Simple
 Monadic

Equational Reasoning

Jeremy Gibbons (joint work with Ralf Hinze)
University of Oxford
WG2.8, March 2011

1. Reasoning with effects?

1.1. Seeing the wood through the trees

At TFP 2008, Hutton \& Fulger discuss the 'correctness' of

$$
\text { relabel :: Tree } a \rightarrow \text { Tree Int }
$$

as an effectful (stateful) functional program.
I think they miss two opportunities for abstraction:

- from the specific effects (they expand the State monad to state-transforming functions), and
- from the pattern of computation (they use explicit induction on trees).

This is an attempt to address the first question.
(The second is a story for another time.)

2. Monads

'Ordinary' monads, with the usual laws:
class Monad m where

$$
\begin{aligned}
& \text { return }:: a \rightarrow m a \\
& (\gg) \quad:: m a \rightarrow(a \rightarrow m b) \rightarrow m b
\end{aligned}
$$

Special cases:

$$
\begin{aligned}
& \text { skip }:: \text { Monad } m \Rightarrow m() \\
& \text { skip }=\operatorname{return}() \\
& (\gg):: \text { Monad } m \Rightarrow m a \rightarrow m b \rightarrow m b \\
& k \gg l=k \gg=\text { const } l
\end{aligned}
$$

2.1. Fallibility

Computations may fail:
class Monad $m \Rightarrow$ MonadZero m where
mzero :: m a
such that

$$
\text { mzero } \gg k=\text { mzero }
$$

(I'm curious as to why it's not like this in Haskell 98...)
Often we just use

$$
\text { mzero }=\perp
$$

2.2. Guards

Define

$$
\begin{aligned}
& \text { guard }:: \text { MonadZero } m \Rightarrow \text { Bool } \rightarrow m() \\
& \text { guard } b=\text { if } b \text { then skip else mzero }
\end{aligned}
$$

We'll write ' b !' for 'guard b '.
Familiar properties:

$$
\begin{aligned}
& \text { True }!=\text { skip } \\
& \text { False }=\text { mzero } \\
& \left(b_{1} \wedge b_{2}\right)!=b_{1}!\gg b_{2}! \\
& b_{1}!\gg k \gg b_{2}!=b_{1}!\gg k \quad \Longleftarrow \quad b_{1} \Rightarrow b_{2}
\end{aligned}
$$

2.3. Assertions

For $k::$ MonadZero (), write ' $k\{b\}$ ' for

$$
\text { do }\{k ; b!\}=\operatorname{do}\{k\} \quad(=k)
$$

More generally, for $k::$ MonadZero a, define ' $k\{b\}$ ' to be:

$$
\text { do }\{a \leftarrow k ; b!; \text { return } a\}=\operatorname{do}\{a \leftarrow k ; \text { return } a\}
$$

By abuse of notation, extend to assertions about multiple statements: suppose statements $s_{1} ; \ldots ; s_{n}$ contain generators binding variables v_{1}, \ldots, v_{m}; write ' $s_{1} ; \ldots$; $s_{n}\{b\}$ ' for

$$
\text { do }\left\{s_{1} ; \ldots ; s_{n} ; b!; \text { return }\left(v_{1}, \ldots, v_{m}\right)\right\}=\text { do }\left\{s_{1} ; \ldots ; s_{n} ; \text { return }\left(v_{1}, \ldots, v_{m}\right)\right\}
$$

(A similar construction is used by Erkök and Launchbury (2000).)

2.4. Queries

A special class of monadic operations, particularly amenable to manipulation.

A query q has no side-effects:

$$
\text { do }\{a \leftarrow q ; k\}=\text { do }\{k\} \quad-- \text { when } k \text { doesn't depend on } a
$$

and is consistent:

$$
\text { do }\left\{a_{1} \leftarrow q ; a_{2} \leftarrow q ; k a_{1} a_{2}\right\}=\operatorname{do}\{a \leftarrow q ; k a a\}
$$

(They're not just the pure operations, ie those of the form return a. Consider get :: State s s of the state monad.)

