A Saucerful of Proofs in Coq

Olivier Danvy

Department of Computer Science

Aarhus University
danvy@cs.au.dk

Annapolis, Maryland
8 November 2012

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums: 1 ,

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16,25
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16,25,36
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16,25,36,49
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16,25,36,49,64, \ldots
$$

Summing the first odd numbers

The stream of odd natural numbers:

$$
1,3,5,7,9,11,13,15, \ldots
$$

The corresponding stream of partial sums:

$$
1,4,9,16,25,36,49,64, \ldots
$$

i.e.,

$$
1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}, \ldots
$$

Constructively

- start from the stream of natural numbers
- strike out every 2 nd element
- compute the successive partial sums

Result: the stream of squares

Scaling up

- start from the stream of natural numbers
- strike out every 3rd element
- compute the successive partial sums
- strike out every 2 nd element
- compute the successive partial sums

Result: the stream of ...

Scaling up

- start from the stream of natural numbers
- strike out every 3rd element
- compute the successive partial sums
- strike out every 2 nd element
- compute the successive partial sums

Result: the stream of cubes .

Scaling up: Moessner's theorem

- start from the stream of natural numbers
- strike out every nth element \& sum
- strike out every $(n-1)$ th element \& sum
- strike out every 3rd element \& sum
- strike out every 2 nd element \& sum

Result: the stream of powers of n.

Background

- Moessner (1951)

The property, no proofs.

- Perron (1951), Paasche (1952), Salié (1952) Complicated inductive proofs.
- Hinze (IFL 2008)

A calculational proof.

- Rutten \& Niqui (HOSC 2012)

A co-inductive proof.

This work (in progress)

- a formalization in Coq
- but first, learning Coq

Learning Coq in principle

- web resources
- book
- seasonal schools

Learning Coq in practice

- practice, practice, practice
- need a TA (or ideally, a coach)
- forces you to think things through
- can be frustrating at times

Asking an expert

Require Import Omega3.

Asking an expert

Require Import Omega3.
(* undocumented, but perfect here, thanks to the fatty acids: *) do_the_right_thing.

Learning Coq in practice

- practice, practice, practice
- need a TA (or ideally, a coach)
- forces you to think things through
- can be frustrating at times
- wonderfully rewarding, overall

Teaching Coq

- introduction to functional programming (Q3 2011-2012, Q1 2012-2013)
- more advanced functional programming (Q4 2011-2012)

a marvelous experience

Term projects in Q3

- a standard batch (interpreters, compilers, decompilers, VMs, CPS, power series, searching in binary trees, Boolean negational normalization, FSA, etc.)
- a cherry on top of the pie: formalizing a theorem and a proof from another course(!)

Term projects in Q4

- functional \& relational programming
- the Ackermann-Peter function
- Boolean normalization and equisatisfiability
- abstract interpretation (strided intervals)
- group theory and pronic numbers
- B-trees
- graph theory
- reduction from circuit to SAT
- vector spaces \& Cauchy-Schwarz inequality

Plan

- Moessner's theorem at degree 3
- Moessner's theorem at degree 4
- Which starting indices in the master lemma?
- Introductory teaching with Coq
- Conclusion and perspectives

We are given

- stream_of_ones
- stream_of_positive_powers_of_3
- stream_of_positive_powers_of_4
- skip_2, skip_3, skip_4, ...
- sums \& sums_aux, which uses an accumulator
- stream_bisimilar

Moessner's theorem at degree 3

- the statement
- the proof
- the master lemma

Theorem Moessner_3 :

stream_bisimilar
stream_of_positive_powers_of_3
(sums
(skip_2
(sums
(skip_3
(sums
stream_of_ones))))).

```
Proof.
    unfold stream_of_positive_powers_of_3.
    unfold sums.
    apply (Moessner_3_aux 0).
Qed.
```

```
Lemma Moessner_3_aux :
    forall (n : nat),
    stream_bisimilar
    (make_stream_of_nats (S n)
                                    (fun i => i * i * i)
                                    S)
(sums_aux ???
    (skip_2
    (sums_aux ???
        (skip_3
            (sums_aux ???
                stream_of_ones))))).
```


Moessner's theorem at degree 4

- the statement
- the proof
- the master lemma

```
Theorem Moessner_4 :
    stream_bisimilar
    stream_of_positive_powers_of_4
    (sums
        (skip_2
        (sums
        (skip_3
        (sums
        (skip_4
            (sums
        stream_of_ones))))))).
```

```
Proof .
    unfold stream_of_positive_powers_of_4.
    unfold sums.
    apply (Moessner_4_aux 0).
Qed.
```

Lemma Moessner_4_aux :
forall (n : nat),
stream_bisimilar
(make_stream_of_nats (S n) (fun i $=>$ i $*$ i $* i * i$) S)
(sums_aux ???
(skip_2
(sums_aux ???
(skip_3
(sums_aux ???
(skip_4

$$
\begin{aligned}
& (\text { sums_aux ??? } \\
& \quad \text { stream_of_ones))))))). }
\end{aligned}
$$

So, which starting indices?

