Lazy Modules

Keiko Nakata
Institute of Cybernetics, Tallinn

WG2. 8 meeting, 2010

Constrained lazy initialization for modules

Plan of my talk

- Lazy initialization in practice
- Constrained laziness

Or, hybrid strategies between call-by-value and call-by-need

- Models for several strategies with varying laziness
- Compilation scheme from the source syntax to the target languages
- Target languages, variations of Ariola and Felleisen's cyclic call-by-need calculi with state in the style of Hieb and Felleisen.

Lazy initialization

Traditionally ML modules are initialized in call-by-value.

- Predictable initialization order is good for having arbitrary side-effects.
- Theoretically all modules, including libraries, are initialized at startup time.

Practice has shown lazy initialization may be interesting.

- Dynamically linked shared libraries, plugins
- Lazy file initialization in F\#
- Lazy class initialization in Java and F\#
- Alice ML
- OSGi, NetBeans (through bundles)
- Eclipse

Why not lazy initialization for recursive modules?
But how much laziness we want?
All these available implementations combine call-by-value and laziness in the presence of side-effects.

Controlled uses of lazy initialization for recursion

Syme proposed initialization graphs, by introducing lazy initialization in a controlled way, to allow for more recursive initialization patterns in a ML-like language.

$$
\begin{aligned}
& \text { let rec } x_{0}=a_{0} \ldots x_{n}=a_{n} \text { in a } \\
& \Rightarrow \\
& \text { let }\left(x_{0}, . ., x_{n}\right)= \\
& \text { let rec } x_{0}=\text { lazy } a_{0}^{\prime} \ldots x_{n}=\text { lazy } a_{n}^{\prime} \\
& \text { in }\left(\text { force } x_{0} ; \ldots ; \text { force } x_{n}\right) \\
& \text { in } a
\end{aligned}
$$

Support for relaxed recursive initialization patterns is important for interfacing with external OO libraries, e.g., GUI APIs.

Picklers API

type Channel (${ }^{*}$ e.g. file stream *)
type α Mrshl
val marshal: α Mrshl $\rightarrow \alpha *$ Channel \rightarrow unit
val unmarshal: α Mrshl \rightarrow Channel $\rightarrow \alpha$
val optionMarsh: α Mrshl \rightarrow (option α) Mrshl
val pairMrshl: α Mrshl $* \beta$ Mrshl $\rightarrow(\alpha * \beta)$ Mrshl
val listMrshl: α Mrshl $\rightarrow(\alpha$ list) Mrshl
val innerMrshl: $(\alpha \rightarrow \beta) *(\beta \rightarrow \alpha) \rightarrow \alpha$ Mrshl $\rightarrow \beta$ Mrshl
val intMrshl : int Mrshl
val stringMrshl: string Mrshl
val delayMrshl: (unit $\rightarrow \alpha$ Mrshl) $\rightarrow \alpha$ Mrshl
// let delayMrshl p =
// $\{$ marshal $=(\lambda x \rightarrow(\mathrm{p}())$.marshal x$)$;
// unmarshal $=(\lambda y \rightarrow(p())$.unmarshal $y)\}$

Pickler for binary trees

type $\mathrm{t}=$ option $(\mathrm{t} *$ int $* \mathrm{t})$
let mrshl = optionMrshl (pairMrshl mrshl (pairMrshl intMrshl mrshl))

Cannot evaluate in call-by-value.

Pickler for binary trees with initialization graphs

type $\mathrm{t}=$ option $(\mathrm{t} *$ int $* \mathrm{t})$
let mrshl =
optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl mrshl0))
and $\operatorname{mrshl} 0=$ delayMrshl $(\lambda() \cdot \mathrm{mrshl})$
implemented as
let $(\mathrm{mrshl}, \mathrm{mrshl} 0)=$
let rec mrshl =
lazy (optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl mrshl0)))
and $\mathrm{mrshl} 0=$ lazy (delayMrshl $(\lambda() \cdot \mathrm{mrshl})$)
in (force mrshl, force mrsh0)
where the library provides
val delayMrshl: (unit $\rightarrow \alpha$ Mrshl) $\rightarrow \alpha$ Mrshl
let delayMrshl $\mathrm{p}=$
\{ marshal $=(\lambda x \rightarrow(p())$.marshal $x)$;
unmarshal $=(\lambda y \rightarrow(p())$.unmarshal $y)\}$