3. A counter example

A counting monad:

```
class Monad m=> MonadCount m where
    tick :: m()
    total :: m Int
```

where total is a query, and

$$
n \leftarrow \text { total; tick; } n^{\prime} \leftarrow \text { total }\left\{n^{\prime}=n+1\right\}
$$

(exploiting our abuse of notation).

3.1. Towers of Hanoi-specification

Given this program:

$$
\begin{aligned}
& \text { hanoi }:: \text { MonadCount } m \Rightarrow \text { Int } \rightarrow m() \\
& \begin{aligned}
\text { hanoi } 0 & =\text { skip } \\
\text { hanoi }(n+1) & =\text { do }\{\text { hanoi } n ; \text { tick; hanoi } n\}
\end{aligned}
\end{aligned}
$$

we claim:

$$
t \leftarrow \text { total; hanoi } n ; u \leftarrow \text { total }\left\{2^{n}-1=u-t\right\}
$$

Proof by induction on n. The base case is immediate. Inductive step...

3.2. Reasoning

$$
\begin{aligned}
& \text { do }\left\{t \leftarrow \text { total; hanoi }(n+1) ; u \leftarrow \text { total; }\left(2^{n+1}-1=u-t\right)!\right\} \\
&= {[[\text { definition of hanoi }]] } \\
& \text { do }\left\{t \leftarrow \text { total; hanoi } n ; \text { tick; hanoi } n ; u \leftarrow \text { total; }\left(2^{n+1}-1=u-t\right)!\right\} \\
&=\quad[[\text { inserting some queries }]] \\
& \text { do }\left\{t \leftarrow \text { total; hanoi } n ; u^{\prime} \leftarrow \text { total; tick; } t^{\prime} \leftarrow\right. \text { total; } \\
&\left.\quad \text { hanoi } n ; u \leftarrow \text { total; }\left(2^{n+1}-1=u-t\right)!\right\} \\
&=\quad {[[\text { inductive hypothesis; tick }]] } \\
& \text { do }\left\{t \leftarrow \text { total; hanoi } n ; u^{\prime} \leftarrow \text { total; }\left(2^{n}-1=u^{\prime}-t\right)!; \text { tick; } t^{\prime} \leftarrow\right. \text { total; } \\
&\left.\quad\left(t^{\prime}=u^{\prime}+1\right)!; \text { hanoi } n ; u \leftarrow \text { total; }\left(2^{n}-1=u-t^{\prime}\right)!;\left(2^{n+1}-1=u-t\right)!\right\} \\
&=\quad\left[\left[\text { arithmetic: } 2^{n+1}-1=u-t \text { follows from other guards }\right]\right] \\
& \text { do }\left\{t \leftarrow \text { total; hanoi } n ; u^{\prime} \leftarrow \text { total; }\left(2^{n}-1=u^{\prime}-t\right)!; \text { tick; } t^{\prime} \leftarrow\right. \text { total; } \\
&\left.\quad\left(t^{\prime}=u^{\prime}+1\right)!; \text { hanoi } n ; u \leftarrow \text { total; }\left(2^{n}-1=u-t^{\prime}\right)!\right\} \\
&=\quad[[\text { redundant guards, definition of hanoi }]] \\
& \text { do }\{t \leftarrow \text { total; hanoi }(n+1) ; u \leftarrow \text { total }\}
\end{aligned}
$$

4. Tree relabelling

A monad for generating fresh symbols:

```
type Symbol = ...
instance Eq Symbol where ...
class Monad m = MonadGensym m where
    fresh:: m Symbol
    used :: m (Set Symbol)
```

such that used (only used in reasoning) is a query, and

$$
x \leftarrow \text { used; } n \leftarrow \text { fresh; } y \leftarrow \text { used }\{x \subseteq y \wedge n \in y-x\}
$$

4.1. Specification

Tree relabelling:

```
data Tree a = Tip a | Bin (Tree a) (Tree a)
relabel :: MonadGensym m = Tree a }->m\mathrm{ (Tree Symbol)
relabel (Leaf a) = do {n\leftarrowfresh; return (Leaf n) }
relabel (Bin t u) = do {t't}\leftarrow\mathrm{ relabel t; u' }\leftarrow\mathrm{ relabel u; return (Bin t' u')}
```

