Paying for a "free" theorem

Matthias Blume Google

(motivated by joint work with Amal Ahmed)

... for System F ...

... for System F with recursive types.

Well-known counterexamples due to call/cc-like patterns

$$A = \lambda(f:int \rightarrow int,g:int \rightarrow int).(f 0; g 0; 0)$$

B = $\lambda(f:int \rightarrow int,g:int \rightarrow int).(g 0; f 0; 0)$

Well-known counterexamples due to call/cc-like patterns

$$A = \lambda(f:int \rightarrow int,g:int \rightarrow int).(f 0; g 0; 0)$$

B = $\lambda(f:int \rightarrow int,g:int \rightarrow int).(g 0; f 0; 0)$

$$A' = \lambda(f,g,k:int \rightarrow ans).(f(0,\lambda_.g(0,\lambda_.k\ 0)))$$
$$B' = \lambda(f,g,k:int \rightarrow ans).(g(0,\lambda_.f(0,\lambda_.k\ 0)))$$

Well-known counterexamples due to call/cc-like patterns

$$A = \lambda(f:int \rightarrow int,g:int \rightarrow int).(f 0; g 0; 0)$$

B = $\lambda(f:int \rightarrow int,g:int \rightarrow int).(g 0; f 0; 0)$

$$A' = \lambda(f,g,k:int \rightarrow ans).(f(0,\lambda_.g(0,\lambda_.k\ 0)))$$

$$B' = \lambda(f,g,k:int \rightarrow ans).(g(0,\lambda_.f(0,\lambda_.k\ 0)))$$

C = λ k:int \rightarrow ans. [•] (λ (_,_).k 1, λ (_,_).k 2, k)

- $e ::= x \mid c \mid \lambda[X...](x:T...).e \mid e[T...](e...) \mid fold[\mu X.T]e \mid unfold \mid e$
- $\mathsf{T} ::= \mathsf{X} \mid \mathsf{int} \mid \forall [\mathsf{X}...](\mathsf{T}...) \rightarrow \mathsf{T} \mid \mu \mathsf{X}.\mathsf{T}$
- v ::= c | λ [X...](x:T...).e | fold[μ X.T]v
- E ::= [•] | E₀[T...](e...) | v[T...](v...Ee...)
- Г ::= x:Т...
- Δ ::= X...

Δ;Γ ⊦ e : T

The type translation

 $X^+ = X$

 $int^+ = int$

 $(\mu X.T)^{+} = \mu X.(T^{+})$

The type translation

 $X^+ = X$

 $int^+ = int$

 $(\mu X.T)^{+} = \mu X.(T^{+})$

 $(\forall [X...](S...) \rightarrow T)^{+} = \forall [X...,Y](S^{+}...,T^{+} \rightarrow Y) \rightarrow Y$

CPS translation

Δ;Γ ⊦ e : T ~[¬] e^{*}

such that

 $\Delta;\Gamma^+ + e^* : T^*$

where $T^* = \forall X . T^+ \rightarrow X$ for some fresh X.

Original goal:

Show that:

if $\Delta; \Gamma \vdash e_1 \approx e_2 : T$

then
$$\Delta; \Gamma^+ + e_1^* \approx e_2^* : T^*$$

A crucial lemma

Suppose $\vdash T$ and $\vdash f : \forall [X](x:T,k:T \rightarrow X) \rightarrow X$.

Then for any well-typed choice of a type S and a value v we get:

 $f[S]v \approx v(f[T]id_T)$

where id_{T} is the identity for T and \approx is contextual equivalence.

A crucial lemma

Suppose $\vdash T$ and $\vdash f : \forall [X](x:T,k:T \rightarrow X) \rightarrow X$.

Then for any well-typed choice of a type S and a value v we get:

 $f[S]v \approx v(f[T]id_T)$

where id_{T} is the identity for T and \approx is contextual equivalence.

Thank you, Phil!

Actually...

Thanks, but no thanks! 🔅

Actually...

Thanks, but no thanks! 😂

The lemma is *not true* in the presence of recursive types, since they introduce non-termination effects. (Other effects would also render it untrue.)

$f[S]v \approx v(f[T]id_T)$

 $f[S]v \approx v(f[T]id_{T})$

T = S = int

 $f \equiv \lambda[X](k: int \rightarrow X).((\lambda(x:X).(k 1))(k 0))$

 $v \equiv \lambda(x:int)$. if x = 0 then Ω else 0

$f[S]v \approx v(f[T]id_T)$

T = S = int

 $f \equiv \lambda[X](k: int \rightarrow X).((\lambda (x:X).(k 1)) (k 0))$ $f \equiv \lambda[X](k: int \rightarrow X). \text{ let } _ = k 0 \text{ in } k 1$

 $v \equiv \lambda(x:int)$. if x = 0 then Ω else 0

$f[S]v \approx v(f[T]id_T)$

T = S = int

 $f \equiv \lambda[X](k: int \rightarrow X).((\lambda(x:X).(k 1)) (k 0))$ $f \equiv \lambda[X](k: int \rightarrow X). let _ = k 0 in k 1$

 $v \equiv \lambda(x:int)$. if x = 0 then Ω else 0

Assuming a CPS restriction

```
T ::= X \mid 1 \mid T \rightarrow T \mid \forall X.T \mid \mu X.T
```

```
v ::= x | () | \lambdaX:T.e | \LambdaX.e | fold[\muX.T]v
```

```
e ::= v | e v | e[T] | let x = unfold v in e
```

kinding context Δ , typing context Γ small-step semantics with explicit step counts step-indexed logical relation sound and complete wrt. contextual equivalence

Claim

For the CPS-restricted System F, Wadler's "free" theorem holds...

