
Simple

Monadic

Equational Reasoning

Jeremy Gibbons (joint work with Ralf Hinze)

University of Oxford

WG2.8, March 2011

Simple monadic equational reasoning 2

1. Reasoning with effects?

FP
equational

reasoning
//

monads

��

©

?

��

© ?
// ?

Simple monadic equational reasoning 3

1.1. Seeing the wood through the trees

At TFP 2008, Hutton & Fulger discuss the ‘correctness’ of

relabel :: Tree a → Tree Int

as an effectful (stateful) functional program.

I think they miss two opportunities for abstraction:

• from the specific effects (they expand the State monad to

state-transforming functions), and

• from the pattern of computation (they use explicit induction on

trees).

This is an attempt to address the first question.

(The second is a story for another time.)

Simple monadic equational reasoning 4

2. Monads

‘Ordinary’ monads, with the usual laws:

class Monad m where

return :: a →m a

(>>=) :: m a → (a →m b)→m b

Special cases:

skip :: Monad m ⇒m ()

skip = return ()

(>>) :: Monad m ⇒m a →m b →m b

k >> l = k >>= const l

Simple monadic equational reasoning 5

2.1. Fallibility

Computations may fail:

class Monad m⇒ MonadZero m where

mzero :: m a

such that

mzero >> k =mzero

(I’m curious as to why it’s not like this in Haskell 98. . .)

Often we just use

mzero = ⊥

Simple monadic equational reasoning 6

2.2. Guards

Define

guard :: MonadZero m⇒ Bool →m ()

guard b = if b then skip else mzero

We’ll write ‘b!’ for ‘guard b’.

Familiar properties:

True! = skip

False! =mzero

(b1 ∧ b2)! = b1!>> b2!

b1!>> k >> b2! = b1!>> k ⇐= b1 ⇒ b2

Simple monadic equational reasoning 7

2.3. Assertions

For k :: MonadZero (), write ‘k {b}’ for

do {k; b!} = do {k} (= k)

More generally, for k :: MonadZero a, define ‘k {b}’ to be:

do {a← k; b!; return a} = do {a ← k; return a}

By abuse of notation, extend to assertions about multiple statements:

suppose statements s1; ...; sn contain generators binding variables

v1, ...,vm; write ‘s1; ...; sn {b}’ for

do {s1; ...; sn; b!; return (v1, ...,vm)} = do {s1; ...; sn; return (v1, ...,vm)}

(A similar construction is used by Erkök and Launchbury (2000).)

Simple monadic equational reasoning 8

2.4. Queries

A special class of monadic operations, particularly amenable to

manipulation.

A query q has no side-effects:

do {a← q; k} = do {k} -- when k doesn’t depend on a

and is consistent:

do {a1 ← q; a2 ← q; k a1 a2} = do {a ← q; k a a}

(They’re not just the pure operations, ie those of the form return a.

Consider get :: State s s of the state monad.)

Simple monadic equational reasoning 9

3. A counter example

A counting monad:

class Monad m⇒ MonadCount m where

tick :: m ()

total :: m Int

where total is a query, and

n← total; tick; n′ ← total {n′ = n+ 1}

(exploiting our abuse of notation).

Simple monadic equational reasoning 10

3.1. Towers of Hanoi—specification

Given this program:

hanoi :: MonadCount m ⇒ Int →m ()

hanoi 0 = skip

hanoi (n+ 1) = do {hanoi n; tick; hanoi n}

we claim:

t ← total; hanoi n; u ← total {2n − 1 = u− t}

Proof by induction on n. The base case is immediate. Inductive step. . .

