Verifying an Open Compiler from System F to Assembly

James T. Perconti \& Amal Ahmed
Northeastern University

Compiler Correctness

$s \leadsto t$
1
compiles to
$s \approx t$
I
same meaning

Semantics-preserving compilation

$s \leadsto t$
1
compiles to

$s \approx t$ 1
same meaning

Problem: Closed-World Assumption

Correct compilation guarantee only applies to whole programs!

\Downarrow

Problem: Closed-World Assumption

Correct compilation guarantee only applies to whole programs!

Problem: Closed-World Assumption

Correct compilation guarantee only applies to whole programs!

Why Whole Programs?

$$
s \rightsquigarrow t \Longrightarrow s \underset{\substack{\uparrow \\ \text { expressed how? }}}{\approx} t
$$

Why Whole Programs?

CompCert

Verifying Open Compilers: Benton-Hur

$\mathrm{x}: \tau^{\prime} \vdash \mathrm{e}_{\mathrm{s}}: \tau \rightsquigarrow \mathbf{e}_{\mathrm{t}} \Longrightarrow \mathrm{x}: \tau^{\prime} \vdash \mathrm{e}_{\mathrm{s}} \simeq \mathbf{e}_{\mathrm{t}}: \tau$
[Benton-Hur, ICFP'09, MSR'I 0]
[Hur-Dreyer POPL'II]

Verifying Open Compilers: Benton-Hur

$\mathrm{x}: \tau^{\prime} \vdash \mathrm{e}_{\mathrm{s}}: \tau \rightsquigarrow \mathbf{e}_{\mathrm{t}} \Longrightarrow \mathrm{x}: \tau^{\prime} \vdash \mathrm{e}_{\mathrm{s}} \simeq \mathbf{e}_{\mathrm{t}}: \tau$

$$
\forall \begin{aligned}
& \text { cross-language logical relation } \\
& \forall \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}} . \vdash \mathrm{v}_{\mathrm{s}} \simeq \mathrm{v}_{\mathrm{t}}: \tau^{\prime} \Longrightarrow \quad \vdash \mathrm{e}_{\mathrm{s}}\left[\mathrm{v}_{\mathrm{s}} / \mathrm{x}\right] \simeq \mathrm{e}_{\mathrm{t}} \neq \mathrm{v}_{\mathrm{t}}: \tau
\end{aligned}
$$

[Benton-Hur, ICFP’09, MSR'I0]
[Hur-Dreyer POPL'II]

Benton-Hur: Problem 1

Benton-Hur: Problem 2

Transitivity for single-lang. logical relation?

$$
\left.\begin{array}{l}
e_{1} \approx e_{2} \\
e_{2} \approx e_{3}
\end{array}\right\} \stackrel{?}{\Longrightarrow} e_{1} \approx e_{3}
$$

Transitivity for single-lang. logical relation?
$e_{1} \approx e_{2} \quad$?
$e_{2} \approx e_{3}$

- Prove: $\quad e \approx e^{\prime} \Longleftrightarrow e \approx^{c t x} e^{\prime}$
- $\approx^{c t x}$ is transitive, $\therefore \approx$ is transitive

Benton-Hur: Problem 2

Transitivity for single-lang. logical relation:
$e \approx e^{\prime} \Longleftrightarrow e \approx^{c t x} e^{\prime}$

Benton-Hur: Problem 2

cross-language relation; no definition of tx. equiv

Transitivity for single-lang. logical relation:
$e \approx e^{\prime} \Longleftrightarrow e \approx^{c t x} e^{\prime}$

Our Approach

Compiler Correctness

Our Approach: Fixes Problem 2

Compiler Correctness

Our Approach: Fixes Problem 2

Compiler Correctness

Our Approach: Fixes Problem 2

Compiler Correctness

Our Approach: Fixes Problem 1

Our Approach: Fixes Problem 1

Our Approach: Fixes Problem 1

$$
\begin{aligned}
& \mathcal{T I S}\left(\mathrm{e}_{\mathrm{s}}\left(\mathcal{S I} \mathcal{T} \mathrm{e}_{\mathrm{t}}^{\prime}\right)\right) \\
& \approx^{c t x} \mathrm{e}_{\mathrm{t}} \mathrm{e}_{\mathrm{t}}^{\prime}
\end{aligned}
$$

Our Compiler: System F to TAL

Closure Conversion $\quad \tau^{C}$

Allocation
$\tau^{\mathcal{A}}$

Code Generation
$\tau^{\mathcal{T}}$

Combined language FCAT

- Boundaries mediate between

$$
-\tau \& \tau^{\mathcal{C}} \quad \tau \& \tau^{\mathcal{A}} \tau \& \tau^{\mathcal{T}}
$$

Combined language FCAT

- Boundaries mediate between

$$
-\tau \& \tau^{\mathcal{C}} \quad \tau \& \tau^{\mathcal{A}} \quad \tau \& \tau^{\mathcal{T}}
$$

- Operational semantics

$$
\begin{aligned}
& \mathcal{C \mathcal { F }}^{\tau} \mathrm{e} \longmapsto{ }^{*} \mathcal{C} \mathcal{F}^{\tau} \mathrm{v} \longmapsto \mathrm{v} \\
& \tau \mathcal{F C}{ }^{*} \longmapsto
\end{aligned}
$$

