatorname{Sub}}{\iota(n) = \operatorname{mod} n} \xrightarrow{(L_{pc}, \dots, \tau)} \underbrace{(n) = \operatorname{mod} n} \\ \iota(n) = \operatorname{Sub} \qquad \vdash_{\mathcal{R}} (L_{pc}, L_{1}, L_{2}, -) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} n_{1} \oplus L_{1}, n_{1} \oplus L_{2}, \sigma \end{bmatrix} \underbrace{n \oplus L_{pc}} \xrightarrow{\tau} \\ \mu \begin{bmatrix} (n_{1} - n_{2}) \oplus L_{r}, \sigma \end{bmatrix} (n+1) \oplus L_{rpc} \\ \frac{\iota(n) = \operatorname{Sub}}{\iota(n) = \operatorname{mod} n} \xrightarrow{(L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}} \xrightarrow{\tau} \\ \mu \begin{bmatrix} (n_{1} \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n_{1} \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}, L_{1, -}) \xrightarrow{\operatorname{sub}} L_{rpc}, L_{r} \\ \mu \begin{bmatrix} (n \oplus \operatorname{Call}) & \vdash_{\mathcal{R}} (L_{pc}$$

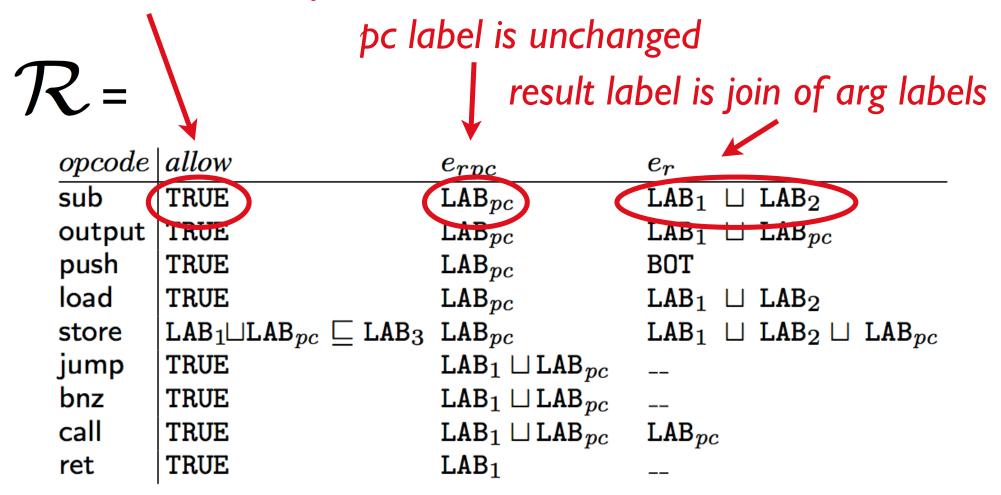
IFC Rule Table

is this operation allowed?

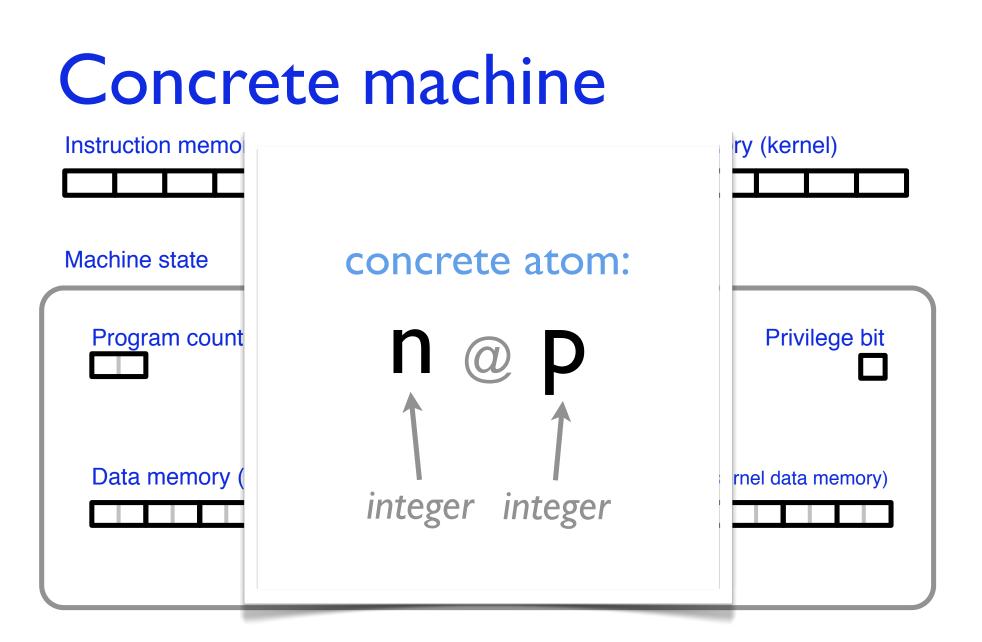
	ne	ew pc label	
\mathcal{R} =			label for result
opcode	allow	e_{rpc}	e_r
sub	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
output	TRUE	LAB_{pc}	$\texttt{LAB}_1 \ \sqcup \ \texttt{LAB}_{pc}$
push	TRUE	LAB_{pc}	BOT
load	TRUE	LAB_{pc}	$\texttt{LAB}_1 \sqcup \texttt{LAB}_2$
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LAB_{pc}	$\texttt{LAB}_1 \sqcup \texttt{LAB}_2 \sqcup \texttt{LAB}_{pc}$
jump	TRUE	$LAB_1 \sqcup LAB_{pc}$	
bnz	TRUE	$LAB_1 \sqcup LAB_{pc}$	
call	TRUE	$LAB_1 \sqcup LAB_{pc}$	LAB_{pc}
ret	TRUE	LAB_1	

