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Semantics-preserving compilation
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Problem: Closed-World Assumption
Correct compilation guarantee only applies to 
whole programs!
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Why Whole Programs?
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CompCert

Ps ! Pt =⇒ Ps ≈ Pt

Why Whole Programs?

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .
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x : τ ′ ! es : τ ! et =⇒ x : τ ′ ! es # et : τ

Verifying Open Compilers: Benton-Hur

[Benton-Hur, ICFP’09, MSR’10]   

[Hur-Dreyer POPL’11]
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Benton-Hur: Problem 1
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Benton-Hur: Problem 1

es

et e′t

x : τ ′ ! es " et : τHave

!
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 Need to come up with    
  -- not feasible in practice! 
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Benton-Hur: Problem 2
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Benton-Hur: Problem 2
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Our Approach: Fixes Problem 2
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Our Approach: Fixes Problem 1
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Our Compiler: System F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT

Thursday, November 8, 12



Combined language FCAT

• Boundaries mediate between 
-    &           &             & 

• Operational semantics

• Boundary cancellation

FCAT
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τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC
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Challenges / Roadmap for rest of talk
F+C:  Interoperability semantics 
with type abstraction in both 
languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?
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⌧ ::= ↵ | unit | int | 8[↵].(⌧)! ⌧ | 9↵.⌧ | µ↵.⌧ | h⌧i
e ::= t

t ::= x | () | n | t p t | if0 t t t | �[↵](x : ⌧).t | t [⌧ ] t

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | hti | ⇡
i

(t)

p ::= + | � | ⇤
v ::= () | n | �[↵](x : ⌧).t | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | hvi
E ::= [·] | E p t | v p E | if0 E t t | E [⌧ ] t | v [⌧ ] v E t

| packh⌧,Ei as 9↵.⌧ | unpack h↵, xi = E in t | foldµ↵.⌧ E

| unfold E | hv,E, ti | ⇡
i

(E)

e 7�! e

0
E[�[↵](x : ⌧).t [⌧ 0] v] 7�! E[t[⌧ 0/↵] [v/x]] . . .

�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

⌧ ::= ↵ | unit | int | 8[↵].(⌧)! ⌧ | 9↵.⌧ | µ↵.⌧ | h⌧i
e ::= t

t ::= x | () | n | t p t | if0 t t t | �[↵](x : ⌧).t | t [] t

| t[⌧ ] | packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t

| foldµ↵.⌧ t | unfold t | hti | ⇡i(t)

p ::= + | � | ⇤
v ::= () | n | �[↵](x : ⌧).t | packh⌧,vi as 9↵.⌧

| foldµ↵.⌧ v | hvi | v[⌧ ]

E ::= [·] | . . . | E [] t | v [⌧ ] v E t | E[⌧ ] | . . .

e 7�! e0 E[�[↵](x : ⌧).t [⌧ 0] v] 7�! E[t[⌧ 0/↵] [v/x]] . . .

�;� ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x: ⌧

↵;x: ⌧ ` t : ⌧ 0

�;� ` �[↵](x : ⌧).t :8[↵].(⌧)! ⌧ 0

�;� ` t :8[].(⌧)! ⌧ 0

�;� ` t : ⌧

�;� ` t [] t : ⌧ 0

�;� ` t :8[�,↵].(⌧)! ⌧ 0 � ` ⌧0

�;� ` t[⌧0] :8[↵].(⌧ [⌧0/�])! ⌧ 0[⌧0/�]
. . .

⌧C Type Translation

↵C
= ↵ 8[↵].(⌧)! ⌧ 0C = 9�.h(8[↵].(�, ⌧C)! ⌧ 0C),�i

unit

C
= unit 9↵.⌧C = 9↵.⌧C

int

C
= int µ↵.⌧C = µ↵.⌧C

h⌧
1

, . . . , ⌧
n

iC = h⌧
1

C, . . . , ⌧
n

Ci

�; � ` e : ⌧  e where �

C
; �

C ` e : ⌧C

x : ⌧ 2 �

�; � ` x : ⌧  x �; � ` () : unit () �; � ` n : int n

y

1

, . . . , y
m

= fv(�[↵](x : ⌧).t) �
1

, . . . ,�
k

= ftv(�[↵](x : ⌧).t)

�,↵; �, x : ⌧ ` t : ⌧ 0  t ⌧env = h(�(y
1

))

C, . . . , (�(y
m

))

Ci
v = �[�,↵](z : ⌧env, x: ⌧C).(t[⇡1(z)/y1] · · · [⇡m(z)/ym])

�; � ` �[↵](x : ⌧).t : 8[↵].(⌧)! ⌧ 0  
packh⌧env,hv[�], hyiii as 9↵0.h(8[↵].(↵0, ⌧C)! ⌧ 0C),↵0i
�; � ` t

0

: 8[↵].(⌧
1

)! ⌧
2

 t0 � ` ⌧ �; � ` t : ⌧
1

 t

�; � ` t

0

[⌧ ] t : ⌧
2

 unpack h�, zi = t0 in ⇡1(z) [⌧C]⇡2(z), t

Figure 1: F (top), C (middle) & translation from F to C (bottom)

are exactly as for F (but typeset in orange instead of blue) except
that we replace the F abstraction and application rules with the
three typing rules shown in Figure 1 (middle). In particular, note
that the body of a function must now typecheck in a context that
contains only its formal arguments.

Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional
argument to the function, thus turning the function into a closed

term. The closed function is paired with its environment to create
a closure. The basic idea of typed closure conversion goes back to
Minamide et al. [9] who used an existential type to abstract the type
of the environment. This ensures that two functions with the same
type but different (numbers or types of) free variables still have the
same type after closure conversion: the abstract type hides the fact
that the closures’ environments have different types.

We must also rewrite functions to take their free type variables
as additional arguments. However, instead of collecting these types
in a type environment (as Minamide et al. do), we follow System
F to TAL [10] and directly substitute the types into the function.
Like Morrisett et al., we adopt a type-erasure interpretation, which
means that since all types are erased at run time the substitution of
types into functions has no run-time effect.

Our closure-conversion pass translates F terms of type ⌧ to C
terms of type ⌧

C . Figure 1 (bottom) presents the type and term
translation; the only interesting parts are those that involve func-
tions. The omitted term-translation rules are defined by structural
recursion on terms.

F and C Interoperability We now present a formal semantics for
interoperability between F and C. For now, we define a combined
language FC; in subsequent sections, we will extend this to FCA
and then to FCAT. Our FC multi-language system embeds the lan-
guages F and C so that both languages have natural access to for-
eign values (i.e., values from the other language). In particular, we
want F components of type ⌧ to be usable as C components of type
⌧

C , and vice versa. The design is inspired by Matthews and Find-
ler’s multi-language system for (idealized) ML and Scheme [8], but
we more closely follow Ahmed and Blume’s system for interoper-
ability between the source and target of CPS translation [1].

To allow cross-language communication, FC extends the orig-
inal F and C with syntactic boundaries, written ⌧FCe (F inside,
C outside) and CF⌧

e (C inside, F outside). A term CF⌧
e is well-

typed if e has type ⌧ , and to evaluate it, FC’s operational semantics
require first that e be reduced to a value v (using F reduction rules).
Then a type-directed meta-function CF⌧

(v) = v is applied, yield-
ing a value in C of type ⌧

C . Note that since this value translation
meta-function is used at runtime, it only needs to be defined for
closed values.

As an example, consider the translation of a value v of type
⌧ ! ⌧

0. As per the type translation, this should produce a value of
type 9�.h((�, ⌧C) ! ⌧

0C),�i. Since v is closed, we can simply
use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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are exactly as for F (but typeset in orange instead of blue) except
that we replace the F abstraction and application rules with the
three typing rules shown in Figure 1 (middle). In particular, note
that the body of a function must now typecheck in a context that
contains only its formal arguments.

Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional
argument to the function, thus turning the function into a closed

term. The closed function is paired with its environment to create
a closure. The basic idea of typed closure conversion goes back to
Minamide et al. [9] who used an existential type to abstract the type
of the environment. This ensures that two functions with the same
type but different (numbers or types of) free variables still have the
same type after closure conversion: the abstract type hides the fact
that the closures’ environments have different types.

We must also rewrite functions to take their free type variables
as additional arguments. However, instead of collecting these types
in a type environment (as Minamide et al. do), we follow System
F to TAL [10] and directly substitute the types into the function.
Like Morrisett et al., we adopt a type-erasure interpretation, which
means that since all types are erased at run time the substitution of
types into functions has no run-time effect.

Our closure-conversion pass translates F terms of type ⌧ to C
terms of type ⌧

C . Figure 1 (bottom) presents the type and term
translation; the only interesting parts are those that involve func-
tions. The omitted term-translation rules are defined by structural
recursion on terms.

F and C Interoperability We now present a formal semantics for
interoperability between F and C. For now, we define a combined
language FC; in subsequent sections, we will extend this to FCA
and then to FCAT. Our FC multi-language system embeds the lan-
guages F and C so that both languages have natural access to for-
eign values (i.e., values from the other language). In particular, we
want F components of type ⌧ to be usable as C components of type
⌧

C , and vice versa. The design is inspired by Matthews and Find-
ler’s multi-language system for (idealized) ML and Scheme [8], but
we more closely follow Ahmed and Blume’s system for interoper-
ability between the source and target of CPS translation [1].

To allow cross-language communication, FC extends the orig-
inal F and C with syntactic boundaries, written ⌧FCe (F inside,
C outside) and CF⌧

e (C inside, F outside). A term CF⌧
e is well-

typed if e has type ⌧ , and to evaluate it, FC’s operational semantics
require first that e be reduced to a value v (using F reduction rules).
Then a type-directed meta-function CF⌧

(v) = v is applied, yield-
ing a value in C of type ⌧

C . Note that since this value translation
meta-function is used at runtime, it only needs to be defined for
closed values.