Combined language FCAT

- Boundaries mediate between

$$
-\tau \& \tau^{\mathcal{C}} \quad \tau \& \tau^{\mathcal{A}} \quad \tau \& \tau^{\mathcal{T}}
$$

- Operational semantics

$$
\begin{aligned}
& \mathcal{C} \mathcal{F}^{\tau} \mathrm{e} \longmapsto{ }^{*} \mathcal{C} \mathcal{F}^{\tau} \mathrm{v} \longmapsto \mathrm{v} \\
& \tau \mathcal{F C}{ }^{*} \longmapsto \tau \mathcal{F} \mathcal{C} \mathrm{~V} \longmapsto \mathrm{v}
\end{aligned}
$$

- Boundary cancellation

$$
\begin{aligned}
& \tau \mathcal{F C C} \mathcal{F}^{\tau} \mathrm{e} \approx^{c t x} \mathrm{e}: \tau \\
& \mathcal{C \mathcal { F }}^{\tau \tau} \mathcal{F C} \mathrm{e} \approx^{c t x} \mathrm{e}: \tau^{\mathcal{C}}
\end{aligned}
$$

Challenges / Roadmap for rest of talk

F+C: Interoperability semantics with type abstraction in both languages

C+A: Interoperability when compiler pass allocates code \& tuples on heap
$\mathrm{A}+\mathrm{T}$: What is e ? What is v ? How to define contextual equiv. for TAL components? How to define logical relation?

Challenges / Roadmap for rest of talk

F+C: Interoperability semantics with type abstraction in both languages

C+A: Interoperability when compiler pass allocates code \& tuples on heap
$\mathrm{A}+\mathrm{T}$: What is e ? What is v ? How to define contextual equiv. for TAL components? How to define logical relation?
$\Delta ; \Gamma \vdash \mathrm{e}: \tau \quad$ where $\Delta::=\cdot \mid \Delta, \alpha$ and $\Gamma::=\cdot \mid \Gamma, \mathrm{x}: \tau$

```
\tau ::=\alpha| unit | int | }\forall[\overline{\alpha}].(\overline{\tau})->\tau|\exists\alpha.\tau | \mu\alpha.\tau | \langle\overline{\tau}
e ::= t
t ::= x | () | n | tpt if0ttt | | [\overline{\alpha}](\overline{\textrm{x}:\tau}).\textrm{t}|\textrm{t}[]\overline{\textrm{t}}
        | t[\tau] | pack }\langle\tau,\textrm{t}\rangle\mathrm{ as }\exists\alpha.\tau|\mathrm{ unpack }\langle\alpha,\textrm{x}\rangle=\textrm{tin}\textrm{t
        | fold}\mu\alpha.\tau t | unfold t | \langle\overline{t}\rangle| \mp@subsup{\pi}{\textrm{i}}{(
p ::= + | - |*
v ::=()| n | \lambda[\overline{\alpha}](\overline{\textrm{x}:\tau}).\textrm{t}|\operatorname{pack}\langle\tau,\textrm{v}\rangle\mathrm{ as }\exists\alpha.\tau
        | foldl\mu\alpha.\tau v | \langle\overline{v}\rangle| v[\tau]
```

$\Delta ; \Gamma \vdash \mathrm{e}: \tau$
$\frac{\bar{\alpha} ; \overline{\mathrm{x}: \tau} \vdash \mathrm{t}: \tau^{\prime}}{\Delta ; \Gamma \vdash \lambda[\bar{\alpha}](\overline{\mathrm{x}: \tau}) \cdot \mathrm{t}: \forall[\bar{\alpha}] \cdot(\bar{\tau}) \rightarrow \tau^{\prime}}$

Closure Conversion: \mathbf{F} to \mathbf{C}

$\tau^{\mathcal{C}}$ Type Translation

$$
\alpha^{\mathcal{C}}=\alpha \quad \forall[\bar{\alpha}] \cdot(\bar{\tau}) \rightarrow \tau^{\mathcal{C}}=\exists \beta \cdot\left\langle\left(\forall[\bar{\alpha}] \cdot\left(\beta, \overline{\tau^{\mathcal{C}}}\right) \rightarrow \tau^{\mathcal{C}}\right), \beta\right\rangle
$$

$$
\text { unit }^{\mathcal{C}}=\text { unit }
$$

$$
\exists \alpha \cdot \tau^{\mathcal{C}}=\exists \alpha \cdot \tau^{\mathcal{C}}
$$

$$
\mathrm{int}^{\mathcal{C}}=\mathrm{int}
$$

$$
\mu \alpha \cdot \tau^{\mathcal{C}}=\mu \alpha \cdot \tau^{\mathcal{C}}
$$

$$
\left\langle\tau_{1}, \ldots, \tau_{\mathrm{n}}\right\rangle^{\mathcal{C}}=\left\langle\tau_{1}{ }^{\mathcal{C}}, \ldots, \tau_{\mathrm{n}}{ }^{\mathcal{C}}\right\rangle
$$

$\Delta ; \Gamma \vdash \mathrm{e}: \tau \rightsquigarrow \mathrm{e}$ where $\Delta^{\mathcal{C}} ; \Gamma^{\mathcal{C}} \vdash \mathrm{e}: \tau^{\mathcal{C}}$

