
High Performance Functional Programming
for Software-Defined Network Control

Andi Voellmy

Yale University

November 5, 2012

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 1 / 35

Software-Defined Networking (SDN)

SDN argues that networks should be easy to program.

Today’s network infrastructure lacks programmability:

Many commercial devices lack expressive, programmatic API.

Typically requires programming distributed protocol, because control
plane is distributed.

Data plane
Control plane

Switch

Data plane
Control plane

Switch

Data plane
Control plane

Switch
data+controldata+control

data
+

control

Traditional
Network

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 2 / 35

The SDN Paradigm

Write a program, not a protocol.

Input: network state

Output: device configurations

E.g. Program Dijkstra algorithm, not distance-vector routing protocol.

Introduce a “Network OS” layer to implement programming abstraction.

Data plane

Network OS

Switch
Data plane

Switch

Data plane
Switch

Controller

data

Control API

data

Sotware-Defined
Network

Control Programs

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 3 / 35

SDN Technology: OpenFlow (OF)

Hardware-independent abstraction of today’s Ethernet switches.

Flexible forwarding abstraction.

Specification statistics that are collected.

Network protocol to configure forwarding behavior and read state.

Controller&

PC&

Hardware&
Layer&

Soqware&
Layer&

Flow&Table&

MAC&
src&

MAC&
dst&

IP&
Src&

IP&
Dst&

TCP&
sport&

TCP&
dport&

Ac\on&

OpenFlow&Client&

&&5.6.7.8&*&*&*& port&1&

port&4&port&3&port&2&port&1&

1.2.3.4&5.6.7.8&

OpenFlow Example  

22&

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 4 / 35

One Controller to Rule Them All

Network Controller

Write a single, ordinary program with global visibility to control the entire
network.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 5 / 35

Control Load in a Data Center

Tavakoli (HotNets’09) estimate data center demands:

Hundreds to thousands of switches.

2 million virtual machines.

20 million new TCP sessions per second.

10 ms latency required.

Best single-threaded controller (C++, CPU bounded) served 30K
requests per second with 10ms latency.

∴ 667 controllers needed.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 6 / 35

But there is some reason for hope

Optimize controller’s single-threaded speed: use fewer CPU cycles.

Multicores: core counts are rapidly increasing and the entire multicore
architecture is highly parallelized.

Figure : Intel Xeon Westmere E74 4 node, 10 core system

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 7 / 35

Multicore-Nettle (McNettle)

A library that allows users to write control programs with a simple
concurrent programming model and that automatically executes effectively
on multicore NUMA servers.

Simple control programs written with McNettle can serve over 20 million
flow requests per second with sub 10ms response time, making use of
about 50 cores.

Control programs are written in Haskell, a high-level functional
programming language with many convenient programming features,
especially high-level concurrency constructs.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 8 / 35

Multicore-Nettle (McNettle)

A library that allows users to write control programs with a simple
concurrent programming model and that automatically executes effectively
on multicore NUMA servers.

Simple control programs written with McNettle can serve over 20 million
flow requests per second with sub 10ms response time, making use of
about 50 cores.

Control programs are written in Haskell, a high-level functional
programming language with many convenient programming features,
especially high-level concurrency constructs.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 8 / 35

Multicore-Nettle (McNettle)

A library that allows users to write control programs with a simple
concurrent programming model and that automatically executes effectively
on multicore NUMA servers.

Simple control programs written with McNettle can serve over 20 million
flow requests per second with sub 10ms response time, making use of
about 50 cores.

Control programs are written in Haskell, a high-level functional
programming language with many convenient programming features,
especially high-level concurrency constructs.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 8 / 35

Outline

1 Introduction

2 McNettle Programming Model

3 McNettle Implementation

4 Evaluation

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 9 / 35

Programming Model: Proactive Threads

Switch 1 Handler

Switch 2 Handler

Switch 3 Handler

Incoming Messages Outgoing Messages

Local State

Local State

Global State

Proactive Thread

Proactive Thread

Proactive Thread

Global State

switch 1

switch 2

switch 3

switch 1

switch 2

switch 3

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 10 / 35

McNettle API in a Nutshell
Starting the control server:

startServer :: ServerParams → (Features → IO Handler)→ IO ()

A Handlers is a function from messages to computations that output
commands:

type Handler = SwitchMessage → Reaction ()

Messages represented by a data type:

data SwitchMessage = Init Features | PacketIn PacketIn | ...

Computations that send commands to switches:

forward :: PacketIn→ ForwardingAction→ Reaction ()
forwardWithExactRule :: PacketIn→ ForwardingAction→ ...
...

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 11 / 35

McNettle API in a Nutshell
Starting the control server:

startServer :: ServerParams → (Features → IO Handler)→ IO ()

A Handlers is a function from messages to computations that output
commands:

type Handler = SwitchMessage → Reaction ()

Messages represented by a data type:

data SwitchMessage = Init Features | PacketIn PacketIn | ...