As an example, consider the translation of a value v of type
⌧ ! ⌧

0. As per the type translation, this should produce a value of
type 9�.h((�, ⌧C) ! ⌧

0C),�i. Since v is closed, we can simply
use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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are exactly as for F (but typeset in orange instead of blue) except
that we replace the F abstraction and application rules with the
three typing rules shown in Figure 1 (middle). In particular, note
that the body of a function must now typecheck in a context that
contains only its formal arguments.

Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional
argument to the function, thus turning the function into a closed

term. The closed function is paired with its environment to create
a closure. The basic idea of typed closure conversion goes back to
Minamide et al. [9] who used an existential type to abstract the type
of the environment. This ensures that two functions with the same
type but different (numbers or types of) free variables still have the
same type after closure conversion: the abstract type hides the fact
that the closures’ environments have different types.

We must also rewrite functions to take their free type variables
as additional arguments. However, instead of collecting these types
in a type environment (as Minamide et al. do), we follow System
F to TAL [10] and directly substitute the types into the function.
Like Morrisett et al., we adopt a type-erasure interpretation, which
means that since all types are erased at run time the substitution of
types into functions has no run-time effect.

Our closure-conversion pass translates F terms of type ⌧ to C
terms of type ⌧

C . Figure 1 (bottom) presents the type and term
translation; the only interesting parts are those that involve func-
tions. The omitted term-translation rules are defined by structural
recursion on terms.

F and C Interoperability We now present a formal semantics for
interoperability between F and C. For now, we define a combined
language FC; in subsequent sections, we will extend this to FCA
and then to FCAT. Our FC multi-language system embeds the lan-
guages F and C so that both languages have natural access to for-
eign values (i.e., values from the other language). In particular, we
want F components of type ⌧ to be usable as C components of type
⌧

C , and vice versa. The design is inspired by Matthews and Find-
ler’s multi-language system for (idealized) ML and Scheme [8], but
we more closely follow Ahmed and Blume’s system for interoper-
ability between the source and target of CPS translation [1].

To allow cross-language communication, FC extends the orig-
inal F and C with syntactic boundaries, written ⌧FCe (F inside,
C outside) and CF⌧

e (C inside, F outside). A term CF⌧
e is well-

typed if e has type ⌧ , and to evaluate it, FC’s operational semantics
require first that e be reduced to a value v (using F reduction rules).
Then a type-directed meta-function CF⌧

(v) = v is applied, yield-
ing a value in C of type ⌧

C . Note that since this value translation
meta-function is used at runtime, it only needs to be defined for
closed values.

As an example, consider the translation of a value v of type
⌧ ! ⌧

0. As per the type translation, this should produce a value of
type 9�.h((�, ⌧C) ! ⌧

0C),�i. Since v is closed, we can simply
use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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are exactly as for F (but typeset in orange instead of blue) except
that we replace the F abstraction and application rules with the
three typing rules shown in Figure 1 (middle). In particular, note
that the body of a function must now typecheck in a context that
contains only its formal arguments.

Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional
argument to the function, thus turning the function into a closed

term. The closed function is paired with its environment to create
a closure. The basic idea of typed closure conversion goes back to
Minamide et al. [9] who used an existential type to abstract the type
of the environment. This ensures that two functions with the same
type but different (numbers or types of) free variables still have the
same type after closure conversion: the abstract type hides the fact
that the closures’ environments have different types.

We must also rewrite functions to take their free type variables
as additional arguments. However, instead of collecting these types
in a type environment (as Minamide et al. do), we follow System
F to TAL [10] and directly substitute the types into the function.
Like Morrisett et al., we adopt a type-erasure interpretation, which
means that since all types are erased at run time the substitution of
types into functions has no run-time effect.

Our closure-conversion pass translates F terms of type ⌧ to C
terms of type ⌧

C . Figure 1 (bottom) presents the type and term
translation; the only interesting parts are those that involve func-
tions. The omitted term-translation rules are defined by structural
recursion on terms.

F and C Interoperability We now present a formal semantics for
interoperability between F and C. For now, we define a combined
language FC; in subsequent sections, we will extend this to FCA
and then to FCAT. Our FC multi-language system embeds the lan-
guages F and C so that both languages have natural access to for-
eign values (i.e., values from the other language). In particular, we
want F components of type ⌧ to be usable as C components of type
⌧

C , and vice versa. The design is inspired by Matthews and Find-
ler’s multi-language system for (idealized) ML and Scheme [8], but
we more closely follow Ahmed and Blume’s system for interoper-
ability between the source and target of CPS translation [1].

To allow cross-language communication, FC extends the orig-
inal F and C with syntactic boundaries, written ⌧FCe (F inside,
C outside) and CF⌧

e (C inside, F outside). A term CF⌧
e is well-

typed if e has type ⌧ , and to evaluate it, FC’s operational semantics
require first that e be reduced to a value v (using F reduction rules).
Then a type-directed meta-function CF⌧

(v) = v is applied, yield-
ing a value in C of type ⌧

C . Note that since this value translation
meta-function is used at runtime, it only needs to be defined for
closed values.

