
IFIP WG2.8

Project Fortress:
from SunLabs to KAIST
or, from Industrial Labs to Academia

Sukyoung Ryu

Department of Computer Science
Korea Advanced Institute of Science and Technology

April 13, 2010

0-0

Project Fortress: from SunLabs to KAIST

Static Program Analysis
(at KAIST)

1

Project Fortress: from SunLabs to KAIST

Debugging Everywhere
(at Harvard)

2

Project Fortress: from SunLabs to KAIST

Fortress Programming Language
(at Sun Labs.)

3

Project Fortress

Project Fortress: from SunLabs to KAIST

• A multicore language for scientists and engineers

• Run your whiteboard in parallel!

vnorm = v/‖v‖∑
k←1:n

ak xk

C = A ∪B

y = 3x sin x cos 2x log log x

• “Growing a Language”

Guy L. Steele Jr., keynote talk, OOPSLA 1998

4

Project Fortress: History

Project Fortress: from SunLabs to KAIST

• Fortress is a growable, mathematically oriented, parallel

programming language for scientific applications.

• Started under Sun/DARPA HPCS program, 2003–2006.

• Fortress is now an open-source project with international

participation.

• The Fortress 1.0 release (March 2008) synchronized the

specification and implementation.

• Moving forward, we are growing the language and libraries

and developing a compiler.

5

Project Fortress: Sales Pitch

Project Fortress: from SunLabs to KAIST

• Convolver in Satnam Singh’s slides yesterday

for (int i = 0; i < a.Length; i++)

ypar += a[i] * A.Shift(xpar, -i);

• Convolver in Fortress

yt =
∑

k←0#N

ak xt−k

• “Birdcount” programsa

> Collaboration with Mike Zody at the Broad Institute b

> Find chicken mutants with reference chicken genome
ahttp://projectfortress.sun.com/Projects/Community/browser/trunk/

ProjectFortress/demos
b“Birds of a feather inherit together: Chicken breeds shed light on genes

underlying domestic traits”,http://www.broadinstitute.org/news/1430
6

Project Fortress: from SunLabs to KAIST

Mechanized Semantics
• Tests soundness of language semantics

((invk
 (Main (tas) (vas))
 (identity
 (tas)
 (vas
 (invk
 (Main (tas) (vas))
 (myself)))))
 Object)

((invk
 (Main (tas) (vas))
 (identity
 (tas)
 (vas (Main (tas) (vas)))))
 Object)

((Main (tas) (vas))
 (Main (tas)))

• Provides unambiguous specification for compiler writers
 · Fewer insidious bugs
 · More portable code

Formalized Semantics
• Allows proofs of soundness and formal analysis

Lexing and Parsing

Type Inference

Translation

Abstract Syntax Tree (AST)

AST with Type Annotation

Fortress Program

compiler

...

Executable Code

Intermediate Representation

Typing Rules

Evaluation Rules

Type Soundness Proof

Reductions of the Example Program using PLT Redex

Formalism for the Fortress Programming Language

Soundness of the Example Program

The Value of Formal Methods

Ariane 5

A data conversion from
64-bit floating point to 16-bit
signed integer value raised
an uncaught Overflow
exception.

Result: The launcher was
destroyed 40 seconds into
the flight. The launch cost of
an Ariane 5 was $180 million.

Mars Climate Orbiter

Orbiter software represented
Force Time in Ns. Ground
software represented Force
Time in lbf s.

Result: The spacecraft was
lost. The project cost was
$327.6 million for both orbiter
and lander.

Patriot Missile Failure

Accumulated rounding error in
patriot missile software caused
a missile to track its target
incorrectly.

Result: SCUD missile was able
to strike an army barrack,
resulting in 28 Americans killed.

Sukyoung Ryu
Sukyoung.Ryu@sun.com

Eric Allen
Eric.Allen@sun.com

Joe Hallett
Joseph.Hallett@sun.com

object Main[]() traits {Object}
myself:Main[] = self
identity[](x:Object):Object = x

end

Main[]().identity[](Main[]().myself)

1

Example Program in Fortress

Copyright © 2005, Sun Microsystems, Inc.

