
You Can’t Touch This
WG2.8 meeting 2012

Albert-Ludwigs-Universität Freiburg

Peter Thiemann Manuel Geffken Phillip Heidegger
University of Freiburg

thiemann@informatik.uni-freiburg.de

07 November 2012

Motivation

92%
of all websites use

JavaScript

according to: http://w3techs.com/, 30/09/12
Thiemann You Can’t Touch This 07/11/12 2 / 20

http://w3techs.com/

Thesis

The Full Employment Theorem for Research on JavaScript

There will always be another JavaScript feature

Thiemann You Can’t Touch This 07/11/12 3 / 20

Situation of a Web Programmer

Thiemann You Can’t Touch This 07/11/12 4 / 20

Situation of a Web Programmer

Thiemann You Can’t Touch This 07/11/12 4 / 20

Situation of a Web Programmer

Thiemann You Can’t Touch This 07/11/12 4 / 20

Situation of a Web Programmer

Thiemann You Can’t Touch This 07/11/12 4 / 20

Situation of a Web Programmer

Thiemann You Can’t Touch This 07/11/12 4 / 20

Visualization of the Code

Base Application

Mashup Mashup Mashup

Thiemann You Can’t Touch This 07/11/12 5 / 20

Visualization of the Code

Base Application

Mashup Mashup Mashup

Thiemann You Can’t Touch This 07/11/12 6 / 20

Visualization of the Code

Base Application

Mashup Mashup Mashup

Thiemann You Can’t Touch This 07/11/12 7 / 20

Visualization of the Code

Base Application

Mashup Mashup Mashup

Thiemann You Can’t Touch This 07/11/12 8 / 20

Problem

(Mandatory) Access Control for Mashups

No access to private data of the client

No access to sensitive resources

What is Needed?

Demarcation between trusted and untrusted code

Mashup-specific access-control policies

Enforcement of these policies

Thiemann You Can’t Touch This 07/11/12 9 / 20

Problem

(Mandatory) Access Control for Mashups

No access to private data of the client

No access to sensitive resources

What is Needed?

Demarcation between trusted and untrusted code

Mashup-specific access-control policies

Enforcement of these policies

Thiemann You Can’t Touch This 07/11/12 9 / 20

Observation

In JavaScript, every resource is controlled by reading or writing a
property in scope.

Examples

document.location, document.cookie, . . .

document.write(), . . .

window.onload, window.onkeypress, . . .

window.alert(), window.open(), . . .

node.data, node.innerHtml, . . .

myData.contacts.JohnDoe.email, . . .

Thiemann You Can’t Touch This 07/11/12 10 / 20

Controlling Access to Properties is Key!

Access Permissions — sets of object references

Perm (document , "location|cookie|write ");

Perm (window , "/on .*/");

Perm (window , "alert|open ");

Perm (document.documentElement , "*./ data|innerHtml /");

Perm (myData , "*. email ");

Building blocks

p ::= Perm(e, path) anchored path set

| p ∪ p | p ∩ p | ¬p boolean operations

| Ω universal permission

Thiemann You Can’t Touch This 07/11/12 11 / 20

Controlling Access to Properties is Key!

Access Permissions — sets of object references

Perm (document , "location|cookie|write ");

Perm (window , "/on .*/");

Perm (window , "alert|open ");

Perm (document.documentElement , "*./ data|innerHtml /");

Perm (myData , "*. email ");

Building blocks

p ::= Perm(e, path) anchored path set

| p ∪ p | p ∩ p | ¬p boolean operations

| Ω universal permission

Thiemann You Can’t Touch This 07/11/12 11 / 20

Enforcing Restrictions

Enforcing Restrictions

ENFORCE(Deny (Perm (...), Perm (...)) ,

f unc t i on () {

// scope of enforcement

});

Thiemann You Can’t Touch This 07/11/12 12 / 20

Alternative: Permitted Accesses

Access Permissions
/* constructor for person */

f unc t i on Person(nick , pass , mail) {

this.nickname = nick;

this.password = pass;

this.email = mail;

}

f unc t i on base_functionality () {

var p = new Person (" honda", "t243v3r", "mh@t2.com");

...

