Monads from Comonads Comonads from Monads

Ralf Hinze
Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

March 2011

Buy one get one free!
A common form of sales promotion (BOGOF).

1 Monads

Monads, a success story.

$A \rightarrow \mathrm{M} B$

A monad consists of a functor M and natural transformations

$$
\begin{aligned}
& r: \mathrm{I} \rightarrow \mathrm{M} \\
& j: \mathrm{MM} \rightarrow \mathrm{M}
\end{aligned}
$$

The two operations have to go together:

$$
\begin{aligned}
j \cdot r \mathrm{M} & =i d_{\mathrm{M}} \\
j \cdot \mathrm{M} r & =i d_{\mathrm{M}} \\
j \cdot \mathrm{M} j & =j \cdot j \mathrm{M}
\end{aligned}
$$

1 Comonads

Comonads, not exactly a success story.
$\mathrm{N} A \rightarrow B$

A comonad consists of a functor N and natural transformations

$$
\begin{aligned}
& e: \mathrm{N} \rightarrow \mathrm{I} \\
& d: \mathrm{N} \rightarrow \mathrm{NN}
\end{aligned}
$$

The two operations have to go together:

$$
\begin{aligned}
\mathrm{N} e \cdot d & =i d_{\mathrm{N}} \\
e \mathrm{~N} \cdot d & =i d_{\mathrm{N}} \\
\mathrm{~N} d \cdot d & =d \mathrm{~N} \cdot d
\end{aligned}
$$

The simplest of all: the product comonad.

$$
\begin{aligned}
\mathrm{N} & =-\times X \\
e & =\text { outl } \\
d & =i d \Delta \text { outr }
\end{aligned}
$$

Why has the product comonad not taken off?

2 Adjunctions

- One of the most beautiful constructions in mathematics.
- They allow us to transfer a problem to another domain.
- They provide a framework for program transformations.

Let \mathscr{C} and \mathscr{D} be categories. The functors $L: \mathscr{C} \leftarrow \mathscr{D}$ and $\mathrm{R}: \mathscr{C} \rightarrow \mathscr{D}$ are adjoint, $\mathrm{L} \dashv \mathrm{R}$,

if and only if there is a bijection between the hom-sets

$$
\mathscr{C}(\mathrm{L} A, B) \cong \mathscr{D}(A, \mathrm{R} B)
$$

that is natural both in A and B.

The witness of the isomorphism is called the left adjunct. It allows us to trade L in the source for R in the target of an arrow. Its inverse is the right adjunct.

Perhaps the best-known example of an adjunction is currying.

The left adjunct Λ is also called curry and the right adjunct Λ° is also called uncurry.

$\wedge: \mathscr{C}(A \times X, B) \cong \mathscr{C}\left(A, B^{X}\right)$

The images of the identity are function application and the return of the state monad.

$$
\begin{gathered}
a p p=\Lambda^{\circ} i d: \mathscr{C}\left(B^{X} \times X, B\right) \\
r=\Lambda i d: \mathscr{C}\left(A,(A \times X)^{X}\right)
\end{gathered}
$$

The images of the identity are the counit and the unit of the adjunction.

$$
\begin{aligned}
& \epsilon: L R \rightarrow I \\
& \eta: I \rightarrow R L
\end{aligned}
$$

An alternative definition of adjunctions builds solely on these units, which have to satisfy

$$
\begin{aligned}
\epsilon \mathrm{L} \cdot \mathrm{~L} \eta & =i d_{\mathrm{L}} \\
\mathrm{R} \mathrm{\epsilon} \cdot \eta \mathrm{R} & =i d_{\mathrm{R}}
\end{aligned}
$$

2 Comonads and monads

Every adjunction $L \dashv \mathrm{R}$ induces a comonad and a monad.

$$
\begin{array}{rlrl}
\mathrm{N} & =\mathrm{LR} & \mathrm{M} & =\mathrm{RL} \\
e & =\epsilon & r & =\eta \\
d & =\mathrm{L} \eta \mathrm{R} & j & =\mathrm{R} \in \mathrm{~L}
\end{array}
$$

The curry adjunction induces the state monad.

$$
\begin{aligned}
\mathrm{M} A & =(A \times X)^{X} \\
r & =\Lambda i d \\
j & =\Lambda(a p p \cdot a p p)
\end{aligned}
$$

The monad supports stateful computations, where the state X is threaded through a program.