IFC Rule Table

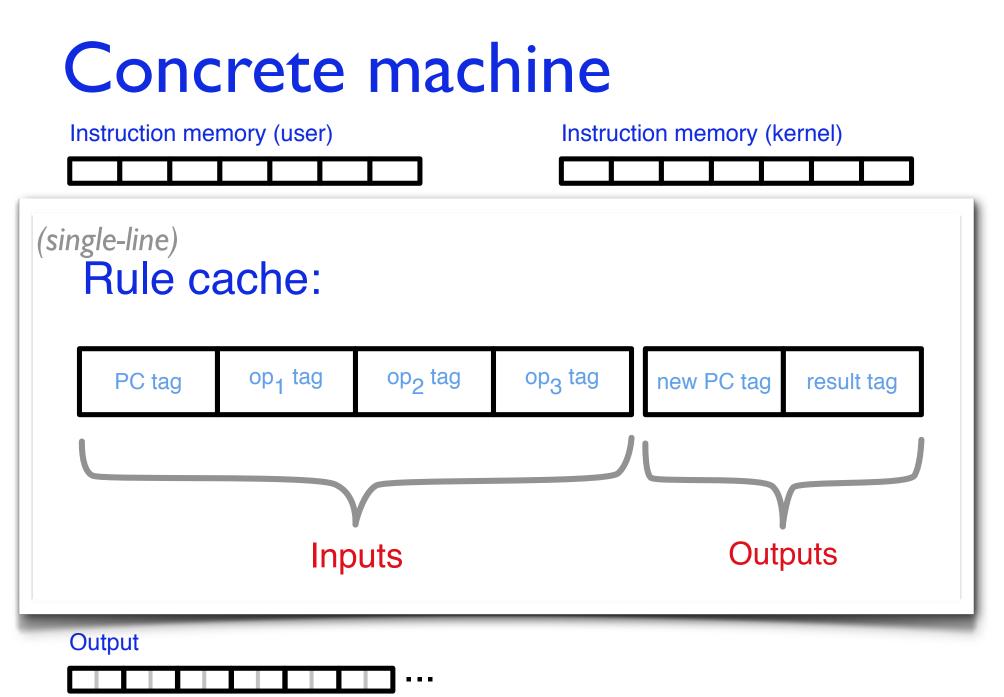
subtraction is always allowed

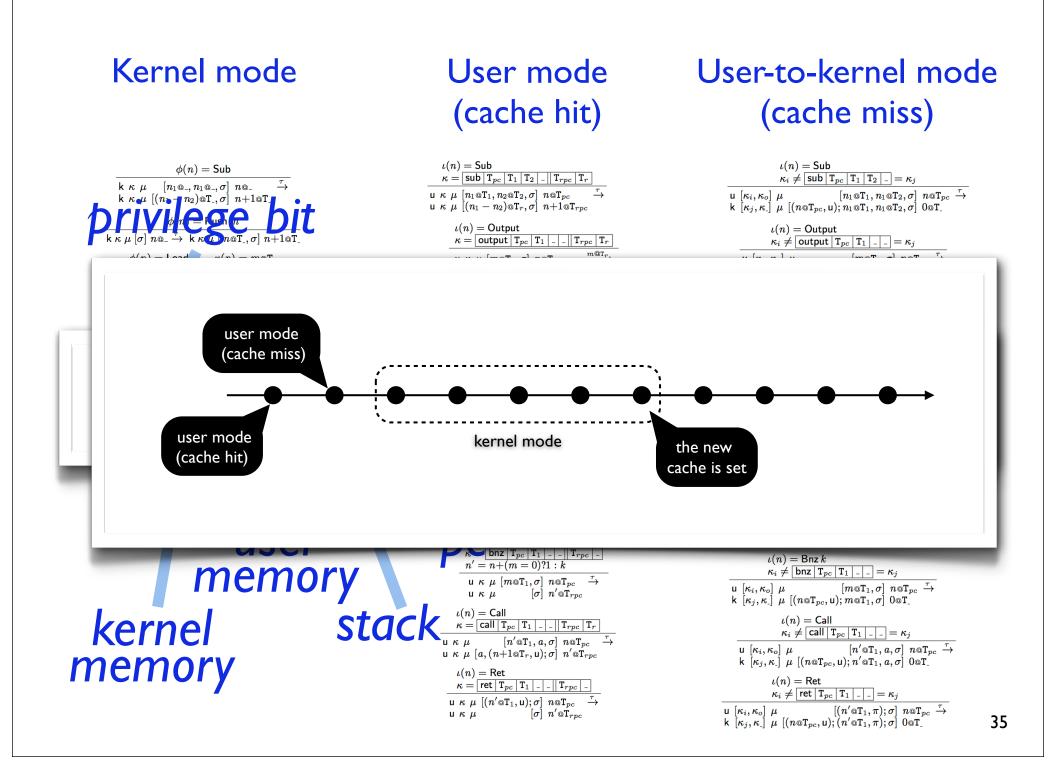


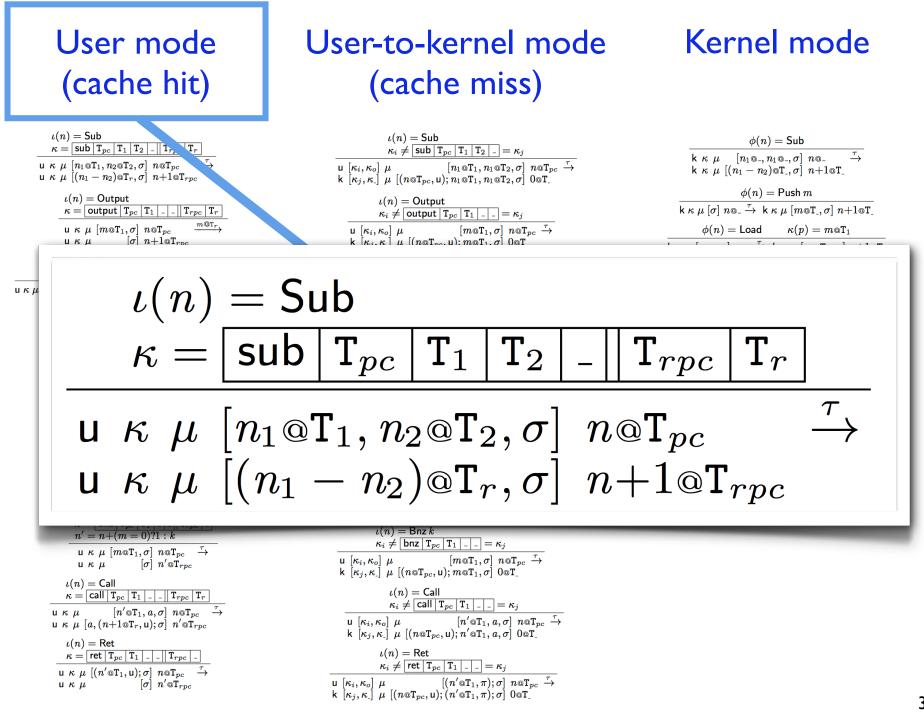
Concrete Machine



Output



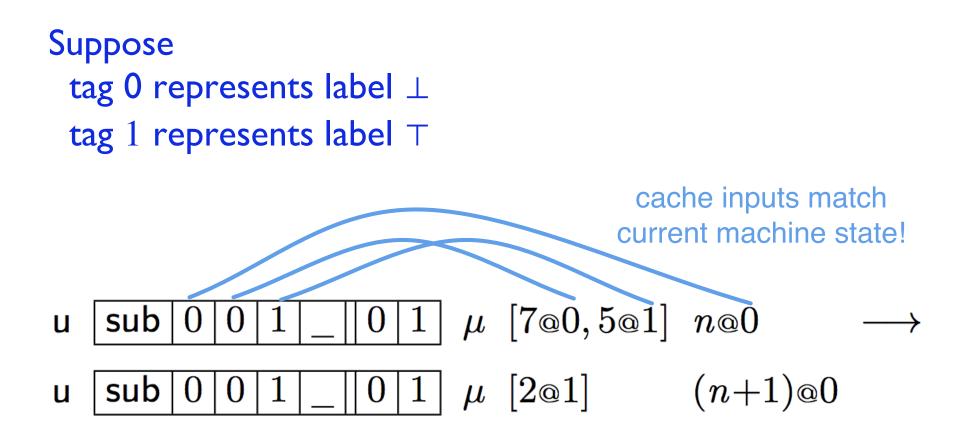


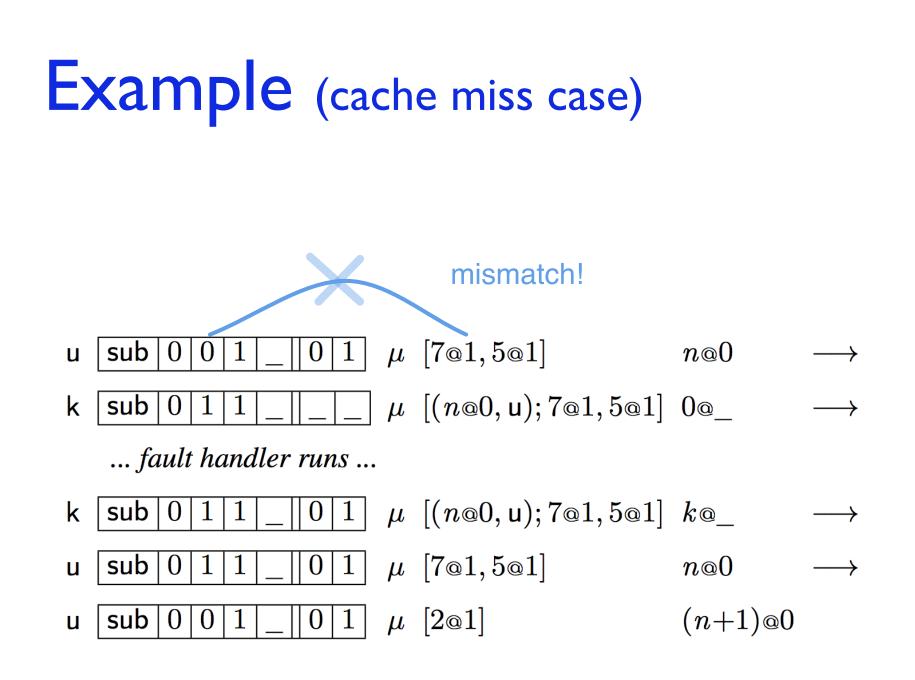


User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \iota(n) &= Sub \\ \kappa &= \boxed{sub \mid T_{pc} \mid T_1 \mid T_2 \mid _ \mid \mid T_{rpc} \mid T_r} \\ u \; \kappa \; \mu \; \begin{bmatrix} n_1 \otimes T_1, n_2 \otimes T_2, \sigma \end{bmatrix} \; n \otimes T_{pc} & \xrightarrow{\tau} \\ u \; \kappa \; \mu \; \begin{bmatrix} (n_1 - n_2) \otimes T_r, \sigma \end{bmatrix} \; n + 1 \otimes T_{rpc} \\ \iota(n) &= Output \\ \kappa &= \boxed{output \mid T_{pc} \mid T_1 \mid _ \mid _ \mid \mid T_{rpc} \mid T_r} \\ u \; \kappa \; \mu \; \begin{bmatrix} m \otimes T_1, \sigma \end{bmatrix} \; n \otimes T_{pc} & \xrightarrow{m \otimes T_r} \\ \end{array}$	$\begin{split} \iota(n) &= Sub \\ \kappa_i \neq \boxed{sub T_{pc} } \boxed{T_2 }_{-} = \kappa_j \\ \hline u \ \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 & T_1, n_1 \otimes T_2, \sigma \end{bmatrix} n \otimes T_{pc} \xrightarrow{\tau} \\ k \ \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & \begin{bmatrix} (n \otimes T_{pc}, u); n_1 & T_1, n_1 \otimes T_2, \sigma \end{bmatrix} 0 \otimes T_{-} \\ \hline \iota(n) &= Output \\ \kappa_i \neq \boxed{output T_{pc} T_{-} }_{-} = \kappa_j \\ \hline u \ \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n & T_1, \sigma \end{bmatrix} n \otimes T_{pc} \xrightarrow{\tau} \end{split}$	$\begin{split} \phi(n) &= Sub \\ \hline \mathbf{k} \ \kappa \ \mu \ [n_1 @_, n_1 @_, \sigma] \ n @_ \ \stackrel{\tau}{\longrightarrow} \\ \mathbf{k} \ \kappa \ \mu \ [(n_1 - n_2) @ T__, \sigma] \ n + 1 @ T__} \\ \hline \\ \phi(n) &= Push \ m \\ \hline \mathbf{k} \ \kappa \ \mu \ [\sigma] \ n @_ \ \stackrel{\tau}{\longrightarrow} \ \mathbf{k} \ \kappa \ \mu \ [m @ T__, \sigma] \ n + 1 @ T__} \\ \phi(n) &= Load \qquad \kappa(p) = m @ T_1 \end{split}$
$\frac{\kappa_i}{u \ [\kappa_i, \kappa_o] \ \mu}$		$ = \kappa_j $ $ \begin{bmatrix} r_2, \sigma \end{bmatrix} n @ T_{pc} \xrightarrow{\tau} \\ T_2, \sigma \end{bmatrix} 0 @ T_{-} $
$\begin{split} \begin{array}{c} u & \kappa \; \mu \; \left[n' {}^{\mathrm{e}} \mathbf{T}_{1}, \sigma \right] \; n {}^{\mathrm{e}} \mathbf{T}_{pc} & \xrightarrow{\tau} \\ u \; \kappa \; \mu \; & \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \\ \begin{array}{c} \iota(n) = Bnz \; k \\ \kappa = \left[bnz \; \mathbf{T}_{pc} \; \mathbf{T}_{1} \; \; - \; \; \mathbf{T}_{rpc} \; \; - \\ n' = n + (m = 0)?1: k \\ \hline u \; \kappa \; \mu \; \left[m {}^{\mathrm{e}} \mathbf{T}_{1}, \sigma \right] \; n {}^{\mathrm{e}} \mathbf{T}_{pc} \\ \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \\ u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[n' \left[\mathbf{T}_{1} \; \; - \; \; \; \mathbf{T}_{rpc} \; \; \mathbf{T}_{r} \right] \\ \hline u \; \kappa \; \mu \; \left[n' \left[\mathbf{T}_{1} \; \; n, \sigma \right] \; n {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[n (e \mathbf{T}_{1}, a, \sigma \right] \; n {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[(n' \left[\mathbf{T}_{pc} \; \; \mathbf{T}_{1} \; \; - \; \; \; \mathbf{T}_{rpc} \; - \right] \\ \hline u \; \kappa \; \mu \; \left[n' \left[\mathbf{T}_{pc} \; \; \mathbf{T}_{1} \; \; - \; \; \; \mathbf{T}_{rpc} \; - \right] \\ \hline u \; \kappa \; \mu \; \left[(n' \left[\mathbf{e} \mathbf{T}_{1}, u \right]; \sigma \right] \; n {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \hline u \; \kappa \; \mu \; \left[\sigma \right] \; n' {}^{\mathrm{e}} \mathbf{T}_{rpc} \\ \end{array} \right]$	$\frac{\kappa_{i} \neq [\operatorname{Jump} I_{pc} I_{1} - - \kappa_{j}]}{\operatorname{u} [\kappa_{i}, \kappa_{o}] \mu [(n \otimes \operatorname{T}_{pc}, u); n' \otimes \operatorname{T}_{1}, \sigma] \otimes \operatorname{T}_{pc}^{-\frac{\tau}{\gamma}}}{\operatorname{k} [\kappa_{j}, \kappa_{-}] \mu [(n \otimes \operatorname{T}_{pc}, u); n' \otimes \operatorname{T}_{1}, \sigma] \otimes \operatorname{T}_{-}}$ $\frac{\iota(n) = \operatorname{Bnz} k}{\kappa_{i} \neq [\operatorname{bnz} \operatorname{T}_{pc} \operatorname{T}_{1} - -]} = \kappa_{j}}$ $\frac{\iota(n) = \operatorname{Call}}{\operatorname{k} [\kappa_{j}, \kappa_{-}] \mu [(n \otimes \operatorname{T}_{pc}, u); m \otimes \operatorname{T}_{1}, \sigma] \otimes \operatorname{C}_{-}}$ $\frac{\iota(n) = \operatorname{Call}}{\kappa_{i} \neq [\operatorname{call} \operatorname{T}_{pc} \operatorname{T}_{1} -]} = \kappa_{j}}$ $\frac{\iota(n) = \operatorname{Call}}{\operatorname{k} [\kappa_{j}, \kappa_{-}] \mu [(n \otimes \operatorname{T}_{pc}, u); n' \otimes \operatorname{T}_{1}, a, \sigma] \otimes \operatorname{C}_{-}} \xrightarrow{\tau}}$ $\operatorname{k} [\kappa_{j}, \kappa_{-}] \mu [(n \otimes \operatorname{T}_{pc}, u); n' \otimes \operatorname{T}_{1}, a, \sigma] \otimes \operatorname{C}_{-}}$ $\frac{\iota(n) = \operatorname{Ret}}{\kappa_{i} \neq [\operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_{1} -]} = \kappa_{j}}$ $\frac{\operatorname{u} [\kappa_{i}, \kappa_{o}] \mu [(n \otimes \operatorname{T}_{pc}, u); (n' \otimes \operatorname{T}_{1}, \pi); \sigma] \otimes \operatorname{C}_{-}} \xrightarrow{\tau}}$ $\operatorname{k} [\kappa_{j}, \kappa_{-}] \mu [(n \otimes \operatorname{T}_{pc}, u); (n' \otimes \operatorname{T}_{1}, \pi); \sigma] \otimes \operatorname{C}_{-}} \xrightarrow{\tau}$	37