Expression typing: p; ∆; Γ ! e : τ

[T-Var] p; ∆; Γ ! x : Γ(x)

[T-Self] p; ∆; Γ ! self : Γ(self)

[T-Object]

object O (
−−−→
:τ ′,) ∈ p

p; ∆ ! O[−→τ,] ok p; ∆; Γ ! −→e :
−→
τ ′′ p; ∆ ! −→τ ′′ <:

−→
τ ′

p; ∆; Γ ! O[−→τ,](−→e,) : O[−→τ,]

[T-Field]

p; ∆; Γ ! e0 : τ0 bound∆(τ0) = O[−→τ,]
object O[−−−−−→α # ,]

−−−−−→
x:τ ′ = e; ∈ p

p; ∆; Γ ! e0.xi : [
−−→
τ/α]τ ′i

[T-Method]

p; ∆; Γ ! e0 : τ0 mtypep(f, bound∆(τ0)) = {[−−−−−→α # N,]
−→
τ ′ → τ ′0}

p; ∆ ! −→τ ok p; ∆ ! −→τ <: [
−−→
τ/α]

−→
N

p; ∆; Γ ! −→e :
−→
τ ′′ p; ∆ ! −→τ ′′ <: [

−−→
τ/α]

−→
τ ′

p; ∆; Γ ! e0.f[
−→τ,](−→e,) : [

−−→
τ/α]τ ′0

Evaluation rules: p ! E[R] −→ E[e]

[R-Field]
object O[−−−−−→α " ,](

−−−→
x′: ,) −−−−−−→x: = e; ∈ p

p ! E[O[−→τ,](−→v,).xi] −→ E[[
−−→
τ/α][

−−→
v/x′]ei]

[R-Method]

object O (
−−−→
x′: ,) ∈ p

mbodyp(f[
−→
τ ′,], O[−→τ,]) = {(−→x)→ e}

p ! E[O[−→τ,](−→v,).f[−→τ ′,](−→v′,)] −→ E[[
−−→
v/x′][O[−→τ,](−→v,)/self][−−→v′/x]e]

Suppose p is the example program.

If p; ∅; ∅ " Main[]().identity[](Main[]().myself) : Object
and p " Main[]().identity[](Main[]().myself) −→∗ Main[]()
then p; ∅; ∅ " Main[]() : Main[] where p; ∅ " Main[] <: Object.

Theorem (Subject Reduction). If p is well-typed,
p; ∆; Γ ! e : τ , and p ! e −→ e′ then p; ∆; Γ ! e′ : τ ′ where
p; ∆ ! τ ′ <: τ .

Proof. The proof is by case analysis on the evaluation rule applied.

Case [R-Field]:
e= E[O[−→τ,](−→v′,).xi]

e′= E[[
−−→
τ/α][

−−→
v′/x′]ei]

By the well-typedness of e, we have p; ∆; Γ ! O[−→τ,](−→v′,).xi : [
−−→
τ/α]τ ′′i

where object O[
−−−−−→
α # N,](

−−−→
x′:τ ′,) # {−−→M,} −−−−−−→x:τ ′′ = e;

−→
fd; end ∈ p.

By typing rules [T-Object], [T-ObjectDef], [T-FieldDef],
and [W-Both], we have:

(1a) p; ∆; Γ ! −→v′ : −→τv

(1b) p; ∆ ! −→τv <:
−→
τ ′

(2a) p;
−−−−−→
α <: N ;

−−−→
x′ : τ ′ ! ei : τ ′′′i

(2b) p;
−−−−−→
α <: N ! τ ′′′i <: τ ′′i

(3b) p; ∆ ! −→τ <: [
−−→
τ/α]

−→
N

(4a) p; ∆; Γ ! O[−→τ,](−→v′,) : O[−→τ,]
By the Weakening Lemma and the Term Substitution Lemma

applied to (2a), (1a), and (1b), we have:

(5a) p; ∆,
−−−−−→
α <: N ; Γ ! [

−−→
v′/x′]ei : τ ′′′′i

(5b) p; ∆,
−−−−−→
α <: N ! τ ′′′′i <: τ ′′′i

By the Type Substitution Lemma applied to (5a) and (3b), we
have:

(6a) p; ∆; [
−−→
τ/α]Γ ! [

−−→
τ/α][

−−→
v′/x′]ei : τ ′′′′′i

(6b) p; ∆ ! τ ′′′′′i <: [
−−→
τ/α]τ ′′′′i

By the Weakening Lemma, the Type Substitution Lemma, and
[S-Trans], we have:

(7b) p; ∆ ! τ ′′′′′i <: [
−−→
τ/α]τ ′′i

By applying the Replacement Lemma to judgements (7a) and
(8b), we finish the case.

Case [R-Method]: · · ·

7

Formalism for Fortress

Project Fortress: from SunLabs to KAIST

• Fortress calculi

> Basic core Fortress

> Core Fortress with where clauses

> Core Fortress with overloading

> Acyclic core Fortress with field definitions

• For each Fortress calculus

> Syntax

> Static semantics

> Dynamic semantics

> Type soundness proof

8

Core Fortress with Where Clauses

Project Fortress: from SunLabs to KAIST

• “Hidden Type Variables and Conditional Extension for

More Expressive Generic Programs,”Joseph J. Hallett,

Ph.D. Dissertation, Boston University, 2007

• “Implementing Hidden Type Variables in Fortress,” Joe

Hallett, Eric Allen, and Sukyoung Ryu. Chapter in

book: Semantic Engineering with PLT Redex, Matthias

Felleisen, Robby Findler, and Matthew Flatt. MIT Press.

July 2009.

9

Project Fortress: from SunLabs to KAIST

Programming Language Research Group

10

Project Fortress: from SunLabs to KAIST

11

Fortress Type System

Project Fortress: from SunLabs to KAIST

• Traits are like JavaTM interfaces, but may contain code

• Objects are like JavaTM classes, but may not be extended

• Multiple inheritance of code (but not fields)

> Objects with fields are the leaves of the hierarchy

• Traits and objects may be parameterized

> Parameters may be types or compile-time constants

• Primitive types are first-class

> Booleans, integers, floats, characters are all objects

12

Basic Core Fortress (BCF)

Project Fortress: from SunLabs to KAIST

α, β type variables

τ, τ ′, τ ′′ ::= α | σ type

σ ::= N | OJ−→τ K named type

N,M,L ::= T J−→τ K | Object trait type

p ::=
−→
d e program

d ::= td | od definition

td ::= trait T J
−−−−−−−−→
α extendsNK extends {

−→
N}
−→
fd end trait definition

od ::= objectOJ
−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
N}
−→
fd end object definition

fd ::= fJ
−−−−−−−−→
α extendsNK(−→x:τ):τ= e method definition

e ::= x expression

| self

| OJ−→τ K(−→e)
| e.x

| e.fJ−→τ K(−→e)

13

BCF: Multiple Inheritance

Project Fortress: from SunLabs to KAIST

α, β type variables

τ, τ ′, τ ′′ ::= α | σ type

σ ::= N | OJ−→τ K named type

N,M,L ::= T J−→τ K | Object trait type

p ::=
−→
d e program

d ::= td | od definition

td ::= trait T J
−−−−−−−−→
α extendsNK extends {

−→
N}
−→
fd end trait definition

od ::= objectOJ
−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
N}
−→
fd end object definition

fd ::= fJ
−−−−−−−−→
α extendsNK(−→x:τ):τ= e method definition

e ::= x expression

| self

| OJ−→τ K(−→e)
| e.x

| e.fJ−→τ K(−→e)

14

BCF: Static Semantics

Project Fortress: from SunLabs to KAIST

Method type lookup: mtypep(f, τ) = {J
−−−−−−−−→
α extendsNK −→τ → τ}

[Mt-Self]
CJ−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−→
β extendsMK(

