
“The minimal restriction that guarantees that the
unpredictability of ordering will not affect the
behavior of a program is then that, for any possible
serialization order for the operations performed by a
program, any two consecutive operations of the
program that are not causally related must commute
with respect to the memory state that precedes the
first. (Note that exchanging such commutative
operations produces another possible serialization
order.)”

– Guy Steele, 1990



Commuting Statements
I Two kinds of statements: Assignments and Tests.
I Execution of an Assignment evaluates an expression and writes the

results to a variable. The expression is a composition of functional
operators applied to values of variables

I A Test evaluates a predicate on values of variables.
I We consider scalar variables and vector variables. Vectors are arrays of

one dimension.
I Memory state is a mapping of the set of variable identifiers to the

domain of values.
I The result of a Test only affects control flow, the sequence of statement

esecution. There is no effect on memory

Definition
Two statements S1 and S1 commute if and only if one of the following is true:

I S1 and S2 are both assignments and they write different variables.

I S1 and S2 are both assignments, both write variable v , and the final
value of v is independent of the order in which S1 and S2 are performed.

I One statement is a test, the other an assignment and the target variable
of the assignment is not read by the test.



Definition
A parallel program P is (final value) repeatable if, for each
choice of input data, every run of P produces the same result.

Theorem
Let P be a parallel program, in which every pair of concurrent
statements commute. Then:

1. Program P is repeatable.

2. A functional program can be constructed that is
equivalent to P.

Note: Steele sketched a proof of (1) in his 1990 paper.
Demonstration of (2) has been done for a reduced version of
Habanero Java, as we discuss here.



Example in Habanero Java

int[] multiplyByVector ( int [ ][ ] A, int [ ] X) {
int m = A.length;

int n = X.length;

finish {
int [ ] Y = new int [ m ];

for (int i = 0; i < m; i++) {
async {

int sum = 0.;

finish {
for (int j = 0; j < n; j++) {

async {
sum += A [ i ][ j ] * X [ j ];

}
}

}
Y [ i ] = sum;

}
}

}
return Y;

}



Habanero Java Syntax

Prog ::= FinishStmnt
FinishStmnt ::= finish { StmntSeq }
StmntSeq ::= Stmnt | Stmnt ; StmntSeq

Stmnt ::= finish { StmntSeq }
| async { StmntSeq } StmntSeq
| for Variable from Expr to Expr StmntSeq
| cond Variable then StmntSeq else StmntSeq
| Variable ← Expr
| VectorVar [ Variable ] ← Expr

Expr ::= SimpleExp | VectorVar [ Variable ]
VectorVar ::= VectorId



Concurrency Graph of an HJ Program

Definition
The concurrency graph of an HJ program is a DAG with three
node types:

I a
¯

sync nodes (A) representing an AsyncStmnt

I f
¯
-begin nodes (FB) representing the start of a

FinishStmnt

I f
¯
-end nodes (FE) representing the end of a FinishStmnt

The edges of the concurrency graph represent sequences of
basic statements: AssignStmnt. CondStmnt, WhileStmnt



The Concurrency Graph of a Finish Statement

|
FB •

|
| Example Program Skeleton

A •—————————
| |
| • FB finish {
| | async {

A •————- •————- A finish {
| | | | async { }
| | ↓ ↓ }
| | ======= FE }
↓ ↓ ↓ async { }

FE ================== }
. . . .

Definition
Two statements S1 and S2 of an HJ program P are concurrent if the concurrency
graph of P contains no directed path from S1 to S2 or from S2 to S1.



Semantics of HJ Finish and Async

I ([[ Prog ]] , Env ) = I ( [[ FinishStmnt ]], Env )

I ( [[ StmntSeq ]] , Env ) =
Stmnt ; ⇒ I ( [[ Stmnt ]] , Env )
Stmnt ; StmntSeq ⇒ I ( [[ StmntSeq ]] , I ( [[ Stmnt ]] , Env ) )

I ( [[ Stmnt ]] , Env ) =

finish StmntSeq ⇒ I ( [[ StmntSeq ]] , Env ) )

async { StmntSeq1 } StmntSeq2 ⇒
CombineEnv ( I ( [[ StmntSeq1 ]] , Env ), I ( [[ StmntSeq2 ]] , Env ) )

Variable ← Expr ⇒ EnvAppend ( Env, I ( [[ Expr ]] , Env ) )

VectorVar [ Variable ] ← Expr ⇒
EnvAppend ( Env, I ( [[ VectorVar ]] , Env ),
M ( [[ Variable ]] , Env ), I ( [[ Expr ]] , Env ) ) )



Combining Environments

Because a FinishStmnt will generally include one or more async statements, it
is necessary to provide a semantic function that combines the effects on FS
variables of the several threads begun by async statements. This is provided by
function CombineEnv which combines the effects represented by the
environment modifications performed by the several threads. To accomplish
this, some information about the variables of the FS is needed; this is given by
the map

Map : VarId → VarClass

Thus the CombineEnv function has the signature

CombineEnv : Env ×map × Env ×Map → Env ×Map

The CombineEnv function is defined by the changes made to Env and Map
separately for each variable. The rules for some variable of two environments is
shown in the following table:



Variable Kinds

I Combining environments exploits properties of accesses of
variables performed by threads that produce each
transformed environment.