As an example, consider the translation of a value v of type
⌧ ! ⌧

0. As per the type translation, this should produce a value of
type 9�.h((�, ⌧C) ! ⌧

0C),�i. Since v is closed, we can simply
use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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Closure Conversion: F to C

⌧ ::= ↵ | unit | int | 8[↵].(⌧)! ⌧ | 9↵.⌧ | µ↵.⌧ | h⌧i
e ::= t

t ::= x | () | n | t p t | if0 t t t | �[↵](x : ⌧).t | t [⌧ ] t

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | hti | ⇡
i

(t)

p ::= + | � | ⇤
v ::= () | n | �[↵](x : ⌧).t | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | hvi
E ::= [·] | E p t | v p E | if0 E t t | E [⌧ ] t | v [⌧ ] v E t

| packh⌧,Ei as 9↵.⌧ | unpack h↵, xi = E in t | foldµ↵.⌧ E

| unfold E | hv,E, ti | ⇡
i

(E)

e 7�! e

0
E[�[↵](x : ⌧).t [⌧ 0] v] 7�! E[t[⌧ 0/↵] [v/x]] . . .

�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

⌧ ::= ↵ | unit | int | 8[↵].(⌧)! ⌧ | 9↵.⌧ | µ↵.⌧ | h⌧i
e ::= t

t ::= x | () | n | t p t | if0 t t t | �[↵](x : ⌧).t | t [] t

| t[⌧ ] | packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t

| foldµ↵.⌧ t | unfold t | hti | ⇡i(t)

p ::= + | � | ⇤
v ::= () | n | �[↵](x : ⌧).t | packh⌧,vi as 9↵.⌧

| foldµ↵.⌧ v | hvi | v[⌧ ]

E ::= [·] | . . . | E [] t | v [⌧ ] v E t | E[⌧ ] | . . .

e 7�! e0 E[�[↵](x : ⌧).t [⌧ 0] v] 7�! E[t[⌧ 0/↵] [v/x]] . . .

�;� ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x: ⌧

↵;x: ⌧ ` t : ⌧ 0

�;� ` �[↵](x : ⌧).t :8[↵].(⌧)! ⌧ 0

�;� ` t :8[].(⌧)! ⌧ 0

�;� ` t : ⌧

�;� ` t [] t : ⌧ 0

�;� ` t :8[�,↵].(⌧)! ⌧ 0 � ` ⌧0

�;� ` t[⌧0] :8[↵].(⌧ [⌧0/�])! ⌧ 0[⌧0/�]
. . .

⌧C Type Translation

↵C
= ↵ 8[↵].(⌧)! ⌧ 0C = 9�.h(8[↵].(�, ⌧C)! ⌧ 0C),�i

unit

C
= unit 9↵.⌧C = 9↵.⌧C

int

C
= int µ↵.⌧C = µ↵.⌧C

h⌧
1

, . . . , ⌧
n

iC = h⌧
1

C, . . . , ⌧
n

Ci

�; � ` e : ⌧  e where �

C
; �

C ` e : ⌧C

x : ⌧ 2 �

�; � ` x : ⌧  x �; � ` () : unit () �; � ` n : int n

y

1

, . . . , y
m

= fv(�[↵](x : ⌧).t) �
1

, . . . ,�
k

= ftv(�[↵](x : ⌧).t)

�,↵; �, x : ⌧ ` t : ⌧ 0  t ⌧env = h(�(y
1

))

C, . . . , (�(y
m

))

Ci
v = �[�,↵](z : ⌧env, x: ⌧C).(t[⇡1(z)/y1] · · · [⇡m(z)/ym])

�; � ` �[↵](x : ⌧).t : 8[↵].(⌧)! ⌧ 0  
packh⌧env,hv[�], hyiii as 9↵0.h(8[↵].(↵0, ⌧C)! ⌧ 0C),↵0i
�; � ` t

0

: 8[↵].(⌧
1

)! ⌧
2

 t0 � ` ⌧ �; � ` t : ⌧
1

 t

�; � ` t

0

[⌧ ] t : ⌧
2

 unpack h�, zi = t0 in ⇡1(z) [⌧C]⇡2(z), t

Figure 1: F (top), C (middle) & translation from F to C (bottom)

are exactly as for F (but typeset in orange instead of blue) except
that we replace the F abstraction and application rules with the
three typing rules shown in Figure 1 (middle). In particular, note
that the body of a function must now typecheck in a context that
contains only its formal arguments.

Closure conversion collects a function’s free term variables in a
tuple called the closure environment that is passed as an additional
argument to the function, thus turning the function into a closed

term. The closed function is paired with its environment to create
a closure. The basic idea of typed closure conversion goes back to
Minamide et al. [9] who used an existential type to abstract the type
of the environment. This ensures that two functions with the same
type but different (numbers or types of) free variables still have the
same type after closure conversion: the abstract type hides the fact
that the closures’ environments have different types.