Interoperability: F and \mathbf{C}

$$
\begin{array}{cc}
\mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} & \text { Value Translation } \\
& \mathbf{C F}^{\text {int }}(\mathrm{n})=\mathrm{n}
\end{array}
$$

$$
{ }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v}
$$

${ }^{i n t} \mathbf{F C}(\mathrm{n})=\mathrm{n}$

Interoperability: F and C

$$
\mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} \quad{ }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v}
$$

$$
\left(\tau \rightarrow \tau^{\prime}\right)^{\mathcal{C}}=\exists \beta \cdot\left\langle\left(\left(\beta, \tau^{\mathcal{C}}\right) \rightarrow \tau^{\prime \mathcal{C}}\right), \beta\right\rangle
$$

$$
\mathbf{C F}^{\tau \rightarrow \tau^{\prime}}(\mathrm{v})=
$$

$$
\text { pack }\langle\text { unit, }\langle\mathrm{v},()\rangle\rangle \text { as } \exists \beta \cdot\left\langle\left(\left(\beta, \tau^{\mathcal{C}}\right) \rightarrow \tau^{\prime \mathcal{C}}\right), \beta\right\rangle
$$

$$
\mathrm{v}=\lambda\left(\mathrm{z}: \text { unit, } \mathrm{x}: \tau^{\mathcal{C}}\right) \cdot \mathcal{C} \mathcal{F}^{\tau^{\prime}}\left(\mathrm{v}{ }^{\tau} \mathcal{F} \mathcal{C} \mathrm{x}\right)
$$

Interoperability: F and C

$$
\mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} \quad \quad{ }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v}
$$

$$
\left(\tau \rightarrow \tau^{\prime}\right)^{\mathcal{C}}=\exists \beta \cdot\left\langle\left(\left(\beta, \tau^{\mathcal{C}}\right) \rightarrow \tau^{\prime \mathcal{C}}\right), \beta\right\rangle
$$

$$
\begin{aligned}
& \mathbf{C F}^{\tau} \rightarrow \tau^{\prime}(\mathrm{v})= \\
& \quad \text { pack }\langle\text { unit, }\langle\mathrm{v},()\rangle\rangle \text { as } \exists \beta \cdot\left\langle\left(\left(\beta, \tau^{\mathcal{C}}\right) \rightarrow \tau^{\mathcal{C}}\right), \beta\right\rangle \\
& \quad \mathrm{v}=\lambda\left(\mathrm{z}: \text { unit, } \mathrm{x}: \tau^{\mathcal{C}}\right) \cdot \mathcal{C F}^{\tau^{\prime}}\left(\mathrm{v}{ }^{\tau} \mathcal{F} \mathcal{C} \mathrm{x}\right) \\
& \tau \rightarrow \tau^{\prime} \mathbf{F C}(\mathrm{v})=\lambda(\mathrm{x}: \tau) . \tau^{\prime} \mathcal{F} \mathcal{C}(\text { unpack }\langle\beta, \mathrm{y}\rangle=\mathrm{v} \\
& \left.\quad \operatorname{in} \pi_{1}(\mathrm{y}) \pi_{2}(\mathrm{y}) \mathcal{C} \mathcal{F}^{\tau} \mathrm{x}\right)
\end{aligned}
$$

Interoperability: F and C

$$
\begin{gathered}
\hline \mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} \\
\hline(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\mathcal{C}}=\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle \\
\alpha^{\mathcal{C}}=\alpha
\end{gathered}
$$

$\mathbf{C F}{ }^{\forall[\alpha] .(\alpha) \rightarrow \alpha}(\mathrm{v})=$ pack \langle unit, $\langle\mathrm{v},()\rangle\rangle \operatorname{as}(\forall[\alpha] .(\alpha) \rightarrow \alpha)^{\mathcal{C}}$

$$
\mathrm{v}=\lambda[\alpha](\mathbb{Z}: \text { unit, } \mathrm{x}: \alpha) \cdot \mathcal{C}^{\alpha}\left(\mathrm{v}[\alpha]^{\alpha} \mathcal{F} \mathcal{C} \mathrm{x}\right)
$$

Interoperability: F and C

$$
\begin{aligned}
\mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} & { }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v} \\
(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\mathcal{C}} & =\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle \\
\alpha^{\mathcal{C}} & =\alpha
\end{aligned}
$$

$\mathbf{C F}{ }^{\forall[\alpha] .(\alpha) \rightarrow \alpha}(\mathrm{v})=\operatorname{pack}\langle$ unit, $\langle\mathrm{v},()\rangle\rangle \operatorname{as}(\forall[\alpha] .(\alpha) \rightarrow \alpha)^{\mathcal{C}}$

$$
\mathrm{v}=\lambda[\alpha](\mathrm{z}: \text { unit, } \mathrm{x}: \alpha) \cdot \mathcal{C \mathcal { F }}_{\uparrow}^{\alpha}\left(\mathrm{v}[\alpha]_{\uparrow}^{\alpha} \mathcal{F} \mathcal{C} \mathrm{x}\right)
$$

Interoperability: F and C

$$
\begin{gathered}
\hline \mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v}
\end{gathered} \begin{gathered}
\tau \mathbf{F C}(\mathrm{v})=\mathrm{v} \\
(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\mathcal{C}}=\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle \\
\alpha^{\mathcal{C}}=\alpha \quad \mathrm{L}\langle\tau\rangle^{\mathcal{C}}=\tau
\end{gathered}
$$