MakeSet functor with picklers

module Set =
functor (Ord: sig
type t val compare: $\mathrm{t} \rightarrow \mathrm{t} \rightarrow$ bool val mrshl : t Mrshl end) \rightarrow
struct
type elt = Ord.t
type $\mathrm{t}=$ option $(\mathrm{t} *$ elt $* \mathrm{t})$
let mrshl =
optionMrshl (pairMrshl mrshl0 (pairMrshl Ord.mrshl mrshl0))
and $\mathrm{mrshl} 0=$ delayMrshl $(\lambda() \cdot \mathrm{mrshl})$
end

Picklers for Folder and Folders

```
module Folder =
struct
    type file = int * string
    let fileMrshl = pairMrshl (intMrshl, stringMrshl)
    let filesMrshl = listMrshl filMrshl
    type t = { files: file list; subfldrs: Folders.t }
    let mkFldr x y = { files = x; subfldrs = y }
    let destFldr f= (f.files, f.subfldrs)
    let fldrInnerMrshl(f,g)=
        innerMrshl (mkFldr, destFldr) (pairMrshl(f,g))
    let mrshl =
        fldrInnerMrshl(filesMrshl, delayMrshl( }\lambda()\mathrm{ ). Folders.mrshl))
    let initFldr = unmarshal mrshl "/home/template/initfldr.txt"
end
and Folders \(=\) Set(Folder)
```


Expressivity, predictability, simplicity, stability

Can we find a happy compromise between call-by-value and call-by-need?

- interesting recursive initialization patterns, i.e., expressivity
- predictable initialization order
- when side effects are produced
- in which order side effects are produced
- simple implementation
- stability of success of the initialization (ongoing work towards formal results)

Model

Model for investigating the design space.

- target languages, variations of the cyclic call-by-need calculus equipped with array primitives
- compilation scheme from the source syntax into target languages
Five strategies with different degrees of laziness are examined, inspired by strategies of existing languages (Moscow ML, F\#, Java).

Inclusion between strategies in a pure setting.

Call-by-need strategy à la F\#

1. Evaluation of a module is delayed until the module is accessed for the first time. In particular, a functor argument is evaluated lazily when the argument is used.
2. All the members of a structure, excluding those of substructures, are evaluated at once from-top-to-bottom order on the first access to the structure
3. A member of a structure is only accessible after all the core field of the structure have been evaluated.

Examples

Call-by-need strategy à la F\#

$$
\begin{aligned}
& \{F=\Lambda X .\{c=\text { print "bye"; }\} ; \\
& \\
& M=F(\{c=\text { print "hello"; }\}) \\
& \\
& c=M . c ;\}
\end{aligned}
$$

prints "bye".

$$
\begin{aligned}
& \left\{F=\Lambda X .\left\{c_{1}=X . c ; c_{2}=\text { print "bye"; }\right\} ;\right. \\
& \\
& M=F(\{c=\text { print "hello"; }\}) \\
& \left.c=M . c_{2} ;\right\}
\end{aligned}
$$

prints "hello bye".

Target language $\lambda_{\text {need }}$ for call-by-need modules

Expr.
a
$::=x|\lambda x \cdot a| a_{1} a_{2}|(a, \ldots)| a . n$ let rec d in a $|\{r, \ldots\}| a!n \mid\langle x\rangle$

