
Yale University
Department of Computer Science

Scaling Software-Defined Network Controllers
on Multicore Servers

Andreas Voellmy1 Bryan Ford1 Paul Hudak1

Y. Richard Yang1

YALEU/DCS/TR-1468
July 2012

This work was supported in part by gifts from Microsoft Research and Futurewei and by NSF
grant CNS-1017206.

1Department of Computer Science, Yale University, New Haven, CT.

Scaling Software-Defined Network Controllers
on Multicore Servers

Andreas Voellmy∗ Bryan Ford∗ Paul Hudak∗ Y. Richard Yang∗

July 2012

Abstract

Software defined networks (SDN) introduce centralized controllers to drastically increase network
programmability. The simplicity of a logical centralized controller, however, can come at the cost of
controller programming complexity and scalability. In this paper, we present McNettle, an extensible
SDN controller system whose control event processing throughput scales with the number of system
CPU cores and which supports control algorithms requiring globally visible state changes occurring at
flow arrival rates. Programmers extend McNettle by writing event handlers and background programs
in a high-level functional programming language extended with shared state and memory transactions.
We implement our framework in Haskell and leverage the multicore facilities of the Glasgow Haskell
Compiler (GHC) and runtime system. Our implementation schedules event handlers, allocates memory,
optimizes message parsing and serialization, and buffers system calls in order to optimize cache usage,
OS processing, and runtime system overhead. We identify and fix bottlenecks in the GHC runtime
system and IO manager. Our experiments show that McNettle can serve up to 5000 switches using a
single controller with 46 cores, achieving throughput of over 14 million flows per second, near-linear
scaling up to 46 cores, and latency under 10 ms with loads consisting of up to 1500 switches.

1 Introduction
Network systems are becoming more feature-rich and complex, and system designers often need to modify
network software in order to achieve their requirements. Software-defined networking attempts to move as
much network functionality as possible into user-definable software, making more of the network system
components programmable. In particular, SDN architectures introduce a centralized control server (con-
troller) to allow potentially dramatically simplified, flexible network programming.

Unfortunately, as the network scales up—both in the number of switches and the number of end hosts—
the SDN controller can become a key bottleneck. Specifically, Tavakoli et al. [23] estimate that a large data
center consisting of 2 million virtual machines may generate 20 million flows per second. On the other hand,
currently controllers, such as NOX [13] or Nettle [25], are able to process on the order of only 105 flows per
second [23].

In this paper, we address the preceding issue by designing and implementing an SDN controller frame-
work that is highly scalable and provides a relatively simple and natural programming model for controller
developers.

This work was supported in part by gifts from Microsoft Research and Futurewei and by NSF grant CNS-1017206.
∗Department of Computer Science, Yale University, New Haven, CT.

1

The starting point of our design is two observations on the current Internet architecture. First, the current
Internet architecture is highly scalable for key network functions. For example, in the link layer, the key host-
location ARP (address resolution protocol) table management function is distributed at individual network
forwarding elements (switches) and hence can naturally scale as a network grows larger; in the network
layer, the key function of computing forwarding information bases is also naturally distributed at individual
routers, where each router uses Dijkstra to compute its own shortest path tree. Second, a major source
of difficulty of the current network architecture, however, is the distributed state of its control plane. For
example, the partial views of ARP tables at individual switches may lead to unnecessary network flooding;
the consistency issues of distributed topologies and route computation at individual routers are a major limit
on existing network control plane design.

Based on the observations, our strategy, therefore, is to preserve the scalability structure in today’s net-
work architecture at a controller, while hiding its distributed nature. Specifically, we design a controller
framework that allocates independent and concurrently operating computation resources to each network
forwarding element; at the same time, we introduce a global shared memory to simplify sharing of global
network state. We implement this strategy using shared memory multicore servers, which provide abun-
dant computational resources (currently available systems provide upwards of 80 processor cores) and low
latency, high-bandwidth shared global memory. In a nutshell, our approach involves virtualizing the dis-
tributed control logic in today’s architectures into a multicore server, and replacing distributed message-
passing algorithms with shared memory access to provide consistent sharing of global network state.

Moreoever, having done this, network algorithm developers can easily introduce new computational el-
ements which do not directly correspond to components in today’s architectures. For example, a network
security component might run concurrently with switch control logic to detect a variety of security condi-
tions, which it can then easily signal to switch controllers using shared memory data structures, rather than
complex distributed protocols.

We realize this vision with a programming framework, McNettle, implemented in Haskell. This frame-
work provides programmers with a simple language for writing event handlers for switch-initiated interac-
tions and facilities for programming background processing that can issue commands for switches. This
organization allows switch event handlers to access local private state without synchronization. Event han-
dlers may make use of shared state as well, typically using some synchronization methods to ensure correct
manipulation. As mentioned above, we emphasize STM for this, but do not prohibit the use of lower cost
methods where appropriate, such as locks or compare-and-swap operations.

McNettle efficiently executes user-specified event handlers on a multicore server, handling issues of
scheduling event handlers on cores, managing message buffers, and parsing and serializing control mes-
sages in order to reduce memory traffic, core synchronizations, and synchronizations in the Haskell runtime
system. As a result, users can write network control algorithms in Haskell using McNettle that can handle
loads expected in data centers with thousands of switches and hundreds of thousands of virtual machines
and which run on currently available multicore servers. We demonstrate our system by presenting sev-
eral substantial controllers in McNettle, in each case showing how the McNettle API and the concurrency
management tools of Haskell provide convenient methods of writing correct concurrent controllers. We
demonstrate throughput scaling through 46 cores to more than 14 million flows per second, several times
as much as the current state-of-the-art shared memory multithreaded OpenFlow controller. We also demon-
strate latency under 0.5 ms for loads with hundreds of switches and latency under 10ms for loads with
thousands of switches.

2

Data plane
Control plane

Switch

Data plane
Control plane

Switch

Data plane
Control plane

Switch

Data plane

Control plane

Switch
Data plane

Switch

Data plane
Switch

Controller

data+controldata+control
data

+
control

data

Control API

data

Sotware-Defined
Network

Traditional
Network

Figure 1: The top diagram illustrates today’s network architecture with distributed switches that combine
forwarding and network control functionality. The bottom diagram illustrates the Openflow architecture,
where the control functionality is moved to a remote control server.

