A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of
Filinski's Symmetric Lambda Calculus

— Continuations, Duality, Classical Logic, but no Categories —

Kenichi Asai

Ochanomizu University (Tokyo, Japan)

If you have difficulty remembering the name of the university,

ocha = green tea
no = of i.e., water of green tea
mizu = water
April 12, 2010

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

Symmetric Lambda Calculus (SLC)
Types of SLC

A Classical Programming

H Summary

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
History

History

m Griffin [POPL’90] showed that the control operator C has type
—A — A.

m Parigot [LPAR'92] introduced Ap-calculus that corresponds to
classical natural deduction.

m Curien and Herbelin [ICFP’'00] introduced Apfi-calculus based
on sequent calculus that has expression/continuation duality
and CBV/CBN duality.

m Wadler [ICFP '03, RTA '05] introduced the Dual Calculus
with clean syntax and CBV/CBN duality.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
History

History

m Filinski [1989] introduced symmetric lambda calculus (SLC).

m Griffin [POPL’90] showed that the control operator C has type
-—A — A

m Parigot [LPAR'92] introduced Ap-calculus that corresponds to
classical natural deduction.

m Curien and Herbelin [ICFP’'00] introduced Apfi-calculus based
on sequent calculus that has expression/continuation duality
and CBV/CBN duality.

m Wadler [ICFP '03, RTA '05] introduced the Dual Calculus
with clean syntax and CBV/CBN duality.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
History

History

m Griffin [POPL'90]: Shortly before the deadline, the work of
Filinski was brought to my attention. His work may provide a
“deep reason” for the correspondence described in this paper.

m Curien and Herbelin [ICFP'00]: an earlier attempt in this
direction [=CBV/CBN duality] can be found in Filinski.

m Wadler [ICFP '03]: Filinski was the first to suggest that CBV
might be dual to CBN in the presence of continuations.
Filinski's formulation lacks any connection with logic.

m Wadler [RTA '05]: A line of work, including Filinski, Griffin,

..., has led to a startling conclusion: CBV is de Morgan dual
of CBN.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
History

Filinski's duality

Expressions produce data.

Continuations consume data.

0 A B 1

CBV/CBN duality naturally follows from expression/continuation
duality:
CBV evaluates expressions first.

CBN evaluates continuations first.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
History

Filinski's duality

Expressions produce data.
Functions transform data.

Continuations consume data.

0 A B 1

CBV/CBN duality naturally follows from expression/continuation
duality:
CBV evaluates expressions first.

CBN evaluates continuations first.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Symmetric Lambda Calculus (SLC)

SLC: Syntax

A configuration is either (e|c) or (e | f|c), where:

expression e or|xz|(e;e)| [fl|leTf
function f u= g|x=e|(z1,22) = €| [g] =e|e
hle<sylcs(y,y2) lc<= [h] | c

continuation ¢ = er|y|(c,;e) | |f] | fle

Example: (1Tx1=>x1+2 T 2= 2 %4 | 0y)
> (1T:I:1=>$1+2|:1:2=>:L‘2*4|.int>
~ (1T =>x1+2|x2=>22%4 | 0t)
o (1|l = 214+ 2|xy=>x2%4 | o)
~ o (142|x = x2%x4 | o)
~ <3|x2:>w2*4l.int>
~ o (3= 2 x| e)
~* (12 @t)

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Symmetric Lambda Calculus (SLC)

SLC: Syntax

A configuration is either (e|c) or (e | f|c), where:

expression e = or|xz|(e,e)| [fl|eTf
function f u= g|x=e|(z1,22) = €| [g] =e]|e
hlesylce=(y,y) e Lh]|c
continuation ¢ == er|y|(c,;e)| |f] | fle
Example: Felleisen's C operator:
C = (gl=ly=_119)leL<=y J

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Symmetric Lambda Calculus (SLC)

Felleisen's C operator

value V u= z|Adxe.M|C
term M u= V|MM
evaluation context E == [||EM|VM

reduction rules E[(Ax. M)V] ~ E[M[V/x]]
E[CV] ~ V(Az. A(E[z]))

where AM = C(A..M)

Example execution:

24C (\k. 4 * (k1))

(Ak.4 * (k1)) (Az. A(2+x))
4% ((Ax. A2+ x))1)
4x(A(2+1))

2+1

3

LRI

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Symmetric Lambda Calculus (SLC)

Felleisen's C operator in SLC

C = ([gl=lyec_]1g)leL <y J

2+ C(\k.4 % (k1))
([TK1=1TkTo=4%x] TCTao=2+x|0p)

> [kl = - TC [(x = 2+) | oine)

> [Tkl = 1|([g]l = [(z=2+z) | einn<=_1Tg) loL)
~ [kl = T]Tgl=[(x=2+x) | eine <= _] T gloeL)
w~ ([(x=>2+x) | oie = 1T ([K] =) |oL)

~ ([(x=>24+z) |l o= _1|[k] =>---|oL)

~ (1T ((x=242) <=)Tax2=>4xx2|0])

~* (1|((x=24x) o<)|z2=48%xx2 | @)

~ Eli(w?z"'m)l.int)

¥ 3 ®int

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Symmetric Lambda Calculus (SLC)

Reduction rules (non-deterministic)

(pop) (eTfle)y ~ (e|fle)
(push) (elfle) ~ (el|fle)

(left) ((e1,€2)|c) ~ (er|z1= (z1,€2)]|c)
(r7(lght§ {(ex; ea) I ci ~ gez | z2 = (elT, :CT) |>c)
exc ele'|c)y ~ (€|[gl=eTg]|c

