
Simon Peyton Jones (Microsoft Research)

Norman Ramsey, John Dias (Tufts University)

March 2010

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 One entry,
perhaps many
exits

 Each block has a
label

 Each block is a
sequence of
nodes

 Control transfers
at end of block

 Arbitrary control
flow

Each analysis has

 Data flow “facts”

 Transfer
function for each
node

X := 3+4

Y := x > 5

If y
then goto L2
else goto L3

L3L2

True

x=7

x=5, y=Truex=7, y=True

X := 3+4

Y := x > 5

If y
then goto L2
else goto L3

L3L2

True

x=7

x=5, y=Truex=7, y=True

X := 7

Y := True

goto L2

L2

 Rewrite each node based on incoming dataflow fact

 Feed rewritten node to the transfer function

Rewrite

 Each rewrite takes
 A node
 The dataflow fact flowing to that node
and returns…what???

 Correct answer: an arbitrary graph!

 Examples: rewrite
 an instruction to a no-op
 a block-copy “instruction” to a loop
 a switch “instruction” to a tree of conditionals
 a call to the instantiated procedure body (inlining)

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

X=0

X=1?

X=10

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

 Combine facts
flowing into a
block

X=0

X=10

X=1

X=Top

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X=10 goto L2 else goto L1

Return T

L1

L2

 First time
round, we may
have bogus
information

 Combine facts
flowing into a
block

 And iterate to
fixed point

X=0

X=10

X=T

X=Top

X:=0
T:=0

Goto L1

X:=X+1
T:=T+X

If X<2 goto L2 else goto L1

Return T

L1

L2

 Rewrites based
on bogus (non-
final) “facts”
must be
discarded

 But they must
still be done
(speculatively)
in order to
exploit current
“fact”

X=0

X=1

Dead
edge!

 Many dataflow analyses and optimisations
can be done in this “analyse-and-rewrite”
framework

 Interleaved rewriting and analysis is
essential

 Can combine analyses into “super-analyses”.
Instead of A then B then A then B, do A&B.

 Lerner, Grove, Chambers POPL 2002

 Graph implemented using pointers

 Facts decorate the graph; keeping them up
to date is painful

 Rewrites implements as mutation; undoing
bogus rewrites is a major pain

 Difficult and scary

HooplArbitrary
graph

Dataflow
lattice

Node
transfer
function

Optimised
graph

 Interleaved rewriting and analysis

 Shallow and deep rewriting

 Fixpoint finding for arbitrary control flow

 One function for forward dataflow, one for backward

 Polymorphic in node and fact types

Node
rewrite
function

In Hoopl we have:
 Nodes

 Blocks

 Graphs

All are parameterised by whether “shape”
 Open/Closed on entry

 Open/Closed on exit

Y := x > 5 goto L2 X=φ(X1,X2)

 Defined by client of Hoopl

 Hoopl is polymorphic in node type

data O -- Defined

data C -- by Hoopl

data Node e x where -- Defined by client

Head :: Node C O

Assign :: Reg -> Expr -> Node O O

Store :: Expr -> Expr -> Node O O

Branch :: BlockId -> Node O C

CondBranch :: BlockId -> BlockId -> Node O C

...more constructors...

data Block n e x where -- Defined by Hoopl

BUnit :: n e x -> Block n e x

BCat :: Block n e O -> Block n O x -> Block n e x

 Blocks are non-empty sequences of nodes

 Only open/open joins are allowed

 Type of block describes its “shape”

BUnit (Assign x e) :: Block O O

BUnit (Assign x e) `BCat` BUnit (Branch l1) :: Block O C

BUnit (Branch l1) `BCat` BUnit (Assign x e) -- ILL-TYPED

type LBlocks n = Data.IntMap (Block n C C)

 LBlocks is a collection of closed/closed
Blocks
 Used for the main body of a graph

type LBlocks n = Data.IntMap (Block n C C)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

 GUnit lifts a Block to be a Graph

 GNil is the empty graph (open both ends).
Remember, blocks are non-empty, so GUnit
won‟t do for this.