The curry adjunction induces the costate comonad.

$$
\begin{aligned}
\mathrm{N} A & =A^{X} \times X \\
e & =a p p \\
d & =(\wedge i d) \times X
\end{aligned}
$$

The context can be seen as a store A^{X} together with a memory location X, a focus of interest.

3 Transforming natural transformations

- Adjunctions provide a framework for program transformations.
- All the operations we have encountered so far are natural transformations.
- To deal effectively with those we develop a little theory of 'natural transformation transformers'.

3 Post-composition

Every adjunction $L \dashv R$ gives rise to an adjunction $L-\dashv R-$ between functor categories.

$$
\mathscr{C}^{\mathscr{E}}(\mathrm{LF}, \mathrm{G}) \cong \mathscr{D}^{\mathscr{E}}(\mathrm{F}, \mathrm{RG})
$$

We write $\lfloor-\rfloor$ for the lifted left adjunct and $\lfloor-\rfloor^{\circ}$ for its inverse.

$$
\frac{\alpha: L F \rightarrow G}{\lfloor\alpha\rfloor: F \rightarrow R G} \quad \frac{\beta: F \rightarrow R G}{\lfloor\beta\rfloor^{\circ}: L F \rightarrow G}
$$

The lifted adjuncts can be defined in terms of the units of the underlying adjunction:

$$
\lfloor\alpha\rfloor=R \alpha \cdot \eta F \quad\lfloor\beta\rfloor^{\circ}=\epsilon G \cdot L \beta
$$

3 Pre-composition

Post-composition dualizes to pre-composition. Consequently, every adjunction $L \dashv R$ also induces an adjunction $-R \dashv-L$.

$\mathscr{E}^{\mathscr{D}}(\mathrm{FR}, \mathrm{G}) \cong \mathscr{E}^{\mathscr{C}}(\mathrm{F}, \mathrm{GL})$

We write $\lceil-\rceil^{\circ}$ for the lifted left adjunct and $\lceil-\rceil$ for its inverse.

$$
\frac{\beta: F R \rightarrow G}{\lceil\beta\rceil^{\circ}: F \rightarrow G L} \quad \frac{\alpha: F \rightarrow G L}{\lceil\alpha\rceil: F R \rightarrow G}
$$

Again, the lifted adjuncts can be defined in terms of the units of the underlying adjunction:

$$
\lceil\beta\rceil^{\circ}=\beta \mathrm{L} \cdot \mathrm{~F} \mathrm{\eta} \quad\lceil\alpha\rceil=\mathrm{G} \epsilon \cdot \alpha \mathrm{R}
$$

An aide-mémoire: $\lfloor-\rfloor$ turns an L in the source to an R in the target, while $\lceil-\rceil$ turns an L in the target to an R in the source.

3 Transformation transformers

If we combine $\lfloor-\rfloor$ and $\lceil-\rceil$, we can send natural transformations of type LF \rightarrow GL to transformations of type $F R \rightarrow R G$.

The order in which we apply the adjuncts does not matter.

$$
\lfloor\lceil\alpha\rceil\rfloor=\lceil\lfloor\alpha\rfloor\rceil \quad\left\lceil\lfloor\beta\rfloor^{\circ}\right\rceil^{\circ}=\left\lfloor\lceil\beta\rceil^{\circ}\right\rfloor^{\circ}
$$

If we assume that L and R are endofunctors, then we can nest $\lfloor-\rfloor$ and $\lceil-\rceil$ arbitrarily deep.

$$
\frac{\alpha: \mathrm{L}^{m} \mathrm{~F} \rightarrow \mathrm{GL}^{n}}{\left\lceil\lfloor\alpha\rfloor^{m}\right\rceil^{n}: \mathrm{R}^{n} \mathrm{~F} \rightarrow \mathrm{GR}^{m}}
$$

An aide-mémoire: the number of $\lfloor\mathrm{s}$ corresponds to the number of Ls in the source, and the number of $\lceil\mathrm{s}$ corresponds to the number of Ls in the target.