$\mathbf{C F}{ }^{\forall[\alpha] .(\alpha) \rightarrow \alpha}(\mathrm{v})=$ pack \langle unit,,$\langle\mathrm{v},()\rangle\rangle$ as $(\forall[\alpha] .(\alpha) \rightarrow \alpha)^{\mathcal{C}}$

$$
\mathrm{v}=\lambda[\alpha](\mathrm{z}: \text { unit, } \mathrm{x}: \alpha) \cdot \mathcal{C} \mathcal{F}^{\mathrm{L}\langle\alpha\rangle}\left(\mathrm{v}[\mathrm{~L}\langle\alpha\rangle]^{\mathrm{L}\langle\alpha\rangle} \mathcal{F} \mathcal{C} \mathrm{x}\right)
$$

Add new type $\mathrm{L}\langle\tau\rangle$ \& new value form ${ }^{\mathrm{L}\langle\tau\rangle} \mathcal{F} \mathcal{C} \mathrm{v}$

Interoperability: F and C

$$
\begin{aligned}
\hline \mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v}
\end{aligned}{ }_{(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\langle\mathrm{C}\rangle}=\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle}^{{ }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v}}
$$

Interoperability: F and C

$$
\begin{gathered}
\begin{array}{|r|}
\hline \mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v}
\end{array} \begin{array}{|c|}
\hline{ }^{\tau} \mathbf{F C}(\mathrm{v})=\mathrm{v}
\end{array} \\
(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\langle\mathcal{C}\rangle}=\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle \\
\alpha^{\langle\mathcal{C}\rangle}=\alpha \quad \mathrm{L}\langle\tau\rangle^{\langle\mathcal{C}\rangle}=\tau \\
\forall[\alpha] \cdot(\alpha) \rightarrow \alpha_{\mathbf{F C}}(\mathrm{v})=\lambda[\alpha](\mathrm{x}: \alpha) \cdot{ }^{\alpha} \mathcal{F} \mathcal{C}(\text { unpack }\langle\beta, \mathrm{y}\rangle=\mathrm{v} \\
\left.\quad \operatorname{in~} \pi_{1}(\mathrm{y})\left[\alpha^{\mathcal{C}}\right] \pi_{2}(\mathrm{y}) \mathcal{C F}^{\alpha} \mathrm{x}\right)
\end{gathered}
$$

Interoperability: F and C

$$
\begin{gathered}
\mathbf{C F}^{\tau}(\mathrm{v})=\mathrm{v} \quad{ }^{\tau} \mathbf{F} \mathbf{C}(\mathrm{v})=\mathrm{v} \\
(\forall[\alpha] \cdot(\alpha) \rightarrow \alpha)^{\langle\mathcal{C}\rangle}=\exists \beta \cdot\langle(\forall[\alpha] \cdot(\beta, \alpha) \rightarrow \alpha), \beta\rangle \\
\alpha^{\mathcal{C}}=\lceil\alpha\rceil \quad \mathrm{L}\langle\tau\rangle^{\langle\mathcal{C}\rangle}=\tau
\end{gathered}
$$

$$
\forall[\alpha] .(\alpha) \rightarrow{ }^{\alpha} \mathbf{F C}(\mathrm{v})=\lambda[\alpha](\mathrm{x}: \alpha) \cdot{ }^{\alpha} \mathcal{F} \mathcal{C}(\text { unpack }\langle\beta, \mathrm{y}\rangle=\mathrm{v}
$$

$$
\left.\operatorname{in} \pi_{1}(\mathrm{y})[\lceil\alpha\rceil] \pi_{2}(\mathrm{y}) \mathcal{C} \mathcal{F}^{\alpha} \mathrm{x}\right)
$$

Add new type $\lceil\alpha\rceil$ \& define $\lceil\alpha\rceil[\tau / \alpha]=\tau^{\langle\mathcal{C}\rangle}$

Interoperability: F and C

$$
\begin{aligned}
\hline \tau^{\langle\mathcal{C}\rangle} \text { Operational Type Translation } \\
\begin{aligned}
\forall[\bar{\alpha}] \cdot(\bar{\tau}) & \rightarrow \tau^{\prime}\langle\mathcal{C}\rangle \\
& =\exists \beta \cdot\left\langle\left(\forall[\bar{\alpha}] \cdot\left(\beta, \overline{\tau^{\langle\mathcal{C}\rangle}} \overline{[\alpha /\lceil\alpha\rceil]}\right) \rightarrow \tau^{\prime}\langle\mathcal{C}\rangle \overline{[\alpha /\lceil\alpha\rceil]}\right), \beta\right\rangle \\
\alpha^{\langle\mathcal{C}\rangle} & =\lceil\alpha\rceil \quad \quad \exists \alpha . \tau^{\langle\mathcal{C}\rangle}=\exists \alpha \cdot\left(\tau^{\langle\mathcal{C}\rangle}[\alpha /\lceil\alpha\rceil]\right) \\
\text { unit }^{\langle\mathcal{C}\rangle} & =\text { unit } \quad \mu \alpha \cdot \tau^{\langle\mathcal{C}\rangle}=\mu \alpha \cdot\left(\tau^{\langle\mathcal{C}\rangle}[\alpha /\lceil\alpha\rceil]\right) \\
\text { int }^{\langle\mathcal{C}\rangle} & =\text { int } \quad\left\langle\tau_{1}, \ldots, \tau_{\mathrm{n}}\right\rangle^{\langle\mathcal{C}\rangle}=\left\langle\tau_{1}\langle\mathcal{C}\rangle, \ldots, \tau_{\mathrm{n}}\langle\mathcal{C}\rangle\right\rangle \\
\mathrm{L}\langle\tau\rangle^{\langle\mathcal{C}\rangle} & =\tau
\end{aligned}
\end{aligned}
$$