We must also rewrite functions to take their free type variables
as additional arguments. However, instead of collecting these types
in a type environment (as Minamide et al. do), we follow System
F to TAL [10] and directly substitute the types into the function.
Like Morrisett et al., we adopt a type-erasure interpretation, which
means that since all types are erased at run time the substitution of
types into functions has no run-time effect.

Our closure-conversion pass translates F terms of type ⌧ to C
terms of type ⌧

C . Figure 1 (bottom) presents the type and term
translation; the only interesting parts are those that involve func-
tions. The omitted term-translation rules are defined by structural
recursion on terms.

F and C Interoperability We now present a formal semantics for
interoperability between F and C. For now, we define a combined
language FC; in subsequent sections, we will extend this to FCA
and then to FCAT. Our FC multi-language system embeds the lan-
guages F and C so that both languages have natural access to for-
eign values (i.e., values from the other language). In particular, we
want F components of type ⌧ to be usable as C components of type
⌧

C , and vice versa. The design is inspired by Matthews and Find-
ler’s multi-language system for (idealized) ML and Scheme [8], but
we more closely follow Ahmed and Blume’s system for interoper-
ability between the source and target of CPS translation [1].

To allow cross-language communication, FC extends the orig-
inal F and C with syntactic boundaries, written ⌧FCe (F inside,
C outside) and CF⌧

e (C inside, F outside). A term CF⌧
e is well-

typed if e has type ⌧ , and to evaluate it, FC’s operational semantics
require first that e be reduced to a value v (using F reduction rules).
Then a type-directed meta-function CF⌧

(v) = v is applied, yield-
ing a value in C of type ⌧

C . Note that since this value translation
meta-function is used at runtime, it only needs to be defined for
closed values.

As an example, consider the translation of a value v of type
⌧ ! ⌧

0. As per the type translation, this should produce a value of
type 9�.h((�, ⌧C) ! ⌧

0C),�i. Since v is closed, we can simply
use unit for the type � of the closure environment:

CF⌧! ⌧ 0
(v) = packhunit,hv0, ()ii as 9�.h((�, ⌧C) ! ⌧ 0C),�i

We must still construct the underlying function v0 for this closure,
which we can do using boundary terms and the original function v:

v0
= �(z : unit, x: ⌧C).CF⌧ 0

(v

⌧FC x).

The function we build simply translates its argument from C to F,
applies the translated argument to v, and finally translates the result
back into C.

The full translation rule for functions must also handle type
arguments and requires some additional machinery, which we will
discuss momentarily. First, we consider boundaries in the other
direction.

We can write ⌧FCe when e has type ⌧

C . As before, to evaluate
a boundary term, we first evaluate the component under the bound-
ary, getting a result v. Then we apply a value translation meta-
function ⌧FC(v) = v. The result is an F value of type ⌧ . Note that
this translation is only defined for closed values of translation type.

Consider the type ⌧ ! ⌧

0 again. To be used as an F function, a
closure v of type (⌧ ! ⌧

0
)

C must first have its argument translated
from F to C. Then the closure must be unpacked and applied to its
environment and argument, and finally, the result is translated back
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Interoperability: F and C

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i
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⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v
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i where ⌧
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⌧FC(v) = v ⌧ 6= Lh⌧ i
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Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

Thursday, November 8, 12
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from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

L〈τ 〉〈C〉 = τα〈C〉 = α

(∀[α].(α)→ α)〈C〉 = ∃β.〈(∀[α].(β,α)→ α),β〉

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

Thursday, November 8, 12



Interoperability: F and C

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧

e

E ::= · · · | CF⌧
E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi
= d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unit

hCi
= unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

int

hCi
= int h⌧

1

, . . . , ⌧
n

ihCi = h⌧
1

hCi, . . . , ⌧
n

hCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧
e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
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e : ⌧hCi

CF⌧
(v) = v Value Translation

CFunit

(()) = () CFint

(n) = n CFLh⌧i
(

Lh⌧iFCv) = v

CF8[↵].(⌧)! ⌧ 0
(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵]
(v [Lh↵i] ⌧ [Lh↵i/↵]FCx)

CF9↵.⌧
(packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF⌧ [⌧ 0/↵]
(v) = v

CFµ↵.⌧
(foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF⌧ [µ↵.⌧/↵]
(v) = v

CFh⌧
1

, . . . , ⌧
n

i
(hv

1

, . . . , v
n

i) = hv1, . . . , vni where CF⌧
i

(v

i

) = vi

⌧FC(v) = v Value Translation

unitFC(()) = ()

intFC(n) = n

Lh⌧iFC(v) = Lh⌧iFCv
8[↵].(⌧)! ⌧ 0

FC(v) = �[↵](x : ⌧).⌧
0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧
x)

