Environmental Bisimulations for Program Equivalences

Eijiro Sumii (Tohoku University)

In collaboration with: Benjamin C. Pierce, Davide Sangiorgi, Naoki Kobayashi, and Nobuyuki Sato

FLOPS 2010 : FrontPage

FLOPS 2010

Tenth International Symposium on Functional and Logic Programming April 19-21, 2010 Sendais, Japan

Shortcuts: Registration, Program, Venue, Excursion, More Excursions

$2010004-14$

仙台

見頃：4／19～4／25－゙ろ

FLOPS 2010: Excursion

http://www.kb.ecei.tohoku.ac.jp/flops2010/wiki/index.php?Excursion

Excursion

Half-day trip to Hiraizumi is planned on the afternoon of the second day (April 20, Tuesday).

Environmental Bisimulations for Program Equivalences

Eijiro Sumii (Tohoku University)

In collaboration with: Benjamin C. Pierce, Davide Sangiorgi, Naoki Kobayashi, Nobuyuki Sato

What are environmental bisimulations?

A theory for proving equivalences of programs in various languages
(higher-order, in partciular)

- Devised for λ-calculus with encryption [Sumii-Pierce POPLO4]
- Adapted for polymorphic λ-calculus [Sumii-Pierce POPLO5], untyped λ-calculus with references [Koutavas-Wand POPLO6]
[Sangiorgi-Kobayashi-Sumii LICS07] and deallocation [Sumii ESOP09], etc.

This talk

Two instances of environmental bisimulations, for
I. Polymorphic λ-calculus with references [Sumii CSL09], and
II. Higher-order π-calculus (concurrent language with message passing) with encryption [Sato-Sumii APLAS09] (if time allows).

Part I: Environmental Bisimulations for Polymorphic λ-calculus with References

Executive Summary

Sound and complete "proof method" for contextual equivalence in a language with

- Higher-order functions,
- First-class references (like ML), and
- Abstract data types

Caveat: the method is not fully automatic!

- The equivalence is (of course) undecidable in general
- Still, it successfully proved all known examples

(Very) General Motivation

1. Equations are important in science

- $1+2=3, x+y=y+x, E=m c^{2}, \ldots$

2. Computing is (should be) a science
3. Therefore, equations are important in (so-called) computer science
4. Computing is described by programs
5. Therefore, equivalence of programs is important!

Program Equivalence as Contextual Equivalence

In general, equations should be preserved under any context

- E.g., $x+y=y+x$ implies $(x+y)+z$
$=(y+x)+z$ by considering the context
[] + z
\Rightarrow Contextual equivalence:
Two programs "give the same result" under any context
- Termination/divergence suffices for the "result"

Contextual Equivalence: Definition

Two programs P and Q are contextually equivalent if, for any context C,
$C[P]$ terminates $\Leftrightarrow C[Q]$ terminates

- C[P] (resp. C[Q]) means "filling in" the "hole" [] of C with P (resp. Q)

Example: Two Implementations of Mutable Integer Lists

(* pseudo-code in imaginary ML-like language *)
signature S
type \dagger (* abstract *)
val nil : †
val cons : int $\rightarrow \dagger \rightarrow \dagger$
val setcar : $\dagger \rightarrow$ int \rightarrow unit
(* car, cdr, setcdr, etc. *)
end

First Implementation

structure L
type t =
Nil | Cons of (int ref * t ref)
let nil $=$ Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) $a=(f s t(p):=a)$
end
-

Second Implementation

structure L'
type t = Nil | Cons of (int * t) ref let nil = Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) $a=$ $r:=(a$, snd(! $r))$
end

The Problem

The implementations L and L 'should be contextually equivalent under the interface S

How can we prove it?