2 SDN & OpenFlow
A SDN consists primarily of forwarding elements, or switches, and a control system, or controller, and an
interface between them, and is illustrated in Figure 1. The OpenFlow [22] protocol defines an interface
between switches and controllers and we use this protocol throughout the paper. With OpenFlow, switches
establish essentially permanently open TCP sessions with controllers over a control network (typically a
designated VLAN). Controllers send commands over these sessions to modify switch flow tables, which
consists of a sequence of conditional forwarding rules, where the condition is expressed as tests against
packet header information. OpenFlow switches notify controllers of key events, the most important and
frequent of which is the packet-miss event, which occurs when a packet arrives at a switch with no applicable
forwarding rule. When this event occurs, the switch sends a message to the controller with some metadata
about the event and a prefix of the packet. A controller can then respond with a forwarding command for the
packet and optionally a new conditional rule to install. In addition, a controller may issue table modifications
to several switches in response to a packet-miss event in order to provision a path through the network for
the flow.

3 McNettle Design
McNettle is an extensible and scalable SDN control system built on OpenFlow switches that takes advan-
tage of multicore servers to implement high throughput and low latency control servers with global state
visibility. The high-level design of McNettle relies on two observations; first, that multicore architectures
provide sufficient computational, memory, and IO resources to handle demanding network control applica-
tions. Second, these architectures allow us to provide a convenient programming environment consisting of
low latency shared state and general-purpose computational capabilities. table To see that multicore servers
are capable of handling demanding SDN workloads, we consider the data center workload described in [23],
consisting of 20 million flow setup requests per second. In OpenFlow, these requests and response require

3

Application Characteristics McNettle Support
Layer 2 Learning High-rate table updates and lookups Low latency global state with low overhead

synchronization
Routing Algorithms, parallel computation Functional programming, parallel evaluation,

synchronization
Bandwidth Reservation Complex global data update Software transactional memory
Security External triggers Background threads with access to shared state

& switch commands
Flow Path Provisioning Communicate with many switches Efficient support for race-free communication

with switches by concurrent threads.

Figure 2: Example SDN controllers, their key features, and the McNettle features supporting these applica-
tions.

messages whose size totals approximately 100 bytes. Therefore, the controller may need to process control
streams in aggregate of 2 GB/s. Currently available multicore servers, in particular the server we use for
our evaluation and which we describe in Section 6.1, can be equipped with multiple 10Gbps network inter-
faces connected to CPUs and memory with PCIe connections providing tens of Gbps bandwidth, providing
sufficient IO bandwidth for these applications. Furthermore, nominal and measured memory bandwidths
in our server exceeds 30 GB/s (measured using the NUMA-STREAM [6] tool), providing enough memory
bandwidth to transfer control messages into and out of main server memories. We therefore expect that
control programs on these architectures can be made to be CPU-bounded, which is ideal, since multicore
architectures are expected to continue to increase core counts, and hence aggregate computational capacity
over the near future. Therefore, provided the control system uses the memory system efficiently to avoid
memory bottlenecks and has sufficient parallelism to take advantage of the aggregate computational capacity
of multicore servers, it will be capable of handling the target workload.

McNettle meets these challenges by exploiting switch-level parallelism, processing streams of messages
from different switches concurrently. This design allows McNettle to process each control message on a
single core, avoiding transferring control messages from one core to another and incurring extra memory
transfers and chip interconnect bandwidth. It provides abundant and fine-grained parallelism since SDN
networks will consist of many more switches than cores and because an individual switch will generate
traffic at a rate that can easily be processed by a single processor core; Mogul et al. [21] measure that current
generation switches generate about 500 control messages per second, and as mentioned above, current
single-threaded controllers can handle three orders of magnitude more messages per second.

Furthermore, we expect most controllers to be compatible with this concurrency model. Our model
imposes only the modest requirement that the control algorithm should be able to process messages from
different switches as they arrive, without depending on knowing the exact ordering of the events generating
those messages if the ordering of those events is in fact nondeterministic.

McNettle therefore enables developers to write scalable control applications using the powerful compu-
tational capabilites and convenient abstractions available on multicore servers. Table 2 lists several example
control applications, their key features and requirements, and the support that McNettle provides to meet
these requirements. In particular, low latency shared memory allows us to track network state at flow arrival
rates, allowing us to support systems, such as Hedera [5], which performs visible updates of global network
state on every flow arrival event in order to load balance traffic in the network.

4

Localno synch

Switch Event Handler

Localno synch

Switch Event Handler

Localno synch

Switch Event Handler

Switch Switch Switch

Shared

synch (stm,mutex,cas)

Localno synch

Background/Async

Localno synch

Background/Async

Localno synch

Background/Async

synch (stm,mutex,cas)

Control Messages

Data Plane

Multicore Nettle Control

queue

file

Figure 3: Architecture of McNettle controllers.

4 Programming Model
McNettle’s programming model allows users to write control programs triggered by switch-initiated events
as well as control programs that execute independently of switch events which initiate interaction with
switches by sending commands. The programming model consists of the following components, illustrated
in Figure 3:
• switch event handlers, each running concurrently, repeatedly and sequentially processing messages from

a particular switch. Switch event handlers may respond to their particular switch, and may send com-
mands to other switches.

• Background or asynchronous threads, which may access state shared with switch event handlers or with
other asynchronous threads. These threads may send messages to switches and may perform IO with
non-Openflow devices, such as files, network devices, or user interfaces.

• switch-local state that can be accessed only by a switch event handler. Switch local state can be accessed
without synchronization.

• network state that can be accessed by any switch event handler or asynchronous thread and is manipulated
using various techniques provided in Haskell, including software transactional memory (STM), mutex
based synchronization, and non-blocking synchronization.
McNettle is implemented in Haskell, and we will introduce features of Haskell as necessary throughout

this section. A Haskell program, like a C program, consists of a collection of definitions, and a single main
function. In Haskell, function application is written without parentheses, e.g. we write f x instead of f (x).
More arguments can be provided as well; for example g x y applies g to two arguments.

