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Program Verification Techniques
Finite state/pushdown model checking
– Applicable to first-order procedures (pushdown 

model checking), but not to higher-order 
programs

Type-based program analysis
– Applicable to higher-order programs
– Sound but imprecise
Dependent types/theorem proving
– Requires human intervention

Sound and precise verification technique for 
higher-order programs (e.g. ML/Java programs)?



This Talk
New program verification method based 
on higher-order model checking
[POPL 2009/2010, LICS 2009, ICALP 2009, PPDP 2009]

– Sound, complete, and automatic for 
• A large class of higher-order programs
• A large class of verification problems

– Built on recent/new advances in
• Type theories
• Automata/formal language theories 
(esp. higher-order recursion schemes)

• Model checking   
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Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme 
(regular tree grammar)
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Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S  → A c
A → λx. a  x  (A (b x))

S: o, A: o→ o
→A c
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Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)
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From Program Verification
to Model Checking Recursion Schemes

[K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 
event sequences

or outputs)
+

Tree automaton,
recognizing 

valid event sequences
or outputs

Model
Checking



From Program Verification to Model Checking:
Example

let f(x) = 
if ∗ then close(x) 
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 
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From Program Verification
to Model Checking Recursion Schemes

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

automaton for
infinite trees

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

simply-typed λ-calculus + recursion 
+ finite base types

- A large class of verification problems:
resource usage verification [Igarashi&K. POPL2002], 
reachability, flow analysis, ...



Comparison with Traditional Approach 
(Control Flow Analysis)

Control flow analysis

Our approach

Flow 
Analysis

Higher-order
program

Control flow 
graph
(finite state 
or pushdown 
machines)

verification

Program
Transformation

Higher-order
program

Recursion 
scheme verification

Only information about 
infinite data domains
is approximated!



Comparison with Traditional Approach 
(Software Model Checking)

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs

Recursion scheme model 
checking

infinite
state
model 
checking
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Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A 

if and only if

G is typable in TS(A)

Model Checking as
Type Checking 
(c.f. [Naik & Palsberg, ESOP2005])



Why Type-Theoretic 
Characterization?

Simpler decidability proof of model 
checking recursion schemes
– Previous proofs [Ong, 2006][Hague et. al, 2008]
made heavy use of game semantics

More efficient model checking algorithm
– Known algorithms [Ong, 2006][Hague et. al, 2008]
always require n-EXPTIME



Model Checking Problem

Given
G:  higher-order recursion scheme

(without safety restriction)
A:  alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)



Model Checking Problem
Given

G:  higher-order recursion scheme
(without safety restriction)

A:  trivial automaton [Aehlig CSL06]

(Büchi tree automaton where
all the states are accepting states)

does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case 
(full modal μ-calculus model checking)



(Trivial) tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
In every path, 
“a” cannot occur after “b”



Types for Recursion Schemes
Automaton state as the type of trees
– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?



Types for Recursion Schemes
Automaton state as the type of trees

– q1→ q2: functions that take a tree of type q1 
and return a tree of q2

q2

q1 + =
q1

q2

q1



Types for Recursion Schemes
Automaton state as the type of trees
– q1∧q2 → q3: 

functions that take a tree of type q1∧q2 and 
return a tree of type q3

+ =
q1, q2

q3

q1 q2q2

q3

q1 q2q2



Types for Recursion Schemes
Automaton state as the type of trees
(q1 → q2) → q3: 

functions that take a function of type q1 → q2 
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2



Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ 
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ 

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Γ, x:τ ┝ x :τa

…

q

q1 qn



Soundness and Completeness
[K., POPL2009]

Let
G: Rec. scheme with initial non-terminal S
A: Trivial automaton with initial state q0
TS(A): Intersection type system 

derived from A
Then,
Tree(G) is accepted by A

if and only if
S has type q0 in TS(A)
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Naïve Type Checking Algorithm
Recursion Scheme:
{F1 →t1, ..., Fm →tm }

S has type q0

(i) Γ |− tj: τ   
for each Fj:τ ∈ Γ

(ii) S:q0 ∈ Γ
for some Γ

S:q0 ∈ gfp(H) = ∩k Hk(Γmax)
where

H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }
Γmax = {F:τ | τ :: sort(F) }

All the possible 
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0, 
F:q0∧q1 → q0,…}

Filter out invalid type bindings



Naïve Algorithm Does NOT Work

sort # of types (Q={q0,q1,q2,q3})
o 4 (q0,q1,q2,q3)
o → o 24 ×4 = 64  (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264 ×4 = 266 

((o→o) → o) → o 266 10000000000000000000
2   ×4 > 10

S has type q0

S:q0 ∈ gfp(H) = ∩k Hk(Γmax)
where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ } 

Γmax = {F:τ | τ :: sort(F) } This is huge!
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More Efficient Algorithm?
S has type q0
⇔

S:q0 ∈ ∩k Hk(Γmax)
where

H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ } 

Γ0 
⇐

Challenges:
(i)  How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

Reduce the recursion scheme (finitely many steps), 
and extract type information  

Iteratively repeat (i) and type checking  



Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes

no Step 2: Extract 
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!



