Paying for a "free" theorem

Matthias Blume
 Google

(motivated by joint work with Amal Ahmed)

The (original) goal: fully abstract CPS conversion

The (original) goal: fully abstract CPS conversion

... for System F ...

The (original) goal: fully abstract CPS conversion

... for System F ...
... with recursive types.

Well-known counterexamples due to call/cc-like patterns

$$
\begin{aligned}
& A=\lambda(f: \text { int } \rightarrow \text { int }, g: \text { int } \rightarrow \text { int }) .(\mathrm{f} 0 ; \mathrm{g} 0 ; 0) \\
& B=\lambda(\mathrm{f}: \mathrm{int} \rightarrow \text { int,g:int } \rightarrow \text { int }) .(\mathrm{g} 0 ; \mathrm{f} 0 ; 0)
\end{aligned}
$$

Well-known counterexamples due to call/cc-like patterns

$$
\begin{aligned}
& A=\lambda(f: i n t \rightarrow \text { int,g:int } \rightarrow \text { int }) .(\mathrm{f} 0 ; \mathrm{g} 0 ; 0) \\
& B=\lambda(\mathrm{f}: \mathrm{int} \rightarrow \text { int,g:int } \rightarrow \text { int }) .(\mathrm{g} 0 ; \mathrm{f} 0 ; 0)
\end{aligned}
$$

$$
A^{\prime}=\lambda(f, g, k: i n t \rightarrow a n s) \cdot\left(f\left(0, \lambda_{1} . g\left(0, \lambda_{_} . k 0\right)\right)\right)
$$

$$
\mathrm{B}^{\prime}=\lambda(\mathrm{f}, \mathrm{~g}, \mathrm{k}: \text { int } \rightarrow \mathrm{ans}) \cdot\left(\mathrm{g}\left(0, \lambda_{-} \cdot \mathrm{f}\left(0, \lambda_{-}^{-} \cdot \mathrm{k} 0\right)\right)\right)
$$

Well-known counterexamples due to call/cc-like patterns

$$
\begin{aligned}
& A=\lambda(f: \text { int } \rightarrow \text { int }, g: \text { int } \rightarrow \text { int }) .(\mathrm{f} 0 ; \mathrm{g} 0 ; 0) \\
& B=\lambda(\mathrm{f}: \mathrm{int} \rightarrow \text { int,g:int } \rightarrow \text { int }) .(\mathrm{g} 0 ; \mathrm{f} 0 ; 0)
\end{aligned}
$$

$A^{\prime}=\lambda(f, g, k:$ int \rightarrow ans $) .\left(f\left(0, \lambda_{-} \cdot g\left(0, \lambda_{-} . k 0\right)\right)\right)$
$B^{\prime}=\lambda(f, g, k:$ int \rightarrow ans $) \cdot\left(g\left(0, \lambda_{-} \cdot f\left(0, \lambda_{-} \cdot k 0\right)\right)\right)$
$C=\lambda k: i n t \rightarrow$ ans. $[\cdot]\left(\lambda\left(\left(_{_},\right) \cdot k 1, \lambda\left(_,\right) \cdot k 2, k\right)\right.$

The (original) goal: fully abstract CPS conversion

$\mathrm{e}::=\mathrm{x}|\mathrm{c}| \lambda[\mathrm{X} \ldots](\mathrm{x:T} . ..) . \mathrm{e}|\mathrm{e}[\mathrm{T} . .].(\mathrm{e} \ldots)|$ fold[$[\mathrm{X}$.T]e | unfold e
$\mathrm{T}::=\mathrm{X} \mid$ int $|\forall[\mathrm{X} \ldots .].(\mathrm{T} \ldots) \rightarrow \mathrm{T}| \mu \mathrm{X} . \mathrm{T}$
v ::= c | $\lambda[X \ldots]$... $x: T . ..) . e \mid ~ f o l d[\mu X . T] v$
$\mathrm{E}::=[\cdot]\left|\mathrm{E}_{0}[\mathrm{~T} \ldots](\mathrm{e} . .).\right| \mathrm{v}[\mathrm{T} \ldots](\mathrm{v} . . . \mathrm{Ee} . .$.
Г ::= x:T...
$\Delta::=\mathrm{X} \ldots$
$\Delta ; \Gamma+\mathrm{e}: \mathrm{T}$