(in fact, an idiomatic traverse), satisfies

$$
x \leftarrow \text { used; } t^{\prime} \leftarrow \text { relabel } t ; y \leftarrow \text { used }\left\{\text { distinct } t^{\prime} \wedge \text { labels } t^{\prime} \subseteq y-x\right\}
$$

where

$$
\begin{aligned}
& \text { distinct :: Tree Symbol } \rightarrow \text { Bool } \\
& \text { labels }:: \text { Tree Symbol } \rightarrow \text { Set Symbol }
\end{aligned}
$$

(written d and l below, for short).

4.2. Reasoning: base case

$$
\begin{aligned}
& \text { do }\{x \leftarrow \text { used; } v \leftarrow \text { relabel }(\text { Leaf a }) ; y \leftarrow \text { used; }(d v \wedge l v \subseteq y-x)!\} \\
& =\quad[[\text { definition of relabel }]] \\
& \text { do }\{x \leftarrow \text { used; } n \leftarrow \text { fresh; let } v=\text { Leaf } n ; y \leftarrow \text { used; }(d v \wedge l v \subseteq y-x)!\} \\
& =\quad[[\text { definition of } d, l]] \\
& \\
& \text { do }\{x \leftarrow \text { used; } n \leftarrow \text { fresh; let } v=\text { Leaf } n ; y \leftarrow \text { used; }(\text { True } \wedge\{n\} \subseteq y-x)!\} \\
& =[[\text { axiom for fresh }]] \\
& \\
& \text { do }\{x \leftarrow \text { used; } n \leftarrow \text { fresh; let } u=\text { Leaf } n ; y \leftarrow \text { used }\} \\
& =\quad[[\text { folding definitions }]] \\
& \\
& \text { do }\{x \leftarrow \text { used; } v \leftarrow \text { relabel }(\text { Leaf } a) ; y \leftarrow \text { used }\}
\end{aligned}
$$

4.3. Reasoning: inductive step

$$
\begin{aligned}
& \text { do }\{x \leftarrow \text { used; } v \leftarrow \text { relabel (Bin } t u) ; z \leftarrow u s e d ;(d v \wedge l v \subseteq z-x)!\} \\
& =[[\text { definition of relabel }]] \\
& \text { do }\left\{x \leftarrow \text { used; } t^{\prime} \leftarrow \text { relabel } t ; u^{\prime} \leftarrow \text { relabel } u \text {; let } v=\operatorname{Bin} t^{\prime} u^{\prime} ; z \leftarrow\right. \text { used; } \\
& (d v \wedge l v \subseteq z-x)!\} \\
& =[[\text { definition of } d, l]] \\
& \text { do }\left\{x \leftarrow \text { used; } t^{\prime} \leftarrow \text { relabel } t ; u^{\prime} \leftarrow \text { relabel } u \text {; let } v=\text { Bin } t^{\prime} u^{\prime} ; z \leftarrow\right. \text { used; } \\
& \left.\left(d t^{\prime} \wedge d u^{\prime} \wedge l t^{\prime} \cap l u^{\prime}=\varnothing \wedge l t^{\prime} \cup l u^{\prime} \subseteq z-x\right)!\right\} \\
& =[[\text { induction }]] \\
& \text { do }\left\{x \leftarrow \text { used; } t^{\prime} \leftarrow \text { relabel } t ; y \leftarrow u s e d ;\left(d t^{\prime} \wedge l t^{\prime} \subseteq y-x\right)!\right.\text {; } \\
& u^{\prime} \leftarrow \text { relabel } u ; z \leftarrow \text { used; }\left(d u^{\prime} \wedge l u^{\prime} \subseteq z-y\right)!\text {; let } v=\operatorname{Bin}^{\prime} t^{\prime} \text {; } \\
& \left.\left(d t^{\prime} \wedge d u^{\prime} \wedge l t^{\prime} \cap l u^{\prime}=\varnothing \wedge l t^{\prime} \cup l u^{\prime} \subseteq z-x\right)!\right\} \\
& =[[\text { queries, redundant guards, folding definitions]] } \\
& \text { do }\{x \leftarrow \text { used; } v \leftarrow \text { relabel (Bin } t u \text {); } z \leftarrow u s e d\}
\end{aligned}
$$

5. Towers of Hanoi, more directly

Hoare-style reasoning is a bit painfully long-winded: repeat the program on every line, gradually discharging guards.