9↵.⌧FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]FC(v) = v

µ↵.⌧FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]FC(v) = v

h⌧
1

, . . . , ⌧
n

iFC(hv1, . . . , vni) = hv
1

, . . . , v
n

i where ⌧
iFC(vi) = v

i

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF⌧
(v) = v

E[CF⌧
v] 7�! E[v]

⌧FC(v) = v ⌧ 6= Lh⌧ i
E[

⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧
x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵

C
= ↵, the translation of this type is

8[↵].(↵)! ↵C
= 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C]⇡2(y) CF↵
x)

Note that the application produced by this translation needs a C
type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧

C .
We resolve this by making two changes to our system: first,

we add a type d↵e (which can be read as “the suspension of ↵

into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧

hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi

= d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧

C .
With these two changes, we can correct the example above

by replacing the appearance of ↵C with ↵

hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵

C .
Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF8[↵].(↵)! ↵
(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v0
= �[↵](z : unit, x:↵).CF↵

(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧i

e. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v0 can be replaced with
Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧

0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧

0 appear in the result of translation.
With the additional tools of lumps, suspensions, and the opera-

tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.
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A

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ | box 

 ::= 8[↵].(⌧)! ⌧ | h⌧, . . . , ⌧i
e ::= (t,H) | t

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[⌧ ]

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | balloc hti | read[i] t

p ::= + | � | ⇤
v ::= () | n | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | ` | v[⌧ ]

E ::= (Et, ·)
Et ::= [·] | . . . | balloc hv, Et, ti | read[i] Et

H ::= · | H, ` 7! h

h ::= �[↵](x : ⌧).t | hv, . . . , vi
hH | ei 7�! hH0 | e0i Reduction Relation (selected cases)

hH | (t,H0)i 7�! h(H,H0) | ti dom(H) \ dom(H0
) = ;

hH | E[` [⌧ 0] v]i 7�! hH | E[t[⌧ 0/↵][v/x]]i H(`) = �[↵](x : ⌧).t

 ` h : where  ::= · |  , ` : 

 ` H : 0 where dom( ) \ dom( 0
) = ;

 ;�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

 ` H : 0 ( , 0);�; � ` t : ⌧

 ;�; � ` (t,H) : ⌧
. . .

 ;�; � ` t : ⌧

 ;�; � ` balloc hti : box h⌧i
 ;�; � ` t : box h⌧0, . . . ⌧i . . . , ⌧ni

 ;�; � ` read[i] t : ⌧i

⌧A Type Translation

↵A
= ↵ 8[↵].(⌧)! ⌧ 0A

= box 8[↵].(⌧A)! ⌧ 0A

unitA = unit 9↵.⌧A = 9↵.⌧A

intA = int µ↵.⌧A = µ↵.⌧A

h⌧1, . . . , ⌧niA = box h(⌧1A), . . . (⌧nA)i

�;�;` e : ⌧  (t,H : ) where �;� ` e : ⌧ , · ` H : , and
·;�A

;�A ` (t,H) : ⌧A

Figure 3: A (top) & translation from C to A (bottom)

3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is

⌧ ::= · · · | Lh⌧i
t ::= · · · | ⌧CAe

v ::= · · · | Lh⌧iCAv

E ::= · · · | ⌧CAE

⌧ ::= · · · | d↵e | d↵e
t ::= · · · | AC⌧ e
Et ::= · · · | AC⌧E

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= H

 ::=  

� ::= · · · | �,↵

� ::= · · · | �, x : ⌧

⌧ hAi Operational Type Translation

8[↵].(⌧)! ⌧ 0hAi
= box 8[↵].(⌧ hAi[↵/d↵e])! ⌧ 0hAi[↵/d↵e]

↵hAi
= d↵e . . . Lh⌧ihAi

= ⌧ d↵ehAi
= d↵e

Type Substitution: d↵e[⌧/↵] = (⌧hCi)hAi d↵e[⌧/↵] = ⌧ hAi

 ;�;� ` e : ⌧ Include A rules and add  to existing rules

 ;�;� ` e : ⌧ hAi

 ;�;� ` ⌧CAe : ⌧

 ;�;� ` e : ⌧

 ;�;� ` AC⌧ e : ⌧ hAi

AC⌧
(v,M) = (v,M 0

) Value Translation (selected cases)

ACunit
((),M) = ((),M)

AC8[↵].(⌧)! ⌧ 0
(v,M) = (`, (M, ` 7! h))

where h = �[↵](x : ⌧ hAi[↵/d↵e]).