User mode (cache hit)	User-to-kernel mode (cache miss)	Kernel mode
$\begin{split} \frac{\iota(n) = \operatorname{Sub}}{\kappa = [\operatorname{sub} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_2 \operatorname{T}_{rpc} \operatorname{T}_r]}{\operatorname{u} \kappa \mu [n_1 \otimes \operatorname{T}_1, n_2 \otimes \operatorname{T}_2, \sigma] n \otimes \operatorname{T}_{pc} \xrightarrow{\tau} \\ \operatorname{u} \kappa \mu [(n_1 - n_2) \otimes \operatorname{T}_r, \sigma] n + 1 \otimes \operatorname{T}_{rpc}} \\ \frac{\iota(n) = \operatorname{Output}}{\kappa = [\operatorname{output} \operatorname{T}_{pc} \operatorname{T}_1 \operatorname{T}_{rpc} \operatorname{T}_r]} \\ \xrightarrow{\iota(\kappa \mu [m \otimes \operatorname{T}_1, \sigma] n \otimes \operatorname{T}_{pc}}_{\operatorname{u} \kappa \mu} \xrightarrow{m \otimes \operatorname{T}_{rpc}}} \end{split}$	$\begin{split} \iota(n) &= Sub \\ \kappa_i \neq \boxed{sub T_{pc} T_1 T_2 _{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} n_1 @T_1, n_1 @T_2, \sigma \end{bmatrix} n @T_{pc} \xrightarrow{\tau} \\ k \begin{bmatrix} \kappa_j, \kappa_c \end{bmatrix} \mu & \begin{bmatrix} (n_0 T_{pc}, u); n_1 @T_1, n_1 @T_2, \sigma \end{bmatrix} 0 @T_{-} \\ \hline \iota(n) &= Output \\ \kappa_i \neq \boxed{output T_{pc} T_1 _{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} m_0 T_1, \sigma \end{bmatrix} = \kappa_j \\ \kappa_i \neq \boxed{output T_{pc} T_1 _{-}} = \kappa_j \\ \hline u \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & \begin{bmatrix} m_0 T_1, \sigma \end{bmatrix} = \kappa_j \\ \kappa_i \neq [output] T_{pc} = T_1] \\ v \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [m_0 T_1, \sigma] = m_p \\ v \begin{bmatrix} \kappa_i, \kappa_o \end{bmatrix} \mu & [m_0 T_{pc}, u] \\ v \end{bmatrix} \\ v \in Output \\ v \in Output \end{bmatrix} \end{split}$	$\begin{aligned} \phi(n) &= Sub \\ \hline \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} n_1 @, n_1 @, \sigma \end{bmatrix} \ n @ \ \xrightarrow{\tau} \\ \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} (n_1 - n_2) @ \mathbf{T}, \sigma \end{bmatrix} \ n + 1 @ \mathbf{T} \\ \hline \phi(n) &= Push \ m \\ \hline \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} \sigma \end{bmatrix} \ n @ \ \xrightarrow{\tau} \\ \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} \sigma \end{bmatrix} \ n @ \ \xrightarrow{\tau} \\ \mathbf{k} \ \kappa \ \mu \ \begin{bmatrix} m @ \mathbf{T}, \sigma \end{bmatrix} \ n + 1 @ \mathbf{T} \\ \hline \phi(n) &= Load \ \kappa(p) = m @ \mathbf{T}_1 \\ \hline \mathbf{k} \ \mathbf$
	$\phi(n) = Sub$ $[n_1@_, n_2@_, \sigma] n$ $[n_1 - n_2)@T_, \sigma] n$	
$\begin{split} \iota(n) &= \operatorname{Bnz} k \\ \kappa &= \left\lfloor \operatorname{bnz} \operatorname{T}_{pc} \operatorname{T}_1 - - \operatorname{T}_{rpc} - } \\ n' &= n + (m = 0)?1 : k \\ \hline u & \kappa & \mu & [m @ \operatorname{T}_1, \sigma] & n @ \operatorname{T}_{pc} & \xrightarrow{\tau} \\ u & \kappa & \mu & [\sigma] & n' @ \operatorname{T}_{rpc} \\ \hline \iota(n) &= \operatorname{Call} \\ \kappa &= \left\lceil \operatorname{call} \operatorname{T}_{pc} \operatorname{T}_1 - - \operatorname{T}_{rpc} \operatorname{T}_r \right\rceil \\ \hline u & \kappa & \mu & [n' @ \operatorname{T}_1, a, \sigma] & n @ \operatorname{T}_{pc} \\ \hline u & \kappa & \mu & [a, (n + 1 @ \operatorname{T}_r, u); \sigma] & n' @ \operatorname{T}_{rpc} \\ \iota(n) &= \operatorname{Ret} \end{split}$	$ \begin{array}{c} \mathbf{k} \ [\kappa_{j}, \kappa_{-}] \ \mu \ [(n \otimes \mathbf{T}_{pc}, \mathbf{u}); n \otimes \mathbf{T}_{1}, \sigma] \ 0 \otimes \mathbf{T}_{-} \\ \\ \hline \begin{array}{c} \iota(n) = \operatorname{Bnz} k \\ \kappa_{i} \neq \boxed{\operatorname{bnz} \mathbf{T}_{pc} \mathbf{T}_{1} _{-} _{-}} = \kappa_{j} \\ \hline \mathbf{u} \ [\kappa_{i}, \kappa_{o}] \ \mu \ [m \otimes \mathbf{T}_{1}, \sigma] \ n \otimes \mathbf{T}_{pc} \ \xrightarrow{\tau} \\ \mathbf{k} \ [\kappa_{j}, \kappa_{-}] \ \mu \ [(n \otimes \mathbf{T}_{pc}, \mathbf{u}); m \otimes \mathbf{T}_{1}, \sigma] \ 0 \otimes \mathbf{T}_{-} \\ \hline \begin{array}{c} \iota(n) = \operatorname{Call} \\ \hline \kappa_{i} \neq \boxed{\operatorname{call} \mathbf{T}_{pc} \mathbf{T}_{1} _{-} _{-}} = \kappa_{j} \\ \hline \mathbf{u} \ [\kappa_{i}, \kappa_{o}] \ \mu \ [n \otimes \mathbf{T}_{pc} \mathbf{T}_{1}, a, \sigma] \ n \otimes \mathbf{T}_{pc} \ \xrightarrow{\tau} \\ \mathbf{k} \ [\kappa_{j}, \kappa_{-}] \ \mu \ [(n \otimes \mathbf{T}_{pc}, \mathbf{u}); n' \otimes \mathbf{T}_{1}, a, \sigma] \ 0 \otimes \mathbf{T}_{-} \end{array} $	
$ \begin{array}{c c} \kappa = \boxed{\operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_1 - - \operatorname{T}_{rpc} - } \\ u \kappa \mu & [(n' \circ \operatorname{T}_1, u); \sigma] & n \circ \operatorname{T}_{pc} & \xrightarrow{\tau} \\ u \kappa \mu & [\sigma] & n' \circ \operatorname{T}_{rpc} \end{array} \end{array} $	$\begin{split} \iota(n) &= \operatorname{Ret} \\ \kappa_i \neq \boxed{\operatorname{ret} \operatorname{T}_{pc} \operatorname{T}_1 _{-} _{-}} = \kappa_j \\ \\ \hline u \ [\kappa_i, \kappa_o] \ \mu \qquad [(n' \otimes T_1, \pi); \sigma] \ n \otimes T_{pc} \xrightarrow{\tau} \\ k \ [\kappa_j, \kappa_c] \ \mu \ [(n \otimes T_{pc}, u); (n' \otimes T_1, \pi); \sigma] \ 0 \otimes T_c \end{split}$	38