type LBlocks n = Data.IntMap (Block n C C)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

GMany has
 a distinguished entry block (closed at end)

 an arbitrary graph of internal LBlocks (all C/C)

 a “tail” of some kind

Entry
block

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

data Tail n x where

NoTail :: Tail n C

Tail :: BlockId -> Block n C O -> Tail n O

 Tail id b => control flows out
through b

 NoTail => control leaves graph by
gotos only

O/C

O/C

O

 No blocks: GNil

 1 block:
 Open at end: (GUnit b)
 Closed at end : GMany b [] NoTail

 2 or more blocks:
 Open at end: GMany be bs (Tail bx)
 Closed at end: GMany b bs NoTail

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

data Tail n x where

NoTail :: Tail n C

Tail :: BlockId -> Block n C O

-> Tail n O

gCat :: Graph n e O -> Graph n O x -> Graph n e x

gCat GNil g2 = g2

gCat g1 GNil = g1

gCat (GUnit b1) (GUnit b2) = GUnit (b1 `BCat` b2)

gCat (GUnit b) (GMany e bs x) = GMany (b `BCat` e) bs x

gCat (GMany e bs (Tail bid x)) (GUnit b2)

= GMany e bs (Tail bid (x `BCat` b2))

gCat (GMany e1 bs1 (Tail bid x1)) (GMany e2 bs2 x2)

= GMany e1 (LB bid (x1 `BCat` e2) : bs1 ++ bs2) x2

data LBlock n x = LB BlockId (Block n C x)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C -> [LBlock n C] -> Tail n x -> Graph n e x

data Tail n x where

NoTail :: Exit n C

Tail :: BlockId -> Block n C O -> Exit n O

HooplArbitrary
graph

Optimised
graph

analyseAndRewriteFwd ::

forall n f. Edges n

=> DataflowLattice f

-> ForwardTransfers n f

-> ForwardRewrites n f

-> RewritingDepth

-> Graph n e C

-> f

-> HooplM(Graph n e C, ...)

Dataflow
lattice

Node
transfer
function

Node
rewrite
function

 It supports
 Allocating fresh blockIds

 Supply of “optimisation fuel”

 When optimisation fuel is exhausted, no
more rewrites are done

 Allows binary search to pin-point a buggy
rewrite

 fact_extend takes
 The “current fact”

 A “new fact”

and returns

 Their least upper bound

 A flag indicating whether the result differs from
the “current fact”

data DataflowLattice a = DataflowLattice {

fact_bot :: a,

fact_extend :: a -> a -> (a, ChangeFlag)

}

data ChangeFlag = NoChange | SomeChange

 Takes a node, and a fact and returns
 Nothing => No rewrite, thank you

 Just g => Please rewrite to this graph

 AGraph is a Graph, except that it needs a
supply of fresh BlockIds:

 Returned graph is same shape as input!

type ForwardRewrites n f

= forall e x. n e x -> f -> Maybe (AGraph n e x)

type AGraph n e x = BlockIdSupply

-> (Graph n e x, BlockIdSupply)

 What if x=C?

type ForwardTransfers n f

= forall e x. n e x -> f -> f -- WRONG

if (…)
then goto L1
else goto L2

What comes out???
Clearly not one fact!

 What if x=C?

 Then what comes out is
type FactBase f = Map BlockId f

 So the result type depends on f

 Type functions to the rescue!

type ForwardTransfers n f

= forall e x. n e x -> f -> f -- WRONG

if (…)
then goto L1
else goto L2

FactBase f

f

 “Fact” coming out depends on
the “x” flag (only)

type ForwardTransfers n f

= forall e x. n e x -> f -> OutFact x f

type family OutFact x f

type instance OutFact O f = f

type insatanc OutFact C f = FactBase f

if (…)
then goto L1
else goto L2

FactBase f

f

HooplArbitrary
graph

Optimised
graph

analyseAndRewriteFwd ::

forall n f. Edges n

=> DataflowLattice f

-> ForwardTransfers n f

-> ForwardRewrites n f

-> RewritingDepth

-> Graph n e C

-> f

-> HooplM(Graph n e C, ...)

