

Simple Monadic Equational Reasoning

Jeremy Gibbons (joint work with Ralf Hinze) University of Oxford WG2.8, March 2011

1. Reasoning with effects?

1.1. Seeing the wood through the trees

At TFP 2008, Hutton & Fulger discuss the 'correctness' of

relabel :: *Tree* $a \rightarrow$ *Tree Int*

as an effectful (stateful) functional program.

I think they miss two opportunities for abstraction:

- from the specific *effects* (they expand the *State* monad to state-transforming functions), and
- from the *pattern of computation* (they use explicit induction on trees).

This is an attempt to address the first question. (The second is a story for another time.)

2. Monads

'Ordinary' monads, with the usual laws:

class *Monad* m where *return* :: $a \rightarrow m a$ ($\gg =$) :: $m a \rightarrow (a \rightarrow m b) \rightarrow m b$

Special cases:

skip ::: *Monad* $m \Rightarrow m()$ *skip* = *return()* (\gg) :: *Monad* $m \Rightarrow m a \rightarrow m b \rightarrow m b$ $k \gg l = k \gg const l$

2.1. Fallibility

Computations may fail:

class *Monad m* ⇒ *MonadZero m* **where** *mzero* :: *m a*

such that

 $mzero \gg k = mzero$

(I'm curious as to why it's not like this in Haskell 98...)

Often we just use

 $mzero = \bot$

2.2. Guards

Define

```
guard :: MonadZero m \Rightarrow Bool \rightarrow m ()
guard b = \text{if } b \text{ then } skip \text{ else } mzero
```

```
We'll write 'b!' for 'guard b'.
```

Familiar properties:

$$True! = skip$$

$$False! = mzero$$

$$(b_1 \land b_2)! = b_1! \gg b_2!$$

$$b_1! \gg k \gg b_2! = b_1! \gg k \quad \Leftarrow \quad b_1 \Rightarrow b_2$$

2.3. Assertions

For k:: *MonadZero* (), write ' $k \{b\}$ ' for

do {k; b!} = **do** {k} (= k)

More generally, for *k* :: *MonadZero a*, define '*k* {*b*}' to be:

do {*a* ← *k*; *b*!; *return a*} = **do** {*a* ← *k*; *return a*}

By abuse of notation, extend to assertions about multiple statements: suppose statements s_1 ; ...; s_n contain generators binding variables v_1 , ..., v_m ; write ' s_1 ; ...; s_n {b}' for

do { s_1 ;...; s_n ; b!; return (v_1 ,..., v_m) } = **do** { s_1 ;...; s_n ; return (v_1 ,..., v_m) }

(A similar construction is used by Erkök and Launchbury (2000).)

2.4. Queries

A special class of monadic operations, particularly amenable to manipulation.

A *query q* has no side-effects:

do { $a \leftarrow q; k$ } = **do** {k} -- when k doesn't depend on a

and is consistent:

do {
$$a_1 \leftarrow q$$
; $a_2 \leftarrow q$; $k a_1 a_2$ } = **do** { $a \leftarrow q$; $k a a$ }

(They're not just the pure operations, ie those of the form *return a*. Consider *get* :: *State s s* of the state monad.)

3. A counter example

A counting monad:

class *Monad m* ⇒ *MonadCount m* **where** *tick* :: *m*() *total* :: *m Int*

where *total* is a query, and

 $n \leftarrow total; tick; n' \leftarrow total \{n' = n + 1\}$

(exploiting our abuse of notation).

3.1. Towers of Hanoi—specification

Given this program:

 $hanoi :: MonadCount \ m \Rightarrow Int \rightarrow m \ ()$ $hanoi \ 0 \qquad = skip$ $hanoi \ (n+1) = \mathbf{do} \ \{ hanoi \ n; tick; hanoi \ n \}$

we claim:

 $t \leftarrow total; hanoi n; u \leftarrow total \{2^n - 1 = u - t\}$

Proof by induction on *n*. The base case is immediate. Inductive step...

3.2. Reasoning

do { $t \leftarrow total; hanoi (n + 1); u \leftarrow total; (2^{n+1} - 1 = u - t)!$ }

= [[definition of *hanoi*]]

do { $t \leftarrow total$; hanoi n; tick; hanoi n; $u \leftarrow total$; $(2^{n+1} - 1 = u - t)!$ }

- = [[inserting some queries]]
 - **do** { $t \leftarrow total$; hanoi n; $u' \leftarrow total$; tick; $t' \leftarrow total$; hanoi n; $u \leftarrow total$; $(2^{n+1} - 1 = u - t)!$ }
- = [[inductive hypothesis; *tick*]]

do { $t \leftarrow total$; hanoi $n; u' \leftarrow total; (2^n - 1 = u' - t)!; tick; t' \leftarrow total;$