The type translation

$X^{+}=X$
$\mathrm{int}^{+}=\mathrm{int}$
$(\mu \mathrm{X} . \mathrm{T})^{+}=\mu \mathrm{X} .\left(\mathrm{T}^{+}\right)$

The type translation

$X^{+}=X$
$\mathrm{int}^{+}=\mathrm{int}$
$(\mu \mathrm{X} . \mathrm{T})^{+}=\mu \mathrm{X} .\left(\mathrm{T}^{+}\right)$
$(\forall[\mathrm{X} \ldots](\mathrm{S} \ldots) \rightarrow \mathrm{T})^{+}=\forall[\mathrm{X} \ldots, \mathrm{Y}]\left(\mathrm{S}^{+} \ldots, \mathrm{T}^{+} \rightarrow \mathrm{Y}\right) \rightarrow \mathrm{Y}$

CPS translation

$$
\Delta ; \Gamma+\mathrm{e}: \mathrm{T} \leadsto \mathrm{e}^{*}
$$

such that

$$
\Delta ; \Gamma^{+}+\mathrm{e}^{*}: \mathrm{T}^{*}
$$

where $\mathrm{T}^{*}=\forall \mathrm{X} . \mathrm{T}^{+} \rightarrow \mathrm{X}$ for some fresh X .

Original goal:

Show that:
if $\Delta ; \Gamma+e_{1} \approx e_{2}: T$
then $\Delta ; \Gamma^{+}+\mathrm{e}_{1}{ }^{*} \approx \mathrm{e}_{2}{ }^{*}: T^{*}$

A crucial lemma

Suppose $+T$ and $+\mathrm{f}: \forall[\mathrm{X}](\mathrm{x}: \mathrm{T}, \mathrm{k}: T \rightarrow \mathrm{X}) \rightarrow \mathrm{X}$.
Then for any well-typed choice of a type S and a value v we get:

$$
\mathrm{f}[\mathrm{~S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{~T}] i d_{\mathrm{T}}\right)
$$

where $i d_{\mathrm{T}}$ is the identity for T and \approx is contextual equivalence.

A crucial lemma

Suppose $+T$ and $+\mathrm{f}: \forall[\mathrm{X}](\mathrm{x}: \mathrm{T}, \mathrm{k}: T \rightarrow \mathrm{X}) \rightarrow \mathrm{X}$.
Then for any well-typed choice of a type S and a value v we get:

$$
\mathrm{f}[\mathrm{~S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{~T}] i d_{\mathrm{T}}\right)
$$

where $i d_{\mathrm{T}}$ is the identity for T and \approx is contextual equivalence.

Thank you, Phil!

Actually...

Actually...

Thanks, but no thanks! ©

Actually...

Thanks, but no thanks! ©
The lemma is not true in the presence of recursive types, since they introduce non-termination effects. (Other effects would also render it untrue.)

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] \mathrm{i} d_{\mathrm{T}}\right)$

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}\right)$

$\mathrm{T}=\mathrm{S}=\mathrm{int}$
$f \equiv \lambda[X](k: \operatorname{int} \rightarrow X) .((\lambda(x: X) .(k 1))(k 0))$
$v \equiv \lambda(x:$ int $)$. if $x=0$ then Ω else 0

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}\right)$

$\mathrm{T}=\mathrm{S}=\mathrm{int}$
$f \equiv \lambda[X](k:$ int $\rightarrow X) .((\lambda(x: X) .(k 1))(k 0))$
$f \equiv \lambda[X](k$: int $\rightarrow X)$. let $=k 0$ in $k 1$
$v \equiv \lambda(x:$ int $)$. if $x=0$ then Ω else 0

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}\right)$

$\mathrm{T}=\mathrm{S}=\mathrm{int}$
$\mathrm{f} \equiv \lambda[\mathrm{X}](\mathrm{k}: \mathrm{int} \rightarrow \mathrm{X}) .((\lambda(\mathrm{x}: \mathrm{X}) .(\mathrm{k} 1))(\mathrm{k} 0))$
$f \equiv \lambda[X](k$: int $\rightarrow X)$. let $=k 0$ in $k 1$
$v \equiv \lambda(x:$ int $)$. if $x=0$ then Ω else 0

