
Teaching Induction
Dave MacQueen

1

Friday, November 9, 12

New phase of life: freedom (to live in CA, free time)

What to do?

* maintain and improve SML/NJ

* PL course (online?)
 - useful, thorough tutorial on induction

* survey of module theory

* new projects (theory/design/implementation)
 - learn Coq properly (only dabbled so far)
 - successor ML
 - teaching ML
 [embarrassments of teaching FP with Haskell]
 - new topics? (take advantage of Silicon Valley opportunities?)

2

Friday, November 9, 12

Anatomy of an inductive argument

1. an inductive structure (typically terms of some sort)
 e.g. Nat = Z | S Nat

2. a logical statement of the "inductive principle" for the structure
 (a unary 2nd order predicate). E.g.

 IP(P) =
 P(Z) & -- base case

 ∀x.P(x) => P(S x) -- inductive case, with inductive hypothesis P(x)
 => ∀x.P(x)

3. This gives the outline of inductive proofs on the given structure:

 (1) Lemma: P(Z) -- the base case

 (2) Lemma: ∀y.P(y) => P(S y) -- the inductive case

 (3) Theorem: ∀x.P(x)
 by (1), (2), IP(P)

3

Friday, November 9, 12

This is commonly abbreviated to the following scheme:

For any x, show that P(x), by induction on x:
 base case x = Z:
 P(Z),
 hence P(x)
 inductive case x = S y:
 assume IH: P(y)
 ... P(S y), (invoking IH somewhere)
 hence P(x)
 [hence ∀x.P(x) by IP(P)]

4

Friday, November 9, 12

But often the explicit statement of Induction Hypotheses is omitted.

 Show that P(x) by induction on x.
 case x = Z:
 P(Z)
 case x = S y:

 by induction, P(y)
 P(S y)

Sometimes don't even make the inductive structure explicit,
and we don't have the explicit constructors (like Z, S).

Example: Substitution Lemma

5

Friday, November 9, 12

Substitution Lemma from Pierce, Types and Programming Languages.

9.3.8. Lemma [Preservation of types under substitution]:
 If Γ, x:S ⊦ t:T and Γ ⊦ s:S, then Γ ⊦ [x " s]t : T.

Proof: By induction on a derivation of the statement Γ, x:S ⊦ t:T. For
a given derivation, we proceed by cases on the final typing rule used
in the proof. The most interesting cases are the ones for variables
and abstractions.
...

Case T-Abs: t = λy:T2.t1
 T = T1 " T2
 Γ, x:S, y:T2 ⊦ t1:T1

By convention 5.3.4, we may assume x ≠ y and y ∉ FV(s). Using
permutation on the given subderivation, we obtain Γ, y:T2, x:S ⊦ t1:T1.
Using weakening on the other given derivation (Γ ⊦ s:S), we
obtain Γ, y:T2 ⊦ s:S. Now, by the induction hypothesis [?],
Γ, y:T2 ⊦ [x " s]t1: T1. By T-Abs, Γ ⊦ λy:T2. [x " s]t1 : T1 " T2.
But this is precisely the needed result, since, by the definition
of substitution, [x " s]t = λy:T2. [x " s]t1.

6

Friday, November 9, 12

Problem: Students can’t “formalize” this proof. They can’t write down
the inductive hypothesis that was invoked, and they don’t know what the
relevant Induction Principle is.

7

Friday, November 9, 12

Abstract syntax of SAEL (Simple Arithmetic Expressions with Let)

 v ::= x, y, z, ... (alphanumeric variables)
 n ::= 0, 1, 2, ... (natural numbers)

 bop ::= Plus, Times, ... (primitive binary operators)

 e ::= Num(n) -- number constants, as before
 | Var(v) -- variable expressions
 | Bapp(bop, e, e)
 | Let(v, e, e)

8

Friday, November 9, 12

Rules for relative closure judgements: Γ ⊦ e ok
(“e is closed relative to variable set Γ”)

Rules:

(1)
 Γ ⊦ Num(n) ok

 (x ∈ Γ)
(2)
 Γ ⊦ x ok

 Γ ⊦ e1 ok Γ ⊦ e2 ok
(3)
 Γ ⊦ Bapp(bop,e1,e2) ok

 Γ ⊦ e1 ok Γ ⋃ {x} ⊦ e2 ok
(4)
 Γ ⊦ let x = e1 in e2 ok

9

Friday, November 9, 12

Lemma 4.4 [Substitution]: Γ ⊦ e1 ok ∧ Γ⋃{x} ⊦ e2 ok ∧ x ∉ Γ
 => Γ ⊦ [e1/x]e2 ok.

Case: Γ⋃{x} ⊦ e2 ok by Rule (4). Then e2 is of the form

 e2 = let y = e3 in e4
 ...

But how do we state the Induction Hypothesis in this case? If
we can’t talk about derivations explicitly, we end up trying
something like:

(1) ∀e1.∀Γ1. Γ1 ⊦ e1 ok =>
 (∀e2.∀Γ2.∀x∈Var. x ∉ Γ1 ∧ Γ1 ⊆ Γ2 ∧ Γ2⋃{x} ⊦ e2 ok
 => Γ2 ⊦ [e1/x]e2 ok)

to deal with the variation in contexts (Γ vs Γ⋃{x}).

[See Lecture 7 for detailed discussion.]