Sometimes a more direct approach works. In fact,

$$
\text { hanoi } n=\text { rep }\left(2^{n}-1\right) \text { tick }
$$

where

$$
\begin{aligned}
& \text { rep }:: \text { Monad } m=\text { Int } \rightarrow m() \rightarrow m() \\
& \text { rep } 0 \quad \text { ma }=\text { skip } \\
& \text { rep }(n+1) \text { ma }=\text { ma }>\text { rep } n \text { ma }
\end{aligned}
$$

In particular, note that

$$
\text { rep }(m+n) \text { ma }=\text { rep } m \text { ma } \gg \text { rep } n ~ m a
$$

5.1. More direct proof

... by induction on n. Base case is trivial. For inductive step,

```
    hanoi (n+1)
= [[ definition of hanoi ]]
    hanoi n>tick> hanoi n
= [[ inductive hypothesis ]]
    rep (2
= [[ composition ]]
    rep ((2n-1) +1 + (2n-1)) tick
= [[ arithmetic ]]
    rep (2 2n+1 - 1) tick
```

But I don't see how to do tree relabelling in this more direct style...

6. Probabilistic computations

Probability distributions form a monad (Giry, Jones, Ramsey, Erwig. . .).
For simplicity, only finitely-supported distributions here:
class Monad $m \Rightarrow$ MonadProb m where
choice :: Rational $\rightarrow m a \rightarrow m a \rightarrow m a$
where the rationals are constrained to the unit interval.
Following Hoare, let’s write ' $m x \triangleleft p \triangleright m y$ ' for 'choice $p m x m y$ '.

6.1. Laws of choice

Unit, idempotence, commutativity:

$$
\begin{aligned}
& m x \triangleleft 0 \triangleright m y=m y \\
& m x \triangleleft 1 \triangleright m y=m x \\
& m x \triangleleft p \triangleright m x=m x \\
& m x \triangleleft p \triangleright m y=m y \triangleleft 1-p \triangleright m x
\end{aligned}
$$

A kind of associativity:

$$
\begin{gathered}
m x \triangleleft p \triangleright(m y \triangleleft q \triangleright m z)=(m x \triangleleft r \triangleright m y) \triangleleft s \triangleright m z \\
\Longleftarrow p=r s \wedge(1-s)=(1-p)(1-q)
\end{gathered}
$$

Bind distributes over choice, in both directions:

$$
\begin{aligned}
m x \gg=\lambda a \rightarrow\left(k_{1} a\right) \triangleleft p \triangleright\left(k_{2} a\right) & =\left(m x \gg=k_{1}\right) \triangleleft p \triangleright\left(m x \gg=k_{2}\right) \\
m x \triangleleft p \triangleright m y \gg k & =(m x \gg=k) \triangleleft p \triangleright(m y \gg k)
\end{aligned}
$$

6.2. Normal form

Finite mappings from outcomes to probabilities (ignore order, disregard weightless entries, weights sum to one, amalgamate duplicates):

```
newtype Distribution }a=D{unD :: [(a, Rational) ]
```

All you need to interpret a distribution is choice:

$$
\begin{aligned}
& \text { fromDist }:: \text { MonadProb } m \Rightarrow \text { Distribution } a \rightarrow m a \\
& \text { fromDist } d=f \text { st }(\text { foldr } 1 \text { combine }[(\text { return } a, p) \mid(a, p) \leftarrow u n D d, p>0]) \\
& \text { where combine }(m x, p)(m y, q)=\left(m x \triangleleft^{p} /_{p+q} \triangleright m y, p+q\right)
\end{aligned}
$$