References

Dereferences
$\sharp x$
$::=x \mid \lambda_{_} . x$
Values
Definitions
v
$::=\lambda x . a|(v, \ldots)|\langle x\rangle \mid\{r, \ldots\}$
$d \quad::=x=a$ and \ldots
Configurations
$c \quad::=d \vdash a$
Lift contexts $\quad L \quad::=[] a|(\ldots, v,[], a, \ldots)|[] . n \mid[]!n$
Nested lift cnxt.
Lazy evalu. cnxt
Dependencies $d\left[x, x^{\prime}\right]::=x=N\left[\sharp x^{\prime}\right]$

$$
d\left[x, x^{\prime \prime \prime}\right] \text { and } x^{\prime \prime}=N\left[\sharp x^{\prime}\right]
$$

Reduction rules for $\lambda_{\text {need }}$

```
\(\beta_{\text {need }}\) :
prj :
lift :
cxt :
deref :
arr need:
\(\left(\ldots, v_{n}, \ldots\right) . n \underset{\text { need }}{\rightarrow} \quad v_{n}\)
\(L[\) let rec \(d\) in a] \(\underset{\text { need }}{\rightarrow}\) let rec \(d\) in \(L[a]\)
\(K[a] \underset{\text { need }}{\longmapsto} K\left[a^{\prime}\right]\) if \(a \underset{\text { need }}{\longrightarrow} a^{\prime}\)
    \(K[x] \underset{\text { need }}{\rightleftarrows} K[v]\) if \(x=v \in K\)
\(K[\langle x\rangle!n] \underset{\text { need }}{\longmapsto} K[(r, \ldots) \cdot n]\)
\(d \vdash\) let rec \(d^{\prime}\) in \(a \underset{\text { need }}{\longmapsto} \quad d\) and \(d^{\prime} \vdash a\)
alloc-env : \(\quad x^{\prime}=\left(\right.\) let rec \(d\) in a) and \(d^{*}\left[x, x^{\prime}\right]\) and \(d^{\prime} \vdash N[\sharp x]\)
\(\underset{\text { need }}{\longrightarrow} d\) and \(x^{\prime}=a\) and \(d^{*}\left[x, x^{\prime}\right]\) and \(d^{\prime} \vdash N[\sharp x]\)
acc :
    \(x=a \in d \vdash N\) if \(x=a \in d\)
acc-env :
\begin{tabular}{rll}
\(K[a]\) & \(\underset{\text { need }}{\rightleftarrows}\) & \(K\left[a^{\prime}\right]\) if \(a \rightarrow a^{\prime}\) \\
\(K[x]\) & \(\underset{\text { need }}{\rightleftarrows}\) & \(K[v]\) if \(x=v \in K\) \\
\(K[\langle x\rangle!n]\) & \(\underset{\text { need }}{\rightleftarrows}\) & \(K[(r, \ldots) \cdot n]\) \\
& & if \(x=\{r, \ldots\} \in K\)
\end{tabular}
alloc: \(\quad d \vdash\) let rec \(d^{\prime}\) in \(a \underset{\text { need }}{\longmapsto} \quad d\) and \(d^{\prime} \vdash a\)
alloc-env : \(\quad x^{\prime}=\left(\right.\) let rec \(d\) in a) and \(d^{*}\left[x, x^{\prime}\right]\) and \(d^{\prime} \vdash N[\sharp x]\) \(\underset{\text { need }}{\longrightarrow} d\) and \(x^{\prime}=a\) and \(d^{*}\left[x, x^{\prime}\right]\) and \(d^{\prime} \vdash N[\sharp x]\)
acc : \(x=a \in d \vdash N\) if \(x=a \in d\)
acc-env :
\[
x=a \in x^{\prime}=N \text { and } d^{*}\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x]
\]
\[
\text { if } x=a \in d
\]
```