5

runServer params hfact start the server with parameters params

closeServer server closes connections

defaultHandler default switch event handler

forward pkt action forward a packet with a forwarding action.

forwardWithRule pkt match act opts install a rule and forward the packet

installRule sid match act opts install a flow table rule in a switch.

deleteRules sid match deletes rules matching a given condition

do {cmd1 ; ...; cmdn } sequential composition

PacketIn {etherSrc, etherDst , ...} The packet-in record consisting of ethernet
header fields.

exactMatch pkt A match on every header field of the packet.

Figure 4: McNettle Server API.

Figure 4 lists some key parts of the McNettle API. The API provides methods to start and stop the
McNettle server. When runServer is executed, the server opens a TCP listen socket on which it waits
for Openflow switches to connect. When a switch connects, the server exchanges initial messages with
the switch to obtain basic switch configuration, including a unique switch identifier (sid). The server then
invokes the switch handler factory (specified as the second argument to runServer) with a record containing
the basic configuration information obtained.

A switch event handler is a record of handlers, one for each of the various which a switch may send to the
controller. We provide a basic switch handler, denoted defaultHandler , that has default definitions which
simply return without performing any actions. A non-default handler can then be created by specifying just
the handlers of interest. The following demonstrates a complete but minimal “hello world” controller:
main = runServer defaultParams factory
factory switchConf =

return (defaultHandler {onPacket = λpkt → forward pkt allPorts })
The main function simply starts the server with default parameters and the specified switch handler

factory factory . factory returns a handler that overrides the default handler’s method for handling packet-in
messages. The packet-in handler above instructs the switch to forward the packet out of all ports (excluding
the incoming port of the packet). Other forwarding actions, such as forwarding to a particular port are also
possible. The forwardRule function instructs the switch first to install a rule and then to reprocess the
packet. Other commands like installRule and deleteRule manipulate switch tables. These, and other IO
actions, can be combined in sequence using Haskell’s do-notation, as we will illustrate with examples in the
next section.

McNettle’s library includes a number of algorithms and data structures, such as various concurrent hash
tables and single and all-pairs routing algorithms. These libraries use a variety of Haskell’s features, such as
IORef , MVar and TVar variables to implement data structures with specific concurrent behaviors.

We now describe several simple network controllers, and illustrate how they make use of the features
provided in McNettle.

6

factory conf =
do table ← newHashTable size hashfun

let ph = packetHandler table
return (switchHandler {onPacket = ph })

packetHandler table pkt =
do insert table (etherSc pkt) (inPort pkt)

result ← lookup table (etherDst pkt)
case result of

Nothing → forward pkt flood
Just destPort → forwardRule pkt (exactMatch pkt) (phyPort destPort) opts

Figure 5: McNettle Local Learning Controller

4.1 Local Learning Controller
As a first example, we consider a simple controller that performs a function similar to a ”learning switch”.
In this controller, each switch handler examines packets arriving at its switch to infer in which direction to
send packets for each host in the network. In more detail, each switch handler builds a map (associative
dictionary), associating a MAC address with the switch port on which a packet from that address was last
seen. When a packet arrives at a switch and generates a packet-in message, the switch handler looks up the
packet’s destination MAC address in the map. If it finds a port, it sends the packet to that port and otherwise
forwards the packet out of all ports (except the incoming port).

Figure 5 shows the code for the switch handler factory and the switch handler. The handler factory
creates a new hash table for the switch handler and then returns a handler that overrides the packet-in
handler function and has access to the newly created hash table. The packet-in procedure updates the hash
table entry with the sender’s MAC address, then looks up the destination in the hash table. It then performs
a case analysis on the result, which is needed because the resulting value indicates whether the lookup
succeeded and if so what the value of the lookup is, or fails. The hash table requires an initial size and a
hash function on MAC addresses, whose definitions we omit here. The factory initializes a new hash table
for every switch and therefore switches do not share any state in this controller.

This controller mimics the traditional network model in which switches have no shared state and demon-
strates how our design allows efficient synchronization-free concurrency when sharing is not needed.

4.2 Global Learning Controller
The previous local learning switch has the drawback that one switch thread may be unaware of a host’s
location even though some other switch thread has learned the host’s location. This may cause the controller
to flood more packets than it would if the switch threads shared their knowledge about host locations. To
remedy this, we write a second controller that uses a globally visible host location table. Since this table
is accessed concurrently we must use some synchronization methods to correctly update and query it. In
Section 6 we will evaluate several of alternatives synchronizations available to us in Haskell.

4.3 Shortest Path Routing Controller
The shortest paths routing controller maintains several global variables, including a variable referring to
a topology data structure and a table of variables, one per switch, referring to a switch’s next-hop ta-
ble. In addition, it must recompute the routing tables of every switch when the topology changes. By
using an parallel single source routing algorithm, like Dijkstra’s algorithm, we can take advantage of

7

reserveLink linkVars amt u v =
do let var = linkVariable linkVars (u, v)

current ← readTVar var
when (current < amt) retry
writeTVar var (current − amt)

reservePath linkVars path amt
= res path ‘orElse‘ return False
where res [] = return True

res (u : []) = return True
res (u : v : rest) = do {reserveLink linkVars amt u v ; res (v : rest)}

Figure 6: Bandwidth reservation using STM.

Haskell’s extensive support for parallel evaluation of functions. For example, having implemented a func-
tion dijkstraRoutingTable , given the topology topo and a list of switches sws we can evaluate the new
routing tables in parallel with this one-liner:

parMap (dijkstraRouting topo) sws

4.4 Bandwidth-on-Demand Controller
As a final example, we consider a bandwidth-on-demand controller, which illustrates a controller that per-
forms a complex state update during flow request processing.

At a high-level our controller will work as follows: it will maintain a global table of host locations, a
global shared map of the available bandwidth on each network link, and route tables. When a packet-in
arrives from a switch, the receiving switch thread looks up the destination location and retrieves a route to
this location. It then attempts to reserve bandwidth on each link along the route. The reservation may fail if
granting the reservation would cause oversubscription on any link in the path. If the reservation succeeds,
flow rules are installed in switches and the packet is sent. Otherwise, the packet is dropped.