Example (cache hit case)





Fault Handler

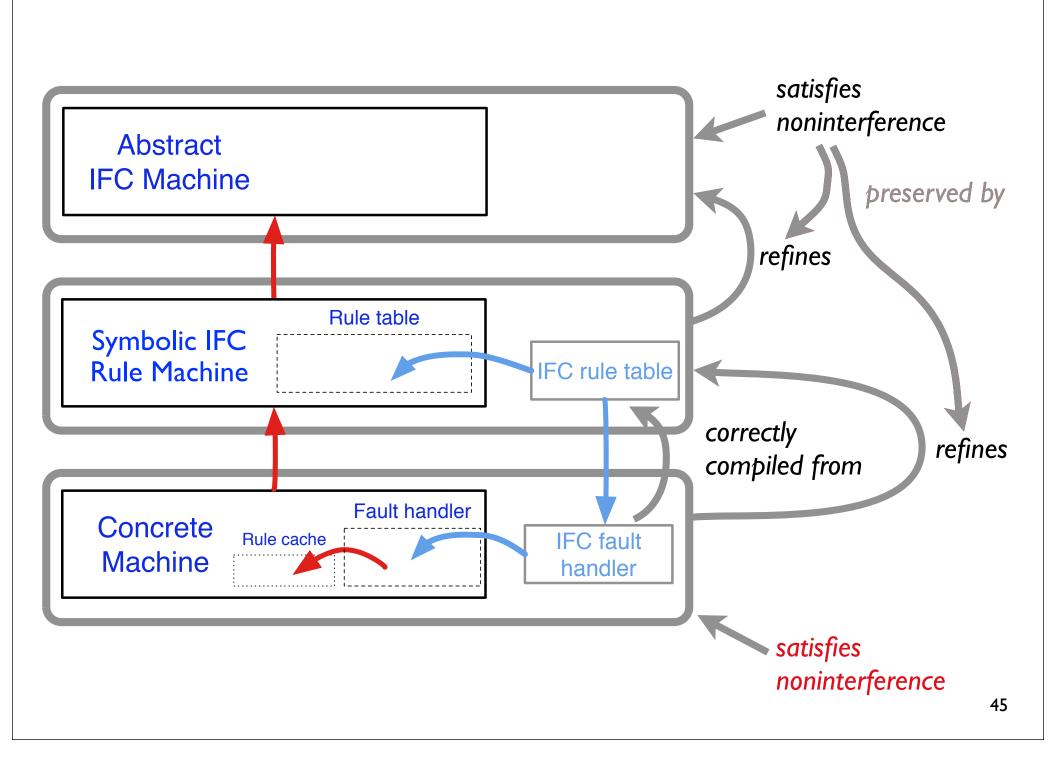
opcode	allow	e_{rpc}	e_r
sub	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
output	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_{pc}$
push	TRUE	LAB_{pc}	BOT
load	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
store	$ LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3 $	\mathtt{LAB}_{pc}	$\texttt{LAB}_1 \sqcup \texttt{LAB}_2 \sqcup \texttt{LAB}_{pc}$
jump	TRUE	$\texttt{LAB}_1 \sqcup \texttt{LAB}_{pc}$	
bnz	TRUE	$\texttt{LAB}_1 \sqcup \texttt{LAB}_{pc}$	
call	TRUE	$\mathtt{LAB}_1 \sqcup \mathtt{LAB}_{pc}$	LAB_{pc}
ret	TRUE	LAB_1	
_			FAULT HANDLER
			TAULT
			HAUDICO
			HANDIFK