Simple monadic equational reasoning 11

3.2. Reasoning

do {t ← total; hanoi (n+ 1); u← total; (2n+1 − 1 = u− t)!}

= [[definition of hanoi]]

do {t ← total; hanoi n; tick; hanoi n; u ← total; (2n+1 − 1 = u− t)!}

= [[inserting some queries]]

do {t ← total; hanoi n; u′ ← total; tick; t′ ← total;

hanoi n; u ← total; (2n+1 − 1 = u− t)!}

= [[inductive hypothesis; tick]]

do {t ← total; hanoi n; u′ ← total; (2n − 1 = u′ − t)!; tick; t′ ← total;

(t′ = u′ + 1)!; hanoi n; u ← total; (2n − 1 = u− t′)!; (2n+1 − 1 = u− t)!}

= [[arithmetic: 2n+1 − 1 = u− t follows from other guards]]

do {t ← total; hanoi n; u′ ← total; (2n − 1 = u′ − t)!; tick; t′ ← total;

(t′ = u′ + 1)!; hanoi n; u ← total; (2n − 1 = u− t′)!}

= [[redundant guards, definition of hanoi]]

do {t ← total; hanoi (n+ 1); u← total}

Simple monadic equational reasoning 12

4. Tree relabelling

A monad for generating fresh symbols:

type Symbol = ...

instance Eq Symbol where ...

class Monad m⇒ MonadGensym m where

fresh :: m Symbol

used :: m (Set Symbol)

such that used (only used in reasoning) is a query, and

x ← used; n ← fresh; y ← used {x ⊆ y ∧ n ∈ y − x}

Simple monadic equational reasoning 13

4.1. Specification

Tree relabelling:

data Tree a = Tip a | Bin (Tree a) (Tree a)

relabel :: MonadGensym m⇒ Tree a →m (Tree Symbol)

relabel (Leaf a) = do {n← fresh; return (Leaf n)}

relabel (Bin t u) = do {t′ ← relabel t; u′ ← relabel u; return (Bin t′ u′)}

(in fact, an idiomatic traverse), satisfies

x ← used; t′ ← relabel t; y ← used {distinct t′ ∧ labels t′ ⊆ y − x}

where

distinct :: Tree Symbol → Bool

labels :: Tree Symbol → Set Symbol

(written d and l below, for short).

Simple monadic equational reasoning 14

4.2. Reasoning: base case

do {x ← used; v ← relabel (Leaf a); y ← used; (d v ∧ l v ⊆ y − x)!}

= [[definition of relabel]]

do {x ← used; n ← fresh; let v = Leaf n; y ← used; (d v ∧ l v ⊆ y − x)!}

= [[definition of d, l]]

do {x ← used; n ← fresh; let v = Leaf n; y ← used; (True ∧ {n} ⊆ y − x)!}

= [[axiom for fresh]]

do {x ← used; n ← fresh; let u = Leaf n; y ← used}

= [[folding definitions]]

do {x ← used; v ← relabel (Leaf a); y ← used}

Simple monadic equational reasoning 15

4.3. Reasoning: inductive step

do {x ← used; v ← relabel (Bin t u); z ← used; (d v ∧ l v ⊆ z − x)!}

= [[definition of relabel]]

do {x ← used; t′ ← relabel t; u′ ← relabel u; let v = Bin t′ u′; z ← used;

(d v ∧ l v ⊆ z − x)!}

= [[definition of d, l]]

do {x ← used; t′ ← relabel t; u′ ← relabel u; let v = Bin t′ u′; z ← used;

(d t′ ∧ d u′ ∧ l t′ ∩ l u′ = ∅ ∧ l t′ ∪ l u′ ⊆ z − x)!}

= [[induction]]

do {x ← used; t′ ← relabel t; y ← used; (d t′ ∧ l t′ ⊆ y − x)!;

u′ ← relabel u; z ← used; (d u′ ∧ l u′ ⊆ z − y)!; let v = Bin t′ u′;

(d t′ ∧ d u′ ∧ l t′ ∩ l u′ = ∅ ∧ l t′ ∪ l u′ ⊆ z − x)!}

= [[queries, redundant guards, folding definitions]]

do {x ← used; v ← relabel (Bin t u); z ← used}

Simple monadic equational reasoning 16

5. Towers of Hanoi, more directly

Hoare-style reasoning is a bit painfully long-winded:

repeat the program on every line, gradually discharging guards.