−−→
:τ ′):τ ′0= e ∈ {

−→
fd}

mtypep(f, CJ−→τ K) = {[−→τ /−→α]J
−−−−−−−−→
β extendsMK

−→
τ ′ → τ

′
0}

[Mt-Super]
CJ−−−−−−−−→α extends K extends{

−→
N}

−→
fd ∈ p f 6∈ {

−−−−−−−−→
Fname(fd)}

mtypep(f, CJ−→τ K) =
[

Ni∈{
−→
N}

mtypep(f, [−→τ /−→α]Ni)

[Mt-Obj] mtypep(f,Object) = ∅

15

BCF: Multiple Inheritance

Project Fortress: from SunLabs to KAIST

Method type lookup: mtypep(f, τ) = {J
−−−−−−−−→
α extendsNK −→τ → τ}

[Mt-Self]
CJ−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−→
β extendsMK(

−−→
:τ ′):τ ′0= e ∈ {

−→
fd}

mtypep(f, CJ−→τ K) = {[−→τ /−→α]J
−−−−−−−−→
β extendsMK

−→
τ ′ → τ

′
0}

[Mt-Super]
CJ−−−−−−−−→α extends K extends{

−→
N}

−→
fd ∈ p f 6∈ {

−−−−−−−−→
Fname(fd)}

mtypep(f, CJ−→τ K) =
[

Ni∈{
−→
N}

mtypep(f, [−→τ /−→α]Ni)

[Mt-Obj] mtypep(f,Object) = ∅

16

BCF: Dynamic Semantics

Project Fortress: from SunLabs to KAIST

v ::= OJ−→τ K(−→v) value

E ::= � evaluation context

| OJ−→τ K(−→e E−→e)

| E.x

| E.fJ−→τ K(−→e)

| e.fJ−→τ K(−→e E−→e)

R ::= v.x redex

| v.fJ−→τ K(−→v)

17

BCF: Nondeterminism

Project Fortress: from SunLabs to KAIST

v ::= OJ−→τ K(−→v) value

E ::= � evaluation context

| OJ−→τ K(−→e E−→e)

| E.x

| E.fJ−→τ K(−→e)

| e.fJ−→τ K(−→e E−→e)

R ::= v.x redex

| v.fJ−→τ K(−→v)

18

BCF in Coq: Multiple Inheritance

Project Fortress: from SunLabs to KAIST

• With primitive recursion
(* Method type lookup

* mtype_p(f, sigma) = {[\ \overline{alpha extends N} \]\overline{ty} -> ty}

*)

Definition mtype (p:P) (mn:m) (t:ty) : (list tv * list nty * list ty * ty) :=

match t with

| nty2ty(tty2nty tty_object) => (nil, nil, nil, ty_object)(* Mt-Obj *)

| nty2ty(tty2nty (tty_tty tn tys)) => mtype’ p mn (tcl2cl tn) tys(* trait *)

... (* object *)

Fixpoint mtype’ (p:P) (mn:m) (name:cl) (tys:list ty)

: (list tv * list nty * list ty * ty) :=

let namedt := ... (* convert cl to nty *)

let ps := paths p namedt in (* collect all the paths from namedt to Object *)

let collected := (* collect all the methods from the paths *)

filter (fun res => match res with Some sig => true | _ => false end)

(map (fun (path:list nty) => mtype’’ p mn path name tys) ps) in

... (* check there is only one and return it *)

19

BCF in Coq: Multiple Inheritance

Project Fortress: from SunLabs to KAIST

(* Collect all the defined and inherited methods from a given path *)

Fixpoint mtype’’ (p:P) (mn:m) (path :list nty) (name:cl) (tys:list ty)

: option (list tv * list nty * list ty * ty) :=

match path with

| nil => None

| cons nt path’ =>

match get_decl p name with

| Some decl =>

match (find (fun d:md => match d with

md_def (ms_def mn’ _ _ _) _ =>

if eq_nat_dec mn mn’ then true else false

end) (cld2mds decl)) with

| Some (md_def (ms_def _ tvds vds retty) _) => (* Mt-Self *)

...

| None => (* Mt-Super *)

mtype’’ p mn path’ name tys

end

...