Figure 6 demonstrates the use of Haskell’s STM to structure these reservations as transactions and illus-
trates the use of alternatives, conditional retries, and nesting of transactions. The reservation program is a
clear transcription of the high-level requirements of the controller and what is missing is just as important
as what is present: no locking, and no need to compensate for failing reservations. Finally we can execute a
transaction with:

atomically (reservePath linkVars path amount)

5 Implementation
We build McNettle in Haskell using the Glasgow Haskell Compiler (GHC) and runtime system (RTS), lever-
aging its extensive support for multicore execution. Throughout this section we refer to experiments which
demonstrate the efficacy of our implementation techniques. We will explain the details of our experimental
setup in section 6.

5.1 Scheduling Event Handlers
The heart of our system is the scheduler, illustrated in Figure 7, which is a lightly modified version of GHC’s
scheduler. The GHC runtime system (RTS) implements application level threads, called Haskell threads.
The GHC RTS schedules these threads over a set of processor cores using a set of OS kernel threads, roughly
one kernel thread per processor. Haskell threads are lightweight [20] and the RTS can switch between them

8

without incurring the cost of an OS context switch. Each worker thread maintains a run queue consisting
of runnable Haskell threads, and services these Haskell threads in round robin fashion. Each thread runs
until it yields cooperatively or preemptively due to its time slice expiring, or until it blocks on a mutex or
otherwise terminates, and in these latter cases it is removed from the run queue. RTS threads periodically
load balance Haskell threads among each other by sharing their run queues with idle RTS threads.

We implement switch event handlers as Haskell threads, called switch threads. Each switch thread
repeatedly reads from its OpenFlow switch socket, parses messages, runs user-specified control logic, and
then sends generated messages to switch sockets. The recv and send system calls used to transfer data
to switch sockets are performed in non-blocking mode. If they fail because they would block, the switch
thread registers its interest in the socket file descriptor with appropriate IO Managers (described below)
and block. With this design, we process a single switch’s messages in order, but process distinct switches’
messages concurrently. Furthermore, the load balancing scheduler ensures that processor capacity is shared
approximately fairly among active switch handlers.

This design ensures that each OpenFlow message is processed by a single core. We explored alternative
approaches, in particular pipelining operations on packets with different portions of the pipeline on different
cores as well. Our experiments were consistent with the findings of Dobrescu [11], namely that processing
each packet on a single core outperforms pipelining, due to the burden of bringing packet data into the
caches of several cores, rather than just once, and the overhead of core synchronization required to wait and
signal when pipeline inputs are ready.

In order to reach our desired latency, we slightly modify GHC’s scheduler and use an application-specific
IO manager. In particular, we extend the GHC RTS by adding a pool of dedicated IO manager RTS threads,
each executing exclusively on a core. An IO manager thread uses epoll to monitor a set of switch sockets file
descriptors and uses a callback table to lookup callback functions when a file descriptor is ready to perform
IO. As mentioned above, switch threads which need to block waiting for IO instead register a callback with
the callback table, add their file descriptor to an epoll object and then block.

By reserving cores exclusively for IO managers, we ensure that an IO manager thread cannot be delayed
by some other RTS thread, for example one running a switch event handler. This is crucial in order to
dispatch work quickly to idle RTS threads. In contrast, in the GHC RTS a single IO manager is scheduled
in the same way as all other application level threads and may incur delays in executing while waiting for
another RTS thread to release a core.

Futhermore, we take advantage of application-specific features to implement an application-specific IO
manager that outperforms the general-purpose IO manager in GHC. The most important improvement we
make takes advantage of the knowledge that each switch thread accesses a distinct file descriptor. With
this constraint, all registration commands commute and can proceed concurrently with no synchronization.
In contrast the GHC IO manager uses a single lock around the callback registration table, which becomes
highly contended in our workloads. In particular, this lock can prevent the IO manager from dispatching
work, while other worker threads take the lock to register a callback.

Figure 8 shows the mean response time of the local learning controller with several variants. The first
variant is GHC’s standard IO manager. The second uses GHC’s standard manager with its single call-
back table lock divided into 32 locks. The third variant uses a single instance of our application-specific
IO manager, scheduled as an ordinary Haskell thread. The fourth variant reserves a core for our single
application-specific IO manager and the last uses two dedicated cores and application-specific IO managers.
Each run is performed using 16 total cores and with each switch sending 1000 messages per second. The
results show that each improvement makes a substantial improvement to the latency, with the cumulative
improvement decreasing latency by over a factor of 30 in the case of 100 switches. We also see that we

9

Cores

RTS Kernel Threads

Worker Threads Poll Threads

S

S

B

S

B

S

S

S

S

S

S

S

S

Haskell ThreadsWorker Run Queues

Figure 7: Implementation of McNettle scheduler.

mean latency (milliseconds)
Variant 100 switches 500 switches
GHC mgr 10.63 29.82
GHC mgr, striped lock 2.52 16.94
1 lockfree mgr, 0 IO cores 2.43 5.25
1 lockfree mgr, 1 IO core 0.81 5.68
2 lockfree mgrs, 2 IO cores 0.32 3.29
ping 0.2 0.2

Figure 8: Latency of McNettle running the local learning controller using different IO manager designs. We
present the results with workload of 100 switches and 500 switches. We also show the mean ping latency
between our the server and switch simulation machines.

are able to achieve under 1ms latency with 100 switches sending at a rate exceeding the maximum rate
commercially available OpenFlow switches.

A final scheduling challenge is to schedule the outgoing messages of switch handlers. This problem
arises when multiple concurrent switch handlers write to a single switch. This can arise in controllers that
provision a flow across the whole network in response to a message received by a single switch. Because
Openflow messages are serialized to a switch over a single TCP stream, the concurrent handlers might
interleave bytes of their messages if they both write to the socket concurrently. We use a mutex to protect
access to each outgoing socket; blocked threads form a queue waiting to send. While this could lead to
diminished throughput as in head-of-line blocking in packet switches, we expect there to be low contention
on outgoing sockets, in which case this queuing will not significantly diminish performance.