I We distinguish three kinds of accesses to scalar variables
and five kinds for vector variables.

I The next two slides list the kinds with comments on their
relation to commuting statements.



Scalar Variable Kinds

I null: The variable is not accessed by any statement of the threads. The
statement will commute with anything!

I read: Read-only scalar variables: variables that are read by one or more
statements of the thread but are never written by any statement of the
thread. Statements with read access commute with other statements
with the same access to the variable.

I update: The thread includes statements that update the variable using a
commutative/associative operator.

I invalid: The thread contains a statement (for example a write
statement) that will not generally commute with any statement. This
also applies if the threads include updates of the variable that do not use
the same operator.



Vector Variable Kinds
I null: The variable is not accessed by any statement of the thread. The

statement will commute with anything!

I read: Array(vector) The thread includes one or more statements that
read either a fixed or indexed element of the vector. Such statements
commute with each other.

I indexed: All statements of the thread that access the vector, whether
Read Write or Update, use a different index value. The set of index
values used by statements in the set of threads to which the map applies
are recorded in a index list that is part of the variablekind. The common
case is where the index of a vector accesss is in a range defined by an
afine formula from the index variable of an iteration.

I update: Every statement of the threads that access the vector perform
an update using the same commutative/associative operator. How the
index of the vector element is determined does not matter.

I invalid: The threads contain a statement that accesses the vector in a
way that will not generally commute with any other statement. For
example, a statement (not an update) that writes an element of the
vector. Also accesses are invalid if they are updates using different
operators.



Kind(1) Kind(2) Kind Value

null Kind −→ Kind Value(2)

Kind null −→ Kind Value(1)

read read −→ read Value(1) [ = Value(2)]

invalid — −→ invalid undef

— invalid −→ invalid undef

update update −→ update Value(1)OpValue(2) if Op(1) = Op(2)

invalid undef otherwise

Vector Variables Only

indexed indexed −→ indexed List(1) ∪ List(2) if List(1) ∩ List(2) = ∅
invalid undef otherwise

As a biadic operator on a domain of pairs CombineEnv is both commutative

and associative. Therefore we are free to apply CombineEnv to the collection

of threads of an FinishStmnt in any convenient order, with assurance that the

result will be correct.



Transform: HJ to FJ

|
FB •

| Composition of functions:
| Each is an Environment transform

A •—————————
| | 1. Each Edge of the CG:
| • FB Sequence of Basic Statements
| | 2. Async Node: Apply CombineEnv

A •————- •————- A 3. Contained Finish Statement:
| | | | by recursive application
| | ↓ ↓ of the transform
| | ======= FE
↓ ↓ ↓

FE ==================
. . . .



Functional Java Syntax

Prog ::= make IdList ExprList
Expression ::= SimpleExpr | LetExpr | WhileExpr

| VectorSelect | Reduction | VectorConstr
LetExp ::= let Variable in Expression

| let VectorVar in Expression
WhileExp ::= while Variable with IdList do ( ExprList )

IdList ::= Id | Id , IdList
VectorSelect ::= VectorVar [ Variable ]

Reduction ::= reduce Variable in [ Variable .. Variable ] with
CommAssocOp { Expression }

VectorConstr ::= vector Variable in [ Variable .. Variable ] { Expression }
ExprList ::= Expression | Expression , ExprList

IdList ::= Id | Id , IdList



Example in Functional Java

The example in Functional Java using reduce and vector. The reduce and
vector expressions specify an expression to be evaluated for each index in the
range.

int[] MatrixTimesVector (int [ ][ ] A, int [ ] X) {
make (Y) {

let m = VectorLength (A)

let n = VectorLength (X)

let Y = vector i in [1 .. m] {
let V = A[i] in

reduce j in [1 .. n] with plus {
let op1 = V[j]

let op2 = X[j]

in op1 * op2

}
}

}
}



Realistic Parallel Programs

Q: How can a program with non-commuting statements be
repeatable?

A1: One or both statements of each non-commuting pair
is never executed for any choice of input data.
That is, the program contains dead code.

A2: The commuting law for statements is satisfied by the
non-commuting statements for all values encountered
in any computation by the program

Q: Are there realistic programs that are repeatable
although they contain non-commuting pair of
concurrent statements?

A1: Any ideas??