Dataflow
lattice

Node
transfer
function

Node
rewrite
function

 The grand plan

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: ARF (Block n) f -> ARF (Graph n) f

Deals with sequence of
nodes in a block

Deals with fixpoints

 The grand plan

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: DataflowLattice f

-> ARF (Block n) f -> ARF (Graph n) f

How to analyse and
rewrite a rewritten

graph

Deals with fixpoints

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfBlock :: ARF n f -> ARF (Block n) f

arfGraph :: ARF (Block n) f -> ARF (Graph n) f

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

Input thing

Input fact

Rewritten thing
Output fact

arfBlock :: ARF n f -> ARF (Block n) f

arfBlock arf_node (BUnit n)

=

arfBlock arf_node (b1 `BCat` b2)

=

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

data Block n e x where

BUnit :: n e x -> Block n e x

BCat :: Block n e O -> Block n O x -> Block n e x

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfNode tf rw arf_graph n f

= case (rw f n) of

Nothing -> return (nodeToGraph n, tf f n)

Just ag -> do { g <- graphOfAGraph ag

; arf_graph g f }

type ARF thing f

= forall e x. thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

type ForwardTransfers n f

= forall e x. n e x -> f -> OutFact f

type ForwardRewrites n f

= forall e x. n e x -> f -> Maybe (AGraph n e x)

graphOfAGraph :: AGraph n e x -> HooplM (Graph n e x)

nodeToGraph :: n e x -> Graph n e x -- URK!

 Could generalise type of GUnit

 Or add class constraint to nodeToGraph

nodeToGraph :: n e x -> Graph n e x

nodeToGraph n = GUnit (BUnit n)

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

Cannot unify „e‟
with „O‟

class LiftNode x where

nodeToGraph :: n e x -> Graph n e x

instance LiftNode O where

nodeToGraph n = GUnit (BUnit n)

instance LiftNode C where

nodeToGraph n = GMany (BUnit n) [] NoTail

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

 But since nodeToGraph is overloaded, so
must arfNode be overloaded...

arfNode :: ForwardTransfers n f

-> ForwardRewrites n f

-> ARF (Graph n) f

-> ARF n f

arfNode tf rw arf_graph n f

= case (rw f n) of

Nothing -> return (nodeToGraph n, tf f n)

Just ag -> do { g <- graphOfAGraph ag

; arf_graph g f }

type ARF thing f

= forall e x. LiftNode x

=> thing e x

-> f

-> HooplM (Graph e x, OutFact x f)

 More complicated: 30 lines of code (!)
 Three constructors (GNil, GUnit, GMany)

 The optional Tail

 Fixpoint

 Put blocks in topological order to improve
convergence

arfGraph :: DataflowLattice f

-> ARF (Block n) f -> ARF (Graph n) f

data Graph n e x where

GNil :: Graph n O O

GUnit :: Block n e O -> Graph n e O

GMany :: Block n e C

-> LBlocks n

-> Tail n x

-> Graph n e x

analyseAndRewriteFwd

:: forall n f. Edges n

=> DataflowLattice f -> ForwardTransfers n f

-> ForwardRewrites n f -> RewritingDepth

-> ARF_Graph n f

analyseAndRewriteFwd depth lat tf rw

= anal_rewrite

where

anal_only, anal_rewrite, rec :: ARF_Graph n f

anal_only = arfGraph lat $ arfBlock $ analNode tf

anal_rewrite = arfGraph lat $ arfBlock $ arfNode tf rw rec

rec = case depth of

RewriteShallow -> anal_only

RewriteDeep -> anal_rewrite

analNode :: ForwardTransfers n f -> ARF_Node n f

analNode tf n f = return (nodeToGraph n f, tf f n)

 Old code was 250+ lines, impossible to
understand, and probably buggy

 New code is < 100 lines, has many more
static checks, and is much easier to
understand

 GADTs and type functions play a crucial role