5.2 Message Processing
By processing messages from each switch’s TCP stream in a separate thread, we are able to optimize mes-
sage parsing dramatically. Switches send variable-length, but typically short — on the order of 100 bytes
— control messages over the TCP stream, with the length included in an application-layer header field.
Reading a single message at a time from the TCP socket requires 2 system calls: one to read the short

10

æ

æ

æ

æ
æ

200 400 600 800 1000
Batch Size HBytesL

2

4

6

8

10

Throughput Hmillions messages per secondL
Throughput by Batch Size

æ

æ

æ

æ

æ

200 400 600 800 1000
Batch Size HBytesL

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Fraction of CPU Time in Kernel
System Utilization by Batch Size

Figure 9: Maximum throughput (in millions of messages per second) and percent system time (of total CPU
time) as a function of batch size when running the local learning controller with 40 cores and 500 switches.

fixed length header and another to read the remaining body of the message. This becomes a bottleneck at
high throughput rates. To reduce the overhead, we read from the socket in chunks and process a number of
messages in the chunk. We typically have some left-over bytes at the end of the chunk which make up a
message fragment, and this must be retained when processing the next chunk. This reduces the number of
system calls and dramatically improves performance. Note that this optimization would be impossible if a
switch’s socket could be accessed concurrently, because of the possibility of reading partway in a message
fragment. Figure 9 demonstrates the throughput and proportion of execution time in system calls for the
learning switch controller when each message is received separately and when batching is used with various
batch sizes.

We apply the same technique to output: we run the user-specified control logic on several messages,
serializing the outgoing messages into a buffer which we then write to the socket after processing a single
batch of incoming messages.

We expect some OpenFlow messages occur more frequently than others. In particular, flow table modi-
fications that include an exact match occur more frequently than others. We provide two commands, one for
exact matches and one for the general case, which allows the implementation of the exact match command
to optimize serialization by avoiding having to check which parts of the header are wildcards.

11

Alloc

Alloc patched

Reuse

Variants

2

4

6

8

10

Throughput Hmillions of flows per secL
Throughput for Memory Management Strategies

Figure 10: Maximum throughput (in millions of messages per second) for different memory management
strategies when running the local learning controller with 40 cores and 500 switches.

We inline key functions and make data types and function arguments strict throughout the parsing and
serialization library. Inlining helps by reducing the number of procedure calls and by providing the compiler
more opportunities to apply optimizations. Strictness in data type definitions eliminates many pointers
and instead unpacks fields directly into the parent data type. Strictness in function pointers and data type
definitions avoids many boxing and unboxing operations and pointer dereferences.

5.3 Memory Management
Since we allocate data when parsing data for and running switch event handlers, our allocation rate is pro-
portional to the system throughput. Furthermore, the commonly used libraries in Haskell for reading from
(and writing data to) sockets use common functional programming idioms: they allocate a new immutable
byte array of the desired size and fill it with data from the socket buffer. This immutable byte array is then
passed to parsing functions. For our application, with throughput around 10Gbps, these byte arrays alone
would require allocating over 1 GBps.

Our work uncovered a scaling problem in the way GHC’s allocator allocated byte arrays. GHC’s allo-
cates byte arrays from a global block pool, rather than the core-local nurseries that are used for other objects,
and this global block pool is protected by a lock. This lock became heavily contended by our programs. The
GHC maintainers have since addressed this problem by allocating byte arrays using the same technique as
for other objects.

Despite fixing the problem of byte array allocation in GHC, we found that performance improved dra-
matically by allocating fixed size areas of memory for each switch thread to read socket data into and to
serialize data out, rather than than allocate memory to read each batch of switch messages. Figure 10 shows
the maximum throughput for the local learning controller running with 40 cores and 500 switches when
allocating a new byte array for every socket read, both with the bottleneck we observed in GHC’s allocator,
and with the proposed fix to this problem, and when reusing a byte array as a buffer.

GHC’s RTS uses a parallel, generational, stop-the-world garbage collector [18]. While it performs well
and is highly parallelized, the stop-the-world collection requires all Haskell RTS threads to synchronize
with barriers to start garbage collection and to start mutators. This all-core synchronization can become
a scalability problem. We therefore prefer to use a large allocation area (generation 0 area) to reduce the
frequency of garbage collections. Figure 11 demonstrates the effect of different allocation area sizes and
numbers of cores on the maximum throughput and average pause times of the local learning controller.

As mentioned, GHC’s garbage collector is not concurrent; that is, all cores must stop executing their
mutators in order to execute garbage collection. Therefore, pause times may become a serious problem for

12

æ

æ

æ

æ

æ

æ
æ

æ

5 10 50 100 500
Allocation Area HMBytesL

6

7

8

9

10

Throughput Hmillions messages per secondL
Throughput by Allocation Area Size

Figure 11: Maximum throughput (in millions of messages per second) for different allocation areas (gener-
ation 0) when running the local learning controller with 40 cores and 500 switches. The horizontal axis is
logarithmic.

ææ
æ

æ

æ

æ

æ

æ

100 200 300 400 500
Allocation Area HMBytesL

50

100

150

200

250

Average GC Pause HmillisecL
Average Pause Time by Allocation Area Size

Figure 12: Average GC pause time for different allocation areas (generation 0) when running the local
learning controller with 40 cores and 500 switches.

controller responsiveness. Unfortunately, pause times increase as the allocation are increases, as measured
in Figure 12. Recent efforts have been made to implement a thread-local collection algorithm [19] for GHC,
which would allow cores to perform core-local garbage collection without stopping all other cores, but this
has not been incorporated into GHC yet.

5.4 Interrupt Handling
At our target message rates of over 10 million OpenFlow messages per second, we require more than 10
Gbps network IO bandwidth to our server. While technologies such as Message Signaled Interrupts (MSI
and MSI-X), multi-queue NICs and Direct Cache Access (DCA), have been adopted by modern multicore
processors and operating systems, it is still difficult to receive and process small packets at 10Gbps when a
10Gbps NIC is used.

