
Getting a Grip on

Tasks

that Coordinate

Tasks

Rinus Plasmeijer 

Radboud University Nijmegen

http://wiki.clean.cs.ru.nl/Clean

http://wiki.clean.cs.ru.nl/ITasks

http://wiki.clean.cs.ru.nl/Clean
http://wiki.clean.cs.ru.nl/ITasks


2

It is a combinator library written in 

It is a toolbox for the rapid development of WFMSs

It is a Domain Specific Language embedded in Clean 

(ICFP 2007)



iTask Server Coordinates Tasks executed by Clients

Mobile iTask AppWeb ServiceiTask  User RPC

WEB

Server

iTask Web Service

iTask Combinator

Library

iTask 

Workflow 

Web Service

iTask Combinator

Library

iTask 

Workflow 

iTask Web Service

ExtJs – Sapl - Clean

JavaScript

Browser



4

It is declarative... 

“Declarative specification 

of data and tasks

is sufficient for generating 

an executable workflow”

Abstract from implementation details as much as we can
using type driven generic functions

I/O handling,
communication, 
JSON / XML exchange,
web form generation, web form updating, 
persistent storage, …



5

i -Tasks - Embedded Workflow Description Language

basic tasks: Task a - unit of work delivering a value of type a

 Filling in a web form, web-service, OS-call (time, date), application call, database access

+ combinators for combining tasks 

 Common usage
 define order of tasks (sequential, parallel)
 assign properties to tasks (worker, priority, deadline),

 Exceptional usage
 workflow / task process handling (create, waitFor, suspend, kill)
 exception handling

+ Clean host language features

 recursive -, higher order -, polymorphic -, overloaded -, generic - functions
 strongly typed + dynamic typing



6

Examples of basic tasks for filling in forms

enterInformation :: d  Task a | descr d & iTask a

updateInformation :: d a  Task a | descr d & iTask a

class iTask a

| gVisualize {|*|} // information for form creation

, gUpdate {|*|} // form update

, gEq {|*|} // equality test

, gDefaultMask {|*|} // form status 

, gVerify {|*|} // predicate value has to obey

, JSONEncode {|*|}

, JSONDecode {|*|} // JSON encoding - decoding

, XMLEncode {|*|}

, XMLDecode {|*|} // XML encoding - decoding

, TC a // serialization – de-serialization



7

A very small *complete* example I

module example

import iTasks

Start :: *World  *World

Start world = startEngine [workflow “demo task" myTask] world

myTask :: Task Int

myTask = enterInformation "Please fill in the form:"



8

iTask Client



9

A very small *complete* example II

myTask = enterInformation “Please fill in the form:"



10

A very small *complete* example II

myTask :: Task [Person]

myTask = enterInformation “Please fill in the form:"

:: Person = { firstName :: String

, surName :: String

, dateOfBirth :: Date

, gender :: Gender

}

:: Gender = Male | Female

derive class iTask Person, Gender



11

Core Combinators

Basic combinator: interactive  editor for filling in forms of a certain type:

updateInformation :: d a  Task a | iTask a & descr d

Main task: define task properties (who has to work on it, priority, deadline):

(@:)   infix 3 :: p (Task a)  Task a  | iTask a & property p

Sequencing of tasks using monadic bind >>= and return:

(>>=)  infix  1 :: (Task a) (a  Task b)  Task b | iTask a & iTask b

return :: a  Task a  | iTask a

Parallel evaluation of tasks:

(-||-)  infix 3 :: (Task a) (Task a)  Task a | iTask a

(-&&-)  infix 4:: (Task a) (Task b)  Task (a, b) | iTask a & iTask b

With just a few combinators many frequently occurring flows can be defined

semantics: term rewriting system (IFL 2008, PEPM 2011)

Open question: What kind of combinators do we really need ?





12

Core Combinators

Basic combinator: interactive  editor for filling in forms of a certain type:

updateInformation :: p a  Task a | iTask a & property p

Main task: define task properties (who has to work on it, priority, deadline):

(@:)   infix 3 :: p (Task a)  Task a  | iTask a & property p

Sequencing of tasks using monadic bind >>= and return:

(>>=)  infix  1 :: (Task a) (a  Task b)  Task b | iTask a & iTask b

return :: a  Task a  | iTask a

Parallel evaluation of tasks:

parallel :: ([a]  Bool) ([a]  b) ([a]  b) [Task a]  Task b | iTask a & iTask b

Open question: What kind of combinators do we really need ?



13

Defined many toy applications: (see iTask distribution)



14

“Real” Prototype Applications using iTasks

Simple workflow:

 Aerial project: Home Healthcare project (Peter Lucas, Bas Lijnse, e.a.) 

 Testing chronically long diseases caused by smoking

 Testing pregnancy disease

Real real-life workflow:

 Crisis Management:

Capturing the Netherlands Coast Guard’s Search And Rescue Workflow 

(ISCRAM 2011, Bas Lijnse, Jan Martin Jansen, Ruud Nanne, Rinus Plasmeijer) 



15

Home Healthcare project



16

Coast Guard Search And Rescue



17

Coast Guard Search And Rescue



18

What did we learn ?

Coordination panels should not be build-in but become user-definable tasks as well

E.g. the iTask main system panel 

Sharing of information between tasks needed to monitor developments

Also needed for many to many communication

Forms are not enough: need to be able to specificy GUI’s (windows, menus, …)

One cannot foresee everything:  we have to be able to change running workflows

Currently designing + implementing version 3.0

All this functionality should be offered by the new API

Yet: we expect to base it on only a very few Swiss-Army-Knife combinators  



19

What have we done so far ?

Small extensions to Clean:
• Added (Generic) context restriction in types
• Allow overloaded and generic functions in dynamics
• Allow generic functions to be overloaded in generic functions

basic tasks:

• updateInformation :: d (View i v o) [Action i] (Shared i o)  Task (Event, Maybe i) 
| iTask i & iTask v & iTask o & descr d

combinators for combining tasks

Common usage: 
• parallel :: d (Merge a ps b) [CTask a ps] [Task a]  Task b

| iTask a & iTask ps & iTask b & descr d

Exceptional usage:
• workflow / task process handling
• exception handling
• change handling



20

More Future work

 Improve Practical Applicability

 Robustness ? Performance ? Scaling ? Security ? Software evolution ?

 Embedding with existing databases
 ORM specification used to map RDB <-> Clean data types

 Distributed Servers

 Add iTasks running on the client, now in JavaScript  

 How to offer dynamic change to the end user ?

 Reasoning ?  Proving ? Testing ?



21