Soundness and Completeness of
the Hybrid Algorithm

Given:
– Recursion scheme G
– Deterministic trivial automaton A,

the algorithm eventually terminates, and:
(i) outputs an error path

if Tree(G) is not accepted by A
(ii) outputs a type environment

if Tree(G) is accepted by A



Example
Recursion scheme:

S → F c     F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1 
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0
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Example
Step 1:

Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes

no Step 2: Extract 
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧ q1→ q0
F: q0 → q0 F: T → q0 



Example: 
Filtering out invalid judgments
Recursion scheme:

S → F c     F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1 
δ(q0, c) = δ(q1, c) = ε

Γ0 = {S: q0, F: q0 ∧ q1→ q0, F: q0 → q0 , F: T → q0}

Γ1 = H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ }
= {S: q0, F: q0 ∧ q1→ q0, F: q0 → q0 }

Γ2 = {S: q0, F: q0 ∧ q1→ q0}
Γ3 = {S: q0, F: q0 ∧ q1→ q0}
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TRecS
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion 
schemes (or, for higher-order functions)

Based on the hybrid model checking algorithm, 
with certain additional optimizations



Experiments

150Yes12802m91
2Yes495Order5

order rules states result Time 
(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10

xhtml 1 2 50 Yes 263

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of 
Objective Caml, consisting of 
about 60 lines of O’Caml code



(A simplified version of) 
FileOcamlC

let readloop fp = 
if * then () else readloop fp; read fp

let read_sect() =
let fp = open “foo” in
{readc=fun x -> readloop fp;
closec = fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop s

let main() =
let s = read_sect() in loop s



Experiments

150Yes12802m91
2Yes495Order5

order rules states result Time 
(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10

xhtml 1 2 50 Yes 263

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Machine-generated code
from McCurthy’s 91 function

by using predicate abstractionMachine-generated code
from a program manipulating 

Xhtml documents
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Recursion schemes as 
models of higher-order programs?
+ simply-typed λ-calculus
+ recursion
+ tree constructors
+ finite data domains (via Church encoding; 

true = λx.λy.x, false=λx.λy.y)
- infinite data domains 

(integers, lists, trees,…)
- advanced types (polymorphism, recursive 

types, object types, …)
- imperative features/concurrency



Ongoing work 
to overcome the limitation

Predicate abstraction and CEGAR,
to deal with infinite data domains 
(c.f. BLAST, SLAM, …)
From recursion schemes to transducers,
to deal with algebraic data types 
(lists, trees, …) [K.,Tabuchi&Unno, POPL 2010]

Infinite intersection types,
to deal with non-simply-typed programs
[Tsukada&K. FoSSaCS 2010]
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Advantages of our approach
(1) Sound, complete and automatic for a large 

class of higher-order programs
– no false alarms!
– no annotations



Advantages of our approach
(1) Sound, complete and automatic for a large 

class of higher-order programs
– no false alarms!
– no annotations

(2) Subsumes finite-state/pushdown model 
checking
– Order-0 rec. schemes ≈ finite state systems
– Order-1 rec. schemes ≈ pushdown systems



Advantages of our approach
(3) Take the best of model checking and types 

– Types as certificates of successful verification 
⇒ applications to PCC (proof-carrying code)

– Counterexample when verification fails 
⇒ error diagnosis, 

CEGAR (counterexample-guided 
abstraction refinement)



Advantages of our approach
(4) Encourages structured programming

Main:  
fp1 := open “r” “foo”;
fp2 := open “w” “bar”;

Loop:
c1 := read fp1;
if c1=eof then goto E;
write(c1, fp2);
goto Loop;

E:
close fp1;
close fp2;

let copyfile fp1 fp2 =
try write(read fp2, fp1);

copyfile fp1 fp2 
with 

Eof -> close(fp1);close(fp2)
let main =

let fp1 = open “r” file in
let fp2 = open “w” file in

copyfile fp1 fp2

v.s.

Previous techniques:
- Imprecise for higher-order functions and recursion,
hence discourage using them



Advantages of our approach
(4) Encourages structured programming

Our technique:
- No loss of precision for higher-order functions and 
recursion

- Performance penalty? -- Not necessarily!
- n-EXPTIME in the specification size,

but polynomial time in the program size
- Compact representation of large state space

e.g. recursion schemes generating am(c) 
S→F1 c, F1 x→F2(F2 x),..., Fn x→a(a x)

vs
S→a G1, G1 →a G2,..., Gm → c  (m=2n)



Advantages of our approach
(5) A good combination with testing:

Verification through testing

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes no Step 2: Extract 

type environment
Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?
no

yes Property
Is
Satisfied!



Challenges
More efficient model checker
– More language-theoretic properties of recursion 

schemes (e.g. pumping lemmas)

– BDD-like state representation

Software model checker for ML/Haskell

Extension of the decidability of higher-order 
model checking (Tree(G) |= ϕ)

Integration with testing (e.g. QuickCheck)



Conclusion
New program verification technique based on 
model checking recursion schemes
– Many attractive features

• Sound and complete for higher-order programs
• Take the best of model-checking and 
type-based techniques

– Many interesting and challenging topics
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