Sometimes a more direct approach works. In fact,

hanoi n = rep (2n − 1) tick

where

rep :: Monad m⇒ Int →m ()→m ()

rep 0 ma = skip

rep (n+ 1) ma =ma>> rep n ma

In particular, note that

rep (m+ n) ma = rep m ma>> rep n ma

Simple monadic equational reasoning 17

5.1. More direct proof

. . . by induction on n. Base case is trivial. For inductive step,

hanoi (n+ 1)

= [[definition of hanoi]]

hanoi n>> tick >> hanoi n

= [[inductive hypothesis]]

rep (2n − 1) tick >> tick >> rep (2n − 1) tick

= [[composition]]

rep ((2n − 1)+ 1+ (2n − 1)) tick

= [[arithmetic]]

rep (2n+1 − 1) tick

But I don’t see how to do tree relabelling in this more direct style. . .

Simple monadic equational reasoning 18

6. Probabilistic computations

Probability distributions form a monad (Giry, Jones, Ramsey, Erwig. . .).

For simplicity, only finitely-supported distributions here:

class Monad m⇒ MonadProb m where

choice :: Rational →m a →m a →m a

where the rationals are constrained to the unit interval.

Following Hoare, let’s write ‘mx ⊳p⊲my’ for ‘choice p mx my’.

Simple monadic equational reasoning 19

6.1. Laws of choice

Unit, idempotence, commutativity:

mx ⊳0⊲my =my

mx ⊳1⊲my =mx

mx ⊳p⊲mx =mx

mx ⊳p⊲my =my ⊳1− p⊲mx

A kind of associativity:

mx ⊳p⊲ (my ⊳q⊲mz) = (mx ⊳r⊲my) ⊳s⊲mz

⇐= p = r s ∧ (1− s) = (1− p) (1− q)

Bind distributes over choice, in both directions:

mx >>= λa → (k1 a) ⊳p⊲ (k2 a) = (mx >>= k1) ⊳p⊲ (mx >>= k2)

mx ⊳p⊲my >>= k = (mx >>= k) ⊳p⊲ (my >>= k)

Simple monadic equational reasoning 20

6.2. Normal form

Finite mappings from outcomes to probabilities (ignore order, disregard

weightless entries, weights sum to one, amalgamate duplicates):

newtype Distribution a = D{unD :: [(a,Rational)]}

All you need to interpret a distribution is choice:

fromDist :: MonadProb m ⇒ Distribution a →m a

fromDist d = fst (foldr1 combine [(return a,p) | (a,p) ← unD d,p > 0])

where combine (mx,p) (my,q) = (mx ⊳p/p+q⊲my,p + q)

For example,

uniform :: MonadProb m⇒ [a]→m a

uniform x = fromDist (D [(a,p) | a ← x]) where p = 1 / length x

Simple monadic equational reasoning 21

6.3. Implementation

Moreover, Distribution itself is a fine instance of MonadProb:

instance Monad Distribution where

return a = D [(a,1)]

px >>= f = D [(b,p × q) | (a,p) ← unD px, (b,q) ← unD (f a)]

instance MonadProb Distribution where

ma⊳p⊲mb = D (scale p (unD ma)++ scale (1− p) (unD mb))

where scale r pas = [(a, r × p) | (a,p) ← pas]

(Kidd points out that Distribution = WriterT Rational (ListT Identity),

using the writer monad from the monoid of rationals with multiplication.)

Simple monadic equational reasoning 22

6.4. Monty Hall

data Door = A | B | C deriving (Eq,Show)

doors = [A,B,C]

hide :: MonadProb m ⇒m Door

hide = uniform doors

pick :: MonadProb m⇒m Door

pick = uniform doors

tease :: MonadProb m⇒ Door → Door →m Door

tease h p = uniform (doors \\ [h,p])

switch :: MonadProb m⇒ Door → Door →m Door

switch p t = return (head (doors \\ [p, t]))

stick :: MonadProb m⇒ Door → Door →m Door

stick p t = return p

Simple monadic equational reasoning 23

6.5. The whole story

Monty’s script:

play :: MonadProb m⇒ (Door → Door →m Door)→m Bool

play strategy =

do

h← hide -- host hides the car behind door h

p ← pick -- you pick door p

t ← tease h p -- host teases you with door t (6 h,p)

s ← strategy p t -- you choose, based on p and t (but not h!)