Example of $\lambda_{\text {need }}$ reductions

$$
\begin{array}{lll}
& \vdash \text { let rec } x=(\lambda y \cdot y)(\lambda y \cdot y) \text { in } x & \\
\stackrel{\text { need }}{\rightleftarrows} & x=(\lambda y \cdot y)(\lambda y \cdot y) \vdash x & \text { by alloc } \\
\underset{\text { need }}{\rightleftarrows} & x=(\text { let rec } y=\lambda y \cdot y \text { in } y) \vdash x & \text { by } \beta_{\text {need }} \\
\underset{\text { need }}{\rightleftarrows} & y=\lambda y \cdot y \text { and } x=y \vdash x & \text { by alloc-env } \\
\underset{\text { need }}{\rightleftarrows} & y=\lambda y \cdot y \text { and } x=\lambda y^{\prime} \cdot y^{\prime} \vdash x & \text { by deref } \\
\stackrel{\rightharpoonup}{\rightleftarrows} & y=\lambda y \cdot y \text { and } x=\lambda y^{\prime} \cdot y^{\prime} \vdash \lambda y^{\prime \prime} \cdot y^{\prime \prime} & \text { by deref }
\end{array}
$$

Example of $\lambda_{\text {need }}$ reductions

$$
\begin{aligned}
& \vdash \text { let rec } x=\left(\lambda y \cdot \lambda y^{\prime} \cdot y\right) x \text { in } x\left(\lambda x^{\prime} \cdot x^{\prime}\right) \\
& \xrightarrow[\text { need }]{\longmapsto} \\
& \xrightarrow[\text { need }]{\longmapsto} \\
& \underset{\text { need }}{\longmapsto} \quad y=x \text { and } x=\lambda y^{\prime} \cdot y \vdash x\left(\lambda x^{\prime} . x^{\prime}\right) \\
& \underset{\text { need }}{\longmapsto} \quad y=x \text { and } x=\lambda y^{\prime} \cdot y \vdash\left(\lambda y_{1} \cdot y\right)\left(\lambda x^{\prime} \cdot x^{\prime}\right) \\
& \underset{\text { need }}{\rightleftarrows} y=x \text { and } x=\lambda y^{\prime} . y \vdash \text { let rec } y_{1}=\lambda x^{\prime} . x^{\prime} \text { in } y \\
& \underset{\text { need }}{\rightleftarrows} \quad y=x \text { and } x=\lambda y^{\prime} . y \text { and } y_{1}=\lambda x^{\prime} . x^{\prime} \vdash y \\
& \stackrel{\stackrel{\text { need }}{ }}{\leftrightarrows} \\
& \stackrel{\stackrel{n}{\text { need }}}{\stackrel{a}{a}} \\
& \text { by alloc } \\
& \text { by } \beta_{\text {need }} \\
& \text { by alloc-env } \\
& \text { by deref } \\
& \text { by } \beta_{\text {need }} \\
& \text { by alloc } \\
& \text { by deref } \\
& \text { by deref }
\end{aligned}
$$

Target language $\lambda_{\text {need }}$ for call-by-need modules (cont.)

Expr.
References $r \quad::=x \mid \lambda_{\text {_ }} \cdot x$
Dereferences $\quad \sharp x \quad::=x \mid\langle x\rangle$!n
Values $\quad v \quad::=\lambda x . a|(v, \ldots)|\langle x\rangle \mid\{r, \ldots\}$
Definitions
Lift contexts
$d \quad::=x=a$ and \ldots
Nested lift cnxt.
Lazy evalu. cnxt
Dependencies

$$
\begin{array}{cl}
::= & x|\lambda x \cdot a| a_{1} a_{2}|(a, \ldots)| \text { a.n } \\
\mid & \text { let rec } d \text { in } a|\{r, \ldots\}| a!n \mid\langle x\rangle
\end{array}
$$

$L \quad::=[] a|(\ldots, v,[], a, \ldots)|[] . n \mid[]!n$
$N \quad::=[] L[N]$
$::=d \vdash N$
$x^{\prime}=N$ and $d^{*}\left[x, x^{\prime}\right]$ and $d \vdash N^{\prime}[\sharp x]$
$d\left[x, x^{\prime}\right]::=x=N\left[\sharp x^{\prime}\right]$
$d\left[x, x^{\prime \prime}\right]$ and $x^{\prime \prime}=N\left[\sharp x^{\prime}\right]$