4 Monads from comonads

- Assume that a left adjoint is at the same time a comonad.
- Then its right adjoint is a monad!
- Dually, the left adjoint of a monad is a comonad.

The 'transformation transformers' allow us to systematically turn the comonadic operations into monadic ones and vice versa.

$$
\begin{aligned}
r & =\lfloor e\rfloor: \mathrm{I} \rightarrow \mathrm{R} & & e=\lfloor r\rfloor^{\circ}: \mathrm{L} \rightarrow \mathrm{I} \\
j & =\lfloor\lceil\lceil d\rceil\rceil\rfloor: \mathrm{RR} \rightarrow \mathrm{R} & & d
\end{aligned}=\left\lceil\left\lceil\lfloor j\rfloor^{\circ}\right\rceil^{\circ}\right\rceil^{\circ}: \mathrm{L} \rightarrow \mathrm{LL}
$$

The curry adjunction, provides an example, where the left adjoint $\mathrm{L}=-\times X$ is also a comonad.

$$
\begin{aligned}
& e=\text { outl } \\
& d=\text { id } \triangle \text { outr }
\end{aligned}
$$

Consequently, L's right adjoint $\mathrm{R}=(-)^{X}$ is a monad with operations

$$
\begin{aligned}
& r=\lfloor\text { outl }\rfloor=\Lambda \text { outl } \\
& j=\lfloor\lceil\lceil\text { id } \triangle \text { outr }\rceil\rceil\rfloor=\Lambda(\text { app } \cdot(\text { app } \triangle \text { outr }))
\end{aligned}
$$

The resulting structure is known as the reader monad.

$A \times X \rightarrow B \cong A \rightarrow B^{X}$

Every (co)monad comes equipped with additional operations. The product comonad might provide a getter and an update operation:

$$
\begin{aligned}
\text { get } & =\text { outr }: \mathrm{L} \rightarrow \Delta_{X} \\
\text { update }(f: X \rightarrow X) & =\text { id } \times f: \mathrm{L} \rightarrow \mathrm{~L}
\end{aligned}
$$

where Δ_{X} is the constant functor.

The transforms of get and update correspond to operations called ask and local in the Haskell monad transformer library.

$$
\begin{aligned}
\text { ask } & =\lfloor\text { outr }\rfloor=\Lambda \text { outr }: \mathrm{I} \rightarrow \mathrm{R} \Delta_{X} \\
\text { local }(f: X \rightarrow X) & =\lfloor\lceil\text { id } \times f\rceil\rfloor=\Lambda(\text { app } \cdot(\text { id } \times f)): \mathrm{R} \rightarrow \mathrm{R}
\end{aligned}
$$

4 Proof

We have to show that the comonadic laws imply the monadic laws and vice versa. (It is sufficient to concentrate on natural transformations of type $\mathrm{L}^{m} \rightarrow \mathrm{~L}^{n}$ and $\mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$.)

The transformers enjoy functorial properties:

$$
\begin{aligned}
\left\lfloor\left\lceil i d_{\mathrm{L}^{n}}\right\rceil^{n}\right\rfloor^{n} & =i d_{\mathrm{R}^{n}} \\
\left\lceil\lfloor\beta \cdot \alpha\rfloor^{k}\right\rceil^{n} & =\left\lceil\lfloor\alpha\rfloor^{k}\right\rceil^{m} \cdot\left\lceil\lfloor\beta\rfloor^{m}\right\rceil^{n} \\
\left\lfloor\lceil\alpha\rceil^{n+1}\right\rfloor^{m+1} & =\left\lfloor\lceil\alpha\rceil^{n}\right\rfloor^{m} \mathrm{R}
\end{aligned}
$$

For reference, we call the last one flip law.

