UNIVERSITY OF

OXFORD

Simple
Monadic

Equational Reasoning

Jeremy Gibbons (joint work with Ralf Hinze)
University of Oxford
WG2.8, March 2011

Simple monadic equational reasoning

1. Reasoning with effects?

equational
FP ©

reasoning

monads ?

© ? ?

1.1. Seeing the wood through the trees

At TFP 2008, Hutton & Fulger discuss the ‘correctness’ of
relabel :: Tree a — Tree Int

as an effectful (stateful) functional program.

I think they miss two opportunities for abstraction:

e from the specific effects (they expand the State monad to
state-transforming functions), and

e from the pattern of computation (they use explicit induction on
trees).

This is an attempt to address the first question.
(The second is a story for another time.)

Simple monadic equational reasoning

2. Monads

‘Ordinary’ monads, with the usual laws:

class Monad m where
return::a— ma
(>=) mma—- (a—- mb) - mb

Special cases:

skip :: Monad m = m ()
skip = return ()

(>) “Monad m=>ma—- mb- mb
k> [=k>= const |

Simple monadic equational reasoning

2.1. Fallibility

Computations may fail:

class Monad m = MonadZero m where
mzero:: mda

such that
mzero > Kk = mzero

('m curious as to why it’s not like this in Haskell 98...)

Often we just use

mzero = L

Simple monadic equational reasoning

2.2. Guards

Define

guard :: MonadZero m = Bool — m ()
guard b = if b then skip else mzero
We’'ll write ‘b’ for ‘guard b’
Familiar properties:

True! = skip
False! = mzero

(bl A\ bz)! — bl! > bz!

bi!>k>b!=b!l>k < b > b

Simple monadic equational reasoning

2.3. Assertions

For k:: MonadZero (), write ‘k {b}’ for
do {k;b'} =do {k} (=k)

More generally, for k:: MonadZero a, define ‘k {b}’ to be:
do {a — k;b!;return a} = do {a < k;return a}

By abuse of notation, extend to assertions about multiple statements:
suppose statements s;;...; S, contain generators binding variables
Vi, ..., Vi, Write ‘sy;...;s, {b}’ for

do {si;...;sn; b; return (vq,..., Vi) } = do {s1;...; 8y, return (vy, ..., Vin) }

(A similar construction is used by Erkok and Launchbury (2000).)

Simple monadic equational reasoning

2.4. Queries

A special class of monadic operations, particularly amenable to
manipulation.

A query g has no side-effects:

do {a - g;k} =do {k} --when k doesn’t depend on a
and is consistent:

doi{ay — gsa» — g;kay a>} =do {a— g, kaa}

(They’re not just the pure operations, ie those of the form return a.
Consider get :: State s s of the state monad.)

Simple monadic equational reasoning

3. A counter example

A counting monad:

class Monad m = MonadCount m where
tick ::m ()
total :: m Int

where total is a query, and
n — total; tick;n' — total {n" = n+ 1}

(exploiting our abuse of notation).

Simple monadic equational reasoning

3.1. Towers of Hanoi—specification

Given this program:

hanoi :: MonadCount m = Int - m ()
hanoi 0O = Skip
hanoi (n + 1) = do { hanoi n; tick; hanoi n}

we claim:
t — total, hanoi m;u — total {2" -1 = u — t}

Proof by induction on n. The base case is immediate. Inductive step...

10

Simple monadic equational reasoning 11

3.2. Reasoning

do {t — total; hanoi (n+ 1);u — total; 2" -1 =u—t)!}
= |[[definition of hanoi |]
do {t — total; hanoi n; tick; hanoi n; u — total; (2" —1 =u—t)!}
= || inserting some queries ||
do {t < total; hanoi n; u’ — total; tick;t' — total,;
hanoi n; u — total; 2™ —1 =u—t)!}
= [| inductive hypothesis; tick ||
do {t — total; hanoi n;u" < total; (2" —1 = u' — t)!; tick; t' — total;
(' =u + 1) hanoi m;u — total; 2" -1 =u—-t); 2™ -1 =u—-1t)!}
= [[arithmetic: 2! — 1 = u — t follows from other guards |
do {t — total; hanoi n;u’ — total; (2" —1 = u’ — t)!; tick; t' — total;
(' =u + 1) hanoi nu — total; (2" -1 =u-t")!}
= [[redundant guards, definition of hanoi]
do {t < total; hanoi (n+ 1);u < total}

Simple monadic equational reasoning

4. Tree relabelling

A monad for generating fresh symbols:

type Symbol = ...
instance Eg Symbol where ...

class Monad m = MonadGensym m where
fresh:: m Symbol
used :: m (Set Symbol)

such that used (only used in reasoning) is a query, and

X — used;n — fresh;y — used{xcyAney-—x}

12

Simple monadic equational reasoning 13

4.1. Specification

Tree relabelling:

data Tree a = Tip a | Bin (Tree a) (Tree a)

relabel :: MonadGensym m = Tree a — m (Tree Symbol)
relabel (Leaf a) = do {n — fresh; return (Leaf n) }
relabel (Bint u) = do {t' < relabel t;:u" - relabel u;return (Bint' u')}

(in fact, an idiomatic traverse), satisfies

X — used;t’" — relabel t;y — used {distinct t" A labels t' < y — x}

where

distinct :: Tree Symbol — Bool
labels :: Tree Symbol — Set Symbol

(written d and [below, for short).