Reduction rules for $\lambda_{\text {need }}$

$\beta_{\text {need }}$:
prj:
lift :
cxt :
deref :
arr ${ }_{\text {need }}$:
alloc :
acc :
acc-env :
alloc-env : $\quad x^{\prime}=\left(\right.$ let rec d in a) and $d^{*}\left[x, x^{\prime}\right]$ and $d^{\prime} \vdash N[\sharp x]$ $\underset{\text { need }}{\longmapsto} d$ and $x^{\prime}=a$ and $d^{*}\left[x, x^{\prime}\right]$ and $d^{\prime} \vdash N[\sharp x]$
$(\lambda x . a) a^{\prime} \underset{\text { need }}{\rightarrow}$ let rec $x=a^{\prime}$ in a
$\left(\ldots, v_{n}, \ldots\right) . n \underset{\text { need }}{\rightarrow} \quad v_{n}$
$L[$ let rec d in a] $\underset{\text { need }}{\rightarrow}$ let rec d in $L[a]$
$K[a] \underset{\text { need }}{\longmapsto} K\left[a^{\prime}\right]$ if $a \underset{\text { need }}{\longrightarrow} a^{\prime}$
$K[x] \underset{\text { need }}{\underset{\longrightarrow}{ }} K[v]$ if $x=v \in K$
$K[\langle x\rangle!n] \underset{\text { need }}{\stackrel{\text { need }}{\rightleftarrows}} K[(r, \ldots) \cdot n]$
if $x=\{r, \ldots\} \in K$
$d \vdash$ let rec d^{\prime} in $a \underset{\text { need }}{\longmapsto} d$ and $d^{\prime} \vdash a$
$x=a \in d \vdash N$ if $x=a \in d$
$x=a \in x^{\prime}=N$ and $d^{*}\left[x, x^{\prime}\right]$ and $d \vdash N^{\prime}[\sharp x]$
if $x=a \in d$

Reduction rules for $\lambda_{\text {need }}$

$\beta_{\text {need }}$:	($\lambda x . a) a^{\prime}$	$\xrightarrow[\text { need }]{\rightarrow}$	let rec $x=a^{\prime}$ in a
prj	$\left(\ldots, v_{n}, \ldots\right) . n$	$\overrightarrow{\text { need }}$	V_{n}
lift	$L[$ let rec d in a]	$\xrightarrow[\text { need }]{\rightarrow}$	let rec d in $L[a]$
cxt :	$K[a]$	$\stackrel{\text { need }}{\stackrel{\text { d }}{ }}$	$K\left[a^{\prime}\right]$ if $a \underset{\text { need }}{ } a^{\prime}$
deref :	$K[x]$	$\xrightarrow[\text { need }]{\longmapsto}$	$K[v]$ if $x=v \in K$
arr ${ }_{\text {need }}$:	$K[\langle x\rangle$! n]	$\underset{\text { need }}{\stackrel{\rightharpoonup}{\longrightarrow}}$	$K[(r, \ldots) \cdot n]$
			if $x=\{r, \ldots\} \in K$

let get (a: ('a Lazy.t) array) $n=$ for $i=0$ to Array.length a - 1 do Lazy.force a.(i) done; Lazy.force a.(n)

$\lambda_{\text {need }}$ with state

Expr.	a	$\begin{aligned} ::= & x\|\lambda x . a\| a_{1} a_{2}\|(a, \ldots)\| a . n \\ \mid & \text { let rec } d \text { in } a\|\{r, \ldots\}\| a!n \mid\langle x\rangle \\ & \text { set! } x a \end{aligned}$
References	r	$:=x \mid \lambda_{\text {_ }} \cdot x$
Dereferences	$\sharp x$	$::=x \mid\langle x\rangle!n$
Values	v	$::=\lambda x . a\|(v, \ldots)\|\langle x\rangle \mid\{r, \ldots\}$
Definitions	d	$:=x=a$ and
Lift contexts	L	$::=\underset{\text { set! }!\times[]}{[] a\|(\ldots, v,[], a, \ldots)\|[] . n \mid[]!n}$
Nested lift cnxt.	N	$=[] \mid L[N]$
Lazy evalu. cnxt	K	$\begin{array}{ll} ::= & d \vdash N \\ \mid & x^{\prime}=N \text { and } d^{*}\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x] \end{array}$
Dependencies	$d\left[x, x^{\prime}\right]$	$\because: \begin{aligned} & x=N\left[\sharp x^{\prime}\right] \\ & \mid \quad d\left[x, x^{\prime \prime}\right] \text { and } x^{\prime \prime}=N\left[\sharp x^{\prime}\right] \end{aligned}$