Type Substitution: $\lceil\alpha\rceil[\tau / \alpha]=\tau^{\langle\mathcal{C}\rangle}$
$\Delta ; \Gamma \vdash e: \tau$ Include \mathbf{F} and \mathbf{C} rules, with environments replaced by $\Delta ; \Gamma$

$$
\frac{\Delta ; \Gamma \vdash \mathrm{e}: \tau^{\langle\mathcal{C}\rangle}}{\Delta ; \Gamma \vdash^{\tau} \mathcal{F C} \mathrm{e}: \tau}
$$

$$
\frac{\Delta ; \Gamma \vdash \mathrm{e}: \tau}{\Delta ; \Gamma \vdash \mathcal{C} \mathcal{F}^{\tau} \mathrm{e}: \tau} \overline{\left.\mathcal{C}^{\langle\mathcal{C}}\right\rangle}
$$

Challenges / Roadmap

F+C: Interoperability semantics with type abstraction in both languages

C+A: Interoperability when compiler pass allocates code \& tuples on heap
$\mathrm{A}+\mathrm{T}$: What is e ? What is v ? How to define contextual equiv. for TAL components? How to define logical relation?

A

$$
\begin{aligned}
& \tau::=\alpha \mid \text { unit } \mid \text { int }|\exists \alpha . \tau| \mu \alpha . \tau \mid \text { box } \psi \\
& \psi::=\forall[\bar{\alpha}] \cdot(\bar{\tau}) \rightarrow \tau \mid\langle\tau, \ldots, \tau\rangle \\
& \text { e }::=(\mathrm{t}, \mathrm{H}) \mid \mathrm{t} \\
& \mathrm{t}::=\mathrm{x}|()| \mathrm{n}|\mathrm{tpt}| \text { if0 } \mathrm{tt} \mathrm{t}|\ell| \mathrm{t}[] \overline{\mathrm{t}} \mid \mathrm{t}[\tau] \\
& \text { pack }\langle\tau, \mathrm{t}\rangle \text { as } \exists \alpha . \tau \mid \text { unpack }\langle\alpha, \mathrm{x}\rangle=\mathrm{t} \text { in } \mathrm{t} \mid \text { fold }{ }_{\mu \alpha . \tau} \mathrm{t} \\
& \mid \text { unfold } \mathrm{t} \mid \text { balloc }\langle\overline{\mathrm{t}}\rangle \mid \operatorname{read}[\mathrm{i}] \mathrm{t} \\
& \mathrm{p}::=+|-| * \\
& \mathrm{v}::=()|\mathrm{n}| \operatorname{pack}\langle\tau, \mathrm{v}\rangle \text { as } \exists \alpha . \tau \mid \text { fold }_{\mu \alpha . \tau} \mathrm{v}|\ell| \mathrm{v}[\tau] \\
& \mathrm{H}::=\cdot \mid \mathrm{H}, \ell \mapsto \mathbf{h} \\
& \text { h ::= } \lambda[\bar{\alpha}](\overline{\mathrm{x}: \tau}) . \mathrm{t} \mid\langle\mathrm{v}, \ldots, \mathrm{v}\rangle \\
& \langle\mathrm{H} \mid \mathrm{e}\rangle \longmapsto\left\langle\mathrm{H}^{\prime} \mid \mathrm{e}^{\prime}\right\rangle \text { Reduction Relation (selected cases) } \\
& \left\langle\mathrm{H} \mid\left(\mathrm{t}, \mathrm{H}^{\prime}\right)\right\rangle \quad \longmapsto\left\langle\left(\mathrm{H}, \mathrm{H}^{\prime}\right) \mid \mathrm{t}\right\rangle \quad \operatorname{dom}(\mathrm{H}) \cap \operatorname{dom}\left(\mathrm{H}^{\prime}\right)=\emptyset \\
& \left\langle\mathrm{H} \mid \mathrm{E}\left[\ell\left[\overline{\tau^{\prime}}\right] \overline{\mathrm{v}}\right]\right\rangle \longmapsto\left\langle\mathrm{H} \mid \mathrm{E}\left[\mathrm{t}\left[\overline{\tau^{\prime}} / \bar{\alpha}\right][\overline{\mathrm{v}} / \overline{\mathrm{x}}]\right]\right\rangle \mathrm{H}(\ell)=\lambda[\bar{\alpha}](\overline{\mathrm{x}: \bar{\tau}}) . \mathrm{t}
\end{aligned}
$$