10

Friday, November 9, 12

Make Derivations Explicit!

First let us be precise about the structure of derivations and the
definitions of context and subject of a derivation.

Derivations d in Der[ok] are inductively constructed using
rule-constructors corresponding to the four rules (1) through (4).

 d ::= OK1(Γ, n)
 | OK2(Γ, z)
 | OK3(bop,d1,d2) -- d1 and d2 are the derivations for e1 and e2
 | OK4(z,d1,d2) -- d1 is derivation for definiens, d2 for body

These rule constructors are not "free" constructors, because a valid
construction of a derivation has to satisfy some preconditions,
specified as follows:

 OK2(Γ,z) : z ∈ Γ
 OK3(bop,d1,d2) : context(d1) = context(d2)
 OK4(z,d1,d2) : context(d2) = context(d1) ⋃ {z}

11

Friday, November 9, 12

Next we define the subject and context functions for derivations as
follows:

 S1: subject(OK1(Γ, n)) = Num n
 S2: subject(OK2(Γ, z)) = Var z
 S3: subject(OK3(bop,d1,d2)) = Bapp(bop,subject(d1),subject(d2))
 S4: subject(OK4(z,d1,d2)) = Let(z,subject(d1),subject(d2))

 C1: context(OK1(Γ, n)) = Γ
 C2: context(OK2(Γ, z)) = Γ
 C3: context(OK3(bop,d1,d2)) = context(d1)
 C4: context(OK4(x,d1,d2)) = context(d1)

12

Friday, November 9, 12

The Induction Principle for Derivations

IPok(P): (P a predicate over derivations)

 ∀Γ.∀n.P(OK1(Γ,n)) ∧
 ∀Γ.∀z. x ∈ Γ => P(OK2(Γ,z)) ∧
 ∀bop.∀d1.∀d2.(P(d1) ∧ P(d2) ^ context(d1) = context(d2)
 => P(OK3(bop,d1,d2))) ∧
 ∀z.∀d1.∀d2.(P(d1) ∧ P(d2) ∧ context(d2) = context(d1)⋃{z}
 => P(OK4(z,d1,d2)))
 => ∀d.P(d)

where it is understood that Γ ranges over variable sets,
n over Nat, z over variables, bop over primitive operators,
and d,d1,d2 over Der[ok].

13

Friday, November 9, 12

Lemma 4.4 [Substitution]: Γ ⊦ e1 ok ∧ Γ⋃{x} ⊦ e2 ok ∧ x ∉ Γ
 => Γ ⊦ [e1/x]e2 ok. Proof in terms of derivations:

We will assume we are given a derivation d of a judgement

Γ ⊦ e1 ok

(i.e., Γ = context(d) and e1 = subject(d)).

We also assume a variable x ∉ Γ is given. Then we will prove that
∀d∈Der[ok].P(d), where P is the property:

 P(d) == Γ ⊆ context(d) => context(d)\{x} ⊦ [e/x]subject(d) ok

The proof is by induction on the the structure of a derivation
d ∈ Der[ok] as defined above in terms of derivation constructors OK1,
OK2, OK3, and OK4.

14

Friday, November 9, 12

Ind Case: d = OK4(y,d3,d4).

Let e3 = subject(d3) and e4 = subject(d4) and Γ2 = contect(d3). Then it
must be the case that Γ3 = context(d4) = Γ2⋃{y} by the OK4 constraint.
We then have e2 = Let(y,e3, e4). We can assume that the local let-bound
variable y is chosen so that y ≠ x and y ∉ FV(e3) (by α-converting, if
necessary, to make it so). We can also assume that Γ1 ⊆ Γ2, since
otherwise P(d) is true vacuously. Since Γ1 ⊆ Γ2, we also have Γ1 ⊆ Γ3.

IH1: P(d3) == Γ1 ⊆ Γ2 => Γ2\{x} ⊦ [e1/x]e3 ok
IH2: P(d2) == Γ1 ⊆ Γ3 => Γ3\{x} ⊦ [e1/x]e4 ok

By IH1 and the fact that Γ1 ⊆ Γ2, we have

 Γ2\{x} ⊦ [e1/x]e3 ok (1)

and by IH2 and Γ1 ⊆ Γ3 we have

 Γ3\{x} ⊦ [e1/x]e4 ok (2)
...

15

Friday, November 9, 12

Another Problem: students have trouble writing “prose” proofs. They
often confuse the logic.

Possible solution: teach them to write precise proofs in “Lamport”
style.

See example in Chapter 7.

Question: Could we support this proof style with a tool for editing and
checking proofs?

16

Friday, November 9, 12

Why not use Coq?

* If students can’t do conventional proofs using classical logic, they
probably won’t find Coq proofs easier.

* Coq is indirect. I want students to write proofs directly and concretely.

* There wasn’t enough time to learn Coq in addition to the primary PL material
in a 10 week course.

17

Friday, November 9, 12

Can these proofs be automatically checked?

Prospect of creating an online course.

What is the best online format for the text?
- HTML (MathType, blahTeX?)
- PDF (LaTeX)

PDF -> HTML?
- iBook

18

Friday, November 9, 12

PL Course web site (lecture notes, exercises, etc.)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/index.html

Draft Tutorial on Induction (in development)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/handouts/induction.pdf

19

Friday, November 9, 12

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/lectures.html
http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/lectures.html