For example,

$$
\begin{aligned}
& \text { uniform }:: \text { MonadProb } m \Rightarrow[a] \rightarrow m a \\
& \text { uniform } x=\text { fromDist }(D[(a, p) \mid a \leftarrow x]) \text { where } p=1 / \text { length } x
\end{aligned}
$$

6.3. Implementation

Moreover, Distribution itself is a fine instance of MonadProb:
instance Monad Distribution where

$$
\begin{aligned}
& \text { return } a=D[(a, 1)] \\
& p x \gg=f=D[(b, p \times q) \mid(a, p) \leftarrow u n D p x,(b, q) \leftarrow u n D(f a)]
\end{aligned}
$$

instance MonadProb Distribution where

$$
\begin{aligned}
& \text { ma } \triangleleft p \triangleright m b=D(\text { scale } p(u n D \text { ma })+\text { scale }(1-p)(u n D m b)) \\
& \quad \text { where scale } r \text { pas }=[(a, r \times p) \mid(a, p) \leftarrow p a s]
\end{aligned}
$$

(Kidd points out that Distribution $=$ WriterT Rational (ListT Identity), using the writer monad from the monoid of rationals with multiplication.)

6.4. Monty Hall

```
data Door =A|B|C deriving (Eq, Show)
doors = [A,B,C]
hide :: MonadProb m m m Door
hide = uniform doors
pick :: MonadProb m = m Door
pick = uniform doors
tease :: MonadProb m = Door }->\mathrm{ Door }->m\mathrm{ Door
tease h p = uniform (doors \\ [h,p])
switch :: MonadProb m = Door }->\mathrm{ Door }->\mathrm{ m Door
switch p t = return (head (doors \\ [p,t]))
stick:: MonadProb m = Door }->\mathrm{ Door }->m\mathrm{ Door
stick pt = return p
```


6.5. The whole story

Monty's script:

$$
\begin{aligned}
& \text { play }:: \text { MonadProb } m \Rightarrow(\text { Door } \rightarrow \text { Door } \rightarrow m \text { Door }) \rightarrow m \text { Bool } \\
& \text { play strategy }= \\
& \begin{array}{ll}
\text { do } & \\
\quad h \leftarrow \text { hide } & \text {-- host hides the car behind door } h \\
p \leftarrow \text { pick } & \text {-- you pick door } p \\
t \leftarrow \text { tease } h p & \text {-- host teases you with door } t(=/=h, p) \\
s \leftarrow \operatorname{strategy} p t & \text {-- you choose, based on } p \text { and } t \text { (but not } h!) \\
\text { return }(s=h) & \text {-- you win iff your choice } s \text { equals } h
\end{array}
\end{aligned}
$$

6.6. In support of Marilyn Vos Savant

It's a straightforward proof by equational reasoning that

$$
\begin{aligned}
& \text { play switch }=\text { uniform }[\text { True, True, False }] \\
& \text { play stick }=\text { uniform [False, False, True }]
\end{aligned}
$$

The key is that separate uniform distributions are independent:

$$
\text { do }\{a \leftarrow \operatorname{uniform} x ; b \leftarrow \text { uniform } y ; \text { return }(a, b)\}=\text { uniform }(c p x y)
$$

where

$$
\begin{aligned}
& c p::[a] \rightarrow[b] \rightarrow[(a, b)] \\
& c p \times y=[(a, b) \mid a \leftarrow x, b \leftarrow y]
\end{aligned}
$$

(Ask me over a beer...)

7. Combining probability and nondeterminism

Nobody said that Monty has to play fair.
He has a free choice in hiding the car, and in teasing you.
To model this, we need to combine probabilism with nondeterminism:

$$
\begin{aligned}
& \text { class MonadZero } m \Rightarrow \text { MonadPlus } m \text { where } \\
& \text { mplus }:: m a \rightarrow m a \rightarrow m a
\end{aligned}
$$

such that mzero and mplus form a monoid, and

$$
(m \text { 'mplus' } n) \gg=k=(m \gg k) \text { 'mplus' }(n \gg k)
$$

Happily, although monads do not compose in general, [Distribution a] is a monad. Moreover, it is a MonadProb and a MonadPlus too.
(So is Distribution [a], but I think that doesn't help.)
(There's a nice tale in terms of monad transformers.)