Simple monadic equational reasoning 14

4.2. Reasoning: base case

do {x — used;v < relabel (Leaf a);y — used;(dv Alvcy—Xx)!}
= [[definition of relabel]|
do {x — used;n — fresh;let v = Leaf n;y — used;(dv Alvcy—x)!}
= |[[definition of d, []
do {x — used;n < fresh;let v = Leaf n;y — used; (True A {n} cy—x)!}
= |[[axiom for fresh]]
do {x — used;n — fresh;let u = Leaf n;y — used}
= || folding definitions |]
do {x — used;v < relabel (Leaf a);y — used}

Simple monadic equational reasoning 15

4.3. Reasoning: inductive step

do {x — used;v — relabel (Bintu);z — used;(dv Anlvcz—x)!}
= [[definition of relabel]|
do {x — used;t' — relabel t;u’ — relabel u;letv = Bint u';z — used,;
(dvalvcz—x)!}
= |[[definition of d, []
do {x — used;t' — relabel t;u’ — relabel u;letv = Bint u';z — used,;
dt ndu Altnlu =0Altulu cz-x)!}
= || induction]
do {x — used;t — relabel t;y — used;(dt' Anlt <y —Xx)!;
u < relabel u;z — used;(du Alu < z—-y);letv=Bint' u;
dt' Adu ANltUnlu = Altulu cz—-x)!}
= [[queries, redundant guards, folding definitions |]
do {x — used;v < relabel (Bint u); z — used }

Simple monadic equational reasoning

5. Towers of Hanoi, more directly

Hoare-style reasoning is a bit painfully long-winded:

repeat the program on every line, gradually discharging guards.

Sometimes a more direct approach works. In fact,
hanoi n = rep (2™ — 1) tick
where

rep :: Monad m = Int - m () - m ()
rep O ma = skip
rep (n+ 1) ma = ma> rep n ma

In particular, note that

rep (m+ n) ma=rep mma:> rep n ma

16

Simple monadic equational reasoning

5.1. More direct proof

... by induction on n. Base case is trivial. For inductive step,

hanoi (n+ 1)
= |[[definition of hanoi |]
hanoi n > tick > hanoi n
= [| inductive hypothesis ||
rep (2" — 1) tick > tick > rep (2™ — 1) tick
= || composition]
rep (2"—-1)+1+ (2" —=1)) tick
= || arithmetic |]
rep (21 — 1) tick

But I don’t see how to do tree relabelling in this more direct style...

17

Simple monadic equational reasoning

6. Probabilistic computations
Probability distributions form a monad (Giry, Jones, Ramsey, Erwig. . .).
For simplicity, only finitely-supported distributions here:

class Monad m = MonadProb m where
choice :: Rational - ma—- ma—- ma

where the rationals are constrained to the unit interval.

Following Hoare, let’s write ‘mx < pr> my’ for ‘choice p mx my’.

18

Simple monadic equational reasoning

6.1. Laws of choice

Unit, idempotence, commutativity:

mx <0> my = my
mx <1> my = mx
mx <p> mx = mx
mx <p> my = my <1 — p> mx

A kind of associativity:

mx <<p> (my <gq> mz) = (mx <r> my) <s> mz
=p=rsAn(l-s)=00-p) (-9

Bind distributes over choice, in both directions:

mx >= Aa — (k;y a) <p> (kp a) = (mx>=ky) <p> (mx >= ko)
mx <p> my >= Kk = (mx >= k) <p> (my >= k)

Simple monadic equational reasoning 20

6.2. Normal form

Finite mappings from outcomes to probabilities (ignore order, disregard
weightless entries, weights sum to one, amalgamate duplicates):

newtype Distribution a = D{unD :: | (a, Rational) | }
All you need to interpret a distribution is choice:

frombDist :: MonadProb m = Distribution a — m a
fromDist d = st (foldrl combine [(return a,p) | (a,p) — unD d,p > 0])
where combine (mx, p) (my, q) = (mx <P/, 4> my,p + q)

For example,

uniform:: MonadProb m = [a] — m a
uniform x = fromDist (D [(a,p) | a — x]) where p =1 / length x

Simple monadic equational reasoning 21

6.3. Implementation

Moreover, Distribution itself is a fine instance of MonadProb:

instance Monad Distribution where

returna=D | (a,l)]

px>=[f =D[(b,pxq) | (a,p) — unD px,(b,q) — unD (f a)]
instance MonadProb Distribution where

ma <p> mb = D (scale p (unD ma) + scale (1 — p) (unD mb))
where scaler pas = [(a,r X p) | (a,p) — pas|

(Kidd points out that Distribution = WriterT Rational (ListT Identity),
using the writer monad from the monoid of rationals with multiplication.)