AC⌧
0[Lh↵i/↵]v [Lh↵i] ⌧ [Lh↵i/↵]CAx

ACh⌧i
(hvi,M1) = (`, (Mn+1, ` 7! hvi))

where AC⌧i
(vi,Mi) = (vi,Mi+1)

⌧CA(v,M) = (v,M 0
) Value Translation (selected cases)

unitCA((),M) = ((),M)

8[↵].(⌧)! ⌧ 0
CA(v,M) = (�[↵](x : ⌧).⌧

0
CAv [d↵e]AC⌧x,M)

h⌧iCA(`,M1) = (hvi,Mn+1)

where M1(`) = hvi and ⌧iCA(vi,Mi) = (vi,Mi+1)

hM | ei 7�! hM 0 | e0i Lift FC rules to new config.; replace E with E

AC⌧
(v,M) = (v,M 0

)

hM |E[AC⌧v]i 7�! hM 0 |E[v]i

⌧CA(v,M) = (v,M 0
) ⌧ 6= Lh⌧i

hM |E[

⌧CAv]i 7�! hM 0 |E[v]i

Figure 4: FCA multi-language system (extends Figures 2 and 3)

defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ | box 

 ::= 8[↵].(⌧)! ⌧ | h⌧, . . . , ⌧i
e ::= (t,H) | t

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[⌧ ]

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t
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h ::= �[↵](x : ⌧).t | hv, . . . , vi
hH | ei 7�! hH0 | e0i Reduction Relation (selected cases)

hH | (t,H0)i 7�! h(H,H0) | ti dom(H) \ dom(H0
) = ;

hH | E[` [⌧ 0] v]i 7�! hH | E[t[⌧ 0/↵][v/x]]i H(`) = �[↵](x : ⌧).t

 ` h : where  ::= · |  , ` : 

 ` H : 0 where dom( ) \ dom( 0
) = ;

 ;�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

 ` H : 0 ( , 0);�; � ` t : ⌧

 ;�; � ` (t,H) : ⌧
. . .

 ;�; � ` t : ⌧

 ;�; � ` balloc hti : box h⌧i
 ;�; � ` t : box h⌧0, . . . ⌧i . . . , ⌧ni

 ;�; � ` read[i] t : ⌧i

⌧A Type Translation

↵A
= ↵ 8[↵].(⌧)! ⌧ 0A

= box 8[↵].(⌧A)! ⌧ 0A

unitA = unit 9↵.⌧A = 9↵.⌧A

intA = int µ↵.⌧A = µ↵.⌧A

h⌧1, . . . , ⌧niA = box h(⌧1A), . . . (⌧nA)i

�;�;` e : ⌧  (t,H : ) where �;� ` e : ⌧ , · ` H : , and
·;�A

;�A ` (t,H) : ⌧A

Figure 3: A (top) & translation from C to A (bottom)

3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is

⌧ ::= · · · | Lh⌧i
t ::= · · · | ⌧CAe

v ::= · · · | Lh⌧iCAv

E ::= · · · | ⌧CAE

⌧ ::= · · · | d↵e | d↵e
t ::= · · · | AC⌧ e
Et ::= · · · | AC⌧E

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= H

 ::=  

� ::= · · · | �,↵

� ::= · · · | �, x : ⌧

⌧ hAi Operational Type Translation

8[↵].(⌧)! ⌧ 0hAi
= box 8[↵].(⌧ hAi[↵/d↵e])! ⌧ 0hAi[↵/d↵e]

↵hAi
= d↵e . . . Lh⌧ihAi

= ⌧ d↵ehAi
= d↵e

Type Substitution: d↵e[⌧/↵] = (⌧hCi)hAi d↵e[⌧/↵] = ⌧ hAi

 ;�;� ` e : ⌧ Include A rules and add  to existing rules

 ;�;� ` e : ⌧ hAi

 ;�;� ` ⌧CAe : ⌧

 ;�;� ` e : ⌧

 ;�;� ` AC⌧ e : ⌧ hAi

AC⌧
(v,M) = (v,M 0

) Value Translation (selected cases)

ACunit
((),M) = ((),M)

AC8[↵].(⌧)! ⌧ 0
(v,M) = (`, (M, ` 7! h))

where h = �[↵](x : ⌧ hAi[↵/d↵e]).

AC⌧
0[Lh↵i/↵]v [Lh↵i] ⌧ [Lh↵i/↵]CAx

ACh⌧i
(hvi,M1) = (`, (Mn+1, ` 7! hvi))

where AC⌧i
(vi,Mi) = (vi,Mi+1)

⌧CA(v,M) = (v,M 0
) Value Translation (selected cases)

unitCA((),M) = ((),M)
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0
CAv [d↵e]AC⌧x,M)

h⌧iCA(`,M1) = (hvi,Mn+1)

where M1(`) = hvi and ⌧iCA(vi,Mi) = (vi,Mi+1)

hM | ei 7�! hM 0 | e0i Lift FC rules to new config.; replace E with E

AC⌧
(v,M) = (v,M 0

)

hM |E[AC⌧v]i 7�! hM 0 |E[v]i

⌧CA(v,M) = (v,M 0
) ⌧ 6= Lh⌧i

hM |E[

⌧CAv]i 7�! hM 0 |E[v]i

Figure 4: FCA multi-language system (extends Figures 2 and 3)

defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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Allocation: C to A