7.1. A simple example: mixing choices

A fair coin:

$$
\begin{aligned}
& \text { coin }:: \text { MonadProb } m \Rightarrow m \text { Bool } \\
& \text { coin }=(\text { return True }) \triangleleft 1 / 2 \triangleright(\text { return False })
\end{aligned}
$$

An arbitrary choice:

$$
\begin{aligned}
& \text { arb }:: \text { MonadPlus } m \Rightarrow m \text { Bool } \\
& \text { arb }=\text { return True 'mplus' return False }
\end{aligned}
$$

Two combinations:

$$
\begin{aligned}
& \text { arbcoin, coinarb }::(\text { MonadPlus } m \text {, MonadProb } m) \Rightarrow m \text { Bool } \\
& \text { arbcoin }=\text { do }\{a \leftarrow \text { arb; } c \leftarrow \text { coin; return }(a==c)\} \\
& \text { coinarb }=\text { do }\{c \leftarrow \text { coin; } a \leftarrow \text { arb; return }(a=c)\}
\end{aligned}
$$

What do you think they do?

7.2. ... as sets of distributions

Define

$$
\text { type NondetProb } a=[\text { Distribution a }]
$$

Then (with suitable shows):

> *Main〉 arbcoin :: NondetProb Bool
> [[(True, ${ }^{1} / 2$), (False, ${ }^{1} / 2$)],
> [(False, ${ }^{1 / 2}$), (True, ${ }^{1} / 2$)]]
> *Main> coinarb :: NondetProb Bool
> [[(True, ${ }^{1 / 2}$), (False, ${ }^{1 / 2}$)],
> [(True, ${ }^{1} / 2$), (True, ${ }^{1} / 2$)],
> [(False, $1 / 2$), (False, $1 / 2$)],
> [(False, ${ }^{1} / 2$), (True, ${ }^{1} / 2$)]]

7.3. .. . as expectations

class MonadProb $m \Rightarrow$ MonadExpect m where expect $::($ Ord n, Fractional $n) \Rightarrow m a \rightarrow(a \rightarrow n) \rightarrow n$
instance MonadExpect NondetProb where -- morally
expect $p \times h=$ minimum (map (mean $h \circ u n D) p x$) where

$$
\text { mean h aps }=\operatorname{sum}[p \times f a \mid(a, p) \leftarrow a p s] / \operatorname{sum}(\text { map snd aps })
$$

Your reward is 1 if the booleans agree, and 0 otherwise:
reward $b=$ if b then 1 else 0
Then:

```
*Main> expect (arbcoin :: NondetProb Bool) reward
1/2
    *Main\rangle expect (coinarb :: NondetProb Bool) reward
0
```


7.4. Back to nondeterministic Monty...

We could define instead:

$$
\begin{aligned}
& \text { hide }:: \text { MonadPlus } m \Rightarrow m \text { Door } \\
& \text { hide }=\text { arbitrary doors } \\
& \text { tease }:: \text { MonadPlus } m \Rightarrow \text { Door } \rightarrow \text { Door } \rightarrow m \text { Door } \\
& \text { tease } h p=\text { arbitrary }(\text { doors } \backslash \backslash[h, p])
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { arbitrary }:: \text { MonadPlus } m \Rightarrow[a] \rightarrow m \text { a } \\
& \text { arbitrary }=\text { foldr mplus mzero } \circ \text { map return }
\end{aligned}
$$

I believe that the calculation carries through just as before: still

$$
\begin{aligned}
& \text { play switch }=\text { uniform }[\text { True, True, False }] \\
& \text { play stick }=\text { uniform [False, False, True }]
\end{aligned}
$$

8. Summary

- axiomatic approach to reasoning with effects
- simple and generic
- smacks of 'algebraic theories of effects’ (Plotkin \& Power, Lawvere) (in particular, partiality and continuations do not arise from algebraic theories)
- IO is uninteresting?
- more examples wanted!