Assuming a CPS restriction

$$
\begin{aligned}
& \mathrm{T}::=\mathrm{X}|1| \mathrm{T} \rightarrow \mathrm{~T}|\forall \mathrm{X} . \mathrm{T}| \mu \mathrm{X} . \mathrm{T} \\
& \mathrm{v}::=\mathrm{x}|()| \lambda \mathrm{X}: \mathrm{T} . \mathrm{e}|\wedge \mathrm{X} . \mathrm{e}| \text { fold }[\mu \mathrm{X} . \mathrm{T}] \mathrm{v} \\
& \mathrm{e}::=\mathrm{v}|\mathrm{e} v| \mathrm{e}[\mathrm{~T}] \mid \text { let } \mathrm{x}=\text { unfold } \mathrm{v} \text { in e }
\end{aligned}
$$

kinding context Δ, typing context Γ small-step semantics with explicit step counts step-indexed logical relation sound and complete wrt. contextual equivalence

Claim

For the CPS-restricted System F, Wadler's "free" theorem holds...

Claim

For the CPS-restricted System F, Wadler's "free" theorem holds...
... but it is not free

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] \mathrm{i} d_{\mathrm{T}}\right)$

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}\right)$

$\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v}\left(\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}\right)$

If $\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}{ }^{\prime \prime} \rightarrow * \mathrm{w}$ then $f[S] v \approx v$ w, and otherwise both $\mathrm{f}[\mathrm{T}] i d_{\mathrm{T}}$ and $\mathrm{f}[\mathrm{S}] \mathrm{v}$ diverge.

Lemma 1: "If the result of a function is abstract, then the function cannot be invoked unless its result is the final result."

> Lemma 1: "If the result of a function is abstract, then the function cannot be invoked unless its result is the final result."

Let $B \neq X$, and $X ; f: A \rightarrow X+e: B$.
Then $\exists v_{p}$ such that $X ; f: A \rightarrow X+v_{p}: B$.
Moreover, for any number of steps i, if for some T_{0} and some F_{0} with $F_{0}: A \rightarrow T_{0}$ it is the case that

$$
\left[X \mapsto T_{0}, f \mapsto F_{0}\right] e{ }^{\prime \cdots} \rightarrow^{i} v_{0},
$$

then $\mathrm{v}_{0} \equiv\left[\mathrm{X} \mapsto \mathrm{T}_{0}, f \mapsto \mathrm{~F}_{0}\right] \mathrm{v}_{\mathrm{P}}$. Moreover, in this case for any other T and F such that $F: A \rightarrow T$ it is also true that $[X \mapsto T, f \mapsto F] e \rightarrow^{i}[X \mapsto T, f \mapsto F] v_{p}$.

Proof:

Proof:

By induction on i and case analysis on e. Notation $\zeta=[X \mapsto T, f \mapsto F]$ and $\zeta_{0}=\left[X \mapsto T_{0}, f \mapsto F_{0}\right]$.

Proof:

By induction on i and case analysis on e. Notation $\zeta=[X \mapsto T, f \mapsto F]$ and $\zeta_{0}=\left[X \mapsto T_{0}, f \mapsto F_{0}\right]$.
case $\mathrm{e} \equiv \mathrm{v}_{\mathrm{p}}$: immediate.

Proof:

By induction on i and case analysis on e.
Notation $\zeta=[X \mapsto T, f \mapsto F]$ and $\zeta_{0}=\left[X \mapsto T_{0}, f \mapsto F_{0}\right]$.
case $\mathrm{e} \equiv \mathrm{v}_{\mathrm{p}}$: immediate.
case e $\equiv \mathrm{e}^{\prime} \mathrm{w}$:
Have $\mathrm{X} ; \mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}+\mathrm{w}: \mathrm{C}$ and $\mathrm{X} ; \mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}+\mathrm{e}$: $\mathrm{C} \rightarrow \mathrm{B}$.
By IH $\exists \mathrm{v}_{\mathrm{P}}^{\prime}$ such that $\zeta_{0} \mathrm{e}^{\prime} \mathrm{m}^{\boldsymbol{j}} \zeta_{0} \mathrm{v}_{\mathrm{P}}^{\prime}$ and $\zeta \mathrm{e}^{\prime}{ }^{\prime \rightarrow} \mathrm{m}^{j} \zeta \mathrm{v}_{\mathrm{P}}^{\prime}$
with $0 \leq \mathrm{j}<\mathrm{i}$.
By canonical forms, v'P can be either a variable or some λx :C. b.