Handler Generation

- IFC rule table entries form a small DSL for computing labels and booleans
 - parameterized over lattice \bot , \sqcup and \sqsubseteq
- The handler is constructed by compiling the DSL into concrete machine instructions
 - Table-driven interpreter would be an alternative
- We use structured code generators to simplify verification

Non-interference for concrete machine

- Running this <u>particular</u> fault handler
- Together with <u>arbitrary</u> user code



Points to note

- Refinement framework very useful for reasoning
 - start with concrete object
 - propose abstracted version
 - incorporate convenient structure and annotations
 - prove refinement
 - prove interesting property of abstract object
 - automatically follows for concrete object
- Need a generic notion of noninterference that makes sense for all machines
 - Includes a notion of abstracting concrete tags (and associated memory states) into labels

Some Verification Challenges...

More uses for tags

• SAFE architecture is quite generic

• Can be used to implement a range of IFC label models just by varying the rule table [Montagu CSF '13]

• Other potential uses

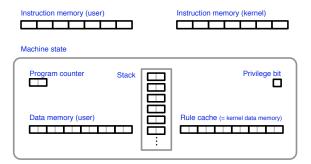
- access control (clearance)
- memory protection
- linearity
- dynamic typing

More Security Issues

- Downgrading
- "Least Privilege"
- Concurrency

Real SAFE Machine

- Scaling methodology to full SAFE hardware and ConcreteWare
 - random testing vs. verification
- Breeze compiler correctness
 - for defense in depth

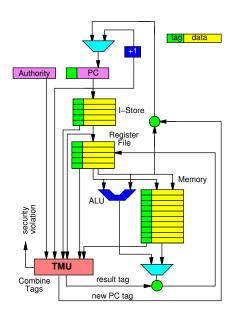


opcode	allow	e_{rpc}	e_r
sub	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
output	TRUE	LAB_{pc}	$\texttt{LAB}_1 \sqcup \texttt{LAB}_{pc}$
push	TRUE	LAB_{pc}	BOT
load	TRUE	LAB_{pc}	$LAB_1 \sqcup LAB_2$
store	$LAB_1 \sqcup LAB_{pc} \sqsubseteq LAB_3$	LAB_{pc}	$\texttt{LAB}_1 \sqcup \texttt{LAB}_2 \sqcup \texttt{LAB}_{pc}$
jump	TRUE	$\texttt{LAB}_1 \sqcup \texttt{LAB}_{pc}$	
bnz	TRUE	$LAB_1 \sqcup LAB_{pc}$	
call	TRUE	$\texttt{LAB}_1 \sqcup \texttt{LAB}_{pc}$	LAB_{pc}
ret	TRUE	LAB_1	

Output

····

Thank you!



Questions??

$\iota(n) = Sub$	
$ \begin{array}{c c} \mu & [n_1 @L_1, n_2 @L_2, \sigma] & n @L_{pc} \\ \mu & [(n_1 - n_2) @(L_1 \lor L_2), \sigma] & n + 1 @L_{pc} \end{array} $	
$\iota(n) = Output$	
$\mu \ [m@L_1,\sigma] \ n@L_{pc} \xrightarrow{m@L_1 \lor L_{pc}} \ \mu \ [\sigma] \ n+1@L_{pc}$	
$\iota(n)=Push\ m$	
$\overline{\mu \; [\sigma] \; n @L_{pc} \; \xrightarrow{\tau} \; \mu \; [m @\bot, \sigma] \; n + 1 @L_{pc}}$	
$\iota(n) = {\sf Load} \qquad \mu(p) = m@L_2$	
$\mu \left[p@L_1, \sigma \right] n@L_{pc} \xrightarrow{\tau} \mu \left[m@L_1 \lor L_2, \sigma \right] n + 1@L_{pc}$	
$ \begin{array}{l} \iota(n) = Store \qquad \mu(p) = k @L_3 \qquad L_1 \lor L_{pc} \leq L_3 \\ \mu(p) \leftarrow (m @L_1 \lor L_2 \lor L_{pc}) = \mu' \end{array} $	
$\mu \; [p @ L_1, m @ L_2, \sigma] \; n @ L_{pc} \; \stackrel{ au}{ ightarrow} \; \mu' \; [\sigma] \; n + 1 @ L_{pc}$	
$\iota(n) = Jump$	
$\overline{\mu \; [n'@L_1,\sigma] \; n@L_{pc} \; \xrightarrow{\tau} \; \mu \; [\sigma] \; n'@(L_1 \lor L_{pc})}$	