
Simon Peyton Jones (Microsoft Research)

Norman Ramsey, John Dias (Tufts University)

March 2010

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 One entry,
perhaps many
exits

 Each block has a
label

 Each block is a
sequence of
nodes

 Control transfers
at end of block

 Arbitrary control
flow

Each analysis has

 Data flow “facts”

 Transfer
function for each
node

X := 3+4

Y := x > 5

If y
then goto L2
else goto L3

L3L2

True

x=7

x=5, y=Truex=7, y=True

X := 3+4

Y := x > 5

If y
then goto L2
else goto L3

L3L2

True

x=7

x=5, y=Truex=7, y=True

X := 7

Y := True

goto L2

L2

 Rewrite each node based on incoming dataflow fact

 Feed rewritten node to the transfer function

Rewrite

 Each rewrite takes
 A node
 The dataflow fact flowing to that node
and returns…what???

 Correct answer: an arbitrary graph!

 Examples: rewrite
 an instruction to a no-op
 a block-copy “instruction” to a loop
 a switch “instruction” to a tree of conditionals
 a call to the instantiated procedure body (inlining)

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

X=0

X=1?

X=10

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

 Combine facts
flowing into a
block

X=0

X=10

X=1

X=Top

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

 Combine facts
flowing into a
block

 And iterate to
fixed point

X=0

X=10

X=T

X=Top

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X<2 goto L2 else goto L1

Return T

L1

L2

 Rewrites based
on bogus (non-
final) “facts”
must be
discarded

 But they must
still be done
(speculatively)
in order to
exploit current
“fact”

X=0

X=1

Dead
edge!

 Many dataflow analyses and optimisations
can be done in this “analyse-and-rewrite”
framework

 Interleaved rewriting and analysis is
essential

 Can combine analyses into “super-analyses”.
Instead of A then B then A then B, do A&B.

 Lerner, Grove, Chambers POPL 2002

 Graph implemented using pointers

 Facts decorate the graph; keeping them up
to date is painful

 Rewrites implements as mutation; undoing
bogus rewrites is a major pain

 Difficult and scary

HooplArbitrary
graph

Dataflow
lattice

Node
transfer
function

Optimised
graph

 Interleaved rewriting and analysis

 Shallow and deep rewriting

 Fixpoint finding for arbitrary control flow

 One function for forward dataflow, one for backward

 Polymorphic in node and fact types

Node
rewrite
function

In Hoopl we have:
 Nodes

 Blocks

 Graphs

All are parameterised by whether “shape”
 Open/Closed on entry

 Open/Closed on exit

Y := x > 5 goto L2 X=φ(X1,X2)

 Defined by client of Hoopl

 Hoopl is polymorphic in node type

data O -- Defined

data C -- by Hoopl

data Node e x where -- Defined by client

Head :: Node C O

Assign :: Reg -> Expr -> Node O O

Store :: Expr -> Expr -> Node O O

Branch :: BlockId -> Node O C

CondBranch :: BlockId -> BlockId -> Node O C

...more constructors...

data Block n e x where -- Defined by Hoopl

BUnit :: n e x -> Block n e x

BCat :: Block n e O -> Block n O x -> Block n e x

 Blocks are non-empty sequences of nodes

 Only open/open joins are allowed

 Type of block describes its “shape”

BUnit (Assign x e) :: Block O O

BUnit (Assign x e) `BCat` BUnit (Branch l1) :: Block O C

BUnit (Branch l1) `BCat` BUnit (Assign x e) -- ILL-TYPED

type LBlocks n = Data.IntMap (Block n C C)

 LBlocks is a collection of closed/closed
Blocks
 Used for the main body of a graph

type LBlocks n = Data.IntMap (Block n C C)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

 GUnit lifts a Block to be a Graph

 GNil is the empty graph (open both ends).
Remember, blocks are non-empty, so GUnit
won‟t do for this.

type LBlocks n = Data.IntMap (Block n C C)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

GMany has
 a distinguished entry block (closed at end)

 an arbitrary graph of internal LBlocks (all C/C)

 a “tail” of some kind

Entry
block

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

data Tail n x where

NoTail :: Tail n C

Tail :: BlockId -> Block n C O -> Tail n O

 Tail id b => control flows out
through b

 NoTail => control leaves graph by
gotos only

O/C

O/C

O

 No blocks: GNil

 1 block:
 Open at end: (GUnit b)
 Closed at end : GMany b [] NoTail

 2 or more blocks:
 Open at end: GMany be bs (Tail bx)
 Closed at end: GMany b bs NoTail

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

data Tail n x where

NoTail :: Tail n C

Tail :: BlockId -> Block n C O

-> Tail n O

gCat :: Graph n e O -> Graph n O x -> Graph n e x

gCat GNil g2 = g2

gCat g1 GNil = g1

gCat (GUnit b1) (GUnit b2) = GUnit (b1 `BCat` b2)

gCat (GUnit b) (GMany e bs x) = GMany (b `BCat` e) bs x

gCat (GMany e bs (Tail bid x)) (GUnit b2)

= GMany e bs (Tail bid (x `BCat` b2))

gCat (GMany e1 bs1 (Tail bid x1)) (GMany e2 bs2 x2)

= GMany e1 (LB bid (x1 `BCat` e2) : bs1 ++ bs2) x2

data LBlock n x = LB BlockId (Block n C x)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C -> [LBlock n C] -> Tail n x -> Graph n e x

data Tail n x where

NoTail :: Exit n C

Tail :: BlockId -> Block n C O -> Exit n O

HooplArbitrary
graph

Optimised
graph

analyseAndRewriteFwd ::

forall n f. Edges n

=> DataflowLattice f

-> ForwardTransfers n f

-> ForwardRewrites n f

-> RewritingDepth

-> Graph n e C

-> f

-> HooplM(Graph n e C, ...)