In particular, we experienced scaling limitations due to hardware interrupt affinity. Linux commonly
uses irqbalance [4] to automatically adjust the hardware affinity of peripheral equipments, including NICs.
Irqbalance, however, tries to evenly distribute workloads from a NIC to CPU cores, in contrast to guar-
anteeing packets of the same flow being handled by the same CPU core, which might incur severe cache
thrashing [24]. Moreover, in experiments, we found that binding each queue of a multi-queue NIC to the

13

same numbered cores (e.g binding queue 0 to core 0, binding queue 1 to core 1, etc.) increased system
performance by up to 20% over using irqbalance to binding queues to CPU cores.

6 Evaluation
In this section, we evaluate McNettle, measuring how throughput scales with network size and core counts.
We evaluate fairness and compare the scaling of McNettle with two other multi-threaded OpenFlow con-
trollers. Finally we compare different methods for implementing shared memory concurrent hash tables and
demonstrate the feasibility of updates at flow rates in excess of 10 million flows per second.

6.1 Server Architecture
We use a DELL Poweredge R815 server with 48 cores and 64 GB memory with Broadcom NetXtreme II
network adapters with 8 1Gbps Ethernet ports, and one two port Intel 10Gb NIC with an 82529 Ethernet
controller. The 48 cores are provided by four AMD Opteron 6164 processors [9]. Each processor holds two
dies, each die containing six cores sharing a 6M L3 cache. The cores, dies and RAM banks form a hierarchy
with significant differences in available memory bandwidth and latency due to the location of cores and
memory.

6.2 Workload and Measurement
We simulate switches using a slightly modified version of the cbench [8] tool, a publicly available, open-
source OpenFlow controller benchmarking program, which we call ycbench. ycbench opens a TCP con-
nection to the controller for each switch being simulated, performs an initial handshake and then sends
packet-miss messages and monitors controller responses. It performs several rounds of tests, and both the
number of rounds and duration of each round is configurable.

ycbench can generate workloads of three different types. The max-rate mode consists of each switch
sending control messages as fast as possible, i.e. as long as its sending buffer has sufficient space. In ping-
pong mode, each switch begins by sending a message, and then sends one message every time it receives a
response. In fixed-rate mode, each switch sends at a fixed message rate. ycbench measures throughput by
counting the number of responses each switch receives to its packet-miss events and estimates latency by
having each switch record the sending time and response time for a fraction of packets.

Unless otherwise noted, we run ycbench on a collection of 9 test machines, with 9 1Gbps and 2 10Gbps
interfaces all linked through an HP switch with 1Gbps and 10Gbps port modules, terminating at the control
server with 8 1Gbps and 2 10Gbps ports. The number of switches to be simulated in a given test is divided
up among the test machines according to the amount of network bandwidth each test machine has to the
server.

6.3 Throughput Scaling
Figure 13 demonstrates throughtput scaling with the number of cores through 46 cores, for the local learning
controller with different numbers of switches, up to 5000 switches. Throughput reaches nearly 14 million
flows per second. We also see that aggregate throughput is lower for larger number of switches. We believe
this is explained by considering that the scheduler is multiplexing more distinct threads over the fixed num-
ber of cores. There is some scheduler overhead and loss of locality as each thread switch requires different
memory to be in context.

6.4 Maintaining Low Latency
We test latency using ycbench in ping-pong mode. By adding switches we increase the load, since each
switch is independently performing ping pong. For loads from 1-100 switches using 5-40 cores we observe

14

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì
ì

ò

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç
ç

ç

0 10 20 30 40 50
Cores0

2

4

6

8

10

12

14
Throughput Hmillion flows�secL

Throughput for batch 159�24

ç nettle5000

ô nettle4000

ò nettle3000

ì nettle2000

à nettle1000

æ nettle500

Figure 13: System throughput for the McNettle local learning controller as a function of number of cores,
when run with number of switches varying from 500 to 5000.

latency of under 500 microseconds. Figures 14 and 15 show the latency as the number of switches (and
consequently the load) increases from 100 to 2000 switches, using different numbers of cores. In Figure 14
we see that using more than 5 cores dramatically reduces the latency when the number of switches grows
beyond 500 and in Figure 15, which simply omits the 5-core curve, demonstrates that increasing cores
beyond 10 again substantially reduces latency with a load of more than 500 switches. Furthermore, we see
that with 15 or more cores, McNettle is able to handle 1500 switches with under 10 ms latency.

6.5 Fairness
With a ping-pong load and the local learning switch, McNettle achieves a Jain fairness of over 0.996 for all
measured numbers of cores from 5-46 and for all measured numbers of switches, from 100-2000.

On the other hand, for the max rate workload, the Jain fairness of McNettle is not as good. For example,
Figure 16 shows the fairness as a function of the number of switches for several different numbers of cores.
The fairness is persistenly well below 1, and sometimes close to 0.5. We believe that this is due to a
limitation of the GHC run time system’s thread scheduler, which allows for persistent unfairness under
some workloads. In particular, GHC only load balances threads by moving some core’s threads to another
core when one core notices that another one is idle. Therefore, it can occur that some cores have much
fewer threads than other cores, and if all of the threads are constantly runnable, no core will be idle, and
hence the load balancer will never migrate threads. Unfortunately, the max rate workload is exactly the
type of workload which creates this scenario, since each switch thread almost always has control messages
to process. This limitation could be overcome by incorporating fair scheduling (e.g. [17]) into the GHC
runtime system. On the other hand, such workloads may not arise frequently under realistic conditions.

6.6 Comparison with NOX and Beacon
In this experiment, we evaluate the throughput performance and scalability of the learning controllers written
in McNettle, NOX, and Beacon for networks of up to 5000 switches. For each network size we evaluate the

15

æ æ
æ

æ
æ

æ

æ

æ

æ

à à à à à à à à à

ì ì ì ì ì ì ì ì ì
ò ò ò ò ò ò ò ò ò
ô ô ô ô ô ô ô ô ô
ç ç ç ç ç ç ç ç ç
á á á á á á á á á
í í í í í í í í í

500 1000 1500 2000
Switches

100

200

300

400

Latency HmillisecondsL
Latency for batch 6

í 40 cores

á 35 cores

ç 30 cores

ô 25 cores

ò 20 cores

ì 15 cores

à 10 cores

æ 5 cores

Figure 14: Latency for the McNettle local learning controller as a function of number of switches, with
different numbers of cores.