Newton's binomial expansion

Reminder:

$$
\begin{array}{lr}
(n+1)^{2}= & n^{2}+2 \cdot n+1 \\
(n+1)^{3}= & n^{3}+3 \cdot n^{2}+3 \cdot n+1 \\
(n+1)^{4}= & n^{4}+4 \cdot n^{3}+6 \cdot n^{2}+4 \cdot n+1
\end{array}
$$

Lemma Moessner_2_aux :

```
forall (n : nat),
    stream_bisimilar
    (make_stream_of_nats (S n)
                                    (fun i => i * i)
                                    S)
(sums_aux (n * n)
(skip_2
    (sums_aux (2 * n)
        stream_of_ones ))).
```

Lemma Moessner_3_aux :

```
forall (n : nat),
```

stream_bisimilar
(make_stream_of_nats (S n)
(fun i $=>$ i $*$ i $*$ i)
S)
(sums_aux ($\mathrm{n} * \mathrm{n} * \mathrm{n}$)
(skip_2
(sums_aux ($3 * \mathrm{n} * \mathrm{n}$)
(skip_3
(sums_aux ($3 * \mathrm{n}$)
stream_of_ones)))) .

Lemma Moessner_4_aux :

```
forall (n : nat),
```

 stream_bisimilar
 (make_stream_of_nats (S n)
 (fun i \(=>\) i \(*\) i i \(*\) i)
 S)
 (sums_aux (\(\mathrm{n} * \mathrm{n} * \mathrm{n} * \mathrm{n}\))
 (skip_2
 (sums_aux (4*n*n*n)
 (skip_3
 (sums_aux \((6 * \mathrm{n} * \mathrm{n})\)
 (skip_4
 (sums_aux (4 * n)
 stream_of_ones)))))) .

Assessment

- The monomials of the binomial expansion.
- Essential algebraic support from Coq to find the starting indices.
- A uniform structure for the proofs.
- A code generator in OCaml (Moe Masuko).
- A tactic in Ltac (Christian Clausen).
- And now what?

Consulting an expert - Danko llik

If your Ltac tactic does not use general recursion,
you can tease out the corresponding lambda-term.
This lambda-term is your proof.

Consulting an expert - Danko llik

> If your Ltac tactic does not use general recursion, you can tease out the corresponding lambda-term.

This lambda-term is your proof.
(The mathematical possibilities!)

My introductory lectures on Coq

The "what" is classical:

- functional programming, and proving

The "how" is classical too:

- from the known towards the unknown
- mathematical anxiety

From the known

Or more precisely, from what should be known:

- propositional logic
- proofs (e.g., Modus Ponens)

Strengthening the conclusion

Proposition modus_ponens_v1 :

$$
\begin{aligned}
& \text { forall P Q : Prop, } \\
& \text { P / (P } \rightarrow \mathrm{Q}) \rightarrow \mathrm{Q} .
\end{aligned}
$$

Proof.
intros P Q [H_P H_P_implies_Q].
apply H_P_implies_Q.
assumption.
Qed.

Weakening an hypothesis

Proposition modus_ponens_v2 :

$$
\begin{aligned}
& \text { forall P Q : Prop, } \\
& \text { P / (P -> Q) -> } \mathrm{Q} .
\end{aligned}
$$

Proof.
intros P Q [H_P H_P_implies_Q].
assert (H := H_P).
apply H_P_implies_Q in H.
assumption.
Qed.

Generalizing the goal

Proposition modus_ponens_v3 :

$$
\begin{aligned}
& \text { forall P Q : Prop, } \\
& \text { P / (P -> Q) -> Q. }
\end{aligned}
$$

Proof.
intros P Q [H_P H_P_implies_Q].
revert H_P.
assumption.
Qed.

From the known

Or more precisely, from what should be known:

- propositional logic
- proofs (e.g., Modus Ponens)
- inductive definition of data
- recursive definition of programs

Conclusion and perspectives

Proof assistants are changing the world:

- the 4-color theorem
- the FeitThompson theorem
- DemTech

This was then: MFPS 1991

This was then: MFPS 1991

"Look guys.
We don't say anything about your proofs, so don't say anything about our programs, OK?"

This is now: MAP 2012

Moi: A lightweight question: how does it feel, ...

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.
Y. Bertot (intervening): But you only show a representation of your proofs.

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.
Y. Bertot (intervening): But you only show a representation of your proofs.

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.
Y. Bertot (intervening): But you only show a representation of your proofs.
Their spirit might be lost in the process.

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.
Y. Bertot (intervening): But you only show
a representation of your proofs.
Their spirit might be lost in the process.
V. Voevodsky (definitely): I doubt it.

This is now: MAP 2012

Moi: A lightweight question: how does it feel, as a mathematician, to show your proofs to the world in complete detail?
V. Voevodsky (smiling): Liberating.
Y. Bertot (intervening): But you only show
a representation of your proofs.
Their spirit might be lost in the process.
V. Voevodsky (definitely): Idoubt it.

Thank you.

