
A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of
Filinski’s Symmetric Lambda Calculus

– Continuations, Duality, Classical Logic, but no Categories –

Kenichi Asai

Ochanomizu University (Tokyo, Japan)

If you have difficulty remembering the name of the university,

ocha = green tea
no = of

mizu = water
i.e., water of green tea

April 12, 2010

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

1 History

2 Symmetric Lambda Calculus (SLC)

3 Types of SLC

4 Classical Programming

5 Summary

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

History

Griffin [POPL’90] showed that the control operator C has type
¬¬A→ A.

Parigot [LPAR’92] introduced λµ-calculus that corresponds to
classical natural deduction.

Curien and Herbelin [ICFP’00] introduced λµµ̃-calculus based
on sequent calculus that has expression/continuation duality
and CBV/CBN duality.

Wadler [ICFP ’03, RTA ’05] introduced the Dual Calculus
with clean syntax and CBV/CBN duality.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

History

Filinski [1989] introduced symmetric lambda calculus (SLC).

Griffin [POPL’90] showed that the control operator C has type
¬¬A→ A.

Parigot [LPAR’92] introduced λµ-calculus that corresponds to
classical natural deduction.

Curien and Herbelin [ICFP’00] introduced λµµ̃-calculus based
on sequent calculus that has expression/continuation duality
and CBV/CBN duality.

Wadler [ICFP ’03, RTA ’05] introduced the Dual Calculus
with clean syntax and CBV/CBN duality.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

History

Griffin [POPL’90]: Shortly before the deadline, the work of
Filinski was brought to my attention. His work may provide a
“deep reason” for the correspondence described in this paper.

Curien and Herbelin [ICFP’00]: an earlier attempt in this
direction [=CBV/CBN duality] can be found in Filinski.

Wadler [ICFP ’03]: Filinski was the first to suggest that CBV
might be dual to CBN in the presence of continuations.
Filinski’s formulation lacks any connection with logic.

Wadler [RTA ’05]: A line of work, including Filinski, Griffin,
..., has led to a startling conclusion: CBV is de Morgan dual
of CBN.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

Filinski’s duality

Expressions produce data.

Continuations consume data.

0 −→ A −→ B −→ 1

CBV/CBN duality naturally follows from expression/continuation
duality:

CBV evaluates expressions first.

CBN evaluates continuations first.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

History

Filinski’s duality

Expressions produce data.

Functions transform data.

Continuations consume data.

0 −→ A −→ B −→ 1

CBV/CBN duality naturally follows from expression/continuation
duality:

CBV evaluates expressions first.

CBN evaluates continuations first.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Symmetric Lambda Calculus (SLC)

SLC: Syntax

A configuration is either 〈 e | c 〉 or 〈 e | f | c 〉, where:

expression e ::= ◦T | x | (e, e) | ⌈f⌉ | e ↑ f
function f ::= g | x⇒ e | (x1, x2)⇒ e | ⌈g⌉ ⇒ e | e

h | c⇐ y | c⇐ (y1, y2) | c⇐ ⌊h⌋ | c
continuation c ::= •T | y | (c, c) | ⌊f⌋ | f ↓ c

Example: 〈 1 ↑ x1 ⇒ x1 + 2 ↑ x2 ⇒ x2 ∗ 4 | •int 〉
 〈 1 ↑ x1 ⇒ x1 + 2 |x2 ⇒ x2 ∗ 4 | •int 〉
 〈 1 ↑ x1 ⇒ x1 + 2 |x2 ⇒ x2 ∗ 4 ↓ •int 〉
 〈 1 |x1 ⇒ x1 + 2 |x2 ⇒ x2 ∗ 4 ↓ •int 〉
 〈 1 + 2 |x2 ⇒ x2 ∗ 4 ↓ •int 〉
 〈 3 |x2 ⇒ x2 ∗ 4 ↓ •int 〉
 〈 3 |x2 ⇒ x2 ∗ 4 | •int 〉

∗ 〈 12 | •int 〉

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Symmetric Lambda Calculus (SLC)