æ
æ

æ

æ

æ

æ

æ

æ

æ

à à à

à

à

à

à

à

à

ì
ì ì

ì

ì

ì ì

ì

ì

ò
ò ò

ò

ò

ò

ò

ò ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ç ç

ç

ç

ç ç

ç

ç

ç

á á á

á

á

á
á

á
á

500 1000 1500 2000
Switches

5

10

15

20

Latency HmillisecondsL
Latency for batch 6

á 40 cores

ç 35 cores

ô 30 cores

ò 25 cores

ì 20 cores

à 15 cores

æ 10 cores

Figure 15: Latency for the McNettle local learning controller as a function of number of switches, with
different numbers of cores.

16

æ

æ

æ

æ

æ æ

à
à

à
à

à

à

ì ì ì ì

ì
ì

500 1000 1500 2000
Switches

0.2

0.4

0.6

0.8

Fairness
Fairness for batch 12

ì 46 cores

à 40 cores

æ 30 cores

Figure 16: Jain fairness for the local learning controller with the max-rate workload as a function of number
of switches for several different numbers of cores.

throughput for increasing number of cores. We use the multi-threaded version of NOX1 and Beacon v1.0.0
2011-09-12. We ran all controllers with CPU affinity on. In all cases Beacon was run with the recommended
benchmarking settings [2].

Figure 17 shows maximum throughput scaling results. We see that the McNettle controller outperforms
the NOX controller for all loads with performance up to over six times of NOX. We also see that the
McNettle controllers scale up to through 45 cores, while the NOX controllers scale to about 10 cores. Beacon
scales well through 20 cores, but stops scaling for higher core counts. Beacon obtains better throughput than
McNettle for less than 30 cores, but lower peak throughput.

Figure 18 shows the latency of McNettle and the latency of NOX for 100, 250, and 500 switches with
both 15 and 20 cores. We see that McNettle obtains dramatically better latency. Beacon performs much
better than NOX with respect to latency, maintaining low latency with 20 cores up to 1000 switches. Above
1000 switches, Beacon’s response time begins to grow dramatically. The response times of Beacon and
McNettle under the ping-pong workload for up to 2000 switches is shown in Figure 19. We see that Nettle
maintains low latency (under 14 ms for all numbers of cores tested) while Beacon’s latency grows up 25-70
milliseconds at 2000 switches.

6.7 Cost of Shared State
To evaluate the effects of reading and mutating shared state within the event handlers, we measure the
throughput scaling for the global learning controller using several different shared state mechanisms in
Haskell. We implement the same algorithm, varying only the method of ensuring consistent update of the
global host location table. In the first variant, we use Haskell’s IORef variables in the underlying hash table
and use atomic compare-and-swap instructions to update the table without blocking. In the second variant
we use Haskell’s MVar datatype, which essentially pairs a variable with a mutex protecting it and exposes
an API that requires taking the mutex before reading or writing the variable. In the final version, we use
Haskell’s STM system to perform the updates. Figure 20 demonstrates that the IORef -based mutable hash
table scales as well as the local learning switch, while the MVar and STM variants perform worse. The

1git commit e9c3da6bb12ad3fa0d2b609e697a50ce44ca19f4

17

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

ì
ì

ì ì ì
ì

ì

0 10 20 30 40 50
Cores0

2

4

6

8

10

12

14
Throughput Hmillion flows�secL

Nettle,NOX,Beacon Hbatches 159,23L

ì nox 1000

à Beacon 1000

æ Nettle 1000

Figure 17: System throughput for both the McNettle and NOX learning controllers as a function of the num-
ber of cores used by the controller for varying loads corresponding to different network sizes as represented
by the number of switches controlled by the controller.

æ æ æà à à

ì

ì

ì

ì

ò

ò

ò

ò

100 200 300 400 500
Switches

5

10

15

20

25

Latency HmillisecondsL
Latency for batch 6�23

ò nox 20 cores

ì nox 15 cores

à nettle 20 cores

æ nettle 15 cores

Figure 18: Latency for both the McNettle and NOX learning controllers as a function of the number of
switches executing ping-pong workload for different numbers of cores.

18

æ æ æ
æ

æ
æ æ

æ æ

à à à
à à

à

à à à

ì ì ì
ì

ì ì
ì

ì

ì

ò ò
ò ò

ò

ò

ò ò

ò

ô ô ô ô

ô
ô

ô

ô

ô

ç ç ç

ç ç

ç
ç

ç

ç

500 1000 1500 2000
Switches

10

20

30

40

50

60

70
Latency HmillisecondsL

Nettle,Beacon Latency H6,35L

ç B30

ô B25

ò B20

ì N30

à N25

æ N20

Figure 19: Latency for both the McNettle and Beacon learning controllers as a function of the number of
switches executing ping-pong workload for different numbers of cores.

MVar variant requires hash table reads to take locks, causing unecessary queueing while STM incurs a
higher overhead and may incur transaction restarts.

This experiment demonstrates the need for low-overhead synchronization techniques for critical data
structures. These techniques have a higher cost in terms of programmer effort, but are needed to obtain op-
timal performance. On the other hand this experiment demonstrates that STM transactions can be sustained
at rates of several million transactions per second, indicating that this method can be used for more complex
state manipulations that occur on a smaller fraction of flow requests.

7 Related Work
NOX [13] is the original OpenFlow implementation. Although single-threaded by default, it has an ex-
perimental branch, called NOX-destiny, which uses the Boost [3] libraries to for IO and threading. Their
concurrency model differs from McNettle’s in that messages from a single switch can be processed out of
order. As a result, they do not provide a notion of switch-local state that can be accessed without synchro-
nization.

Beacon [1] is a multi-threaded Java controller framework that performs well for a modest number of
cores. Our system differs in several ways. Unlike Beacon, we explicitly target scalability to large numbers
of cores and thousands of switches. We also emphasize the use of high-level programming methods, from
functional programming for expressing algorithms to software transactional memory for expressing complex
state updates.