Reduction rules for set! in $\lambda_{\text {need }}$

$$
\begin{array}{ll}
\text { set }: & x=a \text { and } d \vdash N[\text { set }!x v] \underset{\text { need }}{\longmapsto} x=v \text { and } d \vdash N[v] \\
\text { set-env }: & x^{\prime \prime}=a \text { and } x^{\prime}=N\left[\text { set! } x^{\prime \prime} v\right] \text { and } d^{*}\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x] \\
& \underset{\text { need }}{\rightleftarrows} x^{\prime \prime}=v \text { and } x^{\prime}=N[v] \text { and } d^{*}\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x]
\end{array}
$$

Syntax for Osan

$\begin{array}{llll}\text { Module expressions } & E & ::= & \{(X) f\}|p| \wedge X . E \mid E_{1}\left(E_{2}\right) \\ \text { Definitions } & f & ::= & \epsilon|M=E ; f| c=e ; f \\ \text { Module paths } & p & ::= & X|M| p . n \\ \text { Core expressions } & e & ::= & c|p . n| \ldots\end{array}$

Example

Syntax for Osan

\{ (X)
Tree $=\left\{\left(X_{t}\right)\right.$ $\operatorname{add}=\lambda \mathrm{t}$. match t with $(\mathrm{i}, \mathrm{f})=>\mathrm{i}+\mathrm{X}$.Forest.add $\mathrm{f} ;\}$;
Forest $=\left\{\left(X_{f}\right)\right.$
$\operatorname{add}=\lambda \mathrm{f}$. match f with []$=>0 \mid \mathrm{t}:: \mathrm{f}^{\prime}=>\operatorname{Tree} . a d d \mathrm{t}+\mathrm{X}_{\mathrm{f}}$.add $\left.\left.\mathrm{f}^{\prime} ;\right\} ;\right\}$

Translation from Osan to $\lambda_{\text {need }}$

str : $\quad \operatorname{Tr}_{N}(\{(X) f\})_{\rho}$ $=$ let rec $x=\left\langle x^{\prime}\right\rangle$ and $x^{\prime}=\operatorname{TrFld}_{N}(f: \epsilon)_{\rho[X \mapsto x]}$ in $\left\langle x^{\prime}\right\rangle$
mfld : $\quad \operatorname{TrFld}_{N}(M=E ; f: r, \ldots)_{\rho}=$ let rec $x=\operatorname{Tr}_{N}(E)_{\rho}$ in $\operatorname{TrFld}_{N}\left(f: r, \ldots, \lambda_{-} \cdot x\right)_{\rho[M \mapsto x]}$
cfld : $\quad \operatorname{TrFld}_{N}(c=e ; f: r, \ldots)_{\rho}=$ let rec $x=\operatorname{TrC}_{N}(e)_{\rho}$ in $\operatorname{TrFld}_{N}(f: r, \ldots, x)_{\rho[G \rightarrow x]}$
strbody: $\operatorname{TrFld}_{N}(\epsilon: r, \ldots)_{\rho}=\{r, \ldots\}$
vpath: $\operatorname{Tr}_{N}(p . n)_{\rho} \quad=\operatorname{Tr}_{N}(p)_{\rho}!n$
mpath: $\operatorname{Tr}_{N}(p . n)_{\rho} \quad=\left(\operatorname{Tr}_{N}(p) \rho!n\right) I$
mvar: $\quad \operatorname{Tr}_{N}(X)_{\rho} \quad=\rho(X)$
funct: $\quad \operatorname{Tr}_{N}(\Lambda X . E)_{\rho} \quad=\lambda x \cdot \operatorname{Tr}_{N}(E)_{\rho\left[X_{\mapsto x]}\right.}$
app: $\quad \operatorname{Tr}_{N}\left(E_{1}\left(E_{2}\right)\right)_{\rho} \quad=\operatorname{Tr}_{N}\left(E_{1}\right)_{\rho} \operatorname{Tr}_{N}\left(E_{2}\right)_{\rho}$
mname: $\operatorname{Tr}_{N}(M)_{\rho}=\rho(M)$
cname: $\operatorname{Tr}_{N}(c)_{\rho} \quad=\rho(c)$

