Higher-Order Model Checking and Applications to Program Verification

Naoki Kobayashi Tohoku University

In collaboration with Luke Ong (University of Oxford), Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno (Tohoku University)

Program Verification Techniques

Finite state/pushdown model checking

- Applicable to first-order procedures (pushdown model checking), but not to higher-order programs
- Type-based program analysis
 - Applicable to higher-order programs
 - Sound but imprecise
- Dependent types/theorem proving
 - Requires human intervention

Sound and precise verification technique for higher-order programs (e.g. ML/Java programs)?

This Talk

- New program verification method based on higher-order model checking [POPL 2009/2010, LICS 2009, ICALP 2009, PPDP 2009]
 - Sound, complete, and automatic for
 - A large class of higher-order programs
 - A large class of verification problems
 - Built on recent/new advances in
 - \cdot Type theories
 - Automata/formal language theories (esp. higher-order recursion schemes)
 - · Model checking

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Higher-Order Recursion Scheme

Model Checking Recursion Schemes

Given

- G: higher-order recursion scheme
- A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur eventually whenever "b" occurs?

n-EXPTIME-complete [Ong, LICS06] (for order-n recursion scheme)

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

From Program Verification to Model Checking Recursion Schemes [K. POPL 2009]

From Program Verification to Model Checking Recursion Schemes

- A large class of verification problems: resource usage verification [Igarashi&K. POPL2002], reachability, flow analysis, ...

Comparison with Traditional Approach (Control Flow Analysis)

♦ Control flow analysis Higher-order Flow Analysis Program ♦ Our approach Control flow graph (finite state or pushdown machines)

Higher-order program
Program
Recursion
verification Only information about infinite data domains is approximated!

Comparison with Traditional Approach (Software Model Checking)

Program Classes	Verification Methods	
Programs with while-loops	Finite state model checking	
Programs with 1 st -order recursion	Pushdown model checking	infinite state
Higher-order functional programs	Recursion scheme model checking	f model checking

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

Goal

Construct a type system TS(A) s.t. Tree(G) is accepted by tree automaton A if and only if

G is typable in TS(A)

Model Checking as Type Checking (c.f. [Naik & Palsberg, ESOP2005])

Why Type-Theoretic Characterization?

- Simpler decidability proof of model checking recursion schemes
 - Previous proofs [Ong, 2006][Hague et. al, 2008] made heavy use of game semantics
- More efficient model checking algorithm
 - Known algorithms [Ong, 2006][Hague et. al, 2008] always require n-EXPTIME

Model Checking Problem

Given

- G: higher-order recursion scheme (without safety restriction)
- A: alternating parity tree automaton (APT) (a formula of modal μ-calculus or MSO), does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06] (for order-n recursion scheme)

Model Checking Problem

Given

G: higher-order recursion scheme (without safety restriction)

A: trivial automaton [Aehlig CSL06] (Büchi tree automaton where all the states are accepting states) does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case (full modal $\mu\text{-calculus}$ model checking)

(Trivial) tree automaton for infinite trees

δ(q0, a) = q0 q0 δ(q0, b) = q1 δ(q1, b) = q1 δ(q0, c) = ε δ(q1, c) = ε

In every path, "a" cannot occur after "b"

Automaton state as the type of trees

- q: trees accepted from state q

- q1 \land q2: trees accepted from both q1 and q2

Automaton state as the type of trees

- q1 \rightarrow q2: functions that take a tree of type q1 and return a tree of q2

Automaton state as the type of trees

- $q1 \land q2 \rightarrow q3$:

functions that take a tree of type $q1 \ q2$ and return a tree of type q3

Automaton state as the type of trees

$$(q1 \rightarrow q2) \rightarrow q3$$
:

functions that take a function of type q1 \rightarrow q2 and return a tree of type q3

$$\begin{array}{c|c} \Gamma \models \textbf{t}_{k} : \tau \text{ (for every } \textbf{F}_{k} : \tau \in \Gamma \text{)} \\ \hline & F_{1} \rightarrow \textbf{t}_{1}, \dots, \ \textbf{F}_{n} \rightarrow \textbf{t}_{n} \text{ }: \Gamma \end{array}$$