- Direct proof is infeasible because of the universal quantification: "for any context C "
- Little previous work deals with both abstract data types and references (cf. [Ahmed-Dreyer-Rossberg POPL'09])
- None is complete (to my knowledge)

Our Approach: Environmental Bisimulations

- Initially devised for λ-calculus with perfect encryption [Sumii-Pierce POPL'04]
- Successfully adapted for
- Polymorphic λ-calculus [Sumii-Pierce POPL'05]
- Untyped λ-calculus with references [Koutavas-Wand PopL'06] and deallocation [Sumii Esop'09]
- Higher-order π-calculus
[Sangiorgi-Kobayashi-Sumii LICS'07]
- Applied HO π [sato-Sumii APLAs'09] etc.

Our Target Language

Polymorphic λ-calculus with existential types and first-class references
$M::=\quad .$. standard λ-terms... |
pack (τ, M) as $\exists \alpha . \sigma$ | open M as (α, x) in N ref $M|!M| M:=N|\ell| M==N$
$\tau::=$...standard polymorphic types...
| aa. τ | τ ref

Environmental Relations

An environmental relation X is a set of tuples of the form:
$\left(\Delta, R, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right)$

Environmental Relations

An environmental relation X is a set of tuples of the form:

$$
\left(\Delta, R, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right)
$$

- Program M (resp. M^{\prime}) of type τ is running under store s (resp. s')
- M and M^{\prime} (and τ) are omitted when terminated

Environmental Relations

An environmental relation X is a set of tuples of the form:
($\left.\Delta, R, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right)$

- Program M (resp. M') of type τ is running under store s (resp. s')
- M and M^{\prime} (and τ) are omitted when terminated
- R is the environment: a (typed) relation between values known to the context

Environmental Relations

An environmental relation X is a set of tuples of the form:

$$
\left(\Delta, R, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right)
$$

- Program M (resp. M') of type τ is running under store s (resp. s')
- M and M^{\prime} (and τ) are omitted when terminated
- R is the environment: a (typed) relation between values known to the context
- Δ maps an abstract type α to (the pair of) their concrete types σ and σ^{\prime}

Environmental Bisimulations for Our Calculus

An environmental relation X is an environmental bisimulation if it is preserved by

- execution of the programs and
- operations from the context

Formalized by the following conditions...

Environmental Bisimulations: Condition for Reduction

- If $\left(\Delta, R, s \triangleright M, s^{\prime} \triangleright M^{\prime}, \tau\right) \in X$ and $s \triangleright M$ converges to $\dagger \triangleright V$, then $s^{\prime} \triangleright M^{\prime}$ also converges to some $\dagger^{\prime} \triangleright V^{\prime}$ with $\left(\Delta, R \cup\left\{\left(V, V^{\prime}, \tau\right)\right\}, \dagger^{\prime}, \dagger^{\prime}\right) \in X$
(Symmetric condition omitted)
Strictly speaking, this is a "big-step" version of environmental bisimulations

Environmental Bisimulations: Condition for Opening

- If $\left(\Delta, R, s, s^{\prime}\right) \in X$ and (pack (τ, V) as $\exists \alpha . \sigma$, pack ($\tau^{\prime}, V^{\prime}$) as $\left.\exists \alpha . \sigma, \exists \alpha . \sigma\right) \in R$, then $\left(\Delta \cup\left\{\left(\alpha, \tau, \tau^{\prime}\right)\right\}, R \cup\left\{\left(V, V^{\prime}, \sigma\right)\right\}, s, s^{\prime}\right) \in X$

Environmental Bisimulations: Condition for Dereference

- If $\left(\Delta, R, s, s^{\prime}\right) \in X$ and
($\ell, \ell^{\prime}, \sigma$ ref) $\in R$, then
$\left.\left.\left(\Delta, \operatorname{Ru\{ (s}(\ell), s^{\prime}\left(\ell^{\prime}\right), \sigma\right)\right\}, s, s^{\prime}\right) \in X$

Environmental Bisimulations: Condition for Update

- If $\left(\Delta, R, s, s^{\prime}\right) \in X$ and
($\ell, \ell^{\prime}, \sigma$ ref) $\in R$, then
$\left(\Delta, R, s\{\ell \mapsto W\}, s^{\prime}\left\{\ell^{\prime} \mapsto W^{\prime}\right\}\right) \in X$ for any W and W ' synthesized from R
- Formally.