Example of compilation

$$
\left\{\begin{array}{l}
M=\left\{\quad c_{1}=\text { print "good"; } c_{2}=\text { print "bye"; }\right\} ; \\
c_{1}=\text { print "hello"; } \\
\left.c_{2}=\text { M. } c_{1} ;\right\}
\end{array}\right.
$$

let rec $x=\left\langle x^{\prime}\right\rangle$
and $x^{\prime}=$
let rec $m=$
let rec $x_{1}=\left\langle x_{1}^{\prime}\right\rangle$
and $x_{1}^{\prime}=$
let rec $c_{1}^{\prime}=$ print "good" in let rec $c_{2}^{\prime}=$ print "bye" in $\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}$ in $\left\langle x_{1}^{\prime}\right\rangle$ in
let rec $c_{1}=$ print "hello" in
let rec $c_{2}=m!1$ in
$\left\{\lambda_{-} . m, c_{1}, c_{2}\right\}$ in
$x!3$

Assessment

Call-by-need

Δ interesting recursive initialization patterns, i.e., expressivity
\checkmark predictable initialization order
\checkmark simple implementation
\checkmark stability of success of the initialization (in a pure setting)

Assessment cont.

Call-by-need

- One may take fixpoints of functors.

$$
\begin{aligned}
& \{F=\Lambda Y .\{g=\text { fun if } i=0 \text { then true else } i=1 \text { then false } \\
& \text { else } Y . g(i-1) ;\} ; \\
& \left.M=\left\{(X) M^{\prime}=F\left(X . M^{\prime}\right) ;\right\} ;\right\}
\end{aligned}
$$

- Self variables are strict.

$$
\begin{aligned}
& \{F=\Lambda Y .\{g=\text { fun if } i=0 \text { then true else } i=1 \text { then false } \\
& \quad \text { else } Y . g(i-1) ; \\
& c=g 2\} ; \\
& M=\left\{(X) M^{\prime}=F\left(X . M^{\prime}\right) ;\right\} ; \\
& \left.c=M \cdot M^{\prime} . C ;\right\}
\end{aligned}
$$

Lazy-field strategy à la Java

Variations

We may allow a member of a structure to be accessed when it has been evaluated, but before evaluation of all the members of the structure is completed.

Target language $\lambda_{\text {lazy }}$ for lazy-filed modules

Expr.	a		$x\|\lambda x . a\| a_{1} a_{2}\|(a, \ldots)\| a . n$ let rec d in a $\{r, \ldots\}\|\{1 r, \ldots\}\| a!n \mid\langle x\rangle$
References	r	$:=$	$x \mid \lambda$ _ x
Dereferences	\#x	::=	$x \mid\langle x\rangle!n$
Values	v		$\begin{gathered} \lambda x . a\|(v, \ldots)\|\langle x\rangle \mid\{r, \ldots\} \\ \{r, \ldots\} \end{gathered}$
Definitions	d	:: $=$	$x=a$ and
Lift contexts	L	::=	[]$a\|(\ldots, v,[], a, \ldots)\|] . n \mid[!n$
Nested lift cnxt.	N	$:=$	[1] L $\mathrm{N}^{\text {] }}$
Lazy evalu. cnxt	K		$\begin{aligned} & d \vdash N \\ & x^{\prime}=N \text { and } \end{aligned}$
Dependencies	$d\left[x, x^{\prime}\right]$: $=$	$\begin{aligned} & x=N\left[\nmid x^{\prime}\right] \\ & d\left[x, x^{\prime \prime}\right] \text { and } x^{\prime \prime}=N\left[\sharp x^{\prime}\right] \end{aligned}$