Proof:

By induction on i and case analysis on e.
Notation $\zeta=[X \mapsto T, f \mapsto F]$ and $\zeta_{0}=\left[X \mapsto T_{0}, f \mapsto F_{0}\right]$.
case $\mathrm{e} \equiv \mathrm{v}_{\mathrm{p}}$: immediate.
case e $\equiv \mathrm{e}^{\prime} \mathrm{w}$:
Have X;f:A $\rightarrow \mathrm{X}+\mathrm{w}: \mathrm{C}$ and $\mathrm{X} ; \mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}+\mathrm{e}^{\prime}: \mathrm{C} \rightarrow \mathrm{B}$.
By IH $\exists \mathrm{v}_{\mathrm{P}}^{\prime}$ such that $\zeta_{0} \mathrm{e}^{\prime} \mathrm{m}^{\boldsymbol{j}} \zeta_{0} \mathrm{v}_{\mathrm{P}}^{\prime}$ and $\zeta \mathrm{e}^{\prime}{ }^{\prime \rightarrow} \mathrm{m}^{j} \zeta \mathrm{v}_{\mathrm{P}}^{\prime}$ with $0 \leq \mathrm{j}<\mathrm{i}$.
By canonical forms, v'P can be either a variable or some λx :C.
b. But the only variable is f, and $B \neq X$.

Proof:

By induction on i and case analysis on e.
Notation $\zeta=[X \mapsto T, f \mapsto F]$ and $\zeta_{0}=\left[X \mapsto T_{0}, f \mapsto F_{0}\right]$.
case $\mathrm{e} \equiv \mathrm{v}_{\mathrm{p}}$: immediate.
case e $\equiv \mathrm{e}^{\prime} \mathrm{w}$:
Have X;f:A $\rightarrow \mathrm{X}+\mathrm{w}: \mathrm{C}$ and $\mathrm{X} ; \mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}+\mathrm{e}^{\prime}: \mathrm{C} \rightarrow \mathrm{B}$.
By IH $\exists \mathrm{v}_{\mathrm{P}}^{\prime}$ such that $\zeta_{0} \mathrm{e}^{\prime} \mathrm{m}^{\boldsymbol{j}} \zeta_{0} \mathrm{v}_{\mathrm{P}}^{\prime}$ and $\zeta \mathrm{e}^{\prime}{ }^{\prime \rightarrow} \mathrm{m}^{j} \zeta \mathrm{v}_{\mathrm{P}}^{\prime}$
with $0 \leq \mathrm{j}<\mathrm{i}$.
By canonical forms, v'P can be either a variable or some λx :C.
b. But the only variable is f, and $B \neq X$.

Remainder follows from performing a single reduction step on the redex and re-apply the IH .
case ...

Corollary 3: If the abstract result type of a function is not part of the overall type, then the computation cannot depend on the function (and the function can, thus, not be invoked at all).

Corollary 3: If the abstract result type of a function is not part of the overall type, then the computation cannot depend on the function (and the function can, thus, not be invoked at all).

Let $\mathrm{X} ; \mathrm{f}: \mathrm{A} \rightarrow \mathrm{X}+\mathrm{e}: \mathrm{B}$ where +A and +B .
Let there be two substitutions $\mathrm{K}_{1}=\left[\mathrm{X} \mapsto \mathrm{T}_{1}, \mathrm{f} \mapsto \mathrm{F}_{1}\right]$
and $\mathrm{k}_{2}=\left[\mathrm{X} \mapsto \mathrm{T}_{2}, \mathrm{f} \mapsto \mathrm{F}_{2}\right]$ with $+\mathrm{T}_{1}, \vdash \mathrm{~T}_{2}$,
$+F_{1}: A \rightarrow T_{1}$, and $+F_{2}: A \rightarrow T_{2}$.
Then $\mathrm{K}_{1} \mathrm{e} \approx \mathrm{K}_{2} \mathrm{e}: \mathrm{B}$.

Lemma 4: Wadler's original "free" theorem holds.

Lemma 4: Wadler's original "free" theorem holds.

If $f[T] i d_{T} \rightarrow * w$ then $\mathrm{f}[\mathrm{S}] \mathrm{v} \approx \mathrm{v} \mathrm{w}$, and otherwise both $\mathrm{f}[\mathrm{T}] \mathrm{id}_{\mathrm{T}}$ and $\mathrm{f}[\mathrm{S}] \mathrm{v}$ diverge.

