
A different kind of functional language

John Reppy

University of Chicago / NSF

November 2012

Parallel languages research

I Manticore: Parallel SML (PML)
I Nesl/GPU
I Diderot

Joint work with Gordon Kindlmann, Charisee Chiw, Lamont Samuels,
Nick Seltzer.

November 2012 WG 2.8 — Diderot 2

Image analysis

Why image analysis is important

Physical object Image data Computational
representation

Imaging Visualization

Analysis

I Scientists need software tools to extract structure from many kinds of
image data.

I Creating new analysis/visualization programs is part of the experimental
process.

I The challenge of getting knowledge from image data is getting harder.

November 2012 WG 2.8 — Diderot 4

Image analysis

Image analysis and visualization
I We are interested in a class of algorithms that compute geometric

properties of objects from imaging data.
I These algorithms compute over a continuous tensor field F (and its

derivatives), which are reconstructed from discrete data using a separable
convolution kernel h:

F = V ~ h

Continuous fieldDiscrete image data

⊛h FV

November 2012 WG 2.8 — Diderot 5

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

These applications have a common algorithmic structure: large number of
(mostly) independent computations.

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

These applications have a common algorithmic structure: large number of
(mostly) independent computations.

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

These applications have a common algorithmic structure: large number of
(mostly) independent computations.

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
I Direct volume rendering (requires

reconstruction, derivatives).
I Fiber tractography (requires tensor

fields).
I Particle systems (requires dynamic

numbers of computational elements).

These applications have a common algorithmic structure: large number of
(mostly) independent computations.

November 2012 WG 2.8 — Diderot 6

Diderot

Diderot

Diderot is a parallel DSL for image analysis and visualization algorithms.

Its design models the algorithmic structure of its application domain:
independent strands computing over continuous tensor fields.

A DSL approach provides
I Improve programmability by supporting a high-level mathematical

programming notation.
I Improve performance by supporting efficient execution; especially on

parallel platforms.

November 2012 WG 2.8 — Diderot 7

Diderot

Diderot parallelism model
Bulk-synchronous parallel with “deterministic” semantics.

execution
step

strands

update

idle

read

spawn

global computation

global computation

strand state

new

die

stabilize

November 2012 WG 2.8 — Diderot 8

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Globals are immutable, and are
used for program inputs and other
shared globals.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands are the
elements of a bulk
synchronous
computation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have parameters that are
used to initialize them.

Strands have state, which
includes outputs.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method
that is invoked each super step.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

Strands have an update method
that is invoked each super step.

Strands can stabilize or die
during the computation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

The initial collection of strands is
created using comprehension notation.

// global definitions
input int N = 1000;
input real eps = 0.000001;

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|rootˆ2 - val|/val < eps)

stabilize;
}

}

// initialization
initially [SqRoot(real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Programmability: from whiteboard to code

vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r ⌦ rF(pos);
tensor[3,3] P = identity[3] - norm⌦norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;

November 2012 WG 2.8 — Diderot 10

Diderot

Example — Curvature
field#2(3)[] F = bspln3 ~ image("quad-patches.nrrd");
field#0(2)[3] RGB = tent ~ image("2d-bow.nrrd");
· · ·
strand RayCast (int ui, int vi) {

· · ·
update {

· · ·
vec3 grad = -rF(pos);
vec3 norm = normalize(grad);
tensor[3,3] H = r⌦rF(pos);
tensor[3,3] P = identity[3] - norm⌦norm;
tensor[3,3] G = -(P•H•P)/|grad|;
real disc = sqrt(2.0*|G|ˆ2 - trace(G)ˆ2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
vec3 matRGB = // material RGBA

RGB([max(-1.0, min(1.0, 6.0*k1)),
max(-1.0, min(1.0, 6.0*k2))]);

· · ·
}

· · ·
}

k2

k1

(1,1)

(-1,-1)

November 2012 WG 2.8 — Diderot 11

Diderot

Example — 2D Isosurface

int stepsMax = 10;
· · ·
strand sample (int ui, int vi) {
output vec2 pos = · · ·;

// set isovalue to closest of 50, 30, or 10
real isoval = 50.0 if F(pos) >= 40.0

else 30.0 if F(pos) >= 20.0
else 10.0;

int steps = 0;
update {

if (inside(pos, F) && steps <= stepsMax) {
// delta = Newton-Raphson step

vec2 delta = normalize(rF(pos)) * (F(pos) - isoval)/|rF(pos)|;
if (|delta| < epsilon)
stabilize;

pos = pos - delta;
steps = steps + 1;

}
else die;

}
}

November 2012 WG 2.8 — Diderot 12

Implementation issues

Fields

I Fields are functions from <d to tensors.

shape of range

field#k(d)[d1, . . . , dn]

dimension of domain

levels of continuity

where k � 0, d > 0, and the d

i

> 1.
I Diderot provides higher-order operations on fields: r, r⌦, etc..
I Diderot also lifts tensor operations to work on fields (e.g., +).

