Type-based termination analysis with disjunctive invariants

Dimitrios Vytiniotis, MSR Cambridge
with Byron Cook (MSR Cambridge) and Ranjit Jhala (UCSD)

... or, what am I doing hanging out with these people?

termination and liveness of imperative programs, shape analysis and heap space bounds, ranking function synthesis
program analysis, model checking and verification for systems code, refinement types, liquid types, decision procedures

And myself?

functional programming, type systems, type inference, dependent types, semantics and parametricity, Coq, Haskell!

The jungle of termination/totality analysis

"Guarded recursion" (my own term)

- sized types [Hughes et al, Abel]
- modalities for recursion [eg Nakano]

Dependent types

- programming with well-founded relations (think "ranking functions")
- Coq, Agda, DML [Xi]

	Size-change principle - [Jones, Sereni, Bohr] - a control flow analysis essentially
Terminator	
- termination analysis for imperative programs - "disjunctive invariants" and Ramsey's theorem - [Cook, Podelski, Rybalchenko]	

A dichotomy?

"Guarded recursion", structural recursion, dependent types

Terminator and disjunctive invariants, size-change

- () Mostly fully automatic
- Not programmable
- : No declarative specs
- Often easy for the tool to synthesize the termination argument
- : Mostly fully manual
- Programmable
- Declarative specification
- O Often tedious to come up with a WF relation or convince type checker (i.e. the techniques don't make proving totality easier, they just make it possible!)

Today I will have a go at combining both worlds WARNING: very fresh (i.e. airplane-fresh) ideas!

The idea: one new typing rule for totality

$T_{1} \ldots T_{n}$ well-founded binary relations

$$
d j(a, b)=a<_{T_{1}} b \vee \ldots \vee a<_{T_{n}} b
$$

$$
\Gamma,(o l d: T),(g:\{x: T \mid d j(x, o l d)\} \rightarrow U)
$$

$$
(x:\{y: T \mid d j(y, o l d) \vee y=o l d\}) \vdash e: U
$$

$$
\Gamma \vdash f i x(\lambda g . \lambda x . e): T \rightarrow U
$$

Example

let rec flop (u,v) =

Terminating,

by lexicographic pair order

$$
\begin{aligned}
& \text { if } v>0 \text { then flop }(u, v-1) \text { else } \\
& \text { if } u>1 \text { then flop }(u-1, v) \text { else } 1
\end{aligned}
$$

$$
\frac{\Gamma,(o l d: T),(g:\{x: T \mid d j(x, o l d)\} \rightarrow U),(x:\{y: T \mid d j(y, o l d) \vee y=o l d\}) \vdash e: U}{\Gamma \vdash f i x(\lambda g \cdot \lambda x \cdot e): T \rightarrow U}
$$

Consider $T_{1} x y \equiv$ fst $x<$ fst y
Consider $T_{2} x y \equiv$ snd $x<\operatorname{snd} y \quad$ [NOTICE: No restriction on fst components!] Subtyping constraints (obligations) arising from program

$$
\begin{aligned}
& (u, v)=(o u, o v), v>0 \Rightarrow d j((u, v-1),(o u, o v)) \\
& (u, v)=(o u, o v), u>1 \Rightarrow d j((u-1, v),(o u, o v)) \\
& d j((u, v),(o u, o v)), v>0 \Rightarrow d j((u, v-1),(o u, o v)) \\
& d j((u, v),(o u, o v)), u>1 \Rightarrow d j((u-1, v),(o u, o v))
\end{aligned}
$$

Or ...
just call Liquid Types and it will do all that for you!

http://pho.ucsd.edu/liquid/demo/index2.php

... after you have applied a transformation to the original program that I will describe later on

Background

Structural and guarded recursion, dependent types and well-founded relations in Coq

We will skip these. You already know

Background: disjunctive invariants

Ramsey's theorem

Every infinite complete graph whose edges are colored with finitely many colors contains an infinite monochromatic path.

Podelski \& Rybalchenko characterization of WF relations Relation R is WF iff there exist WF relations $T_{1} \ldots T_{n}$ such that $R^{+} \subseteq T_{1} \cup \ldots \cup T_{n}$

Background: How Terminator works?

- Transform a program, and assert/infer invariants!

```
int x = 50;
while (x > 0) do {
    x = x - 1;
}
```

- Invariant between x and oldx represents any point of R+!
- We need non-deterministic choice to allow the "start point" to be anywhere

In a functional setting: a first attempt

- Let's consider only divergence from recursion
- Negative recursive types, control \leftarrow Not well-thought yet
- The "state" is the arguments of the recursive function
- Hence:

```
let rec f x =
                                    if x==0 then 41 else f (x-1) + 1
```

In particular f has to accept $x \leq$ oldx the first time.

But in all
subsequent calls
it must be $x<$ oldx

```
let rec f x =
    if * then
        if x==0 then 41 else f (x-1) + 1
        else
            f' x x
                                But where is the ASSERT?
let rec f' oldx x =
    if x==0 then 41 else f' oldx (x-1) + 1
```


In a functional setting: a better attempt

- Just inline the first call to f^{\prime} to expose subsequent calls:

```
let rec f x =
    if x==0 then 41 else f (x-1) + 1
```

let $\operatorname{rec} \mathrm{f} x=$
if $*$ then
if $x==0$ then 41 else $f(x-1)+1$

Starts to look like something a refinement type system could express
... but can we dispense with rewriting?
else
f' x * if $x==0$ then 41 else f' $x(x-1)+1$
let rec f' oldx $x=$
assert (oldx <_\{T_i\} x)
if $x==0$ then 41 else f' oldx $(x-1)+1$