$$
\begin{aligned}
W & =C\left[V_{1}, \ldots, V_{n}\right] \\
W^{\prime} & =C\left[V^{\prime}, \ldots, V_{n}^{\prime}\right]
\end{aligned}
$$

for some $\left(V_{1}, V^{\prime}{ }_{1}, \tau_{1}\right), \ldots,\left(V_{n}, V^{\prime}{ }_{n}, \tau_{n}\right) \in R$ and some well-typed C

Environmental Bisimulations: Condition for Application

- If $\left(\Delta, R, s, s^{\prime}\right) \in X$ and
$\left(\lambda x . M, \lambda \times . M^{\prime}, \sigma \rightarrow \tau\right) \in R$, then
$\left(\Delta, R, s \triangleright[W / x] M, s^{\prime} \triangleright\left[W^{\prime} / x\right] M^{\prime}, \tau\right) \in X$
for any W and W^{\prime} synthesized from R

Other Conditions

- Similar conditions for allocation, location equality, projection, etc.
- No condition for values of abstract types

- Context cannot operate on them

Mutable Integer Lists Interface (Reminder)

(* pseudo-code in imaginary ML-like language *)
signature S
type \dagger (* abstract *)
val nil : †
val cons : int -> † -> t
val setcar : † -> int -> unit
(* setcdr, car, cdr, etc. *)
end

First Implementation (Reminder)

structure L
type t =
Nil | Cons of (int ref * t ref)
let nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) $a=(f s t(p):=a)$
end
± 1

Second Implementation (Reminder)

structure L'
type $t=$ Nil | Cons of (int * t) ref let nil $=$ Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) $a=$ $r:=(a, \operatorname{snd}(!r))$
end

Environmental Bisimulaton for The Mutable Integer Lists

$$
\text { (L.cons, L'.cons, int } \rightarrow S . t \rightarrow S . t \text {), }
$$

$$
\text { (L.setcar, L'.setcar, S.t } \rightarrow \text { int } \rightarrow \text { unit), }
$$

$$
\text { (L.Cons } \left.\left(\ell_{i}, m_{i}\right), L^{\prime} . C o n s\left(\ell_{i}^{\prime}\right), S . t\right)
$$

$$
\text { (L.Nil, L'.Nil, S.t) } \mid i=1,2,3, \ldots, n\} \text {, }
$$

$$
s\left(\ell_{i}\right)=f s t\left(s^{\prime}\left(\ell_{i}^{\prime}\right)\right) \text { and }
$$

$$
\left.\left(s\left(m_{i}\right) \text {, snd }\left(s^{\prime}\left(l_{i}^{\prime}\right)\right), S . t\right) \in R, \text { for each } i\right\}
$$

$$
\begin{aligned}
& X=\left\{\left(\Delta, R, s, s^{\prime}\right) \mid\right. \\
& \Delta=\left\{\left(S . t, L . t, L^{\prime} . t\right)\right\}, \\
& R=\{(L, L ', S) \text {. } \\
& \text { (L.nil, L'. nil, S.t), }
\end{aligned}
$$

More complicated example (1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg POPL'09], credited to Thamsborg *) where

$$
\begin{aligned}
& V_{x}=\lambda f .(x:=0 ; f() ; x:=1 ; f() ;!x) \\
& V^{\prime}=\lambda f .(f() ; f() ; 1) \\
& \sigma=\exists \alpha . \alpha \times(\alpha \rightarrow(1 \rightarrow 1) \rightarrow i n t)
\end{aligned}
$$

- f is supplied by the context
- What are the reducts of $V f$ and V ' f ?