Soundness and Completeness [K., POPL2009]

Let

G: Rec. scheme with initial non-terminal S A: Trivial automaton with initial state q₀ TS(A): Intersection type system derived from A

Then,

Tree(G) is accepted by A if and only if S has type q₀ in TS(A)

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
 - A naive algorithm
 - A practical algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

$$\begin{array}{c} \Gamma \models \textbf{t}_{j} : \tau \text{ (for every } \textbf{F}_{j} : \tau \in \Gamma \text{)} \\ \hline \models \{\textbf{F}_{1} \rightarrow \textbf{t}_{1}, \dots, \textbf{F}_{n} \rightarrow \textbf{t}_{n}\} : \Gamma \end{array}$$

Naïve Algorithm Does NOT Work
S has type
$$q_0$$

 \ddagger
S: $q_0 \in gfp(H) = \bigcap_k H^k(\Gamma_{max})$
where $H(\Gamma) = \{ F_j : \tau \in \Gamma | \Gamma | - t_j : \tau \}$
 $\Gamma_{max} = \{F:\tau | \tau :: sort(F)\}$ This is huge!

sort	# of types (Q= $\{q_0, q_1, q_2, q_3\}$)
0	4 (q_0, q_1, q_2, q_3)
$\circ \rightarrow \circ$	$2^4 \times 4 = 64$ ($\land S \rightarrow q$, with $S \in 2^Q$, $q \in Q$)
(o→o) → o	$2^{64} \times 4 = 2^{66}$
$((o \rightarrow o) \rightarrow o) \rightarrow o$	266 100000000000000000000000000000000000
	2 ×4 > 10

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
 - A naive algorithm
 - A practical algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

More Efficient Algorithm? S has type q_0

 $\leftarrow \Gamma_{0} \\ S:q_{0} \in \bigcap_{k} H^{k}(\underline{\Gamma_{max}}) \\ where \\ H(\Gamma) = \{ F_{i}: \tau \in \Gamma \mid \Gamma \mid -t_{i}: \tau \}$

Challenges:

(i) How can we find an appropriate Γ_0 ?

Reduce the recursion scheme (finitely many steps), and extract type information

(ii) How can we guarantee completeness? **Iteratively repeat (i) and type checking**

Hybrid Type Checking Algorithm

Soundness and Completeness of the Hybrid Algorithm

Given:

- Recursion scheme G

Deterministic trivial automaton A,
the algorithm eventually terminates, and:
(i) outputs an error path
if Tree(G) is not accepted by A
(ii) outputs a type environment
if Tree(G) is accepted by A

Recursion scheme:

 $S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$ Automaton: $\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$

 $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$

Г₀:

S: 90

Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$

Automaton:

 $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$ $\begin{array}{c} 1 \\ \begin{array}{c} & & \\ &$ $S^{q_0} \rightarrow F c^{q_0} \rightarrow a^{q_0}$

Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$ $S^{q_0} \rightarrow F \stackrel{q_0}{c} \rightarrow a^{q_0}$

$$\begin{array}{l}
 \Gamma_0: \\
 S: q_0 \\
 F: q_0 \wedge q_1 \\
 \rightarrow q_0
 \end{array}$$

Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$ $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$ $S^{q_0} \rightarrow F c^{q_0} \rightarrow a^{q_0} \rightarrow a^{q_0}$ $q_0 \land F(b c) \qquad q_0 \qquad q_0 \land q_0$ $q_0 \land F(b c) \qquad q_0 \qquad q_0 \land q_0$ $q_0 \land F(b(b c))^{q_0} \qquad F: q_0 \land q_0$ $q_1 \downarrow$ $F: q_0 \rightarrow q_0$ $F: q_0 \rightarrow q_0$ $F: q_0 \rightarrow q_0$

Recursion scheme:

 $S \rightarrow Fc$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = q_1$ $\delta(\mathbf{q}_0, \mathbf{c}) = \delta(\mathbf{q}_1, \mathbf{c}) = \varepsilon$ Γ_0 : $S^{q_0} \rightarrow F c^{q_0} \rightarrow a^{q_0}$ $\rightarrow a^{q_0}$ S: q0 $\overrightarrow{\mathsf{q}}_{0} \xrightarrow{\mathsf{u}}_{\mathsf{C}} \xrightarrow{\mathsf{q}}_{0} \xrightarrow{\mathsf{q}}_{0}$

Filtering out invalid judgments
*Recursion scheme:

 $S \rightarrow F c$ $F \rightarrow \lambda x.a \times (F (b x))$

♦ Automaton:

 $δ(q_0, a) = q_0 q_0$ $δ(q_0, b) = q_1$ $δ(q_0, c) = δ(q_1, c) = ε$

$$\begin{split} &\Gamma_0 = \{ \texttt{S}: \ \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \land \texttt{q}_1 \rightarrow \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \rightarrow \texttt{q}_0 \ \texttt{, F}: \ \texttt{T} \rightarrow \texttt{q}_0 \} \\ &\Gamma_1 = \texttt{H}(\Gamma_0) = \{ \ \texttt{F}_k: \tau \in \Gamma_0 \mid \Gamma_0 \mid -\texttt{t}_k: \tau \} \\ &= \{\texttt{S}: \ \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \land \texttt{q}_1 \rightarrow \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \rightarrow \texttt{q}_0 \} \\ &\Gamma_2 = \{\texttt{S}: \ \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \land \texttt{q}_1 \rightarrow \texttt{q}_0 \} \\ &\Gamma_3 = \{\texttt{S}: \ \texttt{q}_0, \ \texttt{F}: \ \texttt{q}_0 \land \texttt{q}_1 \rightarrow \texttt{q}_0 \} \end{split}$$

TRecS

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

ファイル(F) 須集(F) 実子へり 尿麻(な) ゴッカマーカ(P) ツール(T) ヘルゴ(H)		
C 🗙 🔂 🗋 http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/	☆ • Google	P
🔟 よく見るページ 🏚 Firefox を使ってみよう <u>気</u> 最新ニュース		
📄 FrontPage - Kobalab Wiki 💿 📑 Type-Based Model Checker for 🔞 🔤 キャプチャー画像を保存する(スクリーンシ 🗔		
Higher-Order Recursion Schemes Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Currently, a automata with a trivial acceptance condition.	our model checker only accepts determini	stic Buchi
		13
The first model checker for re schemes (or, for higher-order	cursion functions)	HH

Experiments

	order	rules	states	result	Time (msec)
Twofiles	4	Taken from the compiler of Objective Caml, consisting of			
FileWrong	4	about	t 60 lines	of O'Caml	code
TwofilesE	4	127		Yes	2
FileOcamlC	4	23	4	Yes	5
Lock	4	11	3	Yes	10
Order5	5	9	4	Yes	2
m91	2	280	1	Yes	150
xhtml	1	2	50	Yes	263

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

(A simplified version of) FileOcamlC

```
let readloop fp =
 if * then () else readloop fp; read fp
let read_sect() =
 let fp = open "foo" in
 {readc=fun x -> readloop fp;
  closec = fun \times -> close fp
let loop s =
 if * then s.closec() else s.readc();loop s
let main() =
 let s = read_sect() in loop s
```

Experiments

	order	rules	states	result	Time (msec)	
Twofiles	4	11	4	Yes	2	
FileWrong	4	11	4	No	1	
TwofilesE	4	12	Machin	ne-generat	red code	
FileOcamlC	4	23 from McCurthy's 91 function				
Machine-generated code jng predicate abstraction						
from a pro <u>c</u> Xhtm	gram ma I docume	nipulatir ents		Yes	2	
m91	2	280	1	Yes	150	
xhtml	1	2	50	Yes	263	

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
- TRecS: Type-based RECursion Scheme model checker
- Limitations and ongoing work
- Discussion

Recursion schemes as models of higher-order programs?