Computations that send commands to switches:

forward :: PacketIn→ ForwardingAction→ Reaction ()
forwardWithExactRule :: PacketIn→ ForwardingAction→ ...
...

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 11 / 35

McNettle API in a Nutshell
Starting the control server:

startServer :: ServerParams → (Features → IO Handler)→ IO ()

A Handlers is a function from messages to computations that output
commands:

type Handler = SwitchMessage → Reaction ()

Messages represented by a data type:

data SwitchMessage = Init Features | PacketIn PacketIn | ...

Computations that send commands to switches:

forward :: PacketIn→ ForwardingAction→ Reaction ()
forwardWithExactRule :: PacketIn→ ForwardingAction→ ...
...

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 11 / 35

McNettle API in a Nutshell
Starting the control server:

startServer :: ServerParams → (Features → IO Handler)→ IO ()

A Handlers is a function from messages to computations that output
commands:

type Handler = SwitchMessage → Reaction ()

Messages represented by a data type:

data SwitchMessage = Init Features | PacketIn PacketIn | ...

Computations that send commands to switches:

forward :: PacketIn→ ForwardingAction→ Reaction ()
forwardWithExactRule :: PacketIn→ ForwardingAction→ ...
...

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 11 / 35

McNettle Examples

Flood everything:

main = runServer params makeHandler

makeHandler features = return handler

handler (PacketIn pkt) = forward pkt flood
handler = return ()

Clear table at startup:

handler (Init features) = clearTable (switchID features)

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 12 / 35

McNettle Examples

Flood everything:

main = runServer params makeHandler

makeHandler features = return handler

handler (PacketIn pkt) = forward pkt flood
handler = return ()

Clear table at startup:

handler (Init features) = clearTable (switchID features)

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 12 / 35

McNettle Examples

Install a flood rule:

handler (Init features) =
do clearTable (switchID features)

installRule (switchID features) any flood defaultOpts

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 13 / 35

McNettle Examples: MAC Learning

handler table (PacketIn pkt) =
do let hdr = etherHeader pkt

insertMac (etherSrc hdr) (inPort pkt) table
result ← lookupMac (etherDst hdr) table
case result of

Nothing → forward pkt flood
Just port →

forwardWithExactRule pkt (phyPort port) defaultOpts

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 14 / 35

McNettle Examples: Local vs. Global State

Local:

main = runServer params makeHandler

makeHandler features =
do table ← newMacTable

return (handler table)

Global:

main = do table ← ConcurrentMacTable.newMacTable
runServer params (makeHandler table)

makeHandler table features = return (handler table)

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 15 / 35

McNettle Examples: Local vs. Global State

Local:

main = runServer params makeHandler

makeHandler features =
do table ← newMacTable

return (handler table)

Global:

main = do table ← ConcurrentMacTable.newMacTable
runServer params (makeHandler table)

makeHandler table features = return (handler table)

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 15 / 35

Programming Concurrent Shared State

Haskell provide us with several options; use each where appropriate:

CAS, atomic-update for busy-waiting synchronization.

MVar for blocking synchronization.

Software Transactional Memory (STM) offers high-level, composable
concurrency constructs.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 16 / 35

STM Example: Bandwidth Reservation

Applications request a path with reserved bandwidth.

Many requests are received concurrently at origin different switches.

Programming with fine-grained locks on each link capacity can lead
to deadlocks, e.g.

I executing reservation (A,B) in thread 1
I reservation (B,A) in thread 2
I lock (t1,A); lock (t2,B) deadlock

A B

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 17 / 35

STM Example: Bandwidth Reservation

STM makes this easy: use a transaction variable TVar to hold the
capacity on each link; put them all in a dictionary indexed by link.

To reserve a link:

reserveLink vars amt link =
do let v = varForLink vars link

current ← readTVar v
let remaining = current − amt
when (remaining < 0) retry
writeTVar v remaining

Executing retry causes transaction to try again later, blocking the caller.

Implementation waits until a TVar accessed by the transaction is updated.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 18 / 35

To reserve a path:

reservePath vars amt path
= forM path (λlink → reserveLink vars amt link)

To execute it, blocking until it succeeds:

atomically (reservePath vars amt path)

Notice:

Deadlock impossible

Atomicity: either every link on the path or no links are updated.

Isolation: a partially completed transaction can’t cause another to fail.

Composable: Path reservation composed of smaller transactions.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 19 / 35

Outline

1 Introduction

2 McNettle Programming Model

3 McNettle Implementation

4 Evaluation

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 20 / 35

McNettle Implementation

Fast and scalable implementations of key components:

Scheduling work on cores

IO event notification

OF protocol implementation

Garbage collection (GC)

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 21 / 35

McNettle Implementation: Scheduler

Schedule work on cores efficiently, subject to the constraint that messages
from each switch are processed in order.