More complicated example (2/3)
$X=X_{0} \cup X_{1}$
$X_{0}=\left\{\left(\Delta, R, \dagger\{\ell \mapsto 0\} \triangleright N, \dagger^{\prime} \triangleright N^{\prime}\right.\right.$, int $)$ N and N^{\prime} are made of contexts in T_{0}, with holes filled with elements of R \} $X_{1}=\left\{\left(\Delta, R, t\{\ell \mapsto 1\} \triangleright N, t^{\prime} \triangleright N^{\prime}\right.\right.$, int $) \mid$ N and N^{\prime} are made of contexts in T_{1}, with holes filled with elements of R \}

More complicated example (3/3)

- ($C ; \ell:=1 ; D ;!) T_{0}(C ; D ; 1)$
- ($\mathrm{D}:!\ell) \mathrm{T}_{1}(\mathrm{D}: 1)$
- If $E[z W] T_{0} E^{\prime}[z W]$, then $E[C ; \ell:=1 ; D ;!\ell] T_{0} E^{\prime}[C ; D ; 1]$
(for any evaluation contexts E and E^{\prime})
- If $E[z W] T_{0} E^{\prime}[z W]$, then $E\left[D ;!\ell T_{1}\right.$ $E^{\prime}[D ; 1]$
- If $E[z W] T_{1} E^{\prime}[z W]$, then $E\left[C: \ell:=1 ; D ;!\ell T_{0} E^{\prime}[C ; D: 1]\right.$
- If $E[z W] T_{1} E^{\prime}[z W]$, then $E\left[D ;!\ell T_{1}\right.$ $E^{\prime}[D ; 1]$

Main Theorem:

Soundness and Completeness

The largest environmental bisimulation ~ coincides with (a generalized form of) contextual equivalence \equiv

Proof

- Soundness: Prove ~ is preserved under any context (by induction on the context)
- Completeness: Prove \equiv is an environmental bisimulation (by checking its conditions)

The Caveat

Our "proof method" is not automatic

- Contextual equivalence in our language is undecidable
- Therefore, so is environmental bisimilarity
...but it proved all known examples!

Up-To Techniques

Variants of environmental bisimulations with weaker (yet sound) conditions

- Up-to reduction (and renaming)
- Up-to context (and environment)
- Up-to allocation

Details in my CSL'09 paper

Related Work

- Environmental bisimulations for other languages (already mentioned)
- Bisimulations for other languages
- Logical relations
- Game semantics

None has dealt with both abstract data types and references

- Except [Ahmed-Dreyer-Rossberg POPL'09]

Conclusion of Part I

Summary:
Sound and complete "proof method" for contextual equivalence in polymorphic λ-calculus with existential types and references

Current and future work:

- Parametricity properties ("free theorems")
- Semantic model

Part II: Enviromental bisimulations for higher-order π-calculus with encryption

Nobuyuki Sato
Eijiro Sumii
(Tohoku University)

Agenda of Part II

- Informal overview of the work
- A little technical details
- A little more technical details
- Conclusion

Main Result

A bisimulation proof technique for higher-order process calculus with cryptographic primitives

- Can be used for proving security properties of concurrent systems that send/receive programs using encryption/decryption

Motivation

Higher-order cryptographic systems are now ubiquitous

- Web-based e-mail clients (e.g. Gmail)
- Software update systems (e.g. Windows Update)

Higher-order: transmitting programs themselves
\Rightarrow Security is even more important than in first-order systems

- Cryptography is essential

Problem

The theory of
 higher-order cryptographic computation is underdeveloped

- Little work for the combination of higher-order processes and cryptographic primitives
Cf. Higher-order pi-calculus (no cryptography), spi-calculus (first-order), ...

A Challenge of Higher-Order Cryptographic Processes

- Consider the process $P=\bar{c}\langle Q\rangle$ where $Q=\bar{c}\langle$ encrypt $(m, k)\rangle$
- $\bar{c}\rangle$ denotes output to the network c
- Assume c is public and k is secret
- Does P leak m?

