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It is a combinator library written in 

It is a toolbox for the rapid development of WFMSs

It is a Domain Specific Language embedded in Clean 

(ICFP 2007)
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It is declarative... 

“Declarative specification 

of data and tasks

is sufficient for generating 

an executable workflow”

Abstract from implementation details as much as we can
using type driven generic functions

I/O handling,
communication, 
JSON / XML exchange,
web form generation, web form updating, 
persistent storage, …
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i -Tasks - Embedded Workflow Description Language

basic tasks: Task a - unit of work delivering a value of type a

 Filling in a web form, web-service, OS-call (time, date), application call, database access

+ combinators for combining tasks 

 Common usage
 define order of tasks (sequential, parallel)
 assign properties to tasks (worker, priority, deadline),

 Exceptional usage
 workflow / task process handling (create, waitFor, suspend, kill)
 exception handling

+ Clean host language features

 recursive -, higher order -, polymorphic -, overloaded -, generic - functions
 strongly typed + dynamic typing
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Examples of basic tasks for filling in forms

enterInformation :: d  Task a | descr d & iTask a

updateInformation :: d a  Task a | descr d & iTask a

class iTask a

| gVisualize {|*|} // information for form creation

, gUpdate {|*|} // form update

, gEq {|*|} // equality test

, gDefaultMask {|*|} // form status 

, gVerify {|*|} // predicate value has to obey

, JSONEncode {|*|}

, JSONDecode {|*|} // JSON encoding - decoding

, XMLEncode {|*|}

, XMLDecode {|*|} // XML encoding - decoding

, TC a // serialization – de-serialization
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A very small *complete* example I

module example

import iTasks

Start :: *World  *World

Start world = startEngine [workflow “demo task" myTask] world

myTask :: Task Int

myTask = enterInformation "Please fill in the form:"
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iTask Client
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A very small *complete* example II

myTask = enterInformation “Please fill in the form:"
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A very small *complete* example II

myTask :: Task [Person]

myTask = enterInformation “Please fill in the form:"

:: Person = { firstName :: String

, surName :: String

, dateOfBirth :: Date

, gender :: Gender

}

:: Gender = Male | Female

derive class iTask Person, Gender
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Core Combinators

Basic combinator: interactive  editor for filling in forms of a certain type:

updateInformation :: d a  Task a | iTask a & descr d

Main task: define task properties (who has to work on it, priority, deadline):

(@:)   infix 3 :: p (Task a)  Task a  | iTask a & property p

Sequencing of tasks using monadic bind >>= and return:

(>>=)  infix  1 :: (Task a) (a  Task b)  Task b | iTask a & iTask b

return :: a  Task a  | iTask a

Parallel evaluation of tasks:

(-||-)  infix 3 :: (Task a) (Task a)  Task a | iTask a

(-&&-)  infix 4:: (Task a) (Task b)  Task (a, b) | iTask a & iTask b

With just a few combinators many frequently occurring flows can be defined

semantics: term rewriting system (IFL 2008, PEPM 2011)

Open question: What kind of combinators do we really need ?


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Core Combinators

Basic combinator: interactive  editor for filling in forms of a certain type:

updateInformation :: p a  Task a | iTask a & property p

Main task: define task properties (who has to work on it, priority, deadline):

(@:)   infix 3 :: p (Task a)  Task a  | iTask a & property p

Sequencing of tasks using monadic bind >>= and return:

(>>=)  infix  1 :: (Task a) (a  Task b)  Task b | iTask a & iTask b

return :: a  Task a  | iTask a

Parallel evaluation of tasks:

parallel :: ([a]  Bool) ([a]  b) ([a]  b) [Task a]  Task b | iTask a & iTask b

Open question: What kind of combinators do we really need ?
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Defined many toy applications: (see iTask distribution)
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“Real” Prototype Applications using iTasks

Simple workflow:

 Aerial project: Home Healthcare project (Peter Lucas, Bas Lijnse, e.a.) 

 Testing chronically long diseases caused by smoking

 Testing pregnancy disease

Real real-life workflow:

 Crisis Management:

Capturing the Netherlands Coast Guard’s Search And Rescue Workflow 

(ISCRAM 2011, Bas Lijnse, Jan Martin Jansen, Ruud Nanne, Rinus Plasmeijer) 
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Home Healthcare project
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Coast Guard Search And Rescue
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Coast Guard Search And Rescue
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What did we learn ?

Coordination panels should not be build-in but become user-definable tasks as well

E.g. the iTask main system panel 

Sharing of information between tasks needed to monitor developments

Also needed for many to many communication

Forms are not enough: need to be able to specificy GUI’s (windows, menus, …)

One cannot foresee everything:  we have to be able to change running workflows

Currently designing + implementing version 3.0

All this functionality should be offered by the new API

Yet: we expect to base it on only a very few Swiss-Army-Knife combinators  
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What have we done so far ?

Small extensions to Clean:
• Added (Generic) context restriction in types
• Allow overloaded and generic functions in dynamics
• Allow generic functions to be overloaded in generic functions

basic tasks:

• updateInformation :: d (View i v o) [Action i] (Shared i o)  Task (Event, Maybe i) 
| iTask i & iTask v & iTask o & descr d

combinators for combining tasks

Common usage: 
• parallel :: d (Merge a ps b) [CTask a ps] [Task a]  Task b

| iTask a & iTask ps & iTask b & descr d

Exceptional usage:
• workflow / task process handling
• exception handling
• change handling



20

More Future work

 Improve Practical Applicability

 Robustness ? Performance ? Scaling ? Security ? Software evolution ?

 Embedding with existing databases
 ORM specification used to map RDB <-> Clean data types

 Distributed Servers

 Add iTasks running on the client, now in JavaScript  

 How to offer dynamic change to the end user ?

 Reasoning ?  Proving ? Testing ?



21