SLC: Syntax

A configuration is either 〈 e | c 〉 or 〈 e | f | c 〉, where:

expression e ::= ◦T | x | (e, e) | ⌈f⌉ | e ↑ f
function f ::= g | x⇒ e | (x1, x2)⇒ e | ⌈g⌉ ⇒ e | e

h | c⇐ y | c⇐ (y1, y2) | c⇐ ⌊h⌋ | c
continuation c ::= •T | y | (c, c) | ⌊f⌋ | f ↓ c

Example: Felleisen’s C operator:

C ≡ (⌈g⌉ ⇒ ⌈y ⇐ _⌉ ↑ g) ↓ •⊥⇐ y

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Symmetric Lambda Calculus (SLC)

Felleisen’s C operator

value V ::= x | λx. M | C
term M ::= V |M M ′

evaluation context E ::= [] | E M | V M

reduction rules E [(λx. M) V] E [M [V/x]]
E [C V] V (λx.A (E [x]))

where AM ≡ C (λ_. M)

Example execution:

2+C (λk. 4 ∗ (k 1))
 (λk. 4 ∗ (k 1)) (λx.A (2+x))
 4 ∗ ((λx.A (2 + x)) 1)
 4 ∗ (A (2 + 1))
 2 + 1
 3

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Symmetric Lambda Calculus (SLC)

Felleisen’s C operator in SLC

C ≡ (⌈g⌉ ⇒ ⌈y ⇐ _⌉ ↑ g) ↓ •⊥⇐ y

2 + C (λk. 4 ∗ (k 1))

〈 ⌈⌈k⌉ ⇒ 1 ↑ k ↑ x2 ⇒ 4 ∗ x2⌉ ↑ C ↑ x⇒ 2 + x | •int 〉

∗ 〈 ⌈⌈k⌉ ⇒ · · · ⌉ | C | (x⇒ 2 + x) ↓ •int 〉
 〈 ⌈⌈k⌉ ⇒ · · · ⌉ | (⌈g⌉ ⇒ ⌈(x⇒ 2 + x) ↓ •int ⇐ _⌉ ↑ g) ↓ •⊥ 〉
 〈 ⌈⌈k⌉ ⇒ · · · ⌉ | ⌈g⌉ ⇒ ⌈(x⇒ 2 + x) ↓ •int ⇐ _⌉ ↑ g | •⊥ 〉
 〈 ⌈(x⇒ 2 + x) ↓ •int ⇐ _⌉ ↑ (⌈k⌉ ⇒ · · ·) | •⊥ 〉
 〈 ⌈(x⇒ 2 + x) ↓ •int ⇐ _⌉ | ⌈k⌉ ⇒ · · · | •⊥ 〉
 〈 1 ↑ ((x⇒ 2 + x) ↓ •int ⇐ _) ↑ x2 ⇒ 4 ∗ x2 | •⊥ 〉

∗ 〈 1 | ((x⇒ 2 + x) ↓ •int ⇐ _) |x2 ⇒ 4 ∗ x2 ↓ •⊥ 〉
 〈 1 | (x⇒ 2 + x) ↓ •int 〉

∗ 〈 3 | •int 〉

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Symmetric Lambda Calculus (SLC)

Reduction rules (non-deterministic)

�

�
	

�

�
	

�

�
	

�

�
	

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Types of SLC

Types

S ::= +T type of expressions

| {+A→+B

¬A←¬B
type of functions

| ¬T type of continuations

T, A, B ::= ⊥ | ⊤ | X | A ∧B | A ∨B | A→ B | A−B

Negation is represented as A→ ⊥ or ⊤−A.

+A +A→ +B
...

...
0 −→ A −→ B −→ 1

...
...

¬A← ¬B ¬B

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Types of SLC

Type system

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Types of SLC

Theorems

Progress
If a configuration is well-typed, it can take one more step, or
the configuration is of the form 〈 v | •T 〉 or 〈 ◦T | k 〉.
Preservation
If a configuration is well-typed and can take a step, the next
configuration is also well-typed.

Termination for CBV and CBN
The execution terminates under CBV or CBN evaluation
strategy. (The proof uses logical predicate arguments.)