November 2012 WG 2.8 — Diderot 13

Implementation issues

Applying tensor fields
A field application F(x) gets compiled down into code that maps the
world-space coordinates to image space and then convolves the image values
in the neighborhood of the position.

Continuous fieldDiscrete image data

FV ⊛h
x

M�1
n

In 2D, the reconstruction is

F(x) =
sX

i=1�s

sX

j=1�s

V[n + hi, ji]h(f
x

� i)h(f
y

� j)

where s is the support of h, n = bM

�1
xc and f = M

�1
x � n.

November 2012 WG 2.8 — Diderot 14

Implementation issues

Applying tensor fields (continued ...)

In general, compiling the field applications is more challenging.

For example, we might have
field#2(2)[] F = h ~ V;

· · · r(s * F)(x) · · ·
The first step is to normalize the field expressions.

r(s ⇤ (V ~ h))(x)) (s ⇤ (r(V ~ h)))(x)

) s ⇤ ((r(V ~ h))(x))

) s ⇤ (V ~ (rh))(x)

In the implementation, we view r as a “tensor” of partial-derivative operators

r =

"
@
@x

@
@y

#
r ⌦ r =

"
@2

@x

2
@2

@xy

@2

@xy

@2

@y

2

#

November 2012 WG 2.8 — Diderot 15

Implementation issues

Applying tensor fields (continued ...)

Each component in the partial-derivative tensor corresponds to a component
in the result of the application.

r(s ⇤ F)(x) = s ⇤ (V ~ (rh))(x)

= s ⇤ (V ~
"

@
@x

@
@y

#
h)(x)

= s ⇤
" P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h

0 (f
x

� i) h(f
y

� j)
P

s

i=1�s

P
s

j=1�s

V[n + hi, ji] h(f
x

� i) h

0 (f
y

� j)

#

A later stage of the compiler expands out the evaluations of h and h

0.

Probing code has high arithmetic intensity and is trivial to vectorize.

November 2012 WG 2.8 — Diderot 16

Implementation issues

Normalization

I The current compiler uses “direct-style” notation when normalizing
tensor and field expressions.

I This approach does not extend to some interesting operations, such as
r⇥.

I Expanding tensor operations to their scalar subcomputations is unwieldy.
I Einstein Index Notation (EIN) provides a compact representation of

tensor expressions.
I New IR operator,

�T̄.hei↵
whose semantics are specified by the EIN expression e, where T̄ are
tensor parameters and ↵ is a multi-index that determines the shape of the
result.

November 2012 WG 2.8 — Diderot 17

Implementation issues

Einstein Index Notation (continued ...)

I Concise specification of families of operators. For example,
�(u, v).hu↵i

v

i�i↵� covers dot product, matrix-vector multiplication,
matrix-matrix multiplication, etc.

I Code and data-representation synthesis (need cache-friendly and
SSE-friendly mappings).

I Automatic discovery of linear-algebra identities.

November 2012 WG 2.8 — Diderot 18

Implementation issues

Optimizing tensor operations

Consider the expression trace(a⌦b).

This Diderot expression is represented in the compiler as

let M = (�(u, v).hu
i

v

j

i
ij

)(a, b)

let t = (�X.hX
kk

i)(M)
in t

substitution of the definition of M for X yields

let t = (�(u, v).hu
k

v

k

i)(a, b)
in t

Replaces a rewrite rule: Trace(Outer(u, v))) Dot(u, v).

November 2012 WG 2.8 — Diderot 19

Implementation issues

Optimizing tensor operations

Consider the expression trace(a⌦b).

This Diderot expression is represented in the compiler as

let M = (�(u, v).hu
i

v

j

i
ij

)(a, b)

let t = (�X.hX
kk

i)(M)
in t

substitution of the definition of M for X yields

let t = (�(u, v).hu
k

v

k

i)(a, b)
in t

Replaces a rewrite rule: Trace(Outer(u, v))) Dot(u, v).

November 2012 WG 2.8 — Diderot 19

Conclusion

Related work

Other examples of parallel DSLs:
I Liszt: embedded DSL for writing mesh-based PDE solvers.
I Shadie: DSL for volume rendering applications.
I Spiral: program generator for DSP code.

November 2012 WG 2.8 — Diderot 20

Conclusion

Questions?

http://diderot-language.cs.uchicago.edu

Thanks to NVIDIA and AMD for their support.
November 2012 WG 2.8 — Diderot 21

http://diderot-language.cs.uchicago.edu