Controller

switch 1

switch 2

switch M

1

2

N

CoresRequests

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 22 / 35

McNettle Implementation: Scheduler

Piggyback on GHC’s thread scheduler: use one Haskell thread per switch,
exclusively servicing that switch’s messages.

GHC Scheduler:

One run queue per core.

Each core services queue in round robin order.

Work-pushing load balancing.

Controller

switch 1

switch 2

switch M

1

2

N

CoresRequests

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 23 / 35

Scheduler Optimization: Stabilize Load Balancing

Between running threads, scheduler checks for idle cores, divides work
evenly among idle cores.

Problem: Under light load, cores are often idle and switch handlers are
transferred back and forth between cores; bad for cache locality of switch
handlers and causes contention on run queues.

Solution: Keep running average of run queue lengths of each core and
transfer only to improve the balance.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 24 / 35

GHC’s IO Manager

To wait for a socket to be ready, a thread:

creates an empty MVar

inserts the MVar , file descriptor and event in a callback table, and
registers with global epoll object,

blocks on MVar , causing scheduler to remove the thread from run
queue.

when unblocked, remove callback and unregister from epoll object.

GHC includes an IO manager thread that loops on epoll wait

For each ready FD: fill the MVars of waiters, causing scheduler to
move waiters to run queues.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 25 / 35

Problems in GHC’s IO Manager

1 Global callback table is protected by a single, heavily contended lock
I unblocked threads have to remove their MVars and then interfere.
I threads with nothing to do prevent IO loop from notifying threads with

something to do!

2 Single IO loop is sequential bottleneck

Bottlenecks caused large latencies.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 26 / 35

Parallelized IO Manager

We implemented a new IO manager:

Parallelized IO loop: one loop per core.

Reduce contention on callback table: a waiter registers with the
callback table on the core it is running on.

Streamline IO loop

70x reduction in latency using work balancing stabilization & parallel IO
manager versus GHC 7.4

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 27 / 35

Garbage Collection

GC is a significant cost.

Using large (128MB) nursery size reduces GC frequency, improving
performance.

But then pause times became large:

ææ
æ

æ

æ

æ

æ

æ

100 200 300 400 500
Allocation Area HMBytesL

50

100

150

200

250

Average GC Pause HmillisecL
Average Pause Time by Allocation Area Size

Figure : Average GC pause time for different allocation areas (generation 0) when
running the local learning controller with 40 cores and 500 switches.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 28 / 35

GC Pause Times

GHC’s GC is parallel, stop the world, generational collector.

Each core has a private nursery to allocate from.

At end of GC, nurseries are cleared; requires traversing block
descriptors for the entire nursery; worse on large nurseries.

Sequential in GHC 7.4.1

Embarassingly parallel. Modify to have each core clear its nursery in
parallel. Parallelizes and avoids cache thrashing.

Reduces pause times by 10x.

With 128 MB allocation area: under 10ms average pause time.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 29 / 35

Outline

1 Introduction

2 McNettle Programming Model

3 McNettle Implementation

4 Evaluation

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 30 / 35

Hardware: Control Server

8 Intel(R) Xeon(R) CPU E7- 8850 2.00GHz,

each with 10 cores, 24MB smart cache, 32MB L3 cache

Four 10Gbps Intel NICs

Linux 3.4.0.0, ixgbe 3.9.17 drivers

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 31 / 35

Hardware: Workload Servers and Switch

Generate workload by simulating switches on up to 9 workload servers and
12 NICs.

All servers networked with 10Gbps or 1Gbps ports through an HP switch.

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 32 / 35

Throughput for MAC Learning

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

à

à

à

à

à

à

à

à

à
à

à
à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì ì
ì

ì ì

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò ò ò
ò

ô
ô

ô

ô
ô

ô ô
ô ô ô

ô ô ô

0 10 20 30 40 50
0

5

10

15

20

Cores

10
6

flo
w

s�
se

c
Throughput Scaling

ô 0.2ms

ò 0.4ms

ì 1.2ms

à 2.7ms

æ 9.6ms

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 33 / 35

Latency for MAC Learning

0 2000 4000 6000 8000 10000
0.5

0.6

0.7

0.8

0.9

1.0

Response Time HmicrosecondsL

C
um

ul
at

iv
e

F
ra

ct
io

n
McNettle Latency CDF H50 CoresL

512H18.9mfpsL

128H10.3mfpsL

32H8.3mfpsL

8H3.5mfpsL

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 34 / 35

Comparison with Beacon, NOX-MT

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

à

à

à à

à

à

à à

à
à

ìì

ì

ì

ì

ì ì
ì ì

ì ì

10 20 30 40
0

5

10

15

20

Cores

10
6

flo
w

s�
se

c

Throughput Scaling

ì NOX-MT

à Beacon

æ McNettle

Andi Voellmy (Yale University) High Performance Functional Programming for Software-Defined Network ControlNovember 5, 2012 35 / 35

	Introduction
	McNettle Programming Model
	McNettle Implementation
	Evaluation