Reduction rules for $\lambda_{\text {lazy }}$

$$
\begin{aligned}
& \text { init : } \quad x=a \text { and } d \vdash N[\langle x\rangle!n] \underset{\text { lazy }}{\longmapsto} x=a^{\prime} \text { and } d \vdash N[(r, \ldots) . n] \\
& \text { where } a=\{r, \ldots\} \text { and } a^{\prime}=\{r, \ldots\} \\
& \text { init-env: } \quad x^{\prime \prime}=a \text { and } x^{\prime}=N\left[\left\langle x^{\prime \prime}\right\rangle!n\right] \text { and } d^{*}\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x] \\
& \underset{\text { lazy }}{\longrightarrow} x^{\prime \prime}=a^{\prime} \text { and } x^{\prime}=N[(r, \ldots) . n] \text { and } d\left[x, x^{\prime}\right] \text { and } d \vdash N^{\prime}[\sharp x] \\
& \text { where } a=\{r, \ldots\} \text { and } a^{\prime}=\{r, \ldots\} \\
& \operatorname{arr}_{\text {lazy }}: \quad K[\langle x\rangle!n] \underset{\text { lazy }}{\rightleftarrows} K\left[\left(r_{1}, \ldots, r_{n}\right) \cdot n\right] \\
& \text { if } x=\left\{r_{1}, \ldots, r_{n}, r_{n+1} \ldots\right\} \in K
\end{aligned}
$$

Assessment

Lazy-field

\checkmark interesting recursive initialization patterns, i.e., expressivity
\checkmark predictable initialization order
\checkmark simple implementation

- stability of success of the initialization

Assessment cont.

Lazy-field

$$
\begin{aligned}
& \{(X) \\
& \quad M=\left\{c_{1}=1 ; \quad c_{2}=X \cdot N \cdot c_{2}\right\} ; \\
& \left.N=\left\{c_{1}=M \cdot c_{1} ; \quad c_{2}=2 ;\right\} ;\right\}
\end{aligned}
$$

If M is forced first then the evaluation is successful, but if N is forced first then the evaluation fails due to unsound initialization.

Modest-field strategy

Variations

We may initialize members as much as necessary, or initialize members from the top to the member accessed.

$$
\begin{array}{ll}
\text { arr }_{\text {modest }}: K[\langle x\rangle!n] \underset{\text { modest }}{\longmapsto} & K\left[\left(r_{1}, \ldots, r_{n}\right) \cdot n\right] \\
& \text { if } x=\left\{r_{1}, \ldots, r_{n}, r_{n+1}, \ldots\right\} \in K
\end{array}
$$

Assessment

Modest-field

\checkmark interesting recursive initialization patterns, i.e., expressivity

- predictable initialization order
\checkmark simple implementation
\checkmark stability of success of the initialization in a pure setting

Assessment cont.

Modest-field

```
\(\{M=\{(X)\)
    \(c_{1}=\) print 1 ;
    \(M_{1}=\left\{c_{1}=\right.\) print \(2 ; \quad c_{2}=X . M_{2} . c ; \quad c_{3}=\) print \(\left.3 ;\right\} ;\)
    \(c_{2}=\) print 4 ;
    \(M_{2}=\{c=\) print \(5 ;\} ;\)
    \(c_{3}=\) print \(\left.6 ;\right\} ;\)
    \(\left.c=M \cdot M_{1} \cdot c_{3} ;\right\}\)
```

"146253" is printed in the call-by-need and lazy-field strategies.
"12453" is printed in the modest-field strategy.

Some technical results

Proposition

Call-by-value \subseteq Call-by-need \subseteq Lazy-field \subseteq Modest-field \subseteq Fully-lazy

Proof.

By going through natural semantics.

Ongoing work

- Introduction of bundles.
- Initialize bundles with the call-by-need strategy, but modules with the modest-field strategy.
- A framework to talk about stability of success of the initialization.