20

BCF in Coq: Multiple Inheritance

Project Fortress: from SunLabs to KAIST

(* Collect all the paths from nt to Object *)

Definition paths (p:P) (nt:nty) : list (list nty) :=

paths’ p nt (length (get_decls p)).

Function paths’ (p:P) (nt:nty) (bound:nat) {struct bound} : list (list nty) :=

match bound with

| S bound’ =>

let (tname,tas) := nty2nameTas nt in

match get_decl p tname with

| Some decl =>

let sub := make_subst_tty tas (cld2tvs decl) in

let supers := map sub (cld2supers decl) in

fold_right (fun (sup:tty) (ps:list (list nty)) =>

(map (fun (l:list nty) => nt :: l)

(paths’ p (tty2nty sup) bound’)) ++ ps

) nil supers

| _ => nil (* !!! decl is not found; should be Object !!! *)

end

| _ => nil (* !!! bound not met !!! *)

end.

21

BCF in Coq: Work in Progress

Project Fortress: from SunLabs to KAIST

• Nondeterministic dynamic semantics

• Coercion between language constructs

• Test-driven development

> Fortress → BCF parser

> Test programs

• Raising an exception vs static manipulation

> Library Coq.Lists.List

Definition head (l:list) := Definition hd (default:A) (l:list) :=

match l with match l with

| nil => error | nil => default

| x :: _ => value x | x :: _ => x

end. end.

22

Core Fortress with Overloading

Project Fortress: from SunLabs to KAIST

• Basic core Fortress (BCF) + overloading

• Overloading

> Multiple declarations for the same functional name

visible in a single scope

> Several of the overloaded declarations may be

applicable to any particular functional call

23

Functionals in Fortress

Project Fortress: from SunLabs to KAIST

• Functionals

> Functions
∗ Top-level functions
∗ Local functions

> Methods
∗ Dotted methods
∗ Functional methods

• Special functionals

> Operators

> Coercions

24

Functionals in Fortress

Project Fortress: from SunLabs to KAIST

• Functionals

> Functions first-class values
∗ Top-level functions top-level in components or APIs
∗ Local functions within blocks

> Methods have owners (traits or objects)
∗ Dotted methods implicit self

∗ Functional methods explicit self

• Special functionals

> Operators top-level functions or functional methods

> Coercions special dotted methods

25

Methods

Project Fortress: from SunLabs to KAIST

• Methods are declared within traits or objects.

> top-level in enclosing traits or objects

> self is declared as a parameter of a method

• Dotted methods

> invoked by a method call syntax

> its receiver is bound to the self parameter

> the value of self is the receiver

• Functional methods

> invoked by a function call syntax

> the corresponding argument is bound to the self param.

> the value of self is the argument passed to it
26

Dotted Methods vs Functional Methods

Project Fortress: from SunLabs to KAIST

trait SequentialGeneratorJEK extends
˘

GeneratorJEK
¯

seq(self): SequentialGeneratorJEK = self

mapJGK(f : E → G): SequentialGeneratorJGK =

SimpleMappedSeqGeneratorJE, GK(self, f)

. . .

end SequentialGenerator

• Dotted methods: g.mapJRK(f)

• Functional methods: seq(g)

27

Why Dotted Methods?

Project Fortress: from SunLabs to KAIST

• Good for data extensibility

trait Flower

color(): String

end

object Rose extends Flower

color() = “Red”

end

object Lily extends Flower

color() = “White”

end

28

Why Functions?

Project Fortress: from SunLabs to KAIST

• For function extensibility with overloaded functions
> Multiple declarations with the same name

color(r: Rose) = “Red”

color(r: Lily) = “White”

> Dynamic dispatch selects the most specific definition
at run time

countRoses(x: Flower, y: Flower) = 0

countRoses(x: Flower, y: Rose) = 1

rose: Flower = Rose

countRoses(rose, rose)

29

Why Functional Methods?