return (s h) -- you win iff your choice s equals h

Simple monadic equational reasoning 24

6.6. In support of Marilyn Vos Savant

It’s a straightforward proof by equational reasoning that

play switch = uniform [True,True,False]

play stick = uniform [False,False,True]

The key is that separate uniform distributions are independent:

do {a← uniform x; b ← uniform y; return (a,b)} = uniform (cp x y)

where

cp :: [a]→ [b]→ [(a,b)]

cp x y = [(a,b) | a ← x,b ← y]

(Ask me over a beer. . .)

Simple monadic equational reasoning 25

7. Combining probability and nondeterminism

Nobody said that Monty has to play fair.

He has a free choice in hiding the car, and in teasing you.

To model this, we need to combine probabilism with nondeterminism:

class MonadZero m⇒ MonadPlus m where

mplus :: m a →m a →m a

such that mzero and mplus form a monoid, and

(m ‘mplus‘ n) >>= k = (m>>= k) ‘mplus‘ (n>>= k)

Happily, although monads do not compose in general, [Distribution a] is a

monad. Moreover, it is a MonadProb and a MonadPlus too.

(So is Distribution [a], but I think that doesn’t help.)

(There’s a nice tale in terms of monad transformers.)

Simple monadic equational reasoning 26

7.1. A simple example: mixing choices

A fair coin:

coin :: MonadProb m⇒m Bool

coin = (return True) ⊳1/2⊲ (return False)

An arbitrary choice:

arb :: MonadPlus m⇒m Bool

arb = return True ‘mplus‘ return False

Two combinations:

arbcoin, coinarb :: (MonadPlus m,MonadProb m)⇒m Bool

arbcoin = do {a← arb; c ← coin; return (a c)}

coinarb = do {c ← coin; a ← arb; return (a c)}

What do you think they do?

Simple monadic equational reasoning 27

7.2. . . . as sets of distributions

Define

type NondetProb a = [Distribution a]

Then (with suitable shows):

∗Main〉 arbcoin :: NondetProb Bool

[[(True, 1/2), (False, 1/2)],

[(False, 1/2), (True, 1/2)]]

∗Main〉 coinarb :: NondetProb Bool

[[(True, 1/2), (False, 1/2)],

[(True, 1/2), (True, 1/2)],

[(False, 1/2), (False, 1/2)],

[(False, 1/2), (True, 1/2)]]

Simple monadic equational reasoning 28

7.3. . . . as expectations

class MonadProb m⇒ MonadExpect m where

expect :: (Ord n,Fractional n)⇒m a → (a → n)→ n

instance MonadExpect NondetProb where -- morally

expect px h =minimum (map (mean h ◦ unD) px) where

mean h aps = sum [p × f a | (a,p) ← aps] / sum (map snd aps)

Your reward is 1 if the booleans agree, and 0 otherwise:

reward b = if b then 1 else 0

Then:

∗Main〉 expect (arbcoin :: NondetProb Bool) reward
1/2

∗Main〉 expect (coinarb :: NondetProb Bool) reward

0

Simple monadic equational reasoning 29

7.4. Back to nondeterministic Monty. . .

We could define instead:

hide :: MonadPlus m⇒m Door

hide = arbitrary doors

tease :: MonadPlus m ⇒ Door → Door →m Door

tease h p = arbitrary (doors \\ [h,p])

where

arbitrary :: MonadPlus m⇒ [a]→m a

arbitrary = foldr mplus mzero ◦map return

I believe that the calculation carries through just as before: still

play switch = uniform [True,True,False]

play stick = uniform [False,False,True]

Simple monadic equational reasoning 30

8. Summary

• axiomatic approach to reasoning with effects

• simple and generic

• smacks of ‘algebraic theories of effects’ (Plotkin & Power, Lawvere)

(in particular, partiality and continuations do not arise from

algebraic theories)

• IO is uninteresting?

• more examples wanted!