(t' = u' + 1)!; hanoi n; $u \leftarrow total; (2^n - 1 = u - t')!; (2^{n+1} - 1 = u - t)! \}$

- = [[arithmetic: $2^{n+1} 1 = u t$ follows from other guards]]
- **do** { $t \leftarrow total$; hanoi n; $u' \leftarrow total$; $(2^n 1 = u' t)$!; tick; $t' \leftarrow total$;

(t' = u' + 1)!; hanoi n; $u \leftarrow total; (2^n - 1 = u - t')! \}$

= [[redundant guards, definition of *hanoi*]] **do** { $t \leftarrow total$; *hanoi* (n + 1); $u \leftarrow total$ }

4. Tree relabelling

A monad for generating fresh symbols:

```
type Symbol = ...
instance Eq Symbol where ...
class Monad m ⇒ MonadGensym m where
  fresh :: m Symbol
  used :: m (Set Symbol)
```

such that *used* (only used in reasoning) is a query, and

 $x \leftarrow used; n \leftarrow fresh; y \leftarrow used \{x \subseteq y \land n \in y - x\}$

4.1. Specification

Tree relabelling:

data *Tree* $a = Tip \ a \mid Bin (Tree \ a) (Tree \ a)$ *relabel* :: *MonadGensym* $m \Rightarrow$ *Tree* $a \rightarrow m$ (*Tree Symbol*) *relabel* (*Leaf* a) = **do** { $n \leftarrow fresh$; *return* (*Leaf* n) } *relabel* (*Bin* $t \ u$) = **do** { $t' \leftarrow relabel \ t; u' \leftarrow relabel \ u; return (Bin \ t' \ u')$ }

(in fact, an idiomatic *traverse*), satisfies

 $x \leftarrow used; t' \leftarrow relabel t; y \leftarrow used \{distinct t' \land labels t' \subseteq y - x\}$

where

distinct :: *Tree Symbol* → *Bool labels* :: *Tree Symbol* → *Set Symbol*

(written *d* and *l* below, for short).

4.2. Reasoning: base case

do { $x \leftarrow used$; $v \leftarrow relabel$ (Leaf a); $y \leftarrow used$; ($d v \land l v \subseteq y - x$)!} = [[definition of relabel]] **do** { $x \leftarrow used$; $n \leftarrow fresh$; **let** v = Leaf n; $y \leftarrow used$; ($d v \land l v \subseteq y - x$)!} = [[definition of d, l]] **do** { $x \leftarrow used$; $n \leftarrow fresh$; **let** v = Leaf n; $y \leftarrow used$; ($True \land \{n\} \subseteq y - x$)!} = [[axiom for fresh]] **do** { $x \leftarrow used$; $n \leftarrow fresh$; **let** u = Leaf n; $y \leftarrow used$ } = [[folding definitions]] **do** { $x \leftarrow used$; $v \leftarrow relabel$ (Leaf a); $v \leftarrow used$ }

4.3. Reasoning: inductive step

do { $x \leftarrow used$; $v \leftarrow relabel$ (Bin t u); $z \leftarrow used$; ($d v \land l v \subseteq z - x$)!} = [[definition of *relabel*]] **do** { $x \leftarrow used$; $t' \leftarrow relabel t$; $u' \leftarrow relabel u$; **let** v = Bin t' u'; $z \leftarrow used$; $(d v \wedge l v \subseteq z - x)!$ = [[definition of d, l]]**do** { $x \leftarrow used$; $t' \leftarrow relabel t$; $u' \leftarrow relabel u$; **let** v = Bin t' u'; $z \leftarrow used$; $\{d t' \land d u' \land l t' \cap l u' = \emptyset \land l t' \cup l u' \subseteq z - x\}$ = [[induction]] **do** { $x \leftarrow used$; $t' \leftarrow relabel t$; $y \leftarrow used$; $(d t' \land l t' \subseteq y - x)$!; $u' \leftarrow relabel u; z \leftarrow used; (d u' \land l u' \subseteq z - y)!;$ let v = Bin t' u'; $\{ (d t' \land d u' \land l t' \cap l u' = \emptyset \land l t' \cup l u' \subseteq z - x) \}$ = [[queries, redundant guards, folding definitions]]

do { $x \leftarrow used$; $v \leftarrow relabel$ (Bin t u); $z \leftarrow used$ }

5. Towers of Hanoi, more directly

Hoare-style reasoning is a bit painfully long-winded: repeat the program on every line, gradually discharging guards.