Allocation: C to A

$\tau^{\mathcal{A}}$ Type Translation

$$
\begin{aligned}
\alpha^{\mathcal{A}} & =\alpha & \forall[\bar{\alpha}] \cdot(\bar{\tau}) \rightarrow \tau^{\prime} \mathcal{A} & =\operatorname{box} \forall[\bar{\alpha}] \cdot\left(\overline{\tau^{\mathcal{A}}}\right) \rightarrow \tau^{\prime \mathcal{A}} \\
\text { unit } \mathcal{A} & =\text { unit } & \exists \alpha \cdot \tau^{\mathcal{A}} & =\exists \alpha \cdot \tau^{\mathcal{A}} \\
\text { int }^{\mathcal{A}} & =\text { int } & \mu \alpha \cdot \tau^{\mathcal{A}} & =\mu \alpha \cdot \tau^{\mathcal{A}} \\
& & \left\langle\tau_{1}, \ldots, \tau_{\mathrm{n}}\right\rangle^{\mathcal{A}} & =\operatorname{box}\left\langle\left(\tau_{1} \mathcal{A}\right), \ldots\left(\tau_{\mathrm{n}} \mathcal{A}^{\mathcal{A}}\right)\right\rangle
\end{aligned}
$$

$\Delta ; \Gamma ; \vdash \mathrm{e}: \tau \rightsquigarrow(\mathrm{t}, \mathrm{H}: \Psi) \quad$ where $\Delta ; \Gamma \vdash \mathrm{e}: \tau, \cdot \vdash \mathrm{H}: \Psi$, and

$$
\cdot ; \Delta^{\mathcal{A}} ; \Gamma^{\mathcal{A}} \vdash(\mathrm{t}, \mathrm{H}): \tau^{\mathcal{A}}
$$

Interoperability: \mathbf{C} and \mathbf{A}

$$
\begin{aligned}
\tau: & =\cdots \mid \mathbb{L}\langle\tau\rangle \\
\tau: & =\cdots|\lceil\alpha\rceil|\lceil\alpha\rceil \\
& \lceil\alpha\rceil[\tau / \alpha]=\left(\tau^{\langle\mathcal{C}\rangle}\right)^{\langle\mathcal{A}\rangle} \\
& \lceil\alpha\rceil[\tau / \alpha]=\tau^{\langle\mathcal{A}\rangle}
\end{aligned}
$$

$$
\frac{\Psi ; \Delta ; \Gamma \vdash \mathrm{e}: \tau^{\langle\mathcal{A}\rangle}}{\Psi ; \Delta ; \Gamma \vdash{ }^{\tau} \mathcal{C} \mathcal{A e}: \tau}
$$

Interoperability: C and A

$$
\mathbf{A C}^{\tau}(\mathrm{v}, M)=\left(\mathrm{v}, M^{\prime}\right)
$$

$\mathbf{A C}{ }^{\langle\bar{\tau}\rangle}\left(\langle\overline{\mathrm{v}}\rangle, M_{1}\right)=\left(\ell,\left(M_{n+1}, \ell \mapsto\langle\overline{\mathrm{v}}\rangle\right)\right)$ where $\mathbf{A C}^{\tau_{i}}\left(\mathrm{v}_{\mathrm{i}}, M_{i}\right)=\left(\mathrm{v}_{\mathrm{i}}, M_{i+1}\right)$
${ }^{\tau} \mathbf{C A}(\mathrm{v}, M)=\left(\mathrm{v}, M^{\prime}\right)$
$\langle\bar{\tau}\rangle \mathbf{C A}\left(\ell, M_{1}\right)=\left(\langle\overline{\mathrm{v}}\rangle, M_{n+1}\right)$ where $M_{1}(\ell)=\langle\overline{\mathrm{v}}\rangle$ and ${ }^{\tau_{\mathbf{i}}} \mathbf{C A}\left(\mathrm{v}_{\mathrm{i}}, M_{i}\right)=\left(\mathrm{v}_{\mathbf{i}}, M_{i+1}\right)$

Challenges / Roadmap

F+C: Interoperability semantics with type abstraction in both languages

C+A: Interoperability when compiler pass allocates code \& tuples on heap
$\mathrm{A}+\mathrm{T}$: What is e? What is v ? How to define contextual equiv. for TAL components? How to define logical relation?

$$
\begin{aligned}
& \tau \quad::=\alpha \mid \text { unit } \mid \text { int }|\exists \alpha . \tau| \mu \alpha . \tau \\
& |\operatorname{ref}\langle\tau, \ldots, \tau\rangle| \operatorname{box} \psi \\
& \psi \quad::=\forall[\Delta] \cdot\{\chi ; \sigma\}^{q} \mid\langle\tau, \ldots, \tau\rangle \\
& \chi \quad::=\cdot \mid \chi, r: \tau \\
& \sigma \quad::=\zeta|\bullet| \tau:: \sigma \\
& \mathrm{q}::=\epsilon|\mathrm{r}| \mathrm{i} \mid \operatorname{end}[\tau ; \sigma] \\
& \Delta::=\cdot|\Delta, \alpha| \Delta, \zeta \mid \Delta, \epsilon \\
& \omega::=\tau|\sigma| \mathrm{q} \\
& \mathrm{r}::=\mathrm{r} 1|\mathrm{r} 2| \cdots|r 7| r a \\
& \mathrm{~h}::=\operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} . \mathrm{I} \mid\langle\mathrm{w}, \ldots, \mathrm{w}\rangle \\
& \mathrm{w} \quad::=()|\mathrm{n}| \ell \mid \operatorname{pack}\langle\tau, \mathrm{w}\rangle \text { as } \exists \alpha . \tau \\
& \text { fold }_{\mu \alpha . \tau} \mathrm{w} \mid \mathrm{w}[\omega] \\
& \mathrm{u} \quad::=\mathrm{w}|\mathrm{r}| \operatorname{pack}\langle\tau, \mathrm{u}\rangle \text { as } \exists \alpha \cdot \tau \\
& \text { fold }_{\mu \alpha . \tau} \mathbf{u} \mid \mathbf{u}[\omega] \\
& \text { I }::=\iota ; \mathbf{I}|j m p u| \operatorname{ret} q, r \\
& \text { Heap value type } \\
& \text { Register file type } \\
& \text { Stack type } \\
& \text { Return marker } \\
& \text { Type variable environment } \\
& \text { Instantiation of type variable } \\
& \text { Register } \\
& \text { Heap value } \\
& \text { Word value } \\
& \text { Small value } \\
& \text { Instruction sequence }
\end{aligned}
$$