Project Fortress: from SunLabs to KAIST

• For data extensibility and encapsulation

• For function extensibility even with top-level functions

• For mathematical syntax with overloaded operators

trait Matrix excludes Vector

opr ·(self, other : Vector): Matrix

opr ·(other : Vector, self):Matrix

end

v ·M +M · v

30

Fortress Overloading

Project Fortress: from SunLabs to KAIST

• Goal: No ambiguous nor undefined calls at run time

• Challenges: Modular Multiple dispatch & Multiple inheritancea

a“Modular Multiple Dispatch with Multiple Inheritance,” Eric Allen, J.J. Hallett,

Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr. SAC 2007: 22nd Annual

ACM Symposium on Applied Computing

31

Fortress Overloading

Project Fortress: from SunLabs to KAIST

• Goal: No ambiguous nor undefined calls at run time

• Challenges: Modular Multiple dispatch & Multiple inheritancea

> Multiple dispatch and ambiguity

countRoses(x: Flower, y: Flower) = 0

countRoses(x: Flower, y: Rose) = 1

countRoses(x: Rose, y: Flower) = 1

rose: Flower = Rose

countRoses(rose, rose) (* Ambiguous call! *)

a“Modular Multiple Dispatch with Multiple Inheritance,” Eric Allen, J.J. Hallett,

Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr. SAC 2007: 22nd Annual

ACM Symposium on Applied Computing
32

Fortress Overloading

Project Fortress: from SunLabs to KAIST

• Goal: No ambiguous nor undefined calls at run time

• Challenges: Modular Multiple dispatch & Multiple inheritancea

> Multiple dispatch and ambiguity

> Multiple inheritance and ambiguity

trait Flower end

trait Thorny end

object Rose extends {Flower, Thorny } end
toString(x: Flower) = “Flower”

toString(x: Thorny) = “Thorny”

toString(Rose) (* Ambiguous call! *)

a“Modular Multiple Dispatch with Multiple Inheritance,” Eric Allen, J.J. Hallett,

Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr. SAC 2007: 22nd Annual

ACM Symposium on Applied Computing

33

Fortress Overloading

Project Fortress: from SunLabs to KAIST

• Goal: No ambiguous nor undefined calls at run time

• Challenges: Modular Multiple dispatch & Multiple inheritancea

> Multiple dispatch and ambiguity

> Multiple inheritance and ambiguity

> Modular check for ambiguity

a“Modular Multiple Dispatch with Multiple Inheritance,” Eric Allen, J.J. Hallett,

Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr. SAC 2007: 22nd Annual

ACM Symposium on Applied Computing

34

Fortress Overloading

Project Fortress: from SunLabs to KAIST

• Goal: No ambiguous nor undefined calls at run time

• Challenges: Modular Multiple dispatch & Multiple inheritancea

> Multiple dispatch and ambiguity

> Multiple inheritance and ambiguity

> Modular check for ambiguity

• Solution: Static overloading rules to guarantee the goal

a“Modular Multiple Dispatch with Multiple Inheritance,” Eric Allen, J.J. Hallett,

Victor Luchangco, Sukyoung Ryu, and Guy L. Steele Jr. SAC 2007: 22nd Annual

ACM Symposium on Applied Computing

35

Language Features

Project Fortress: from SunLabs to KAIST

• Components: Import other APIs but modularly checked

• Traits: Multiple inheritance of code without fields

• Objects: Leaves of type hierarchy containing fields

• Exclusive types: No object is a subtype of excluding traits.

• Functional Methods: explicit self parameter in the

parameter list, rather than an implicit self parameter

before the method name
trait Matrix excludes Vector

opr ·(self, other : Vector):Matrix

opr ·(other : Vector, self):Matrix

end

v ·M + M · v
36

Overloading Rules

Project Fortress: from SunLabs to KAIST

• Compare overloaded declarations pairwise.