Maestro [7] is another OpenFlow implementation for scaling across multiple cores. It provides automatic
parallelism for single-threaded OpenFlow controllers using techniques such as batching, pull-based work
dispatch, and cache optimization for multiple cores. The main cost is that Maestro’s pipeline is relatively
fixed, consisting of a few well-defined OpenFlow tasks, rather than a fully extensible programming system
like McNettle.

Several high level languages and systems have been proposed for OpenFlow programming and con-
figuration, including FML [15], Frenetic [12], and Nettle [25]. These languages focus on higher-level

19

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò
ò

ò

10 20 30 40
Cores

5

10

15

Throughput Hmillion flows�secL
Global Learning Throughput H63,64,65,66L

ò STM

ì MVar

à CAS

æ local

Figure 20: Throughput for the McNettle local learning controller and several global learning controllers as
a function of the number of cores used. All runs are made with 1000 switches and max rate workload.

abstractions rather than multi-core performance. Similarly, Openflow API improvement efforts such as
Devoflow [10] show how to refactor the OpenFlow API to reduce the coupling between centralized control
and centralized visibility, so as to reduce the OpenFlow protocol costs. Onix [16] proposes a distributed
control API for large-scale Software Defined Networks. McNettle is designed to explicitly incorporate such
new APIs and controllers written to them.

Prior work has extensively focused on the use of emerging multicore architectures to accelerate network
processing. RouteBricks [11] and PacketShader [24] aim to provide software routers, and MIDeA [14]
presents an intrusion detection architecture for high speed networks. In contrast to prior work that mainly
targets simple routing, encryption and intrusion detection, McNettle parallelizes a real network controller
that involves complicated control plane and even shared state programming on multicore architectures

References
[1] https://openflow.stanford.edu/display/Beacon/Home.

[2] Beacon benchmarking guide. https://openflow.stanford.edu/display/Beacon/Benchmarking.

[3] Boost. [Online; accessed 02-May-2012].

[4] irqbalance. http://www.irqbalance.org/.

[5] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for
data center networks. In In Proc. of Networked Systems Design and Implementation (NSDI) Symposium, 2010.

[6] L. Bergstrom. Measuring numa effects with the stream benchmark. Technical report, University of Chicago,
Chicago IL 60637, USA, 2011.

[7] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: Balancing fairness, latency and throughput in the openflow control
plane. Technical report, Rice University, 2011.

[8] Cbench. Cbench, 2012. [Online; accessed 10-April-2012].

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy and memory subsys-
tem of the amd opteron processor. IEEE Micro, 30(2):16–29, Mar. 2010.

20

https://openflow.stanford.edu/display/Beacon/Home

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. Devoflow: scaling flow man-
agement for high-performance networks. In Proceedings of the ACM SIGCOMM 2011 conference, SIGCOMM
’11, 2011.

[11] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, M. Manesh, and S. Rat-
nasamy. Routebricks: exploiting parallelism to scale software routers. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages 15–28, New York, NY, USA, 2009. ACM.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker. Frenetic: a network
programming language. In Proceedings of the 16th ACM SIGPLAN international conference on Functional
programming, ICFP ’11, pages 279–291, New York, NY, USA, 2011. ACM.

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker. Nox: towards an operating
system for networks. SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[14] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated software router. In Proceedings of the
ACM SIGCOMM 2010 conference, SIGCOMM ’10, pages 195–206, New York, NY, USA, 2010. ACM.

[15] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker. Practical declarative network management.
In WREN ’09: Proceedings of the 1st ACM workshop on Research on enterprise networking, pages 1–10, New
York, NY, USA, 2009. ACM.

[16] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,
T. Hama, and S. Shenker. Onix: a distributed control platform for large-scale production networks. In Proceed-
ings of the 9th USENIX conference on Operating systems design and implementation, OSDI’10, 2010.

[17] T. Li, D. Baumberger, and S. Hahn. Efficient and scalable multiprocessor fair scheduling using distributed
weighted round-robin. In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’09, pages 65–74, New York, NY, USA, 2009. ACM.

[18] S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Parallel generational-copying garbage collection with a
block-structured heap. In Proceedings of the 7th international symposium on Memory management, ISMM ’08,
pages 11–20, New York, NY, USA, 2008. ACM.

[19] S. Marlow and S. Peyton Jones. Multicore garbage collection with local heaps. In Proceedings of the interna-
tional symposium on Memory management, ISMM ’11, pages 21–32, New York, NY, USA, 2011. ACM.

[20] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore haskell. In Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming, ICFP ’09, pages 65–78, New York, NY,
USA, 2009. ACM.

[21] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and S. Banerjee. Devoflow: cost-effective
flow management for high performance enterprise networks. In Proceedings of the Ninth ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets ’10, pages 1:1–1:6, New York, NY, USA, 2010. ACM.

[22] OpenFlow. Openflow switch specification, version 1.0.0, 2011. [Online; accessed 6-April-2012].

[23] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying NOX to the datacenter.

[24] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Midea: a multi-parallel intrusion detection architecture. In
Proceedings of the 18th ACM conference on Computer and communications security, CCS ’11, pages 297–308,
New York, NY, USA, 2011. ACM.

[25] A. Voellmy and P. Hudak. Nettle: taking the sting out of programming network routers. In Proceedings of the
13th international conference on Practical aspects of declarative languages, PADL’11, pages 235–249, Berlin,
Heidelberg, 2011. Springer-Verlag.

21

	Introduction
	SDN & OpenFlow
	McNettle Design
	Programming Model
	Local Learning Controller
	Global Learning Controller
	Shortest Path Routing Controller
	Bandwidth-on-Demand Controller

	Implementation
	Scheduling Event Handlers
	Message Processing
	Memory Management
	Interrupt Handling

	Evaluation
	Server Architecture
	Workload and Measurement
	Throughput Scaling
	Maintaining Low Latency
	Fairness
	Comparison with NOX and Beacon
	Cost of Shared State

	Related Work