$$
\begin{aligned}
& \iota \quad::=\operatorname{aop} \mathbf{r}_{\mathrm{d}}, \mathbf{r}_{\mathrm{s}}, \mathbf{u}|\mathrm{bnz} \mathbf{r}, \mathbf{u}| \mathrm{mv} \mathbf{r}_{\mathrm{d}}, \mathbf{u} \quad \text { Instruction } \\
& \left|r a l l o c r_{d}, \mathbf{n}\right| \text { balloc } \mathbf{r}_{\mathrm{d}}, \mathbf{n}\left|\operatorname{ld} \mathbf{r}_{\mathrm{d}}, \mathbf{r}_{\mathrm{s}}[\mathbf{i}]\right| \text { st } \mathbf{r}_{\mathrm{d}}[\mathbf{i}], \mathbf{r}_{\mathbf{s}} \\
& \text { unpack }\left\langle\boldsymbol{\alpha}, \mathbf{r}_{\mathbf{d}}\right\rangle \mathbf{u} \mid \text { unfold } \mathbf{r}_{\mathrm{d}}, \mathbf{u} \mid \text { salloc } \mathbf{n} \mid \text { sfree } \mathbf{n} \\
& \mid \text { sld } r_{d}, i \mid \text { sst } i, r_{s} \\
& \text { aop }::=\text { add } \mid \text { sub | mult } \\
& \text { e } \quad::=(\mathbf{I}, \mathbf{H}) \mid \mathbf{I} \\
& \text { v }::=\text { ret } q, r \\
& \mathrm{E}::=\left(\mathrm{E}_{\mathrm{I}}, \cdot\right) \\
& \mathrm{E}_{\mathbf{I}}::=[\cdot] \\
& \text { H }::=\text { • } \mid \mathbf{H}, \ell \mapsto \mathbf{h} \\
& \mathbf{R}::=\cdot \mid \mathbf{R}, \mathbf{r} \longmapsto \mathbf{w} \\
& \mathrm{S}::=\text { nil } \mid \mathrm{w}:: \mathrm{S} \\
& \mathrm{M}::=(\mathbf{H}, \mathbf{R}, \mathrm{S}: \sigma) \\
& \text { Arithmetic operation } \\
& \text { Component } \\
& \text { Term value } \\
& \text { Evaluation context } \\
& \text { Instruction evaluation context } \\
& \text { Heap or Heap fragment } \\
& \text { Register file } \\
& \text { Stack } \\
& \text { Memory }
\end{aligned}
$$

Well-typed Components in \mathbf{T}

$$
\Psi ; \Delta ; \chi ; \sigma ; \mathrm{q} \vdash \mathrm{e}: \tau ; \sigma^{\prime}
$$

$$
\begin{gathered}
\Psi \vdash \mathrm{H}: \Psi_{\mathrm{e}},
\end{gathered} \begin{gathered}
\operatorname{boxheap}\left(\Psi_{\mathrm{e}}\right) \\
\operatorname{ret-\operatorname {type}(\mathrm {q},\chi ,\sigma)=\tau ;\sigma ^{\prime }} \begin{array}{c}
\left(\Psi, \Psi_{\mathrm{e}}\right) ; \Delta ; \chi ; \sigma ; \mathrm{q} \vdash \mathrm{I} \\
\Psi ; \Delta ; \chi ; \sigma ; \mathrm{q} \vdash(\mathbf{I}, \mathbf{H}): \tau ; \sigma^{\prime}
\end{array}
\end{gathered}
$$

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda \times . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H} \mathcal{V} \llbracket \forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{q}} \rrbracket=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{2}\right) \mid \ldots\right\}$

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda \times . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H} \mathcal{V} \llbracket \forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{q}} \rrbracket=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{2}\right) \mid \ldots\right\}$

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda x . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H V}\left[\forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{a}}\right]=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} . \mathrm{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} . \mathrm{I}_{2}\right) \mid \ldots\right\}$

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda \times . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H} \mathcal{V} \llbracket \forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{q}} \rrbracket=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{2}\right) \mid \ldots\right\}$

Equivalence of \mathbf{T} Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda x . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H V}\left[\forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{a}}\right]=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} . \mathrm{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} . \mathrm{I}_{2}\right) \mid \ldots\right\}$