(8) *I c) ~ (“I c)
(Bp) ((ex,e2)| (w1, x2) =€ |c) ~ (elei/z1, e2/z2])
(Bs) ([f11Tgl =€ lc) ~ (el[f/gﬂ)
(Bs) (el <= [h]|Lf]) ~ (ell[f/h])
(Bp) (eld <:(y1,y2)|(cl, c2)) ~ (e|c[ei/y1, ca/ya])
& (Eeyle) ~ ([elefi)
_(e=e) (elc]e) ~ (e|lhlc<|h]|c)
(right) (el (e, e2)) ~ (el(er,y2) < y2le2)
(left) (e|(c,e2)) ~ (el(y,e2)<=yler)
(push) (e|fle) ~ (elTflec)
(pop) (el fle)y ~ (e|fle)

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Types of SLC

Types
S u= 4T type of expressions
| {ti:tg type of functions
| T type of continuations
T,A,.B = 1 |T|X|AANB|AVvB|A—-B|A—-B

Negation is represented as A — 1L or T — A.

+A +A — +B

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Types of SLC

Type system

'Fop:+T gais I'yvar: Skvar: S (R L'-egp:=T REEE
I'e;:+A T'tex:+B PFea:mA TFex:=B ___
TF (en, €2): HAAB) ™ T (e c):~(AVB) TOF

I'z:+Ale:+B I'y:-Blc:-A
un TFun
Thz=e: {T477F The<«y: {34713
THf:{Z42%2 I'Fe:+A THf:{f42% T'tec:-B
TApp TApp
I'Helf:+B THFflo:-A
AL 3 ervass SENNINNSNINS \ o £3 6vass S,
TF[fl:+(A—>B) " “° TF(f]:~(A-B) Fcle
I'te:+(A— B) _— 'kec:—~(A-B)
= = o= um ———— ———7 TCF
Trha: (4273 TR

Fe:+T Fe:-T Fe:+A Ff:{fA2*2 Fc:-B

. - TProgi TProg2

F{ele) F(elfld)

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Types of SLC

Theorems

m Progress
If a configuration is well-typed, it can take one more step, or
the configuration is of the form (v | e) or (or | k).

m Preservation
If a configuration is well-typed and can take a step, the next
configuration is also well-typed.

m Termination for CBV and CBN
The execution terminates under CBV or CBN evaluation
strategy. (The proof uses logical predicate arguments.)

m Translations to and from the Dual Calculus preserve equations.
We can define equation-preserving translations.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Classical Programming

Classical Programming

C has type { {10

m It eliminates double negation.

It corresponds to proof by contradiction.
Give me a term of type ((A — L) — 1).

In other words, assume that f is a proof that A is false;
from this assumption, give me a way to show contradiction.
For example, if A = B — B, then [f] = [z = =] T f.

m Then, | will give you a term of type A:

[[fl=Tz==z]Tf1TC

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Classical Programming

I A A

C = ([dl=ly=_1Tg)leL <=y
[y=_1 : A—1
g : (A—-1)— 1

([fl=Jz=z]Tf]1C|lep_B)

([[f1=Tzx==x] 1 f]|C|es—B)

([Mfl=Tz=z] 1T FlI([g] = [eBoB<=_]Tg)leL)
([Mf1=Tz==] 1 fll[g]l = [eB-B <= _]TgleL)
([opoB<=_11T(f1=[z==z]1f)|eL)

([<= _||[fl=[z==z]| T f|eL)

([t =z] T (epoB <= _)|®L)

([t = x| |eBpoB <= _|01)

([x = z]|ep_B)

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Classical Programming

Challenge

Find a (classical) type A with the following properties:
m It is hard to prove A directly.

m It is easy to show contradiction assuming A — L.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Classical Programming

Classical Programming

orT((x=Ty1<=_1) lv2 <= (y1,42)) : +(AV (A — 1)).

m For any type A, you can assume either A or A — L without
knowing if A actually holds or not.

m You can use this fact by providing two futures.
m One for when A is true (y1).
The other for when A is false (y2).

The computation first assumes A is false.

m If A turns out to be true, the other future is invoked.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Classical Programming

Challenge

Find a (classical) type A with the following properties:
m It is hard to prove A directly.

m It is easy to show A assuming B V (B — L) for some B
whose truthhood is not obvious.

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Classical Programming

Excluded Middle

An irrational number raised by another irrational number can be a
rational number.

m V2" " is either rational or irrational.

m If it it rational, the proposition holds.
2 2
m If it is irrational, we have: (\/5\/_)‘/i =v2" =2

A program either halts or diverges.
m If it halts, do something.
m If it diverges, do another thing.

What are their computational contents?

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus
Summary

Summary

m Filinski's SLC naturally contains familiar notions: A-calculus,
control operators, and evaluation contexts.

m Expression/continuation duality explains behavior of
continuations nicely.

m It is formalized as a programming language.

m It has connection with logic.

m Could lead to classical programming?

m Delimited continuations?

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Summary

Non-deterministic reduction

CBV:
<1T.int<:y|$:>2l.int> ()\a:2)(C()\k:1))
~ (llep<=ylz=2] o) ~ (Ak.1)(Az. A((Az.2)x))
~ (1] ejnt) ~ 1
CBN:
(1T et <<=y|lx=2] opn) (Az.2) (C(Ak.1))
~ (1T e <= y|z = 2]0)
~ (2] eint) ~ 2

Kenichi Asai A Reinvestigation of Filinski’'s Symmetric Lambda Calculus

	History
	Symmetric Lambda Calculus (SLC)
	Types of SLC
	Classical Programming
	Summary