Translations to and from the Dual Calculus preserve equations.
We can define equation-preserving translations.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Classical Programming

C has type {+((A→⊥)→⊥)→+A

¬((A→⊥)→⊥)←¬A
.

It eliminates double negation.

It corresponds to proof by contradiction.

Give me a term of type ((A→ ⊥)→ ⊥).

In other words, assume that f is a proof that A is false;
from this assumption, give me a way to show contradiction.
For example, if A = B → B, then ⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f .

Then, I will give you a term of type A:
⌈⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f⌉ ↑ C.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Classical Programming

C ≡ (⌈g⌉ ⇒ ⌈y ⇐ _⌉ ↑ g) ↓ •⊥⇐ y

⌈y ⇐ _⌉ : A→ ⊥
g : (A→ ⊥)→ ⊥

〈 ⌈⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f⌉ ↑ C | •B→B 〉
 〈 ⌈⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f⌉ | C | •B→B 〉
 〈 ⌈⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f⌉ | (⌈g⌉ ⇒ ⌈•B→B ⇐ _⌉ ↑ g) ↓ •⊥ 〉
 〈 ⌈⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f⌉ | ⌈g⌉ ⇒ ⌈•B→B ⇐ _⌉ ↑ g | •⊥ 〉
 〈 ⌈•B→B ⇐ _⌉ ↑ (⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f) | •⊥ 〉
 〈 ⌈•B→B ⇐ _⌉ | ⌈f⌉ ⇒ ⌈x⇒ x⌉ ↑ f | •⊥ 〉
 〈 ⌈x⇒ x⌉ ↑ (•B→B ⇐ _) | •⊥ 〉
 〈 ⌈x⇒ x⌉ | •B→B ⇐ _ | •⊥ 〉
 〈 ⌈x⇒ x⌉ | •B→B 〉

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Challenge

Find a (classical) type A with the following properties:

It is hard to prove A directly.

It is easy to show contradiction assuming A→ ⊥.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Classical Programming

◦⊤ ↑ ((x⇒ ⌈y1 ⇐ _⌉) ↓ y2 ⇐ (y1, y2)) : +(A ∨ (A→ ⊥)).

For any type A, you can assume either A or A→ ⊥ without
knowing if A actually holds or not.

You can use this fact by providing two futures.

One for when A is true (y1).

The other for when A is false (y2).

The computation first assumes A is false.

If A turns out to be true, the other future is invoked.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Challenge

Find a (classical) type A with the following properties:

It is hard to prove A directly.

It is easy to show A assuming B ∨ (B → ⊥) for some B
whose truthhood is not obvious.

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Classical Programming

Excluded Middle

An irrational number raised by another irrational number can be a
rational number.
√

2

√
2

is either rational or irrational.

If it it rational, the proposition holds.

If it is irrational, we have: (
√

2

√
2
)
√

2 =
√

2
2

= 2.

A program either halts or diverges.

If it halts, do something.

If it diverges, do another thing.

What are their computational contents?

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Summary

Summary

Filinski’s SLC naturally contains familiar notions: λ-calculus,
control operators, and evaluation contexts.

Expression/continuation duality explains behavior of
continuations nicely.

It is formalized as a programming language.

It has connection with logic.

Could lead to classical programming?

Delimited continuations?

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

A Reinvestigation of Filinski’s Symmetric Lambda Calculus

Summary

Non-deterministic reduction

CBV:

〈 1 ↑ •int ⇐ y |x⇒ 2 ↓ •int 〉 (λx. 2) (C (λk. 1))
 〈 1 | •int ⇐ y |x⇒ 2 ↓ •int 〉 (λk. 1) (λx.A ((λx. 2) x))
 〈 1 | •int 〉 1

CBN:

〈 1 ↑ •int ⇐ y |x⇒ 2 ↓ •int 〉 (λx. 2) (C (λk. 1))
 〈 1 ↑ •int ⇐ y |x⇒ 2 | •int 〉
 〈 2 | •int 〉 2

Kenichi Asai A Reinvestigation of Filinski’s Symmetric Lambda Calculus

	History
	Symmetric Lambda Calculus (SLC)
	Types of SLC
	Classical Programming
	Summary