1. Yes, because the attacker can receive Q from c and extract m
2. No, if m is encrypted before Q is sent to c

Observations

- Computation (e.g. encryption) and computed values (e.g. ciphertext) must be distinguished
- The attacker should be able to decompose transmitted processes (but not computed values)
(Recall the previous example $P=\bar{c}\langle Q\rangle$ where $Q=\bar{c}\langle$ encrypt $(m, k)\rangle)$

Solution

- Syntactically distinguish computation (e.g. encrypt(m, k)) and computed values (e.g. "encrypt(m,k))
- Extend the calculus with a primitive to decompose transmitted processes:

match P as x in Q

(bind x to the decomposed abstract syntax tree of P and execute Q)

- Computed values can not be decomposed

Examples

$\bar{c}\langle\bar{c}\langle$ encrypt $(m, k)\rangle\rangle \mid$ $c(X)$.match X as y in R
\rightarrow match $\bar{c}\langle$ encrypt $(m, k)\rangle$ as y in R
$\rightarrow[\mathrm{Out}(\mathrm{Nam} \mathrm{c}, \mathrm{Enc}(\mathrm{Nam} \mathrm{m}, \mathrm{Nam} \mathrm{k})) / \mathrm{y}] \mathrm{R}$
$\bar{c}\left\langle\bar{c}\left\langle{ }^{\wedge}\right.\right.$ encrypt $\left.\left.(m, k)\right\rangle\right\rangle \mid$ $c(X)$.match X as y in R
\rightarrow match $\bar{c}\left({ }^{\wedge}\right.$ encrypt $\left.(m, k)\right\rangle$ as y in R
$\rightarrow[\mathrm{Out}(\mathrm{Nam}$ c, Val ^encrypt(m,k))/y]R

Next Challenge

How do we reason about

 higher-order cryptographic processes?- Traditional techniques (bisimulations, in particular) do not apply
- Most of them are first-order
- Normal bisimulations [Sangiorgi 92] are unsound for process decomposition
- Because they only transmit "triggers" (i.e. pointers to processes)

Solution

Adopt environmental bisimulations

- Devised for λ-calculus with encryption [Sumii-Pierce 04]
- Adapted for various languages [Sumii-Pierce, Koutavas-Wand, ...]
- Including higher-order pi-calculus [Sangiorgi-Kobayashi-Sumii 07]

Idea of

Environmental Bisimulations

- Traditional (i.e. non-environmental) bisimulation $P \sim P^{\prime}$ means:
P and P^{\prime} behave the same under any observer process
- Environmental bisimulation $P \sim_{E} P^{\prime}$ means:
P and P^{\prime} behave the same
under any observer process that uses any elements (V, V^{\prime}) of E
- E is a binary relation on values that represents the observer's knowledge (called an environment)

Agenda of Part II

- Informal overview of the work
- A little technical details
- A little more technical details
- Conclusion

Our Environmental Bisimulations (1/3)

Binary relation X on processes, indexed by environments E, is an environmental simulation if $P X_{E} P^{\prime}$ implies:

1. If P reduces to Q, then P^{\prime} reduces to some Q^{\prime} such that $Q X_{E} Q^{\prime}$
2. If P outputs V and becomes Q, then P^{\prime} outputs some V^{\prime} and becomes some Q^{\prime} such that $Q X_{E \cup\left\{\left(v, v^{\prime}\right)\right\}} Q^{\prime}$

Our Environmental Bisimulations (2/3)

X is an environmental simulation if $P X_{E} P^{\prime}$ implies:

3. For any V and V^{\prime} composed from E, if P inputs V and becomes Q, then P^{\prime} inputs V^{\prime} and becomes some Q^{\prime} such that $Q X_{E} Q^{\prime}$

- "Composed from" means for some context C and $\left(V_{1}, V_{1}{ }^{\prime}\right), \ldots,\left(V_{n}, V_{n}{ }^{\prime}\right) \in E$, $V=C\left[V_{1}, \ldots, V_{n}\right]$ and $V^{\prime}=C\left[V_{1}{ }^{\prime}, \ldots, V_{n}{ }^{\prime}\right]$