• If any rule holds then a valid overloading:

> Exclusion Rule

> Subtype Rule

> Meet Rule

37

Exclusion Rule

Project Fortress: from SunLabs to KAIST

• Parameter types exclude each other.

trait Animal excludes Flower end

eat(who: Animal,what : Flower): Boolean

eat(who: Flower,what : Animal): Boolean

38

Subtype Rule

Project Fortress: from SunLabs to KAIST

• Parameter type of one declaration is a subtype of the

other.

• Return types must also be in subtype relation.

characteristic(x: Flower): Object

characteristic(x: Rose): Thorny

39

Meet Rule for Functions

Project Fortress: from SunLabs to KAIST

• Exists a declaration that is more specific than both.

countRoses(x: Flower, y: Rose) = 1

countRoses(x: Rose, y: Flower) = 1

countRoses(x: Rose, y: Rose) = 2

40

Meet Rule for Functional Methods (I)

Project Fortress: from SunLabs to KAIST

• Treating functional methods like functions is too

restrictive.

trait Flower

name(self)

end

trait Thorny

name(self)

end

41

Meet Rule for Functional Methods (I)

Project Fortress: from SunLabs to KAIST

• Treating functional methods like functions is too

restrictive.

trait Flower

name(self)

end

trait Thorny

name(self)

end

object Rose extends {Flower,Thorny }
name(self) = “Rose”

end

42

Meet Rule for Functional Methods (II)

Project Fortress: from SunLabs to KAIST

• Ambiguity due to self parameter position

object Rose extends Flower

countRoses(self, l: Lily) = 1

end

object Lily extends Flower

countRoses(r: Rose, self) = 1

end

countRoses(Rose,Lily)

43

Meet Rule for Functional Methods (II)

Project Fortress: from SunLabs to KAIST

• Ambiguity due to self parameter position

object Rose extends Flower

countRoses(self, l: Lily) = 1

end

object Lily extends Flower

countRoses(r: Rose, self) = 1

end

countRoses(Rose,Lily)

• Any trait or object declaration that provides both also

provides a declaration that is more specific than both.

• self parameters must be in the same position.
44

Overloading Resolution Proof

Project Fortress: from SunLabs to KAIST

Theorem 1. If all the overloaded declarations satisfy the

static overloading rules, there are no ambiguous nor undefined

calls at run time.

45

How about Generic Functionals?

Project Fortress: from SunLabs to KAIST

• Overloaded declarations must have static parameters that

are identical (up to α-equivalence).

firstJT1,T2,T3K
`
x: (T1,T2)

´
: T1 = do (a,) = x; a end

secondJT1,T2,T3K
`
x: (T1,T2)

´
: T2 = do (, b) = x; b end

firstJT1,T2,T3K
`
x: (T1,T2,T3)

´
: T1 = do (a, ,) = x; a end

secondJT1,T2,T3K
`
x: (T1,T2,T3)

´
: T2 = do (, b,) = x; b end

thirdJT1,T2,T3K
`
x: (T1,T2,T3)

´
: T3 = do (, , c) = x; c end

46

More Generic Functionals

Project Fortress: from SunLabs to KAIST

trait Number

. . .

opr ·(self, b: Number): R64

end

opr ·JT extends Number, nat n K`
me : VectorJT, nK, other : VectorJT, nK

´
:T

opr ·JT extends Number, nat n K`
other :T,me : VectorJT, nK

´
: VectorJT, nK

opr ·JT extends Number, nat n, nat m, nat pK`
me:MatrixJT, n,mK, other :MatrixJT,m, pK

´
:MatrixJT, n, pK

. . .

47

More Features to Prove

Project Fortress: from SunLabs to KAIST

• Generic overloaded functionals

• Where clauses

• Coercions

• Type inferene

• Self-type idioma

• Pattern matching

• . . .

ahttp://projectfortress.sun.com/Projects/Community/blog/category/

SelfTypes

48

Sukyoung Ryu

sryu@cs.kaist.ac.kr

http://plrg.kaist.ac.kr

48-1