Claim

For the CPS-restricted System F, Wadler's "free" theorem holds...

... but it is not free

$f[S]v \approx v(f[T]id_T)$

$f[S]v \approx v(f[T]id_{T})$

If $f[T]id_{T} \rightarrow * w$ then $f[S]v \approx v w$, and otherwise both $f[T]id_{T}$ and f[S]v diverge.

$f[S]v \approx v(f[T]id_T)$

Lemma 1: "If the result of a function is abstract, then the function cannot be invoked unless its result is the final result." **Lemma 1**: "If the result of a function is abstract, then the function cannot be invoked unless its result is the final result."

Let $B \neq X$, and $X;f:A \rightarrow X \vdash e : B$. Then $\exists v_P$ such that $X;f:A \rightarrow X \vdash v_P : B$. Moreover, for any number of steps i, if for some T_0 and some F_0 with $F_0 : A \rightarrow T_0$ it is the case that $[X \mapsto T_0, f \mapsto F_0]e \implies^i v_0$, then $v_0 \equiv [X \mapsto T_0, f \mapsto F_0]v_P$. Moreover, in this case for any other T and F such that $F : A \rightarrow T$ it is also true that $[X \mapsto T, f \mapsto F]e \implies^i [X \mapsto T, f \mapsto F]v_P$.

By induction on i and case analysis on e. Notation $\zeta = [X \mapsto T, f \mapsto F]$ and $\zeta_0 = [X \mapsto T_0, f \mapsto F_0]$.

By induction on i and case analysis on e. Notation $\zeta = [X \mapsto T, f \mapsto F]$ and $\zeta_0 = [X \mapsto T_0, f \mapsto F_0]$.

case $e \equiv v_{p}$: immediate.

By induction on i and case analysis on e. Notation $\zeta = [X \mapsto T, f \mapsto F]$ and $\zeta_0 = [X \mapsto T_0, f \mapsto F_0]$.

case $e \equiv v_P$: immediate. case $e \equiv e' w$: Have X;f:A \rightarrow X $\vdash w$: C and X;f:A \rightarrow X $\vdash e'$: C \rightarrow B. By IH $\equiv v'_P$ such that $\zeta_0 e' \implies^j \zeta_0 v'_P$ and $\zeta e' \implies^j \zeta v'_P$ with $0 \leq j < i$. By canonical forms, v'P can be either a variable or some λx :C. b.

By induction on i and case analysis on e. Notation $\zeta = [X \mapsto T, f \mapsto F]$ and $\zeta_0 = [X \mapsto T_0, f \mapsto F_0]$.

case $e \equiv v_{p}$: immediate. case $e \equiv e' w$: Have X;f:A→X + w : C and X;f:A→X + e' : C→B. By IH $\exists v_{p}'$ such that $\zeta_{0}e' \xrightarrow{i \to j} \zeta_{0}v'_{p}$ and $\zeta e' \xrightarrow{i \to j} \zeta v'_{p}$ with $0 \leq j < i$. By canonical forms, v'P can be either a variable or some λx :C.

b. But the only variable is f, and $B \neq X$.

By induction on i and case analysis on e. Notation $\zeta = [X \mapsto T, f \mapsto F]$ and $\zeta_0 = [X \mapsto T_0, f \mapsto F_0]$.

```
case e \equiv v_{p}: immediate.
case e \equiv e' w:
Have X;f:A\rightarrowX \vdash w: C and X;f:A\rightarrowX \vdash e': C\rightarrowB.
By IH \exists v'_{p} such that \zeta_{0}e' \implies^{j} \zeta_{0}v'_{p} and \zeta e' \implies^{j} \zeta v'_{p}
with 0 \leq j < i.
```

By canonical forms, v'P can be either a variable or some λx :C. b. But the only variable is f, and B $\neq X$.

Remainder follows from performing a single reduction step on the redex and re-apply the IH.

case ...

Corollary 3: If the abstract result type of a function is not part of the overall type, then the computation cannot depend on the function (and the function can, thus, not be invoked at all). **Corollary 3**: If the abstract result type of a function is not part of the overall type, then the computation cannot depend on the function (and the function can, thus, not be invoked at all).

Let X;f:A \rightarrow X + e : B where + A and + B. Let there be two substitutions $\kappa_1 = [X \mapsto T_1, f \mapsto F_1]$ and $\kappa_2 = [X \mapsto T_2, f \mapsto F_2]$ with + T_1 , + T_2 , + $F_1:A \rightarrow T_1$, and + $F_2:A \rightarrow T_2$. Then $\kappa_1 e \approx \kappa_2 e$: B. Lemma 4: Wadler's original "free" theorem holds.

Lemma 4: Wadler's original "free" theorem holds.

If
$$f[T]id_{T} \twoheadrightarrow * w$$
 then
 $f[S]v \approx v w,$
and otherwise both $f[T]id_{T}$
and $f[S]v$ diverge.