The first comonadic unit law is equivalent to the first monadic unit law:

$$
\mathrm{L} e \cdot d=i d_{\mathrm{L}}
$$

$\Longleftrightarrow \quad\{$ inverses $\}$

$$
\lfloor\lceil L e \cdot d\rceil\rfloor=\left\lfloor\left\lceil i d_{\mathrm{L}}\right\rceil\right\rfloor
$$

$\Longleftrightarrow \quad\{$ preservation of composition and identity $\}$

$$
\lfloor\lceil\lceil d\rceil\rceil\rfloor \cdot\left\lfloor\lfloor\lceil\llcorner e\rceil\rfloor\rfloor=i d_{\mathrm{R}}\right.
$$

$\Longleftrightarrow \quad\{$ flip law \}

$$
\lfloor\lceil\lceil d\rceil\rceil\rfloor \cdot\lfloor e\rfloor \mathrm{R}=i d_{\mathrm{R}}
$$

$\Longleftrightarrow \quad\{$ definition of j and definition of $r\}$

$$
j \cdot r \mathrm{R}=i d_{\mathrm{R}}
$$

5 The wrong way round

- Does the translation also work if the left adjoint is simultaneously a monad?
- The transformers happily take the monadic operations to comonadic ones.
- However, monadic programs of type $A \rightarrow \mathrm{~L} B$ are not in one-to-one correspondence to comonadic programs of type $\mathrm{R} A \rightarrow B$.

If X is a monoid with operations [] : X and (+) : $X \times X \rightarrow X$, then $\mathrm{L}=-\times X$ also has the structure of a monad.

$$
\begin{aligned}
r a & =(a,[]) \\
j\left(\left(a, x_{1}\right), x_{2}\right) & =\left(a, x_{1}+x_{2}\right)
\end{aligned}
$$

(For simplicity, we assume that we are working in Set.) This instance is known as the "write to a monoid" monad or simply the writer monad.

Its right adjoint $\mathrm{R}=(-)^{X}$ is indeed a comonad, lovingly called the "read from a monoid" comonad.

$$
\begin{aligned}
e f & =f[] \\
d f & =\lambda x_{1} \cdot \lambda x_{2} \cdot f\left(x_{1}+x_{2}\right)
\end{aligned}
$$

However, we cannot translate the accompanying infrastructure of the writer monad. Consider the write operation.

$$
\begin{aligned}
& \text { write }: X \rightarrow \mathbf{L} X \\
& \text { write } x=(x, x)
\end{aligned}
$$

The L is on the wrong side of the arrow, write is not natural, so it has no counterpart in the comonadic world.

6 Summary

- Monads: effectful computations.
- Comonads: computations in context.
- Adjunctions: a theory of program transformations.

$$
\mathscr{C}(\mathrm{L} A, B) \cong \mathscr{D}(A, \mathrm{R} B)
$$

If L and R are endofunctors:

$$
\mathrm{L}^{m} \rightarrow \mathrm{~L}^{n} \cong \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}
$$

- If L is a comonad, then R is a monad. Furthermore, comonadic programs are in one-to-one correspondence to monadic programs: $\mathrm{L} A \rightarrow B \cong A \rightarrow \mathrm{R} B$.
- If L is a monad, then R is a comonad. However, monadic programs are not in one-to-one correspondence to comonadic programs: $A \rightarrow \mathrm{~L} B \not \neq \mathrm{R} A \rightarrow B$.

6 Summary continued

The curry adjunction

$$
\Lambda: \mathscr{C}(A \times X, B) \cong \mathscr{C}\left(A, B^{X}\right)
$$

explains:

- state monad,
- costate comonad,
- product comonad,
- reader monad,
- "write to a monoid" monad or writer monad,
- "read from a monoid" comonad.

7 Post- and pre-composition

Functors can be composed, written simply using juxtaposition KF. The operation K -, post-composing a functor K , is itself functorial:

$$
\begin{aligned}
& \mathrm{K}-: \mathscr{D}^{\mathscr{C}} \rightarrow \mathscr{E}^{\mathscr{C}} \\
& (\mathrm{K}-) \mathrm{F}=\mathrm{KF} \\
& (\mathrm{~K}-) \alpha=\mathrm{K} \alpha
\end{aligned}
$$

where $(\mathrm{K} \alpha) A=\mathrm{K}(\alpha A)$.
Post-composition dualizes to pre-composition:

$$
\begin{aligned}
& -\mathrm{E}: \mathscr{D}^{\mathscr{C}} \rightarrow \mathscr{D}^{\mathscr{B}} \\
& (-\mathrm{E}) \mathrm{F}=\mathrm{FE} \\
& (-\mathrm{E}) \alpha=\alpha \mathrm{E}
\end{aligned}
$$

where $(\alpha \mathrm{E}) A=\alpha(\mathrm{E} A)$.

