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Motivation

92%
of all websites use

JavaScript

according to: http://w3techs.com/, 30/09/12
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Thesis

The Full Employment Theorem for Research on JavaScript

There will always be another JavaScript feature
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Situation of a Web Programmer
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Visualization of the Code

Base Application

Mashup Mashup Mashup
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Problem

(Mandatory) Access Control for Mashups

No access to private data of the client

No access to sensitive resources

What is Needed?

Demarcation between trusted and untrusted code

Mashup-specific access-control policies

Enforcement of these policies
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Observation

In JavaScript, every resource is controlled by reading or writing a
property in scope.

Examples

document.location, document.cookie, . . .

document.write(), . . .

window.onload, window.onkeypress, . . .

window.alert(), window.open(), . . .

node.data, node.innerHtml, . . .

myData.contacts.JohnDoe.email, . . .
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Controlling Access to Properties is Key!

Access Permissions — sets of object references

Perm (document , "location|cookie|write ");

Perm (window , "/on .*/");

Perm (window , "alert|open ");

Perm (document.documentElement , "*./ data|innerHtml /");

Perm (myData , "*. email ");

Building blocks

p ::= Perm(e, path) anchored path set

| p ∪ p | p ∩ p | ¬p boolean operations

| Ω universal permission
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Enforcing Restrictions

Enforcing Restrictions

ENFORCE( Deny (Perm (...), Perm (...)) ,

f unc t i on () {

// scope of enforcement

});
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Alternative: Permitted Accesses

Access Permissions
/* constructor for person */

f unc t i on Person(nick , pass , mail) {

this.nickname = nick;

this.password = pass;

this.email = mail;

}

f unc t i on base_functionality () {

var p = new Person (" honda", "t243v3r", "mh@t2.com");

...

ENFORCE( Allow (Perm (p, "nickname ")),

f unc t i on () { mashup1 (p); });

...

var out = document.getElementById (" for_mashup ");

ENFORCE( Allow (Perm (out , "*")),

f unc t i on () { mashup2 (out, ...); });

}
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Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... my.secret ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

Lexical Scope

Restriction applies only to
subphrases of mash(x, my)

Does not impose proper
demarcation:
untrusted body of mash
runs without restriction.
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Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

return function() {
... my.secret ...

}
}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

r();

// no access to my.secret

Wrapper Semantics

The restriction applies to
the execution of
mash(x, y) and to all
functions and objects
produced by it, recursively.

If mash(x, y) returns a
function, then the function
call r() runs with (at least)
the same restriction as
mash.

Fits the requirements.
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Discussion: Scope of Enforcement

f unc t i on mash(x, my) {

... x() ...

}

var r = ENFORCE(

Deny(my , "secret"),

f unc t i on () {

mash(x, my);

});

// @syscall

f unc t i on x() {

... my.secret ...

}

Wrapper Semantics for
Higher-Order Functions

Suppose x is a function,
which is called in mash’s
body.

Which restriction applies to
the execution of x(...)?

Choice#1 (system call):
x’s creation-time restriction

Choice#2 (callback):
same plus the call-site’s
restriction
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Who Should Use Access Restrictions?

Implementer of base application wants to restrict mashups
to guarantee confidentiality of the end user’s data.

Explicit.
Instrumenting script tags.

End user wants to restrict applications.

Global restriction.
Mapping: URL → restrictions.
Mapping prepared by third party; might be too complicated /
tedious for end user.

Implementer of mashup provides access restrictions: run time
can check compatibility before executing
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Project Status

Formal, mechanized semantics

Properties of the semantics
Correctness of implementation

Ongoing implementations in Rhino & Firefox

Security application requires total interposition
Only achievable in the JS engine (Thank you, eval & friends!)

Corresponding gradual type system
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The End

Questions?
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