A special typing rule, to avoid rewriting

$$
\frac{\Gamma,(o l d: T),(g:\{x: T \mid \operatorname{dj}(x, \text { old })\} \rightarrow U),(x:\{y: T \mid \operatorname{dj}(y, \text { old }) \vee y=o l d\}) \vdash e: U}{\Gamma \vdash f i x(\lambda g \cdot \lambda x . e): T \rightarrow U}
$$

- A declarative spec of termination with disjunctive invariants
- Given the set T_{i} the typing rule can be checked or inferred - E.g. inference via Liquid Types [Ranjit]
- It's a cool thing: programmer needs to come up with simple WF relations (which are also easy to synthesize [Byron])

Bumping up the arguments

```
let rec flop (u,v) =
    if v > 0 then flop (u,v-1) else
    if u > 1 then flop (u-1,big) else 1
```

$\Gamma,(o l d: T),(g:\{x: T \mid d j(x, o l d)\} \rightarrow U),(x:\{y: T \mid d j(y, o l d) \vee y=o l d\}) \vdash e: U$
$\Gamma \vdash f i x(\lambda g . \lambda x . e): T \rightarrow U$

Consider $T_{1}(x, y) \equiv$ fst $x<$ fst y
Consider $T_{2}(x, y) \equiv$ snd $x<\operatorname{snd} y$
Subtyping constraints (obligations) arising from program

$$
\begin{aligned}
& (u, v)=(o u, o v) \wedge v>0 \Rightarrow d j((u, v-1),(o u, o v)) \\
& (u, v)=(o u, o v) \wedge u>1 \Rightarrow d j((u-1, \text { big }),(o u, o v)) \\
& d j((u, v),(o u, o v)) \wedge v>0 \Rightarrow d j((u, v-1),(o u, o v)) \\
& d j((u, v),(o u, o v)) \wedge u>1 \Rightarrow d j((u-1, b i g),(o u, o v))
\end{aligned}
$$

One way to strengthen the rule with invariants

let rec flop $(u, v)=$
if $v>0$ then flop ($u, v-1$) else
if $u>1$ then flop (u-1,big) else 1

$$
\begin{gathered}
\Gamma,(o l d: T),(g:\{x: T \mid \boldsymbol{P}(\boldsymbol{x}, \text { old }) \wedge d j(x, \text { old })\} \rightarrow U), \\
(x:\{y: T \mid \boldsymbol{P}(\boldsymbol{y}, \text { old }) \wedge(d j(y, \text { old }) \vee y=\text { old })\}) \vdash e: U \\
\boldsymbol{P} \text { reflexive }
\end{gathered}
$$

Consider $T_{1}(x, y) \equiv$ fst $x<f s t y$
Consider $T_{2}(x, y) \equiv$ snd $x<\operatorname{snd} y$
Consider $\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}) \equiv \boldsymbol{f} \boldsymbol{s t} \boldsymbol{x} \leq \boldsymbol{f} \boldsymbol{s t} \boldsymbol{y}$
[NOTICE: No restriction on fst!]
Subtyping constraints (obligations) arising from program:

$$
\begin{gathered}
P((u, v),(o u, o v)) \wedge(u, v)=(o u, o v) \wedge v>0 \Rightarrow P((u, v-1),(o u, o v)) \wedge d j((u, v-1),(o u, o v)) \\
P((u, v),(o u, o v)) \wedge(u, v)=(o u, o v) \wedge u>1 \\
\Rightarrow P((u-1, b i g),(o u, o v)) \wedge d j((u-1, b i g),(o u, o v)) \\
P((u, v),(o u, o v)) \wedge d j((u, v),(o u, o v)) \wedge v>0 \Rightarrow P((u, v-1),(o u, o v)) \wedge d j((u, v-1),(o u, o v)) \\
P((u, v),(o u, o v)) \wedge d j((u, v),(o u, o v)) \wedge u>1 \\
\Rightarrow P((u-1, b i g),(o u, o v)) \wedge d j((u-1, b i g),(o u, o v))
\end{gathered}
$$

Scrap your lexicographic orders? ...

$$
\begin{gathered}
\text { Preflexive } \\
\Gamma,(\text { old:T) })(g:\{x: T \mid \boldsymbol{P}(\boldsymbol{x}, \text { old }) \wedge d j(x, \text { old })\} \rightarrow U), \\
(x:\{y: T \mid \boldsymbol{P}(\boldsymbol{y}, \text { old }) \wedge(d j(y, \text { old }) \vee y=o l d)\}) \vdash e: U \\
\Gamma \vdash f i x(\lambda g . \lambda x . e): T \rightarrow U
\end{gathered}
$$

It is arguably very simple to see what $T_{1} \ldots T_{n}$ are but not as simple to provide a strong enough invariant P

But the type-system approach may help find this P interactively from the termination constraints?
... or Liquid Types can infer it for us

What next?

- More examples. Is it easy for the programmer?
- Formal soundness proof
- Move from trace-based semantics (Terminator) to denotational?
- Integrate in a refinement type system or a dependently typed language
- Tempted by the Program facilities for extraction of obligations in Coq
- Is there a constructive proof of (some restriction of) disjunctive WF theorem? If yes, use it to construct the WF ranking relations in Coq
- Applicable to Agda, Trellys?
- Liquid types. Demo works for many examples via the transformation
- Negative recursive datatypes, mutual recursion ...

Thanks!

A new typing rule for termination based on disjunctive invariants

New typing rule serves as:

- a declarative specification of that method, or
- the basis for a tool that could potentially increase the programmability of totality checking