4. $P\left|Q X_{E} P^{\prime}\right| Q^{\prime}$ for any $\left(Q, Q^{\prime}\right) \in E$

Our Environmental Bisimulations (3/3)

X is an environmental simulation

if $P X_{E} P^{\prime}$ implies:

5. $P X_{\left.E \cup\left(V, V^{\prime}\right)\right\}} P^{\prime}$ if V and V^{\prime} can be computed from E (by decomposition or first-order computation)
E.g. suppose:

$$
\left.E=\left\{\left(k, k^{\prime}\right),\left({ }^{\wedge} \text { encrypt(V,k), ^encrypt(V' }, k^{\prime}\right)\right)\right\}
$$

Then (V, V^{\prime}) can be computed from E by the first-order context:

$$
c=\operatorname{decrypt}\left([]_{2},[]_{1}\right)
$$

6. E preserves equality

Main Theorem

The largest environmental bisimulation

 (with appropriate E) coincides with reduction-closed barbed equivalence- It exists because the generating function is monotone [Tarski 55]
- The \subseteq direction is proved via a context closure property of environmental bisimulations
- The \supseteq direction is proved by coinduction

Agenda of Part II

- Informal overview of the work
- A little technical details
- A little more technical details
- Conclusion

Our Calculus: Syntax of Terms

```
M ::=
    V
    X
    M(M
V ::=
    a
    f
    ~}f(\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{n}{}
    `P
    `M
```

terms
values
variables
computations
values
names
function symbols
computed values
transmitted processes
transmitted terms

Syntax of Processes

P : : =
0
$M(x) . P$
$\bar{M}\langle\mathbf{N}\rangle . P$
PIQ
IP
$v \times . P$
run(M)
if $M=N$ match M as x in P
processes
inaction
input
output
parallel composition
replication
restriction
execution
conditional decomposition

Labeled Transition Semantics

- Parameterized by semantics of terms
- Defined by (strongly normalizing and confluent) term rewriting system
- Key rules:
$\bar{c}\langle M\rangle . P \xrightarrow{c\langle V\rangle} P$
if M rewrites to V ("call-by-value")
run($(P) \xrightarrow{\tau} P$ (important!)
match ' P as x in $Q \xrightarrow{\tau} \quad[M / x] Q$ where M is decomposed AST of P

Examples (Revisited)

$\bar{c}\langle$, $\bar{c}\langle$ encrypt $(m, k)\rangle\rangle \mid$ $c(X)$. match X as y in R
\rightarrow match `\(\bar{c}\) (encrypt \((m, k)\)) as \(y\) in \(R\) \(\rightarrow[\) Out(Nam c,Enc(Nam m,Nam k))/y]R \(\bar{c}\left\langle{ }^{\prime} \bar{c}\left({ }^{\wedge}\right.\right.\) encrypt \(\left.\left.(m, k)\right\rangle>\right|\) \(c(X)\). match \(X\) as \(y\) in \(R\) \(\rightarrow\) match` $\bar{c}\left({ }^{\wedge}\right.$ encrypt $\left.(m, k)\right\rangle$ as y in R
$\rightarrow\left[\mathrm{Out}\left(\mathrm{Nam} \mathrm{c}, \mathrm{Val}{ }^{\wedge} \mathrm{encrypt}(m, k)\right) / y\right] \mathrm{R}$

Bisimulation Example

Proof outline: Take X as follows (so $P X_{E} P^{\prime}$)

$$
X=\{(E, C[\wedge \text { encrypt }(3, k)], C[\wedge \text { encrypt }(7, k)])\}
$$

$$
k \text { not free in } C\}
$$

$$
E=\{(D[\wedge \text { encrypt }(3, k)], D[\wedge e n c r y p t(7, k)]) \mid
$$

$$
k \text { not free in } D\}
$$

and prove it to be an env. bisim.
(by case analysis on C and D)

$$
\begin{aligned}
& P=\bar{c}\left\langle\quad-\bar{c}\left\langle{ }^{\wedge} \text { encrypt }(3, k)\right\rangle\right\rangle \text { and } \\
& \mathrm{P}^{\prime}=\bar{c}\langle ` \bar{c}\langle\text { ^^ncrypt(7,k) }\rangle\rangle \\
& \text { are bisimilar }
\end{aligned}
$$