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ | box 

 ::= 8[↵].(⌧)! ⌧ | h⌧, . . . , ⌧i
e ::= (t,H) | t

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[⌧ ]

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | balloc hti | read[i] t

p ::= + | � | ⇤
v ::= () | n | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | ` | v[⌧ ]

E ::= (Et, ·)
Et ::= [·] | . . . | balloc hv, Et, ti | read[i] Et

H ::= · | H, ` 7! h

h ::= �[↵](x : ⌧).t | hv, . . . , vi
hH | ei 7�! hH0 | e0i Reduction Relation (selected cases)

hH | (t,H0)i 7�! h(H,H0) | ti dom(H) \ dom(H0
) = ;

hH | E[` [⌧ 0] v]i 7�! hH | E[t[⌧ 0/↵][v/x]]i H(`) = �[↵](x : ⌧).t

 ` h : where  ::= · |  , ` : 

 ` H : 0 where dom( ) \ dom( 0
) = ;

 ;�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

 ` H : 0 ( , 0);�; � ` t : ⌧

 ;�; � ` (t,H) : ⌧
. . .

 ;�; � ` t : ⌧

 ;�; � ` balloc hti : box h⌧i
 ;�; � ` t : box h⌧0, . . . ⌧i . . . , ⌧ni

 ;�; � ` read[i] t : ⌧i

⌧A Type Translation

↵A
= ↵ 8[↵].(⌧)! ⌧ 0A

= box 8[↵].(⌧A)! ⌧ 0A

unitA = unit 9↵.⌧A = 9↵.⌧A

intA = int µ↵.⌧A = µ↵.⌧A

h⌧1, . . . , ⌧niA = box h(⌧1A), . . . (⌧nA)i

�;�;` e : ⌧  (t,H : ) where �;� ` e : ⌧ , · ` H : , and
·;�A

;�A ` (t,H) : ⌧A

Figure 3: A (top) & translation from C to A (bottom)

3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is

⌧ ::= · · · | Lh⌧i
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
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E expect a component e, and term contexts Et expect a term t.
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and  for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types  . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment  ` H : 0

includes an external heap type as an environment ( ) as well as
the type assigned to a heap fragment ( 0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
( , 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment  ;�;� ` e : ⌧ . Evaluation contexts
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E expect a component e, and term contexts Et expect a term t.
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type  , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass
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T
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box 

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · |  , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)
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| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
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E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · |  , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)
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the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
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respectively.

T has several classes of values: heap values h, like in A, are
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are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
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The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
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balloc rd, n, respectively), load and store instructions for tuples,
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aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.
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the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)
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Well-typed Components in T

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : ( ,�,�)
· ` H :  ` R :�  ` S :�

` (H,R, S:�) : ( ,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap( e)

ret-type(q,�,�) = ⌧ ;�0 ( , e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆ )�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u )�;�[rd : ⌧ ];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs )�;�[rd : ⌧ ];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧  e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification
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q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.
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⌧T Type translation
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Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
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Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
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Logical relations:  related inputs to related outputs

                                  

Equivalence of T Components: Tricky!

related inputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box 

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · |  , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)
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the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)
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Logical relations:  related inputs to related outputs

                                  

Equivalence of T Components: Tricky!

related inputs

related outputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
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h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and  for the types of heap values. T
has both mutable (ref ) and immutable (box ) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
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respectively.

T has several classes of values: heap values h, like in A, are
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values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : ( ,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
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Figure 6: Judgments in T type system (excludes well-formed types)
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Code Generation: A to T

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : ( ,�,�)
· ` H :  ` R :�  ` S :�

` (H,R, S:�) : ( ,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap( e)

ret-type(q,�,�) = ⌧ ;�0 ( , e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆ )�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u )�;�[rd : ⌧ ];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs )�;�[rd : ⌧ ];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧  e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification
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Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules
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Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification
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Code Generation: A to T
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as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
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vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.
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we add the form for embedding an A component into T as an in-
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Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= ( , )

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : ( ,�,�)
(·, ( , ·, ·)) ` H : ( , ·) ` M : ( ,�,�)

` (H,M) : (( , ),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T
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v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= ( , )

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : ( ,�,�)
(·, ( , ·, ·)) ` H : ( , ·) ` M : ( ,�,�)

` (H,M) : (( , ),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧ ) and q0

= i� len(⌧ ) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e ) �; (rd : ⌧T );�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : ( ;�;�;�;�;q ` ⌧ ; �̂) ( 

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^  ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : ( 

0,�0, �̂0
) ^

` C : ( ;�;�;�;�;q ` ⌧ ;�0
) ( 

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) ( hM | C[e1]i# () hM | C[e2]i# )

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]
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Conclusions
• Compiler verification methodology that

- guarantees correct compilation of components, not just 
whole programs

- works for multi-pass compilers

- supports reasoning about whole programs produced by 
linking with arbitrary target code

• Interoperability semantics provides specification of when 
source and target code are related 
- easier to understand compiler correctness theorem
- but, have to get all the languages to fit together!
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Questions?
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