ENFORCE(Allow (Perm (p, "nickname ")),

f unc t i on () { mashup1 (p); });

...

var out = document.getElementById (" for_mashup ");

ENFORCE(Allow (Perm (out , "*")),

f unc t i on () { mashup2 (out, ...); });

}

Thiemann You Can’t Touch This 07/11/12 13 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... my.secret ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

Lexical Scope

Restriction applies only to
subphrases of mash(x, my)

Does not impose proper
demarcation:
untrusted body of mash
runs without restriction.

Thiemann You Can’t Touch This 07/11/12 14 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... my.secret ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

Lexical Scope

Restriction applies only to
subphrases of mash(x, my)

Does not impose proper
demarcation:
untrusted body of mash
runs without restriction.

Thiemann You Can’t Touch This 07/11/12 14 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... my.secret ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

Dynamic Scope

Restriction applies
throughout execution of
mash.

Semantics of access
permission contracts
[POPL2012]

Does not impose proper
demarcation:
If the untrusted mash

returned a function, then
r(), i.e., code produced by
mash, would run without
restriction.

Thiemann You Can’t Touch This 07/11/12 15 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

return function() {
... my.secret ...

}
}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

r();// may access my.secret

Dynamic Scope

Restriction applies
throughout execution of
mash.

Semantics of access
permission contracts
[POPL2012]

Does not impose proper
demarcation:
If the untrusted mash

returned a function, then
r(), i.e., code produced by
mash, would run without
restriction.

Thiemann You Can’t Touch This 07/11/12 15 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

return function() {
... my.secret ...

}
}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

r();

// no access to my.secret

Wrapper Semantics

The restriction applies to
the execution of
mash(x, y) and to all
functions and objects
produced by it, recursively.

If mash(x, y) returns a
function, then the function
call r() runs with (at least)
the same restriction as
mash.

Fits the requirements.

Thiemann You Can’t Touch This 07/11/12 16 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... x() ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

// @syscall

f unc t i on x() {

... my.secret ...

}

Wrapper Semantics for
Higher-Order Functions

Suppose x is a function,
which is called in mash’s
body.

Which restriction applies to
the execution of x(...)?

Choice#1 (system call):
x’s creation-time restriction

Choice#2 (callback):
same plus the call-site’s
restriction

Thiemann You Can’t Touch This 07/11/12 17 / 20

Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... x()...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

// @callback

f unc t i on x() {

... my.secret ...

}

Wrapper Semantics for
Higher-Order Functions

Suppose x is a function,
which is called in mash’s
body.

Which restriction applies to
the execution of x(...)?

Choice#1 (system call):
x’s creation-time restriction

Choice#2 (callback):
same plus the call-site’s
restriction

Thiemann You Can’t Touch This 07/11/12 17 / 20

Who Should Use Access Restrictions?

Implementer of base application wants to restrict mashups
to guarantee confidentiality of the end user’s data.

Explicit.
Instrumenting script tags.

End user wants to restrict applications.

Global restriction.
Mapping: URL → restrictions.
Mapping prepared by third party; might be too complicated /
tedious for end user.

Implementer of mashup provides access restrictions: run time
can check compatibility before executing

Thiemann You Can’t Touch This 07/11/12 18 / 20

Project Status

Formal, mechanized semantics

Properties of the semantics
Correctness of implementation

Ongoing implementations in Rhino & Firefox

Security application requires total interposition
Only achievable in the JS engine (Thank you, eval & friends!)

Corresponding gradual type system

Thiemann You Can’t Touch This 07/11/12 19 / 20

The End

Questions?

Thiemann You Can’t Touch This 07/11/12 20 / 20

	Motivation