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
$\mathcal{V} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\left\{\left(W, \lambda \times . \mathrm{e}_{1}, \lambda \times . \mathrm{e}_{1}\right) \mid \ldots\right\}$
$\mathcal{H} \mathcal{V} \llbracket \forall[\Delta] \cdot\{\chi ; \sigma\}^{\mathrm{q}} \rrbracket=\left\{\left(W, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{1}, \operatorname{code}[\Delta]\{\chi ; \sigma\}^{\mathrm{q}} \cdot \mathbf{I}_{2}\right) \mid \ldots\right\}$

Code Generation: A to T

$\tau^{\mathcal{T}}$ Type translation

$$
\begin{aligned}
& \operatorname{box} \forall[\bar{\alpha}] \cdot\left(\tau_{1}, \ldots, \tau_{\mathrm{n}}\right) \rightarrow \tau^{\prime \mathcal{T}} \\
&=\operatorname{box} \forall {[\bar{\alpha}, \zeta, \epsilon] . } \\
&\left\{\text { ra }: \operatorname{box} \forall[] \cdot\left\{\mathrm{r} 1: \tau^{\prime} \mathcal{T} ; \zeta\right\}^{\epsilon} ;\right. \\
&\left.\tau_{\mathrm{n}}^{\mathcal{T}}:: \cdots:: \tau_{1} \mathcal{T}^{\prime}:: \zeta\right\}^{\mathrm{ra}}
\end{aligned}
$$

Code Generation: A to T

$\tau^{\mathcal{T}}$ Type translation

$$
\begin{aligned}
\text { box } \forall[\bar{\alpha}] \cdot(& \left(\tau_{1}, \ldots, \tau_{\mathrm{n}}\right) \rightarrow \tau^{\prime \mathcal{T}} \\
=\operatorname{box} \forall & {[\bar{\alpha}, \zeta, \epsilon] } \\
& \left\{\text { ra }: \operatorname{box} \forall[] \cdot\left\{r 1: \tau^{\prime \mathcal{T}} ; \zeta\right\}^{\epsilon}\right. \\
& \left.\tau_{\mathrm{n}} \mathcal{T}:: \cdots:: \tau_{1} \mathcal{T}:: \zeta\right\}^{\mathrm{ra}}
\end{aligned}
$$

$\Psi ; \Delta ; \Gamma \vdash \mathrm{e}: \mathcal{\tau} \rightsquigarrow \mathrm{e} \quad$ where $\boldsymbol{\tau}^{\mathcal{T}} ;(\Delta \mathcal{T}, \zeta, \epsilon) ; \chi ; \sigma ;$ ra $\vdash \mathrm{e}: \tau^{\mathcal{T}} ; \sigma$ for $\chi=\operatorname{ra}: \forall[] \cdot\left\{r 1: \tau^{\mathcal{T}} ; \sigma\right\}^{\epsilon}$ and $\sigma=\operatorname{order}(\Gamma, \zeta)^{\mathcal{T}}$

Interoperability: A and \mathbf{T}

$$
\frac{\Psi ; \Delta ; \Gamma ; \cdot ; \sigma ; \operatorname{end}\left[\tau^{\langle\mathcal{T}\rangle} ; \sigma^{\prime}\right] \vdash \mathrm{e}: \tau^{\langle\mathcal{T}\rangle} ; \sigma^{\prime}}{\Psi ; \Delta ; \Gamma ; \chi ; \sigma ; \text { out } \vdash^{\tau} \mathcal{A T} \mathrm{e}: \tau ; \sigma^{\prime}}
$$

$\frac{{ }^{\tau} \mathbf{A T}(M . \operatorname{M.R}(\mathrm{r}), M)=\left(\mathrm{v}, M^{\prime}\right)}{\left.\langle M| E\left[^{\tau} \mathcal{A} \text { Tret end }\left[\tau^{\langle\mathcal{T}\rangle} ; \sigma\right], \mathrm{r}\right]\right\rangle \longmapsto\left\langle M^{\prime} \mid E[\mathrm{v}]\right\rangle}$

Interoperability: A and \mathbf{T}

$\iota \quad::=\cdots \mid$ import $\mathrm{r}_{\mathrm{d}},{ }^{\sigma} \mathcal{T} \mathcal{A}^{\top} \mathbf{e}$
$\frac{\mathbf{T A}^{\tau}(\mathbf{v}, M)=\left(\mathbf{w}, M^{\prime}\right)}{\left.\langle M| E\left[\text { import } \mathbf{r}_{\mathrm{d}},{ }^{\sigma^{\prime}} \mathcal{T} \mathcal{A}^{\tau} \mathbf{v} ; \mathbf{I}\right]\right\rangle \longmapsto\left\langle M^{\prime} \mid E\left[\mathrm{mv} \mathbf{r}_{\mathrm{d}}, \mathrm{w} ; \mathbf{I}\right]\right\rangle}$

Conclusions

- Compiler verification methodology that
- guarantees correct compilation of components, not just whole programs
- works for multi-pass compilers
- supports reasoning about whole programs produced by linking with arbitrary target code
- Interoperability semantics provides specification of when source and target code are related
- easier to understand compiler correctness theorem
- but, have to get all the languages to fit together!

Questions?