Sometimes a more direct approach works. In fact,

hanoi $n = rep (2^n - 1)$ tick

where

 $rep :: Monad \ m \Rightarrow Int \rightarrow m \ () \rightarrow m \ ()$ $rep \ 0 \qquad ma = skip$ $rep \ (n+1) \ ma = ma \gg rep \ n \ ma$

In particular, note that

rep(m+n) $ma = rep m ma \gg rep n ma$

5.1. More direct proof

... by induction on *n*. Base case is trivial. For inductive step,

hanoi (n+1)

= [[definition of *hanoi*]]

hanoi n \gg tick \gg hanoi n

= [[inductive hypothesis]]
rep (2ⁿ − 1) tick ≫ tick ≫ rep (2ⁿ − 1) tick
= [[composition]]

rep
$$((2^{n} - 1) + 1 + (2^{n} - 1))$$
 tick

= [[arithmetic]]
$$rep (2^{n+1} - 1) tick$$

But I don't see how to do tree relabelling in this more direct style...

6. Probabilistic computations

Probability distributions form a monad (Giry, Jones, Ramsey, Erwig...). For simplicity, only finitely-supported distributions here:

class *Monad* $m \Rightarrow$ *MonadProb* m **where** *choice* :: *Rational* \rightarrow $m a \rightarrow m a \rightarrow m a$

where the rationals are constrained to the unit interval. Following Hoare, let's write ' $mx \triangleleft p \triangleright my$ ' for '*choice p mx my*'.

6.1. Laws of choice

Unit, idempotence, commutativity:

 $mx \triangleleft 0 \triangleright my = my$ $mx \triangleleft 1 \triangleright my = mx$ $mx \triangleleft p \triangleright mx = mx$ $mx \triangleleft p \triangleright my = my \triangleleft 1 - p \triangleright mx$

A kind of associativity:

 $mx \triangleleft p \triangleright (my \triangleleft q \triangleright mz) = (mx \triangleleft r \triangleright my) \triangleleft s \triangleright mz$ $\Leftarrow p = r s \land (1 - s) = (1 - p) (1 - q)$

Bind distributes over choice, in both directions:

 $mx \gg \lambda a \to (k_1 \ a) \triangleleft p \triangleright (k_2 \ a) = (mx \gg k_1) \triangleleft p \triangleright (mx \gg k_2)$ $mx \triangleleft p \triangleright my \gg k \qquad = (mx \gg k) \triangleleft p \triangleright (my \gg k)$

6.2. Normal form

Finite mappings from outcomes to probabilities (ignore order, disregard weightless entries, weights sum to one, amalgamate duplicates):

newtype *Distribution a* = *D*{*unD* :: [(*a*, *Rational*)]}

All you need to interpret a distribution is *choice*:

fromDist :: *MonadProb* $m \Rightarrow$ *Distribution* $a \rightarrow m a$ *fromDist* d = fst (*foldr1 combine* [(*return a, p*) | (a, p) \leftarrow *unD* d, p > 0]) **where** *combine* (mx, p) (my, q) = ($mx \triangleleft^p/_{p+q} \triangleright my, p + q$)

For example,

uniform :: *MonadProb* $m \Rightarrow [a] \rightarrow m a$ *uniform* $x = fromDist (D[(a, p) | a \leftarrow x])$ where p = 1 / length x

6.3. Implementation

Moreover, *Distribution* itself is a fine instance of *MonadProb*:

instance *Monad Distribution* **where** *return* a = D[(a, 1)] $px \gg f = D[(b, p \times q) | (a, p) \leftarrow unD px, (b, q) \leftarrow unD (f a)]$ **instance** *MonadProb Distribution* **where** $ma \triangleleft p \triangleright mb = D$ (scale p (unD ma) + scale (1 - p) (unD mb)) **where** scale r pas = [(a, r \times p) | (a, p) \leftarrow pas]

(Kidd points out that *Distribution* = *WriterT Rational* (*ListT Identity*), using the writer monad from the monoid of rationals with multiplication.)

6.4. Monty Hall

data Door = A | B | C deriving (Eq, Show)doors = [A, B, C]*hide* :: *MonadProb* $m \Rightarrow m$ *Door hide* = *uniform doors pick* :: *MonadProb* $m \Rightarrow m$ *Door pick* = *uniform doors tease* :: *MonadProb* $m \Rightarrow Door \rightarrow Door \rightarrow m Door$ *tease* $h p = uniform (doors \setminus [h, p])$ *switch* :: *MonadProb* $m \Rightarrow Door \rightarrow Door \rightarrow m Door$ *switch* p t = *return* (*head* (*doors* \\ [p, t])) *stick* :: *MonadProb* $m \Rightarrow Door \rightarrow Door \rightarrow m$ *Door* stick p t = return p