Non-Bisimulation Example

$$
\begin{aligned}
& P=\bar{c}\langle\quad \bar{c}\langle\text { encrypt }(3, k)\rangle\rangle \text { and } \\
& P^{\prime}=\bar{c}\langle\text { • } \bar{c}\langle\text { encrypt }(7, k)\rangle\rangle \text { are } \\
& \text { not bisimilar }
\end{aligned}
$$

Proof outline:

If $P X_{E} P^{\prime}$ for some env. bisim. X and E, then by output we get $0 X_{E^{\prime}} 0$ with ($\bar{c}\left\langle\langle\right.$ encrypt $(3, k)\rangle,{ }^{\prime} \bar{c}\langle$ encrypt $\left.(7, k)\rangle\right) \in E^{\prime}$.
Since $(3,7)$ can be computed from E^{\prime} by decomposition, we get $0 X_{E^{\prime}} 0$ with $(3,7) \in E^{\prime \prime}$, which violates integer equality.

Simplification by
 Up-To Context Technique

Problem:
Many environmental bisimulations include all processes/values of the forms
$C\left[V_{1}, \ldots, V_{n}\right]$ and $C\left[V_{1}{ }^{\prime}, \ldots, V_{n}{ }^{\prime}\right]$
for some $\left(V_{1}, V_{1}{ }^{\prime}\right), \ldots,\left(V_{n}, V_{n}{ }^{\prime}\right)$
Solution:
A "smaller" version of environmental bisimulations, where processes/values of the forms $C\left[V_{1}, \ldots, V_{n}\right]$ and $C\left[V_{1}{ }^{\prime} \ldots ., V_{n}{ }^{\prime}\right]$ can be omitted if $\left(V_{1}, V_{1}{ }^{\prime}\right), \ldots,\left(V_{n}, V_{n}{ }^{\prime}\right)$ are included

Example of Environmental Bisimulation Up-To Context

Consider again:

$$
\left.\begin{array}{rl}
P & =\bar{c}\langle\quad, ~ \bar{c}\langle\wedge \text { encrypt }(3, k)\rangle\rangle \\
P^{\prime} & =\bar{c}\langle, ~ \\
c
\end{array}\langle\wedge \text { encrypt }(7, k)\rangle\right\rangle
$$

Then

$$
y=\left\{\left(E, P, P^{\prime}\right)\right\}
$$

is an environmental bisimulation up-to context, where:
$E=\left\{(c, c),\left({ }^{\wedge} \operatorname{encrypt}(3, k),{ }^{\text {encrypt }}(7, k)\right)\right\}$

In our APLAS'09 paper

- Formal definitions of the calculus and our environmental bisimulations (and the up-to context technique)
- Soundness and completeness proofs (i.e. proof of coincidence with reduction-closed barbed equivalence)
- More sophisticated examples
- Software distribution system
- Online e-mail client

Agenda of Part II

- Informal overview of the work
- A little technical details
- A little more technical details
- Conclusion

Conclusions of Part II

- Higher-order cryptographic processes are non-trivial
- Previous theories do not apply (higher-order pi-calculus, spi-calculus, ...)
- Environmental bisimulations "scale" well to such sophisticated calculi
- Including the present one
- Future work: automation, extension, simplification, ...

Sources of

Discussion/Controversy

- Relationship to denotational semantics (especially, games)
- Denotational semantics is "syntax-free"
- Env. bisim. is "semantics-free"
- Very robust, but (arguably) ugly, lacking good mathematical structure
\Rightarrow More structured and robust framework?
- (Semi-)automation/mechanization
- What does "completeness" mean when the problem is undecidable?