Dataflow
lattice

Node
transfer
function

Node
rewrite
function

 It supports
 Allocating fresh blockIds

 Supply of “optimisation fuel”

 When optimisation fuel is exhausted, no
more rewrites are done

 Allows binary search to pin-point a buggy
rewrite

 fact_extend takes
 The “current fact”

 A “new fact”

and returns

 Their least upper bound

 A flag indicating whether the result differs from
the “current fact”

data DataflowLattice a = DataflowLattice {

fact_bot :: a,

fact_extend :: a -> a -> (a, ChangeFlag)

}

data ChangeFlag = NoChange | SomeChange

 Takes a node, and a fact and returns
 Nothing => No rewrite, thank you

 Just g => Please rewrite to this graph

 AGraph is a Graph, except that it needs a
supply of fresh BlockIds:

 Returned graph is same shape as input!

type ForwardRewrites n f

= forall e x. n e x -> f -> Maybe (AGraph n e x)

type AGraph n e x = BlockIdSupply

-> (Graph n e x, BlockIdSupply)

 What if x=C?

type ForwardTransfers n f

= forall e x. n e x -> f -> f -- WRONG

if (…)
then goto L1
else goto L2

What comes out???
Clearly not one fact!

 What if x=C?

 Then what comes out is
type FactBase f = Map BlockId f

 So the result type depends on f

 Type functions to the rescue!

type ForwardTransfers n f

= forall e x. n e x -> f -> f -- WRONG

if (…)
then goto L1
else goto L2

FactBase f

f

 “Fact” coming out depends on
the “x” flag (only)

type ForwardTransfers n f

= forall e x. n e x -> f -> OutFact x f

type family OutFact x f

type instance OutFact O f = f

type insatanc OutFact C f = FactBase f

if (…)
then goto L1
else goto L2

FactBase f

f

HooplArbitrary
graph

Optimised
graph

analyseAndRewriteFwd ::

forall n f. Edges n

=> DataflowLattice f

-> ForwardTransfers n f

-> ForwardRewrites n f

-> RewritingDepth

-> Graph n e C

-> f

-> HooplM(Graph n e C, ...)

Dataflow
lattice

Node
transfer
function

Node
rewrite
function

 The grand plan

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: ARF (Block n) f -> ARF (Graph n) f

Deals with sequence of
nodes in a block

Deals with fixpoints

 The grand plan

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: DataflowLattice f

-> ARF (Block n) f -> ARF (Graph n) f

How to analyse and
rewrite a rewritten

graph

Deals with fixpoints

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: ARF (Block n) f -> ARF (Graph n) f

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

Input thing

Input fact

Rewritten thing
Output fact

arfBlock :: ARF n f -> ARF (Block n) f

arfBlock arf_node (BUnit n)

=

arfBlock arf_node (b1 `BCat` b2)

=

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

data Block n e x where

BUnit :: n e x -> Block n e x

BCat :: Block n e O -> Block n O x -> Block n e x

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfNode tf rw arf_graph n f

= case (rw f n) of

Nothing -> return (nodeToGraph n, tf f n)

Just ag -> do { g <- graphOfAGraph ag

; arf_graph g f }

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

type ForwardTransfers n f

= forall e x. n e x -> f -> OutFact f

type ForwardRewrites n f

= forall e x. n e x -> f -> Maybe (AGraph n e x)

graphOfAGraph :: AGraph n e x -> HooplM (Graph n e x)

nodeToGraph :: n e x -> Graph n e x -- URK!

 Could generalise type of GUnit

 Or add class constraint to nodeToGraph

nodeToGraph :: n e x -> Graph n e x

nodeToGraph n = GUnit (BUnit n)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

Cannot unify „e‟
with „O‟

class LiftNode x where

nodeToGraph :: n e x -> Graph n e x

instance LiftNode O where

nodeToGraph n = GUnit (BUnit n)

instance LiftNode C where

nodeToGraph n = GMany (BUnit n) [] NoTail

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

 But since nodeToGraph is overloaded, so
must arfNode be overloaded...

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfNode tf rw arf_graph n f

= case (rw f n) of

Nothing -> return (nodeToGraph n, tf f n)

Just ag -> do { g <- graphOfAGraph ag

; arf_graph g f }

type ARF thing f

= forall e x. LiftNode x

=> thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

 More complicated: 30 lines of code (!)
 Three constructors (GNil, GUnit, GMany)

 The optional Tail

 Fixpoint

 Put blocks in topological order to improve
convergence

arfGraph :: DataflowLattice f

-> ARF (Block n) f -> ARF (Graph n) f

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

analyseAndRewriteFwd

:: forall n f. Edges n

=> DataflowLattice f -> ForwardTransfers n f

-> ForwardRewrites n f -> RewritingDepth

-> ARF_Graph n f

analyseAndRewriteFwd depth lat tf rw

= anal_rewrite

where

anal_only, anal_rewrite, rec :: ARF_Graph n f

anal_only = arfGraph lat $ arfBlock $ analNode tf

anal_rewrite = arfGraph lat $ arfBlock $ arfNode tf rw rec

rec = case depth of

RewriteShallow -> anal_only

RewriteDeep -> anal_rewrite

analNode :: ForwardTransfers n f -> ARF_Node n f

analNode tf n f = return (nodeToGraph n f, tf f n)

 Old code was 250+ lines, impossible to
understand, and probably buggy

 New code is < 100 lines, has many more
static checks, and is much easier to
understand

 GADTs and type functions play a crucial role