6.5. The whole story

Monty's script:

play :: *MonadProb* $m \Rightarrow (Door \rightarrow Door \rightarrow m Door) \rightarrow m Bool$ *play strategy* =

do

- $h \leftarrow hide$ -- host hides the car behind door h
- $p \leftarrow pick$ -- you pick door p
- $t \leftarrow tease h p$ -- host teases you with door $t (\neq h, p)$
- $s \leftarrow strategy p t$ -- you choose, based on p and t (but not h!)
- *return* (s = h) -- you win iff your choice *s* equals *h*

6.6. In support of Marilyn Vos Savant

It's a straightforward proof by equational reasoning that

play switch = uniform [True, True, False]
play stick = uniform [False, False, True]

The key is that separate uniform distributions are independent:

do { $a \leftarrow uniform x; b \leftarrow uniform y; return (a, b)$ } = uniform (cp x y)

where

 $cp :: [a] \rightarrow [b] \rightarrow [(a, b)]$ $cp x y = [(a, b) | a \leftarrow x, b \leftarrow y]$

(Ask me over a beer...)

7. Combining probability and nondeterminism

Nobody said that Monty has to play fair. He has a free choice in hiding the car, and in teasing you.

To model this, we need to combine probabilism with nondeterminism:

class *MonadZero* $m \Rightarrow$ *MonadPlus* m **where** *mplus* :: $m a \rightarrow m a \rightarrow m a$

such that *mzero* and *mplus* form a monoid, and

 $(m \text{`mplus' } n) \gg k = (m \gg k) \text{`mplus'} (n \gg k)$

Happily, although monads do not compose in general, [*Distribution a*] is a monad. Moreover, it is a *MonadProb* and a *MonadPlus* too.(So is *Distribution* [*a*], but I think that doesn't help.)(There's a nice tale in terms of monad transformers.)

7.1. A simple example: mixing choices

A fair coin:

coin :: *MonadProb* $m \Rightarrow m$ *Bool coin* = (*return True*) $\triangleleft^1/_2 \triangleright$ (*return False*)

An arbitrary choice:

arb :: *MonadPlus m* ⇒ *m Bool arb* = *return True* '*mplus*' *return False*

Two combinations:

arbcoin, coinarb :: (*MonadPlus m, MonadProb m*) \Rightarrow *m Bool arbcoin* = **do** { *a* \leftarrow *arb*; *c* \leftarrow *coin*; *return* (*a* = *c*) } *coinarb* = **do** { *c* \leftarrow *coin*; *a* \leftarrow *arb*; *return* (*a* = *c*) }

What do you think they do?

7.2. ... as sets of distributions

Define

type *NondetProb a* = [*Distribution a*]

Then (with suitable *shows*):

*Main> arbcoin :: NondetProb Bool [[(True, 1/2), (False, 1/2)], [(False, 1/2), (True, 1/2)]] *Main> coinarb :: NondetProb Bool [[(True, 1/2), (False, 1/2)], [(True, 1/2), (True, 1/2)], [(False, 1/2), (False, 1/2)], [(False, 1/2), (True, 1/2)]]

7.3. ... as expectations

class *MonadProb* $m \Rightarrow$ *MonadExpect* m **where** $expect :: (Ord n, Fractional n) \Rightarrow m a \rightarrow (a \rightarrow n) \rightarrow n$ **instance** *MonadExpect NondetProb* **where** -- morally $expect px h = minimum (map (mean h \circ unD) px)$ **where** $mean h aps = sum [p \times f a | (a, p) \leftarrow aps] / sum (map snd aps)$

Your reward is 1 if the booleans agree, and 0 otherwise:

```
reward b = \mathbf{if} \ b \mathbf{then} \ 1 \mathbf{else} \ 0
```

Then:

```
*Main> expect (arbcoin :: NondetProb Bool) reward

<sup>1</sup>/<sub>2</sub>

*Main> expect (coinarb :: NondetProb Bool) reward

0
```

7.4. Back to nondeterministic Monty...

We could define instead:

hide :: *MonadPlus* $m \Rightarrow m$ *Door hide* = *arbitrary doors tease* :: *MonadPlus* $m \Rightarrow$ *Door* \rightarrow *Door* \rightarrow *m Door tease* h p = arbitrary (*doors* $\setminus (h, p)$)

where

arbitrary :: *MonadPlus* $m \Rightarrow [a] \rightarrow m a$ *arbitrary* = *foldr mplus mzero* \circ *map return*

I believe that the calculation carries through just as before: still

play switch = uniform [True, True, False]
play stick = uniform [False, False, True]

8. Summary

- axiomatic approach to reasoning with effects
- simple and generic
- smacks of 'algebraic theories of effects' (Plotkin & Power, Lawvere) (in particular, partiality and continuations do not arise from algebraic theories)
- IO is uninteresting?
- more examples wanted!