- + simply-typed λ -calculus
- + recursion
- + tree constructors
- + finite data domains (via Church encoding; true = $\lambda x . \lambda y . x$, false= $\lambda x . \lambda y . y$)
- infinite data domains (integers, lists, trees,...)
- advanced types (polymorphism, recursive types, object types, ...)
- imperative features/concurrency

Ongoing work to overcome the limitation

- Predicate abstraction and CEGAR, to deal with infinite data domains (c.f. BLAST, SLAM, ...)
- From recursion schemes to transducers, to deal with algebraic data types (lists, trees, ...) [K., Tabuchi&Unno, POPL 2010]
- Infinite intersection types,

to deal with non-simply-typed programs [Tsukada&K. FoSSaCS 2010]

Outline

- Higher-order recursion schemes
- From program verification to model checking recursion schemes
- From model checking to type checking
- Type checking (=model checking) algorithm
- TRecS: Type-based RECursion Scheme model checker
- Ongoing work
- Discussion

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations

- (1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations
- (2) Subsumes finite-state/pushdown model checking
 - Order-0 rec. schemes \approx finite state systems
 - Order-1 rec. schemes \approx pushdown systems

(3) Take the best of model checking and types

- Types as certificates of successful verification
 applications to PCC (proof-carrying code)
- Counterexample when verification fails
 - ⇒ error diagnosis, CEGAR (counterexample-guided abstraction refinement)

(4) Encourages structured programming Previous techniques:

- Imprecise for higher-order functions and recursion, hence discourage using them

Main:	
fp1 := open "r" "foo";	
fp2 := open "w" "bar";	
Loop:	
c1 := read fp1;	V.S.
if c1=eof then goto E;	
write(c1, fp2);	
goto Loop;	
E:	
close fp1;	
close fp2;	

```
let copyfile fp1 fp2 =
  try write(read fp2, fp1);
    copyfile fp1 fp2
  with
    Eof -> close(fp1);close(fp2)
let main =
    let fp1 = open "r" file in
    let fp2 = open "w" file in
    copyfile fp1 fp2
```

(4) Encourages structured programming

Our technique:

- No loss of precision for higher-order functions and recursion
- Performance penalty? -- Not necessarily!
 - n-EXPTIME in the specification size, but polynomial time in the program size
 - Compact representation of large state space
 - e.g. recursion schemes generating am(c)
 - $S \rightarrow F_1 c, F_1 x \rightarrow F_2(F_2 x), \dots, F_n x \rightarrow a(a x)$

VS

 $S \rightarrow a \ G_1, \ G_1 \rightarrow a \ G_2, \dots, \ G_m \rightarrow c \ (m=2^n)$

Advantages of our approach (5) A good combination with testing: Verification through testing

Challenges

- More efficient model checker
 - More language-theoretic properties of recursion schemes (e.g. pumping lemmas)
 - BDD-like state representation
- Software model checker for ML/Haskell
- Extension of the decidability of higher-order model checking (Tree(G) |= φ)
- Integration with testing (e.g. QuickCheck)

Conclusion

- New program verification technique based on model checking recursion schemes
 - Many attractive features
 - Sound and complete for higher-order programs
 - Take the best of model-checking and type-based techniques
 - Many interesting and challenging topics

References

 K., Types and higher-order recursion schemes for verification of higher-order programs, POPL09

From program verification to model-checking, and typing

- K.&Ong, Complexity of model checking recursion schemes for fragments of the modal mu-calculus, ICALP09
 Complexity of model checking
- K.&Ong, A type system equivalent to modal mu-calculus modelchecking of recursion schemes, LICS09
 From model-checking to type checking
- K., Model-checking higher-order functions, PPDP09
 Type checking (= model-checking) algorithm
- K., Tabuchi & Unno, Higher-order multi-parameter tree transducers and recursion schemes for program verification, POPL10 Extension to transducers and its applications
- Tsukada & K., Untyped recursion schemes and infinite intersection types, FoSSaCS 10