Simple monadic equational reasoning

6.4. Monty Hall

data Door = A | B | C deriving (Eq, Show)
doors = [A, B, C]

hide :: MonadProb m = m Door
hide = uniform doors

pick :: MonadProb m = m Door
pick = uniform doors

tease :: MonadProb m = Door — Door — m Door
tease h p = uniform (doors \\ [h,p])

switch :: MonadProb m = Door — Door — m Door
switch p t = return (head (doors \\ [p,t]))

stick :: MonadProb m = Door — Door — m Door
stick p t = return p

Simple monadic equational reasoning 23

6.5. The whole story

Monty’s script:

play :: MonadProb m = (Door — Door — m Door) — m Bool

play strategy =
do
h — hide -- host hides the car behind door h
p — pick -- you pick door p
t — tease hp -- host teases you with door t (+ h, p)

s — Strategy p t --you choose, based on p and t (but not h!)
return (s -: h) -- you win iff your choice s equals h

Simple monadic equational reasoning

6.6. In support of Marilyn Vos Savant

It’s a straightforward proof by equational reasoning that

play switch = uniform | True, True, False]
play stick = uniform | False, False, True |

The key is that separate uniform distributions are independent:
do {a — uniform x; b — uniform y; return (a, b) } = uniform (cp x y)
where

cp:lal - [b] - 1[(aDb)]
coxy=I[(ab)|a—x,by]

(Ask me over a beer...)

24

Simple monadic equational reasoning 25

7. Combining probability and nondeterminism

Nobody said that Monty has to play fair.
He has a free choice in hiding the car, and in teasing you.

To model this, we need to combine probabilism with nondeterminism:

class MonadZero m = MonadPlus m where
mplus:ma—- ma—- ma

such that mzero and mplus form a monoid, and

(m ‘mplus‘ n) >= k = (m>= k) ‘mplus' (n >= k)

Happily, although monads do not compose in general, [Distribution a] is a
monad. Moreover, it is a MonadProb and a MonadPlus too.

(So is Distribution [a], but I think that doesn’t help.)

(There’s a nice tale in terms of monad transformers.)

Simple monadic equational reasoning

7.1. A simple example: mixing choices

A fair coin:

coin :: MonadProb m = m Bool
coin = (return True) <'/» > (return False)

An arbitrary choice:

arb :: MonadPlus m = m Bool
arb = return True ‘mplus* return False

Two combinations:

arbcoin, coinarb :: (MonadPlus m, MonadProb m) = m Bool
arbcoin = do {a — arb; c — coin;return (a:- c) }
coinarb = do {c < coin;a — arb;return (a :: c) }

What do you think they do?

26

Simple monadic equational reasoning

7.2. ...as sets of distributions

Define
type NondetProb a = | Distribution a |
Then (with suitable shows):

xMain) arbcoin :: NondetProb Bool
[[(True, /), (False,1/2)1,
[(False,'/2), (True,1/2)1]

xMain) coinarb :: NondetProb Bool
[[(True,1/2), (False,'/2)1,

[(True, /), (True,1/2)],

[(False, /), (False,/>) 1,

[(False, /), (True,1/2) 1]

27

Simple monadic equational reasoning 28

7.3. ...as expectations

class MonadProb m = MonadExpect m where
expect :: (Ord n, Fractional n) > ma - (a— n) - n

instance MonadExpect NondetProb where -- morally
expect px h = minimum (map (mean h o unD) px) where
mean h aps = sum|[p X f al| (a,p) — aps] | sum (map snd aps)

Your reward is 1 if the booleans agree, and 0 otherwise:
reward b = if b then 1 else 0
Then:

*xMain) expect (arbcoin :: NondetProb Bool) reward
Ly

*xMain) expect (coinarb :: NondetProb Bool) reward
0

Simple monadic equational reasoning

7.4. Back to nondeterministic Monty...

We could define instead:

hide :: MonadPlus m = m Door
hide = arbitrary doors

tease :: MonadPlus m = Door — Door — m Door
tease h p = arbitrary (doors\\ [h,p])

where

arbitrary :: MonadPlus m= [a] - ma
arbitrary = foldr mplus mzero o map return

I believe that the calculation carries through just as before: still

play switch = uniform | True, True, False |
play stick = uniform | False, False, True |

29

8. S ummary

e axiomatic approach to reasoning with effects
e simple and generic

e smacks of ‘algebraic theories of effects’ (Plotkin & Power, Lawvere)
(in particular, partiality and continuations do not arise from
algebraic theories)

e IO is uninteresting?

e more examples wanted!

